
Chapter 1

Fundamentals of Probability
and Judgement

1.1 Introduction

This book concerns the elicitation of expert knowledge in probabilistic form. Before
we can discuss what this means and the techniques for doing it, we need to explore
some fundamental facts about probability and the way in which people formulate
judgements of probability. This chapter begins with an introduction to probability
and elicitation. It continues with a discussion of the nature of probability, arguing
that, for the kinds of uncertain quantities for which expert opinion is typically
sought, the usual understanding of probability in terms of long-run repetition of
events is inadequate. We then consider how experts construct probability judge-
ments, and find that probabilities are not pre-formed numbers just waiting to be
expressed. On the contrary, psychological research tells us that judgements are
formed ‘on the fly’ in response to questioning about uncertain quantities and are
likely to be highly context dependent. Finally, we ask how such probability judge-
ments might relate to the normative theories that underpin the interpretation and
use of probabilities in statistics, decision theory and risk analysis.

1.2 Probability and elicitation

1.2.1 Probability

The probability of an event is a measure of how likely it is to occur. Probability 0
means that the event is certain not to occur, whereas probability 1 means that it is
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FUNDAMENTALS OF PROBABILITY AND JUDGEMENT

certain to occur. Values from 0 to 1 describe increasing chances that the event will
occur. The central value, 0.5, represents an event that is as likely to occur as it is
not to occur. Events with probabilities above 0.5 are more likely to occur than not
to occur, and conversely events with probabilities below 0.5 are more likely not to
occur than to occur.

The symbol that is almost universally adopted to denote probability is P . Thus,
if E is an event, then P (E) denotes the probability of that event. For example, if
E is the event of getting the result ‘Heads’ in a toss of an ordinary coin, then we
can say P (E) = 0.5, because it is generally agreed in this situation that ‘Heads’
and ‘Tails’ are equally likely to occur. Similarly in the roll of a die (‘die’ here is
the singular of ‘dice’), there are 6 equally likely results and if S is the event of
getting a 6 then P (S) = 1

6 .
The theoretical study of probability is a branch of mathematics that deals with

laws and theorems about how probabilities behave and combine. For instance,
suppose that events E and F are mutually exclusive. The term ‘mutually exclusive’
is defined in the Glossary; it simply means that E and F both cannot occur. If one
occurs, then the other cannot. Let EorF be the event that either E or F occurs.
Then one of the fundamental laws of probability theory (the Addition Law) is that
P (EorF ) = P (E) + P (F).

The statement that E and F are mutually exclusive implies that if I know that
E has occurred, then the probability that F occurs must be zero. The occurrence
of E changes the probability of F . For the inexperienced observer, one of the
most difficult aspects of probability (and the source of some perplexing paradoxes)
is the manner in which the probability of an event is affected by other events
or other information that we might have. In this case, we need to distinguish
between the probability of F when we do not know whether E has occurred and
its probability when we do have that information. The first is just P (F), and is
called the unconditional probability of F . But if we know that E has occurred we
have P (F |E) = 0, and this is the conditional probability of F given E. Another
example of conditional probability can be found in the toss of the die. If E denotes
the event that the result is an even number, then P (S |E) = 1

3 ; that is, given that
the result is an even number (2, 4 or 6) the probability of getting a 6 is one-third.

A more complex example is the probability that a specified person is killed in
a road accident in the next 12 months. If we know nothing about the person except
that he/she lives in England, then we could assess that probability as about one
in 20,000 (because, although figures are not readily available for England alone,
about 3000 people are killed on British roads each year). If, however, we know
that the person is aged between 17 and 21, then the probability is larger, because
this age group has more accidents. If we also know that the person is male, the
probability increases again. A person’s chance of being killed on the road varies
with their age and gender, where they live in England, their occupation, whether
they are married, and so on.

Pursuing this example further, what is the probability that I will be killed in a
road accident in the next 12 months? If we consider all the relevant conditioning
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1.2. PROBABILITY AND ELICITATION

factors – my age, gender, location, marital status, the model of car that I drive,
the number of miles that I drive each year, and so on – then there is nobody else
in England (and never has been) with exactly the same characteristics. There will
therefore be no data on which to assess that probability, and it is even questionable
how to define it. We will explore these issues more thoroughly in Sections 1.3.2 and
1.3.3, but it is already clear why probabilities can be confusing for ordinary people.
One reason why road safety advice (such as to wear seat belts, not to use mobile
phones while driving or to drive more slowly in conditions of poor visibility) often
has limited effect is because people do not see it as necessarily applying to them
personally. They can believe that using mobile phones is dangerous in general,
but that they personally can do so safely. It may not be rational to believe that
they are special in this way, but it is certainly true that each person’s individual
characteristics will condition the probability and make them more or less at risk
than the average person.

1.2.2 Random variables and probability distributions

Uncertainty about a single event is quantified by its probability. We are often
interested, however, not so much in an uncertain event as in an uncertain quantity.
An uncertain quantity is usually called a random variable. An event either occurs or
does not occur, whereas a random variable may take any value of some collection of
possible values. If the variable may take any value within some range, then we call
it a continuous random variable. An example is the weight of the Great Pyramid
at Giza, Egypt, which could, in principle, be any positive value (although clearly
it would be very many tons). In contrast, a discrete random variable can only take
certain distinct values, and cannot have values between these. An example is the
number of stones in the Great Pyramid, which, in principle, could be 0, 1, 2 or any
other positive integer value (although again it is clearly a large number), but not,
for instance, any value between 0 and 1 or between 2,000,000 and 2,000,001.

Uncertainty about a random variable X is described by specifying the proba-
bility P (X ≤ x) for any x. So, although we can no longer characterise uncertainty
about a random variable with a single probability, the description is still in terms
of probabilities. (Note that X ≤ x is an event, the event that the true value of X is
less than or equal to x.) If we think of P (X ≤ x) as a function of x, then it is called
the (cumulative) distribution function of X. Examples of these functions for both
discrete and continuous random variables are shown in the Glossary. Note that we
can also have conditional distributions. For instance, the conditional distribution of
X given some event E is specified by the probabilities P (X ≤ x |E) for any x.

While the distribution function is formally the way to define the probability
distribution of a random variable, there are alternative formulations that are more
intuitive, but which differ for continuous and discrete random variables. For a
discrete random variable, it is more natural to use the set of probabilities P (X = x)

that give the probability that X will take each of its possible values. This is called
the probability mass function of X. Figure 1.1 shows the probability mass functions
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Figure 1.1: Probability mass functions for total score on n dice.

for three random variables. In Figure 1.1(a), we see that of the score on the toss of
a single die. Figure 1.1(b) shows the probability mass function for the total score
on tossing two dice and Figure 1.1(c), the same for the total of three dice.

The score on one die is equally likely to be 1, 2, 3, 4, 5 or 6, and this appears
in Figure 1.1(a) as a distribution of uniform height. The same for two dice in
Figure 1.1(b) has a triangular shape, while that of three dice in Figure 1.1(c) climbs,
flattens out and then falls smoothly.

For continuous random variables, a similar picture is shown by the probability
density function (pdf). Figure 1.2 shows some typical pdfs.

Both density functions are unimodal, meaning that they rise to a single peak
(mode) before falling again. The density in Figure 1.2(a) is symmetric (like those in
Figure 1.1), while that in Figure 1.2(b) is skewed. It should be noted that, whereas
the heights of the bars in the probability mass function plots in Figure 1.1 are
actual probabilities, the heights of the pdf curves in Figure 1.2 are not probabilities.
Instead, it is the area under the curve between any two points, say x1 and x2, that
is a probability; specifically, this area is P (x1 ≤ X ≤ x2), the probability that X

lies between x1 and x2.
The distributions in Figure 1.2 are examples of the many families of distribu-

tions that are used in statistics. Figure 1.2(b) is an example of a beta distribution;
specifically it is the beta distribution with parameters 2 and 4. Figure 1.2(a) is
a normal distribution; specifically it is the normal distribution with parameters 0
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Figure 1.2: Two probability density functions.

and 1, also known as the standard normal distribution. Several other widely used
distribution families are described in the Glossary.

1.2.3 Summaries of distributions

Although a probability distribution is defined by its distribution function, or equiv-
alently by its probability mass function or probability density function, it is useful
to have other kinds of descriptions that capture particular features of a distribu-
tion. So there are many different summaries that are used in statistics to present
information about a distribution. Since these are also widely used in elicitation, the
most important ones are listed here.

• Probabilities. Individual probabilities, such as P (X = 2), P (1 ≤ X ≤ 2) or
P (X ≤ 10), are often used as summaries in their own right.

• Quantiles. The qth quantile of the distribution of X is the value xq such that
P (X ≤ xq) = q. The most widely used quantiles are the percentiles, median
and quartiles. The nth percentile is x0.01n. The 50th percentile, x0.5, is known
as the median, and it divides the range of X into two equally probable ranges
(with probabilities 0.5); X is equally likely to lie above x0.5 or below x0.5.
The lower quartile is the 25th percentile and the upper quartile is the 75th
percentile. Together, the quartiles and the median divide the range of X
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into four equiprobable regions (with probabilities 0.25). Of course, all the
percentiles together divide the range into 100 equiprobable regions (all with
probability 0.01). We sometimes refer to the tertiles, which divide the range
into three equiprobable regions.

• Intervals. For any s > t , there is a probability s − t that X lies in the interval
(i.e., range of values) from xt to xs , written as [xt , xs]. It is often referred to
as a 100(s − t)% probability interval (or credible interval ) for X. An interval
like this with a suitably high probability, such as 90 or 95%, provides a range
of values in which the true value of X will ‘probably’ lie.

• Location measures. These measures try to represent in some sense a typical,
or representative, value of X. The median is a location measure, being the
central value (such that X is equally likely to be higher or lower). Another
measure is the mode, defined to be the value of X at which the probability
mass function or pdf reaches its maximum. In the case of a discrete random
variable, the mode is the most probable value for X. For a continuous random
variable, this interpretation suffers from some technical ambiguities, but is
still the usual way to explain the mode. The location measure that is most
often used in statistical analysis is the mean. The mean, or expected value,
of X is interpreted as the average value, or more formally, if we were able to
observe the values of many random variables all with the same distribution
as X, then the average of these values would be the mean. The mean has its
own notation, E(X) (standing for the expectation of X).

• Measures of scale or dispersion. These measures represent in different ways
how far from its mean (or some other location measure) the random variable
X might be. They can be seen as descriptions of how much uncertainty there
is concerning X, since a large value of any of these measures implies that X

may be far from any typical or representative value. The simplest is the inter-
quartile range, which is the difference between the upper and lower quartiles.
The most widely used measure in statistical analysis is the variance, which is
the expected squared distance of X from its mean. Formally, we write this as
E{(X − E(X))2}. The square root of the variance is known as the standard
deviation and is often more useful as a measure of dispersion because it is
on the same scale as X.

• Measures of shape. Qualitative measures of shape include describing the
density as unimodal, bimodal (rising to two distinct maxima, with a dip
between) or multi-modal (having three or more maxima). We can also say that
it is symmetric (as in Figure 1.2(a)), skewed to the right (as in Figure 1.2(b))
or skewed to the left (as in the mirror image of Figure 1.2(b)). However, there
are also quantitative measures of skewness (where a symmetric distribution
has value 0, a distribution skewed to the right has a positive value and
a distribution skewed to the left has a negative value), and kurtosis (the
tendency for the mode to be more or less sharply curved).
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1.2. PROBABILITY AND ELICITATION

In order to describe a distribution effectively, a statistician will often use several
summaries.

The reader may have encountered many of these summaries in a different guise,
as summaries of a set of data. For instance, the mean of a sample is the average of
all the values. There is a natural correspondence between the summaries of samples
and the summaries of distributions, and a sample can often usefully be thought of
as an empirical distribution.

1.2.4 Joint distributions
If we have two random variables, say X and Y , the uncertainty about them is not
completely described by giving their separate distributions. The distribution of X

gives us the value of P (X ≤ x) and that of Y gives us the value of P (Y ≤ y),
but this is not enough to determine the joint probability P (X ≤ x, Y ≤ y), which
is the probability that both events, X ≤ x and Y ≤ y, occur. The reason is that
the occurrence of one event may change the probability of the other, in the way
considered in Section 1.2.1.

Another of the laws of probability theory (the Multiplication Law) is that
for two events E and F the joint probability P (E, F ) equals the product of the
unconditional probability P (E) and the conditional probability P (F |E), that is,
P (E, F ) = P (E)P (F |E). Equivalently, P (E, F ) = P (F)P (E |F). If the occur-
rence or non-occurrence of F does not change the probability of E then P (E |F)

= P (E) and we have P (E, F ) = P (E)P (F ). In this situation, we say that E and
F are independent. Notice now that this also implies that P (F |E) = P (F): inde-
pendence is a symmetric relationship, and if the occurrence or non-occurrence of F

does not change the probability of E then the occurrence or non-occurrence of E

does not change the probability of F .
The same ideas apply to probability distributions. If X and Y are two discrete

random variables, then their joint probability mass function comprises the prob-
abilities P (X = x, Y = y) for all possible values x of X and y of Y . They are
said to be independent if P (X = x, Y = y) = P (X = x)P (Y = y) for all x and
y. Two continuous random variables are said to be independent if their joint pdf
is the product of their separate pdfs. If random variables are independent then
knowing their separate probability distributions is enough to know all about their
joint uncertainty. But otherwise we need to consider that the occurrence of some
particular value of X may influence the distribution of Y or, conversely, that the
occurrence of any particular value of Y will influence the distribution of X.

If X and Y are not independent, we will need to consider the conditional
distributions of X given Y = y (for all possible values y) and/or the conditional
distributions of Y given X = x (for all possible x). Therefore, the joint uncertainty
of two (or more) random variables is potentially a complex thing, and may require
new kinds of summaries to describe it.

• Measures of correlation. These measures describe the degree to which the
value of one variable influences the value of another. They take the value 0
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when random variables are independent and ±1 when they are totally depen-
dent, meaning that as soon as we know the value of one variable there will be
no uncertainty about the value of the other. In the case of total dependence,
the sign of the correlation coefficient indicates which of two forms of total
dependence applies. Correlation of +1 means that as X increases so does
Y , whereas if the correlation is −1 then as X increases, Y decreases. Val-
ues between these extremes indicate greater or lesser degrees of dependence,
with a positive sign indicating that higher values of one tend to be associated
with higher values of the other (and negative sign meaning that higher val-
ues of one tend to be associated with lower values of the other). The usual
correlation coefficient is formally known as the Pearson correlation coeffi-
cient. It only takes the value ±1 if the variables are totally dependent in a
linear relation (increasing X by one unit always causes Y to increase by the
same amount, regardless of the original value of X). Other correlation coef-
ficients exist that measure rank correlation, and give values ±1 whenever
each variable is totally dependent on the other.

Also, just as individual probabilities are used as summaries for a single vari-
able, we may use joint or conditional probabilities to summarise the features of a
joint distribution.

1.2.5 Bayes’ Theorem

An important consequence of the asymmetry in the Multiplication Law of proba-
bilities is Bayes’ Theorem (named after an eighteenth-century mathematician and
clergyman called Thomas Bayes). In its simplest form it states that

P (E |F) = P (E)P (F |E)

P (F)
.

The reason this is an important result is that it provides a recipe for learning from
experience. In this context, we interpret E as an uncertain event of interest and F as
a piece of new information that we obtain (we learn that the event F occurs). Then
Bayes’ Theorem explains how to convert from the prior probability of E, which
is P (E), to the posterior probability P (E |F). The words ‘prior’ and ‘posterior’
here refer to the state of knowledge before and after learning that F occurs. The
conversion consists of multiplying by P (F |E)/P (F ).

What is not apparent from this simple description, but would take too much
space here to explain more fully, is how this ‘recipe for learning’ can really be
applied in practice. However, this simple result underpins a philosophy of statisti-
cal inference known as the Bayesian approach, which is characterised by using the
data and a form of Bayes’ Theorem to update an initial state of knowledge (the
prior distribution) to a new state of knowledge (the posterior distribution).
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1.2.6 Elicitation

This book concerns the elicitation of experts’ knowledge about one or more
uncertain quantities in probabilistic form, and we are now in a position to appre-
ciate what this ‘probabilistic form’ is. It is a (joint) probability distribution for the
random variable(s) in question. The purpose of such elicitation is to construct a
probability distribution that properly represents the expert’s knowledge/uncertainty.
The person whose knowledge is to be elicited is usually referred to as an ‘expert’,
and while in principle there is no particular reason for them to have special
knowledge or expertise, the fact that someone deems it worthwhile to carry out
the elicitation implies that the expert’s knowledge and judgements are worth
having.

Elicitation is an important activity in a variety of fields. It has been widely
practised in the design and management of large, complex engineering projects.
Such projects are often essentially unique, so that there is very limited experience
about the performance of components individually and in combinations. It is natural
then to draw on expert judgements. In particular, there has been extensive use of
elicitation in connection with nuclear installations.

Similarly, elicitation has played an important role in complex decision-making.
The most difficult decisions are those where the consequences are subject to sub-
stantial uncertainty, and where those uncertainties are themselves not easy to judge.
The use of expert elicitation to quantify the uncertainty in key variables then feeds
directly into the decision itself.

Two statistical contexts also call for elicitation. One is the design of experi-
ments. The purpose of experiments is to gain information regarding variables about
which there is substantial uncertainty. Paradoxically, however, it is important to be
able to use what knowledge one has about those variables in order to plan efficient
experiments.

The other statistical context is in the Bayesian approach to statistics, a vital
component of which (as is suggested in Section 1.2.5) is the use of prior informa-
tion to augment the information from the statistical data. See, for example, O’Hagan
and Forster (2004, Chapter 6). Elicitation of prior information is accepted as hav-
ing a fundamental role in Bayesian statistics. In other areas in which elicitation is
practised, the expert’s knowledge feeds directly into the analysis of the underly-
ing problem and will typically influence the outcome of that analysis strongly. In
Bayesian statistics, however, it will often be the case that the statistical data will
contain far more information than the prior knowledge, so the prior information
may not be influential. Formal elicitation of prior distributions in Bayesian statis-
tics has been used only in situations where prior information is appreciable and the
data limited.

Numerous examples of all these contexts for elicitation will be found in
Chapter 10.
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1.3 Uncertainty and the interpretation of
probability

1.3.1 Aleatory and epistemic uncertainty

The essence of elicitation is to capture an expert’s knowledge about some uncer-
tain quantity in a probability distribution that appropriately recognises the degree
of uncertainty. It is useful to identify two different kinds of uncertainty that are
sometimes known by the terms aleatory and epistemic uncertainty.

Aleatory uncertainty is induced by randomness. The word ‘aleatory’ derives
from the Latin alea, meaning a die (singular of ‘dice’, readers may know the
Latin quotation alea jacta est – the die is cast – attributed to Julius Caesar on
crossing the Rubicon). Wherever we are interested in characterising uncertainty in
one or more instances of a random process, then aleatory uncertainty is present.
Epistemic uncertainty is due to imperfect knowledge about something that is not
in itself random and is, in principle, knowable. The word ‘epistemic’ is Greek and
means ‘pertaining to knowledge’.

Consider, for example, the improvement in lung function that might be pro-
duced by a drug for asthma sufferers. The most widely used measure of lung
function is FEV1, which is the amount of air that the patient can expel in one
second with maximum effort. If we ask an expert to assess the FEV1 value that
an individual patient will achieve using the drug, then she will have uncertainty
about this value for a variety of reasons. (Note that we are adopting a convention
here, which is explained in Section 2.3, that the expert is female.) First, there is
aleatory uncertainty due to the fact that an individual patient will produce dif-
ferent FEV1 readings when given repeat lung function tests. This is unavoidable
random variation. Second, if we suppose that the expert is being asked about an
unspecified, randomly chosen individual, then there is also aleatory uncertainty due
to variability between patients. In addition, there is epistemic uncertainty because
of various things that the expert has imperfect knowledge of. These may include
uncertainty about how much within-patient variability there is in repeated FEV1
measurements or uncertainty about how FEV1 varies between patients. Even if the
expert has enormous experience of both between- and within-patient variability of
FEV1 readings, she is likely to be uncertain about the extent of improvement that
is achieved by the drug.

Statisticians usually separate the two kinds of uncertainty in the statistical mod-
els that they build. For the above example, we could characterise the single FEV1
reading y as

y = µ + α + τp + σe,

where µ is the mean level of FEV1 for untreated patients, α is the effect of the
drug in terms of the mean increase in FEV1 that it produces, τ is the standard
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deviation of between-patient variability, σ is the standard deviation of within-
patient (i.e., between measurements) variability, and p and e are zero-mean, unit-
variance random variables that we might assume to be normally distributed. In this
expression, it is p and e that represent the aleatory uncertainties. These give y a
random addition (positive or negative) for the individual patient and the individual
measurement. The other symbols, µ, α, τ and σ , represent epistemic uncertainties.
Unless the expert has considerable practical experience, they will all be uncertain,
but, in principle (given enough data), they are knowable. Statisticians refer to µ,
α, τ and σ as parameters. A statistical model can be viewed as a representation
of data in terms of (aleatory) probability distributions and (epistemic) parameters.

1.3.2 Frequency and personal probabilities

The distinction between aleatory and epistemic uncertainties is paralleled by the
distinction between two different definitions of probability. Frequency probability
is the definition that almost all people learn when they first encounter theories of
probability and statistics. According to the frequency definition, the probability of
an event is the proportion of times that it occurs if we conduct a long sequence of
repetitions. Thus, the probability of obtaining 6 on a single toss of a die is defined
to be the proportion of times that 6 would occur if we tossed it an infinite number of
times. This definition is essentially only applicable to aleatory uncertainties, because
it requires events to be repeatable in a process having intrinsic randomness. This is
obviously true of tossing a die and is also true of making repeated measurements
of FEV1 on an individual patient or FEV1 measurements on a series of randomly
chosen patients. The definition cannot, however, apply to the effect of the drug.
We cannot imagine this to be repeatable, since this is a specific drug and would
not be completely equivalent to any other.

Epistemic uncertainties are typically associated with one-off, unrepeatable
things. The same is almost always true of parameters in statistical models. If we
wish to express epistemic uncertainty through probabilities, we must find another
definition.

The answer is to use personal probability, also sometimes called subjective
probability. According to this definition, probability represents someone’s degree
of belief in an uncertain proposition. This applies to both aleatory and epistemic
uncertainties. I have, for instance, a degree of belief in whether a toss of a die will
yield a 6, and I can have a degree of belief in the proposition that a particular drug
will increase FEV1 for asthma patients on average by 100 ml or more.

It is clear that the terms ‘personal’ or ‘subjective’ are appropriate because my
degree of belief in one of these propositions may be different from yours. This may
not be true for something as simple as a toss of a die but for epistemic uncertainties
(which are associated with imperfect knowledge) probabilities will always depend
on what knowledge a person has. In everyday usage, the word ‘subjective’ has
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unfortunate connotations of opinions contaminated by personal bias, prejudice and
even irrationality or superstition. It is important to recognise that the objective
of good elicitation is to eradicate such elements and to structure the process of
elicitation in such a way as to assist the expert in rational and thoughtful evaluation
of her knowledge and experience. The expert inevitably has different knowledge
from others, so her probabilities are personal, but they should not be ‘subjective’
in any of those pejorative senses.

1.3.3 An extended example

To help clarify the distinctions and ideas in Sections 1.3.1 and 1.3.2, it is useful to
consider another example in some detail.

Suppose that a timber company is considering planting a species of tree that it
has not previously used. It asks an expert for her judgement of what yield it will
get if it plants this species. (For the purposes of this example, we will define the
yield to be the volume of usable timber per tree, although in forestry the more usual
definition is volume per hectare per year.) An important first distinction is between
the yield of a single tree and the average over all trees that the company might
plant. This is known in statistics as the distinction between an individual sampled
observation and the underlying population mean. In this case, the population is the
collection of all the trees that the company will grow if it decides to use this species,
and an individual tree will usually be regarded as being randomly drawn from this
population. The yield of an individual tree therefore has aleatory uncertainty that
is described by the distribution of yields in the population. For instance, if 30% of
trees in the population yield more than 50 m3 of timber, then there is a probability
of 0.3 that an individual tree will yield more than 50 m3. The aleatory uncertainty
is completely described if we know this distribution of yields in the population.

However, there is another source of uncertainty – that this distribution is not
known. The yields of trees of this species will have been observed in other places
where it has been grown, and this is likely to form a part of the expert’s knowledge,
but there is uncertainty about how well the species will grow on this company’s
land. Furthermore, it is this distribution, and particularly the mean of the distribu-
tion, that is of interest to the company. It is the mean yield, the average over all
the trees, that relates directly to the profitability of this species, and to the decision
whether to plant it. It is this mean yield that the expert is asked to assess, not yields
of individual trees.

Is the expert’s uncertainty about mean yield aleatory or epistemic? We could
think of the company’s land as just one of the many sites where this species has
been and might be grown. There is then another level at which we can conceive
a population, the population of sites, and a distribution of mean yields over these
sites. So if 25% of sites have mean yields of more than 45 m3 per tree, then we
might suggest that the probability of the company’s site producing a mean yield
over 45 m3 per tree is 0.25. This presents the uncertainty about mean yield as
aleatory, but such an interpretation is not appropriate. The company’s site cannot
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be regarded as randomly drawn from the population of sites. We know its latitude,
its altitude, the nature of the geology and topography, all of which make this site
different from others. It is factors such as these that the expert will be expected to
take into account, in addition to any knowledge about the yield of this species at
other sites.

The uncertainty about mean yield in this site is predominantly epistemic because
it is not a randomly chosen site. The uncertainty derives from lack of knowledge
about how the specific features of this site will affect the mean yield. Whereas
the frequency interpretation of probability is adequate to describe the distribution
of yields in a population of trees, it cannot apply to the mean yield of a specific
site, because that site is a ‘one-off’. There is no other site that is exactly like it,
and when we use probability to describe the expert’s uncertainty about the mean
yield, the only meaningful interpretation for those probabilities is the personal or
subjective interpretation.

Note that if the expert were to be asked about the yield of an individual tree
on this site, her uncertainty would be a compound of the aleatory and epistemic
uncertainties. It would be purely aleatory if she knew the distribution of yields
in the population of trees that might be grown on that site, but this distribution
is not known. In particular, its mean is unknown. Uncertainty about features of
the population is epistemic and will also contribute to the uncertainty about an
individual tree. In statistics, features of populations, such as means and variances,
are generally referred to as parameters (like the parameters µ, α, τ and σ in the
medical example of Section 1.3.1). The theory of statistics is concerned with ways
to make inferences about the unknown parameters, using the available data. The
things that we wish to ask experts about are very often what statisticians would call
parameters. Uncertainty about them is always epistemic because the population is
unique, and elicitation is always concerned with the expert’s personal probabilities.

There is controversy in the world of statistics about the use of personal probabil-
ity. The most widely taught theory of statistical inference is the frequentist theory,
in which parameters are regarded as unknown but fixed. In frequentist statistics,
it is not legitimate to express probabilities about parameters, because only the
frequency interpretation of probability is admitted. The rejection of personal prob-
ability as a basis for scientific reasoning is one of the differences that distinguishes
most followers of frequentist statistics from most advocates of Bayesian statistics,
the latter generally embracing personal probability in their methods. However, in
the practical elicitation of expert knowledge, this controversy does not arise. The
focus of attention in practice is always on variables for which there is at least a
component of epistemic uncertainty, and expert judgements are therefore always
personal probabilities.

In the light of the timber yield example, we can now refer back to the problem
in Section 1.2.1 of assessing the probability that I will be killed in a road accident in
the next 12 months. It was noted there that the combination of relevant factors – my
age and gender, where I live, the kind of car I drive, and so on – make me unique,
so that it is no longer possible to ascribe a probability by referring to road accident

13



FUNDAMENTALS OF PROBABILITY AND JUDGEMENT

data. This is clearly analogous to the uniqueness of the timber company’s site. It
may be entirely natural to ask about the probability that I will be killed on the road
in the next 12 months, but it is not possible to give a frequency interpretation to
such a probability. The only sense in which we can discuss it meaningfully is within
the personal probability framework. The fact that people, in general, are willing
to talk about unique events as having probabilities emphasises the importance of
personal probability.

1.3.4 Implications for elicitation
Most people are familiar with probability only in terms of repeatable, random
events, and this has important implications for the process of elicitation. If an
expert is asked to express her probability for the proposition that the asthma drug
will increase FEV1 by an average of 100 ml or more, or that the mean yield will
exceed 45 m3 per tree, we are asking for a personal probability. In trying to answer
the question, she cannot appeal to any experience of repetitions since the events
she is being asked about are unique and repetition is impossible. Nevertheless, the
familiar ideas of frequency probability are a valuable guide.

First, when explaining to the expert what is needed, it is usual to draw analogies
between personal probabilities and frequencies. The expert will be advised that she
should give a probability of one-sixth if she has the same strength of belief in
the proposition as in throwing a 6 with a die. Well-known frequency probabilities
associated with familiar gambling devices such as dice, coins, roulette wheels and
cards help the expert assign personal probabilities to one-off propositions.

Second, experience with frequencies of related things may suggest a probability.
For instance, the medical expert may know that six out of seven asthma drugs claim
to increase FEV1 by at least 100 ml. This is not really repetition because the drugs
are all unique, but it gives the expert a sense of how realistic it is for a new drug
to reach that level of effect. In the same way, the forestry expert will use the yields
of the tree species in other places to indicate a probability, but must also account
for the unique features of the specific site. The knowledge that an expert draws
on is often a kind of quasi-repetition, moderated by a judgement of how much the
proposition in question is representative of those quasi-repetitions.

1.4 Elicitation and the psychology of judgement

When we talk of ‘elicitation’, we imply that our respondents have some kind of
knowledge or beliefs ‘in their heads’ and it is our task to devise the right kind of
questions to ‘extract’ this information from them. But is this picture correct? Do
people have ready-formed beliefs waiting to be extracted in this way? And even if
they do, if such beliefs concern uncertain events or prospects, are they represented
subjectively in terms of numerical probabilities? To start answering such questions,
we need to go back a bit into history to remind ourselves of the concerns that have
guided the development of theory and method in psychology.

14



1.4. ELICITATION AND THE PSYCHOLOGY OF JUDGEMENT

1.4.1 Judgement – absolute or relative?

Psychology is, very largely, the scientific study of how human beings think and feel
and act on the basis of their thoughts and feelings. So one of the first questions is
how we can tell what someone is thinking or feeling. This, of course, was, and still
is, a fundamental question of philosophy, but what distinguished the aspirations
of early experimental psychologists was a conviction that thoughts and feelings
were, in principle, measurable. Those who initiated this programme of work in the
mid-nineteenth century referred to their field as psychophysics. Partly, this signified
an intention to bring the methods of the physical sciences to bear on the subject
matter of psychology, but it had a more precise sense too. The search for the
‘psychophysical law’ involved attempting to specify, in exact mathematical terms,
a function that described the relationship between ‘psychological magnitudes’ on
the one hand and ‘physical magnitudes’ on the other.

The context in which this enterprise was undertaken was that of sensory per-
ception. Hence, the ‘psychological magnitudes’ studied were sensations – of the
loudness of tones, the brightness of lights, the length of lines and (particularly
in the early days, since such stimuli could be manufactured easily) the perceived
heaviness of different weights. Consider the last of these. Participants are presented
with a series of small brass cylinders, made to be identical visually but of different
actual weights. The ‘physical magnitude’ of these stimuli is simply their weight
in grams and their ‘psychological magnitude’, is, how heavy they feel. Obviously,
these two sets of magnitudes will be related to each other. A weight of 200 g will
feel heavier than one of 100 g, but will it feel exactly twice as heavy? And will the
difference between these two weights feel the same as that between two weights
of 200 and 300 g? The broad answer is no. For many sensory continua – at least
those that involve changes in perceived intensity rather than in quality (colour is
an example of the latter) – sensitivity to differences is reduced as the stimulus
intensity increases.

The so-called Weber–Fechner law (Fechner, 1860) proposed that the ‘difference
threshold’ or ‘just noticeable difference’ (JND) for any stimulus – the amount by
which the magnitude of the stimulus would need to be increased for the difference
to be just detectable – is a logarithmic function of the distance of that stimulus
above ‘absolute threshold’ (i.e., the smallest detectable stimulus intensity). It was
also assumed that the perceived difference between any pair of stimuli is a direct
function of the number of JNDs by which they were separated. This law remained
intact for a century until Stevens (1957) proposed its replacement by a power
function. Even then, the differences between the predictions of these two versions
of the ‘psychophysical law’ are quite subtle over many ranges of stimulus intensity.

In the course of their search for this precise mathematical function, however,
psychophysicists were quickly confronted by another phenomenon. Judgements are
highly dependent on context. Perhaps the most common context phenomenon is
termed the contrast effect. Here is a typical experiment. In a control condition,
participants have to lift a series of weights ranging between, say, 200 and 400 g
and rate how ‘light’ or ‘heavy’ they feel (e.g., on a scale with, say, 11 response
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categories labelled ‘extremely light’ at one end and ‘extremely heavy’ at the other).
In other conditions, an ‘anchor’ or standard weight (that need not be judged) is
added on alternate trials between each of the original variable weights. If this
anchor is much heavier than the original series (say 900 g), the remaining weights
will be judged lighter; if the anchor is lighter than the original series (say 50 g),
they will be judged heavier.

Interestingly, the original reason for introducing such ‘anchors’ was, as the
term suggests, to stabilise participants’ use of the rating scale so that the rela-
tionship between the physical magnitudes of the stimuli and how they were rated
remained relatively unchanged across the course of the experiment. Sometimes
these anchors could fall within the range of the stimuli to be judged and some-
times at or beyond the extremes of the stimulus distribution. Sometimes participants
were instructed that the anchor or anchors corresponded to a specific category or
score on the response scale; sometimes this was left unstated or implicit. Either
way, this procedure did generally achieve the desired effect. In other words, the
resulting judgements tended to be more consistent in terms of their rank ordering
and defensibly interpretable as constituting an interval scale (as required for any
test or application of the ‘psychophysical law’). However, participants’ judgements,
while internally consistent, were entirely relative to the context in which they were
presented. Although a 350-g weight would always receive a ‘heavier’ rating than
one of 250 g in the same experimental condition, there is no guarantee at all that
a 350-g weight in one condition would be rated as ‘heavier’ than a 250-g weight
in a different condition (as for instance, if the stimuli in the first condition ranged
from 200 to 800 g and those in the second condition, from 50 to 400 g). In short,
such judgements are always relative, not absolute.

Contrast effects are easy to demonstrate, but less easy to explain definitively. A
major ambiguity is whether such effects reflect changes in sensation (or ‘psycho-
logical magnitude’) resulting from perceptual adaptation (as when an indoor room
initially seems dark after coming in from bright sunshine) or merely a ‘seman-
tic shift’ in terms of participants defining descriptive terms such as ‘light’ and
‘heavy’ to match the range of stimuli actually presented. According to the lat-
ter interpretation, a weight of 400 g would not necessarily feel any lighter in the
context of a 900 g anchor. It is just that the term ‘extremely heavy’ now has to
allow for weights of at least 900 g, whereas in the control condition, it could be
used for weights of just 400 g. Probably both perceptual adaptation and semantic
shifts are present in this example, but separating out their effects is enormously
difficult with methods such as those described. Of more general significance than
debates over the role of perceptual adaptation, however, is the fact that relativity
to context pervades all kinds of judgements, not just those involving sensory per-
ception. Judgements of personality, of the seriousness of offences and of political
and social attitudes all show similar effects (see, for example, Eiser, 1990; Eiser
and Stroebe, 1972).

What are the implications of this piece of history for the elicitation of experts’
probabilities? The main messages are, firstly, that subjective perceptions and
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sensations are, in principle, measurable – and with some precision – but such
measurements can only be interpreted relatively and not absolutely. Secondly, in
recognition of such relativity, the psychology of judgement needs to take on issues
that extend beyond the original aim of the psychophysicists in relating psychologi-
cal and physical continua to each other. Simply stated, there is a logical distinction
between people’s sensations, or subjective representations, and their descriptions
of such sensations in terms of any response scale. In other words, whereas classical
psychophysics was primarily concerned with the relationship between continua of
psychological and physical magnitudes, more modern judgement research addresses
the relationship between psychological and response continua.

Translating this into the question of eliciting probabilities, we therefore need to
remember two basic distinctions. The first distinction, analogous to that between
psychological and physical magnitudes, is that between people’s subjective repre-
sentations of how probable things are and the objective events or evidence that
provide grounds for such representations. The second distinction, corresponding to
that between psychological and response continua, is that between people’s sub-
jective representations of how probable things are and the manner in which they
express such representations on any given response scale. For example, just because
respondents rate something as ‘90% certain’, we cannot assume that they really
mean 90% rather than 95%, 85% or even 65% or that what they think of as 90%
equates to what anyone else would mean by 90%. However, we can assume that
they mean it is more probable than something else they have rated as ‘80% certain’.
In other words, just because respondents may seem happy to use numerical proba-
bilities to express an estimate, we cannot assume that they represent such estimates
numerically to themselves (though they may) and, even less, that they have arrived
at any given numerical estimate through a process of normatively correct statistical
reasoning (though with training they sometimes may).

The argument, then, is that judgements of probability, however elicited, are just
that – judgements. Knowing what we do about the sensitivity of all judgements to
context effects, we should always be wary of interpreting them in absolute rather
than relative terms. Nonetheless, judgements of probability at least appear more
absolute than, say, judgements of heaviness or loudness. This is largely because the
meaning of different probability values is well defined (i.e., absolute), is assumed
to be well known and, importantly, the scale on which they fall is bounded at both
extremes (0 and 1). In comparison, many scales of psychological measurement are
not bounded at all, and some (e.g., perceptual judgements) only have a minimum or
lower bound (i.e., absolute threshold) but no upper bound. In this sense, probability
judgements on a scale of 0 to 1 are already ‘anchored’ at the two extremes. So
does this remove the problem of relativity? Not quite.

The first reason is conceptual. People’s perceptions of how probable things are
may not correspond to any formal definition of probability. By analogy, we know
that the loudness of sounds can be measured in decibels, but asking people (even
expert sound engineers) to estimate the decibel value of a given sound in no way
guarantees that their estimates will be accurate. Eliciting probabilities from experts
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is not a straightforward matter, and context effects may be expected to contribute to
errors of judgement. The second reason is more empirical and relates to the actual
distribution of probabilities which judges are asked to estimate when required to
make a series of judgements, for instance, whether the distributions are positively
or negatively skewed and how much of the range from 0 to 1 they cover. A
well-established principle, related to the contrast effects previously described, was
first identified by Parducci (1963) and is termed the range-frequency compromise.
This involves two tendencies. The first is for judges to use the different regions
(or categories) of a response scale to cover broadly equal intervals or fractions
of the total range between the smallest and the largest stimulus presented. The
second is for judges to use the different regions or categories with broadly equal
frequencies. Of course a scale such as ‘extremely light’ to ‘extremely heavy’ can
be assumed to be more vulnerable to such effects than a probability scale from 0
to 1. However, the influence of such a principle cannot be ruled out in situations
where the actual probabilities being judged are heavily skewed. Even an association
that is very strong in epidemiological terms (e.g., the conditional probability of
contracting lung cancer if one is a smoker, about 0.1) can fall very close to the
bottom end of the 0 to 1 scale. If judges are asked to make comparative estimates,
on this scale, of various mathematically small probabilities, it could well be the
case that they would achieve ‘better’ differentiation by overestimating some of the
less improbable events. Another way in which the range-frequency principle might
have an effect could be when judges are asked to provide estimates of distributions,
rather than single probabilities. A speculation implied by research in other areas is
that, depending on the elicitation procedure, judges may produce distributions that
are less skewed, and possibly less peaked, than they should be.

1.4.2 Beyond perception

A possibly less helpful legacy of classical psychophysics has been the tendency to
conceive judgement prototypically as a form of perception. It is as though partici-
pants are told, “Here’s a stimulus, please look at it (or listen to it or touch it) and
tell me what you see (or hear or feel).” Sometimes this prototype is quite appro-
priate, as when a stimulus is physically present and can be directly perceived. But
not all judgements are like that. Frequently, we are asked to make judgements of
concepts or hypothetical events and consequences. Examples of the latter include
judgements of political preference and trust in politicians, elicitation of proba-
bilistic estimates of the outcomes of medical treatment or of the susceptibility of
members of a given population to a particular disease. Here, there is no specific
thing that has a determinable ‘physical magnitude’. Even where the question is
one of aleatory uncertainty and there is a correct answer determinable in advance
(e.g., the prevalence of disease D in population P), this fact is not known as such
to the respondents (or there would be no point in asking for their judgements).
So they are not ‘perceiving’ the prevalence and then describing their ‘perception’.
They are thinking about the problem, forming some notion of what the prevalence
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might be and then expressing this notion in terms of the particular response format
presented to them by the researcher. Such ‘thinking about’ involves a much more
deliberative and effortful process than that typically implied by more automatic per-
ceptual responses. The challenge, then, is to determine what this ‘thinking about’
comprises.

The starting point for an analysis of this problem is to realise that this ‘thinking
about’ is a process that is set in motion by the researcher’s interrogation. This
process leads to the respondent arriving at a notion of a possible answer and then
translating this notion into the response language provided. Within this process,
there is lots of room for conceptual slippage. Does the respondent understand
the researcher’s question in exactly the way the researcher intended? Does the
respondent then continue to think only (and wholly) about the question asked or
does he or she start thinking about other associations that are not strictly part of
the problem itself, while selectively failing to properly attend to all the features
of the problem that are relevant? (Note the discussion of cognitive heuristics in
Chapter 3.) And once the respondent has arrived at a notion of how to answer the
question, will the answer then offered be interpreted by the researcher exactly as
intended?

It is now acknowledged that an extremely important influence on this process
of ‘thinking about’ is memory. There are a number of reasons why memory is so
important for judgement. One reason is that memory is selective. Suppose that our
expert is asked to estimate the prevalence of condition or disease D in population P
(e.g., the proportion of children under five in an East African state who are likely
to die from malnutrition). Our respondent (who, let us assume, has never been
to Africa) will try to remember relevant sources of evidence, from news reports,
from articles in professional journals, from conversations with colleagues, and so
on. Some of this information may be easier to recall because of the vividness of
news reports. In other words, the information on which the respondent’s judgement
is based may be only a sub-sample, or selection, of what is potentially relevant
and available. Judgements can also be influenced by memory associations, that is,
by thoughts triggered by irrelevant (or non-diagnostic) features of the problem,
or by over-generalisation from inferences based on the membership of a broader
category.

To continue our example of malnutrition in Africa, let us suppose that, whereas
many states in that part of the world have had years of poor harvests, the state in
question has remained relatively prosperous. If so (and particularly if this has not
been considered newsworthy by western media), our respondent may overestimate
the mortality rate of the specific country as a consequence of a broadly accurate
but undifferentiated association between Africa, poverty and famine. Thus, through
the combined effect of selectivity and associative memory, our respondent may
fail to recall some useful information, and let other, misleading or less relevant,
information intrude. The point is that our respondent’s prevalence estimate is not
something ready formed and ‘sitting there’ in some memory store just waiting to
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be retrieved. It is something constructed from the ideas and associations that come
to mind while the respondent thinks about how to answer the question.

In short, memory can involve the reconstruction of meaning and not simply the
recall of facts or events. Related to this is the fact that we frequently have little
control over what memory associations do come to mind and little insight into
why we remember what we do or what has triggered particular thoughts. There is
a considerable body of recent literature on how ‘automatic’ memory associations
can influence attitudes, judgements and decisions, with many of these processes
occurring below the level of conscious awareness. See, for example, Bargh et al.
(1996), Bargh and Ferguson (2000) and Fazio (2001).

1.4.3 Implications for elicitation

We can draw from this generic psychological research some important conclusions
about the process of eliciting experts’ probabilities. First, an elicited probability is
a judgement, and we should expect in principle that generic findings about judge-
ments will apply. In particular, research has shown that judgements of stimuli such
as weights are intrinsically relative. Even when anchors are provided, changing the
anchors changes the context and is likely to influence the respondents’ judgements.
However, it has already been remarked that probability judgements are different
with respect to having natural limits of 0 and 1. These act as absolute and unvarying
anchors. Furthermore, it is usual in eliciting probabilities to give the expert addi-
tional absolute anchors in the form of reference events having specific probabilities.
For instance, the probability of 0.5 is explained as corresponding to a proposition
that is equally likely to be true or false, equivalent to the event of drawing a red
ball from a bag containing one red and one white ball. These practical measures
should mean that probability judgements suffer much less from relativity effects
than those found in experiments using judgements of other stimuli.

We should, nevertheless, expect to find that the ways that people make such
judgements lead to biases, such as through the range-frequency compromise. A
number of such bias-inducing heuristics are discussed in Chapter 3.

It is also important to recognise that experts construct probability judgements in
response to the stimulus of questioning; their probabilities are not pre-formed values
simply waiting to be expressed. The role of memory in this process, and the effect
that different forms of questions can have on which memories are accessed, also
underlies some of the sources of bias in probability judgements that are discussed
in Chapter 3.

1.5 Of what use are such judgements?

The purpose of elicitation is to obtain a formal expression of the expert’s knowledge
regarding an uncertain quantity (or quantities). Usually, the resulting probability
distribution will be used as part of some analysis (for instance a risk analysis) or to
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aid in making a decision. It is therefore important to consider the extent to which
probability judgements elicited from an expert have the status and interpretation
that is expected of them in these applications, particularly bearing in mind the
preceding discussion about how those judgements are constructed in practice.

1.5.1 Normative theories of probability
The probabilities that we wish to elicit (and which statisticians have often implic-
itly assumed are indeed elicited) are those that are implied by normative theories
of decision-making under uncertainty. The relevant theory was first fully devel-
oped by Savage (1954) and further expounded in the classic textbook of DeGroot
(1970). According to this theory, in order to make decisions which satisfy some
natural axioms, persons must behave as if they (a) have a probability distribu-
tion for all relevant uncertain quantities, (b) have a utility function expressing
the value of making any given decision conditional on the true values of those
quantities, and (c) choose an optimal decision as the one that maximises expected
utility. In principle, the expert’s probability distribution can be revealed by offering
enough different decision options and rewards and then observing what decisions
she makes.

In another seminal work, de Finetti (1974) formally defined probability to be the
decision made in response to a quadratic scoring rule (see Section 8.2). Specifically,
suppose that the expert states her probability for an event E to be q. Then when
it is determined whether E does occur, she receives a reward 1 − (1 − q)2 if E

occurs and 1 − q2 if it does not (in some appropriate monetary units). If the expert
actually judges the probability for E to be p, then her expected reward in stating
it to be q is

p{1 − (1 − q)2} + (1 − p){1 − q2} = 1 − p(1 − q)2 − (1 − p)q2

= 1 − p(1 − p) − (p − q)2. (1.1)

This expected reward is maximised by the expert stating a probability, q, that is
equal to her actual assessment p. So de Finetti’s scheme encourages the expert to
assess her probability accurately. However, it assumes that she is able to balance
probabilities and rewards appropriately. Under this assumption, it is proved that
the expert’s probabilities will behave according to the laws of probability theory
and will be appropriate for use in subsequent analyses or decision-making.

These normative theories state that probabilities are the uniquely scientific
way to represent uncertainty. Furthermore, probabilities defined according to such
theories are what is needed for use in applications such as risk analysis or decision-
making.

1.5.2 Coherence
Whatever interpretation we place on probability, frequentist or personal, it is agreed
that probabilities should obey the laws and theorems of probability theory (such as
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the Addition Law of Section 1.2.1 and the Multiplication Law of Section 1.2.4).
A set of probability judgements that follow all these laws and theorems are called
coherent (see Section 8.3 for more discussion of coherence). In developing their
theories of personal probability, Savage, DeGroot and de Finetti took care to show
that the probabilities that would be obtained must be coherent. For example, de
Finetti (1974) shows that a person who assigns a series of probabilities according
to the reward scheme illustrated in (1.1) will necessarily expect to obtain a lower
reward if her probabilities are not coherent. The assumption that she is able to
combine accurately the probabilities and rewards (and that she wishes to maximise
her expected reward) would imply that she would not make this mistake, and hence
her probabilities must be coherent.

In practice, however, we know that people do assign probabilities non-
coherently. They make errors of judgement that are assumed not to happen in the
normative theories. This raises the fundamental question of the nature of elicited
probability judgements and the extent to which they can be treated as having the
interpretation that is required for practical risk assessment and decision-making.

1.5.3 Do elicited probabilities have the desired interpretation?

Both de Finetti and Savage considered the process of obtaining expert responses to
choices with rewards such as (1.1) to be elicitation; see, for instance, Savage (1971).
In general, though, psychologists would regard such choices as cognitively more
complex than asking directly for an assessment of probability. It seems unlikely that
experts would perform better in such tasks. If, in order to determine q, the expert
follows the above reasoning and decides that her answer ought to be her probability
p, then she still has to determine p with all the difficulties outlined above and in
Chapters 3 and 4. If a less analytical approach is used, without explicit assessment
of probability but with the expert making a more intuitive choice in the face of the
reward scheme, then this seems likely to lead to a less accurate judgement through
imperfect appreciation of the implications of the reward scheme.

Research and the practice of elicitation have since concentrated on the direct
elicitation of probabilities. However, this compounds the question of what inter-
pretation we can place on the elicited probabilities. If they have not been obtained
according to their formal constructions in the theories of Savage, DeGroot or de
Finetti, and if they may, in practice, be non-coherent, what status do they have?

Winkler (1967, p. 778) writes

“The assessor has no built-in prior distribution that is there for the
taking. That is, there is no ‘true’ prior distribution. Rather, the assessor
has certain prior knowledge which is not easy to express quantitatively
without careful thought. An elicitation technique used by the statistician
does not elicit a ‘true’ prior distribution, but in a sense helps to draw
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out an assessment of a prior distribution from the prior knowledge.
Different techniques may produce different distributions because the
method of questioning may have some effect on the way the problem
is viewed.”

Winkler seems to regard the different distributions that result from different elic-
itation techniques as equally valid, but this would deny the considerable research
in the psychology literature (see Chapter 4) that demonstrates how some forms of
questioning lead the expert to view the problem inappropriately, in the sense that
they do not utilise the available information fully and accurately.

On the other hand, O’Hagan (1988) explicitly defines ‘true’ probabilities as
those that would result if the expert were capable of perfectly accurate assessments
of her own beliefs. He shows that such ‘true’ probabilities will satisfy the coher-
ence requirements of the normative theories. O’Hagan regards different ‘stated’
probabilities, that might result from different elicitation methods, as more or less
inaccurate attempts to specify the expert’s underlying ‘true’ probabilities.

It is clear that whether or not we believe that experts’ knowledge is repre-
sentable by unique, true probability distributions there are ways in which the expert
might give poorly judged assessments. So not all elicitation techniques will lead
to equally valid results. It is important that the expert should view the problem
from as complete a perspective as possible, utilising all the relevant information
in an unbiased way. If this were achievable, taking care, in particular, to avoid
the sources of poor judgement and bias that have been identified by psychological
research, then the elicited probabilities and distributions would be coherent. We
could call such a set of probabilities or probability distributions good.

In practice, an elicited probability distribution can be seen as an approxima-
tion to such a ‘good’ distribution. O’Hagan (1988) and the earlier developers of
personal probability implicitly assumed that there would be a unique ‘good’ distri-
bution, which can then be called ‘true’, but this is an open question. Are people’s
probabilities different only because no two people have identical knowledge and
experiences, or if we could ever find two people who are identical in this respect
might they legitimately have different probabilities? In a similar vein, if two elici-
tation techniques were both so perfect that they yielded ‘good’ distributions, could
they, nevertheless, produce different distributions? There are theories of probability
that take an ‘objective’ view that there is a unique probability distribution asso-
ciated with any state of knowledge. They are associated, in particular, with the
debate about probabilistic representation of ignorance (Jeffreys, 1967; Kass and
Wasserman, 1996).

We take the view that the purpose of elicitation is to represent an expert’s
knowledge and beliefs accurately in the form of a ‘good’ probability distribution.
In later chapters, we may refer to this as a true distribution, but the reader should
be aware that this does not necessarily imply that the true distribution is unique.
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1.6 Conclusions

Each chapter of this book will conclude with a summary of its findings relating
to good elicitation practice and areas of research need. These are collected in
Chapters 11 and 12.

1.6.1 Elicitation practice

• The distinction between aleatory and epistemic uncertainty is important for
elicitation practice. Elicitation usually focuses on uncertainties that are either
purely epistemic or have an epistemic component. However, people are most
familiar with the concepts of probability in the context of aleatory uncertain-
ties.

• It is important to remember that elicited statements of probability are judge-
ments made in response to the facilitator’s questions, not pre-formed quan-
tifications of pre-analysed beliefs. The psychophysics literature suggests that
all such judgements are intrinsically relative.

• The range-frequency compromise suggests that in some situations experts
will tend to distribute their elicited probabilities evenly over (the whole or
part of) the probability scale.

• Elicited probabilities may suffer from biases and non-coherence in practice,
but the goal of elicitation is to represent the expert’s knowledge and beliefs
as accurately as possible.

1.6.2 Research questions

• To what extent does the existence of an absolute scale (0 to 1) for proba-
bilities, and the way that training usually gives the expert other anchors or
landmarks on the scale, allow absolute (rather than relative) judgements?

• What are the implications of the range-frequency compromise in the context
of probability elicitation?

• Does elicitation using proper scoring schemes (as propounded by Savage
and others) lead to less accurate assessments than the direct elicitation of
probabilities?
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