
JWBK563-c01 JWBK563-Duffy Printer: Yet to Come November 17, 2012 15:9 Trim: 244mm × 168mm

1

Global Overview of the Book

1.1 INTRODUCTION AND OBJECTIVES

The main goal of this book is to show how to design software systems for financial derivatives
products using the object-oriented language C#. We have chosen C# for a number of reasons
and we would like to explain the rationale behind this choice:

� C# is relatively easy to learn (certainly when we compare it to C++). This means that it can
be learned by traders, quants and other finance professionals who do not necessarily spend
all their waking hours designing and implementing software systems. For example, people
with a background in VBA will find the transition to C# much easier than the transition
from VBA to C++. Furthermore, in many cases developer productivity levels in C# can be
four times as high as with C++.

� The .NET framework and C# offer the developer a range of functionality that he or she can
use in financial applications. This is realised by the features in the language itself and by
the libraries in the framework. We shall discuss these libraries and we shall also see in the
rest of this book how they are used to create robust and flexible applications.

� It is possible to create interoperable applications that consist of a mixture of C#, C++ and
VBA code and that communicate with Excel and real-time data servers. In other words, it
is possible to create .NET applications that can communicate with non .NET code and it is
also possible to create non .NET applications that can communicate with .NET code.

� Usability levels are high. Furthermore, developers do not have to worry about manual
memory management as this is taken care of by garbage collection mechanisms resident in
the .NET framework.

� C# and the .NET framework contain libraries that allow developers to create multi-threaded
applications that run on shared memory multi-core processors.

� Many .NET libraries have been designed in such a way that they can be used and adapted
to suit new developer needs. In particular, it is easy to use and apply design patterns in C#
applications.

In this book we discuss each of these topics in detail.

1.2 COMPARING C# AND C++
C# is a descendant of the C programming language (K&R 1988). It is worth pausing for a
moment to consider whether it is better (in some sense) to develop new applications in C#
and or C++. In order to help the reader determine how to choose between C# and C++, we
discuss the problem from three perspectives:

� P1: The skills and knowledge of those engineers developing applications.
� P2: The type of application and related customer wishes.
� P3: The technical and organisational risks involved in choosing a given language.

CO
PYRIG

HTED
 M

ATERIA
L



JWBK563-c01 JWBK563-Duffy Printer: Yet to Come November 17, 2012 15:9 Trim: 244mm × 168mm

6 C# for Financial Markets

We discuss each perspective in turn. First, C++ is a huge multi-paradigm language and
it supports the modular, object-oriented and generic programming models. It is based on the
C language and it would seem that it is the language of choice for many pricing, hedging
and risk applications. It is not an easy language to learn. There are many books that discuss
C++ and its syntax but there are surprisingly few that discuss how to apply C++ to finance
and even to other application domains. C#, on the other hand is a relatively new language
and it supports the object-oriented and generic programming models, but not the modular
programming model. This implies that everything must be an object or class in C#.

In general, C# is much easier to learn than C++. It shields the developer from many of
the low-level details seen in C++, in particular the pointer mechanism, memory management
and garbage collection. In short, the C# developer does not have to worry about these details
because they are automatically taken care of. This is a mixed blessing because there are
situations where we wish to have full control of an object’s lifecycle. C++ is a vendor-neutral
language (it is an ISO standard) while C# was originally developed by Microsoft for its
Windows operating system.

Perspective P2 is concerned with the range of applications to which C++ or C# can be
applied, how appropriate C++ and C# are for these applications and how customer wants
and needs determine which language will be most suitable in a particular context. In general,
customers wish to have applications that perform well, are easy to use and easy to extend. On
the issue of performance, C++ tends to be more efficient than C# and tests have shown that
in general C++ applications are 20% faster than the corresponding applications in C#. This
difference may or may not be a critical factor in determining whether C++ is more suitable
than C# in a particular context.

To compare the two languages from the perspective of developer productivity, we first need
to define what we are measuring. C# has many libraries that the developer can use, thus
enhancing productivity. C++, on the other hand does not have such libraries and they must
be purchased as third-party software products. In particular, user-interface software for C# is
particularly easy to use while in C++ the developer must use libraries such as MFC, QT or
OWL, for example. In general, we conclude that productivity levels are much higher in C#
than in C++.

Finally, perspective P3 is concerned with the consequences and risks to the organisation
after a choice has been made for a particular language. C++ is a large and difficult language, it
takes some time to master and C++ applications tend to be complex and difficult to maintain.
However, C++ is an ISO standard.

1.3 USING THIS BOOK

This book represents the joint work of Andrea Germani (trader/quant) and Daniel J. Duffy
(numerical analyst/software designer). The focus of this book reflects the backgrounds of the
authors and the objectives that they had when they first had the idea in a Milan ristorante all
those years ago (or so it seems) to write a practical book that would appeal to traders and to
quants who work in the financial markets. The outcome is what you have in your hands. It
contains 26 chapters that are logically grouped into major categories dealing with C# syntax,
.NET libraries, Excel integration, multi-threading and parallel programming and applications
to fixed-income products such as caps, floors, swaps and swaptions that we price and for
which we calculate rate sensitivities. We also discuss the pricing of equities using lattice and



JWBK563-c01 JWBK563-Duffy Printer: Yet to Come November 17, 2012 15:9 Trim: 244mm × 168mm

Global Overview of the Book 7

PDE/finite difference methods. It is clear that this book is not just about C# syntax alone but
it is a complete introduction to the design and implementation of C# applications for financial
markets. We employ object-oriented, generic and functional programming models to create
flexible and efficient software systems for finance professionals. The book has a dedicated
forum at www.datasimfinancial.com.

We have provided source code at the above site for all examples and applications that are
discussed in the book. We recommend that you review the code, run it and extend it to suit
your particular circumstances.



JWBK563-c01 JWBK563-Duffy Printer: Yet to Come November 17, 2012 15:9 Trim: 244mm × 168mm


