
C H A P T E R 1
Software Development
Methodologies and
Metamodelling

A major area of interest within the computing discipline of software engineering
is that of software development methodologies. A methodology has several
constituent parts including a full lifecycle process, a comprehensive set of
concepts, a set of rules, heuristics and guidelines underpinning appropriate
development techniques, a set of metrics, information on quality assurance,
a set of coding and other organizational standards, and advice on reuse and
project management [9]. In order to describe all these parts in a consistent and
useful manner, we need some kind of formalism. The formalism chosen here is
that of metamodelling.

We begin this book with an examination of what is meant by a methodology and
how metamodelling can be useful in creating robust and effective methodology
models. Later we describe how the basic metamodelling ideas can be used in var-
ious domains, such as for modelling work products and processes. We evaluate
the current state-of-the-art in these and other application areas before introduc-
ing some advanced ideas and how they have led to the creation of international
standards that support the development of industry-strength methodologies for
use in professional, commercial software development endeavours.

CO
PYRIG

HTED
 M

ATERIA
L



2 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

1.1 W H AT I S A M E T H O D O L O G Y ?

Dictionaries often provide two basic meanings for the word ‘‘methodology’’.
On the one hand, a methodology is an approach to doing something; on the
other hand, methodology is the study of methods. According to WordNet [17],
a methodology is ‘‘the system of methods followed in a particular discipline’’, a
method being ‘‘a way of doing something, esp. a systematic one’’. Also according
to WordNet, methodology means ‘‘the branch of philosophy that analyzes the
principles and procedures of inquiry in a particular discipline’’. Therefore, the
two possible meanings of ‘‘methodology’’ are:

• The collection of methods followed in a particular discipline.
• The study of methods followed in a particular discipline.

These two accepted meanings are closely related but are clearly different. The
first one refers to a piece of information that describes how things are done
within a given discipline. The second one refers to the activity of studying how
things are done within a given discipline. The first usage is common and widely
accepted, although the second one is closer to the etymological origin of the
word ‘‘methodology’’ since the -ology suffix means ‘‘study of’’, in Greek.

It is also worth emphasizing that the first accepted meaning, denoting a thing
(a piece of information), corresponds to a countable noun: it is possible to
speak about one methodology or multiple methodologies, and the article is
always used in the singular (e.g. ‘‘this methodology is flawed’’). The second
accepted meaning, in contrast, corresponds to an uncountable noun, very much
like ‘‘biology’’ or ‘‘archaeology’’: we usually omit the definite article (‘‘biology
is exciting’’ rather than ‘‘the biology is exciting’’). Most uses of the word
‘‘methodology’’ in the realm of engineering pertain to the first meaning; it
is very common to hear people speaking about this or that methodology,
but extremely uncommon to hear people saying things like ‘‘methodology is
an exciting area to work in’’ (this would sound much better with any other
‘‘-ology’’ noun). This is a grammatical reason that supports the first meaning of
‘‘methodology’’ better than the second.

Also, the first meaning relates the terms ‘‘methodology’’ and ‘‘method’’ by
a whole–part relationship (i.e. a methodology is a system or collection of
methods), whereas the relationship implicit in the second meaning is much
more complex (methods are studied by methodology). Interestingly, most uses
of ‘‘method’’ and ‘‘methodology’’ in engineering tend to blur the semantic
differences between them: a method is a systematic way of doing something and
a methodology is a collection of methods, which, appealing to common sense,
also defines a way of doing something. This fits well with the first meaning



1.1 WHAT IS A METHODOLOGY? 3

of ‘‘methodology’’ and is a semantic reason that supports the first meaning of
‘‘methodology’’ better than the second.

Finally, the second meaning of ‘‘methodology’’ pertains to philosophy and
is rarely used without a connection to this field. Although modelling and
metamodelling have strong connections to cognitive science and psychology,
we believe that the three reasons here outlined are important enough as to
encourage the adoption of the first meaning of ‘‘methodology’’ as far as
engineering disciplines are concerned. Therefore, we can say that:

A methodology is a systematic way of doing things in a particular discipline.

This definition places the concept of ‘‘methodology’’ very close to that of
‘‘method’’; as we said above, a collection of ways to do things (‘‘methods’’,
according to the dictionary) is also, using common sense, a way to do things.
This means that, for practical purposes, and as far as this book is concerned:

A method is a methodology: the two terms are synonymous.

1.1.1 Further Characterization

Let us dig deeper into the definition of what a methodology is. We will do
this by analyzing the phrase ‘‘a systematic way of doing things in a particular
discipline’’.

To start with, and central to the definition, a methodology is a way. In other
words, it is a manner, a means, a course of conduct. This means that no
methodology is an end in itself but is a means to an end. It also means that,
being a manner, it is arguable that other alternative manners also exist.

In addition, a methodology is systematic, i.e. orderly, planned and, at least to a
certain extent, predictable. If we assume that methodologies are often shared by
multiple individuals, this means that subjectivity must be reduced to a minimum
in methodologies; otherwise, they wouldn’t be systematic in an objective way.

Furthermore, a methodology is a way of doing things. This means that method-
ologies can be applied to change the state of the world that surrounds us (i.e.
to do things), becoming the cause of effects that should be observable. If this
were not so, the methodology wouldn’t be doing things. Also, the things done
by use of a methodology are the persistent outcomes of its application; the
methodology is applied in order to obtain these outcomes. In other words, the



4 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

things done by a methodology encompass the purpose of the methodology as a
whole. The methodology is used because some community pursues that purpose.

Finally, any given methodology pertains to a particular discipline. In other
words, it is focussed on a particular domain of knowledge and, consequently,
works within a particular conceptual environment. In this book, our focus is
the discipline of software engineering i.e. building a software application that
meets the user’s stated requirements.

As a summary, we can say that methodologies are used by communities
that work in well-defined fields in order to produce persistent outcomes in
their environment in an orderly and predictable fashion. For example, a team
of software developers (the community) may use Extreme Programming [2]
(a methodology) in the field of information systems development in order
to produce a working system (the persistent outcome) by following some
techniques, such as ‘‘pair programming’’ and ‘‘test first’’, that are known to
render good results (orderliness and predictability).

Since this book is about software development methodologies, we assume
throughout that the well-defined field where methodologies will work is software
engineering. It can be argued that most of the methodological knowledge in this
area is also valid in related areas, such as systems engineering or even business-
process engineering; we believe so but, in this book, we assume from now on that
the methodologies we are discussing occur in the realm of software engineering.
As a consequence, the community that uses a methodology is always assumed
to be a team of software engineers or developers, and the persistent outcome
that is pursued by the application of a methodology is assumed to be a software
system, either a new one or a modification of a pre-existing one. Again, it can
be argued that most of the knowledge related to the development of software
systems can also be applied to the development and delivery of related services
and even hardware.

There is one last issue to be considered before we can claim to have a complete
characterization of software development methodologies. We have agreed that
methodologies are used by software engineers in order to produce working
systems; this means that methodologies must be usable by software engineers,
with regard to both their content and form. This is the topic of the next section.

1.1.2 One Size Does Not Fit All

We believe that software development methodologies must be useful. If they
are not, they will not be used and we will be wasting our time. Too often
methodology books spend most of their life gathering dust on a shelf rather



1.1 WHAT IS A METHODOLOGY? 5

than being read, studied and annotated. For methodologies to be useful, we
need to determine who their users are and focus on their needs. As we explained
in the previous section, software engineers use methodologies in order to obtain
software systems; these systems, however, can be of many kinds: embedded
systems, database-oriented information systems, web applications, thick-client
desktop applications, etc. Also, the teams and their context may be of very
different sizes, hierarchical organizations, geographical distributions, skill sets
and cultures. Other project parameters, such as calendar or budget latitude,
requirements volatility and customer availability must also be considered. Given
the large number of variables, it is clear that no well-defined set of needs can be
clearly defined, at a useful level of detail, for the whole of the user community.
The three major aspects (organization, project and product) can vary so much
that the well-known adage ‘‘one size fits all’’ has often been reversed to convey
that no single methodology can be devised so that it provides a useful systematic
way of doing things in all software engineering endeavours [5].

Therefore, methodologies must be purpose-fit, i.e. adapted to the particular
characteristics of the anticipated scenarios of usage. Of course, some compro-
mises can be made; for example, it is easier to devise a methodology for the
development of dynamic websites by co-located teams, regardless of the team
size, than a methodology for the development of web sites, regardless of team
distribution and size. As usual in engineering, the more specific the tool is,
the more effective it can be – at the expense of constraining the range of its
applicability.

There are two major ways of obtaining purpose-fit methodologies. The first is
usually called tailoring, and is based on the adaptation of a pre-existing generic
methodology to the particular needs of a user. ‘‘Tailoring’’ means adaptation
or customization; this implies that some generic, template-like product must
exist a priori, from which the final, purpose-fit product is obtained, e.g. [1].
Tailoring assumes that the fixed parts of a methodology can be clearly separated
from the variable parts, because the template methodology that serves as input
to the tailoring process must be defined without any specific knowledge of
the properties of its future users. Often, this means abstracting out template
elements and compromising on solutions that are either too abstract or, if
concrete, out of scope. If a template element is very abstract, the tailoring
process will have to make it more concrete by taking into account the needs
of the user; if, on the contrary, a template element is not abstract but directly
usable, it may well fall out of scope, since it will certainly respond to the needs
of some users but not of others. As a result, the final methodology will, in both
cases, be less than optimal. Also, there is a tension between the need to maximize
tailorability, which pushes in the direction of abstracting out and making most
aspects variable rather than fixed, and the need to provide a readily usable



6 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

product, which pushes in the direction of making it concrete enough to be
useful without modification and making most aspects fixed rather than variable.
Tailoring is considered a viable approach to methodology development by many
authors, being used by well-known approaches such as RUP [10]. However,
each approach that uses tailoring as a purpose-fit mechanism must commit to a
fixed compromise between abstraction and utility, which, once again, defines a
supposedly universally applicable solution that should fit all.

The second possible approach to obtaining a purpose-fit methodology is called
method engineering1 [3; 11; 18; 19] and is based on the idea that methodologies
can be dynamically assembled from pre-existing components according to the
user’s needs. With this approach, no templates exist; the only universals that
are considered are fine-grained, self-contained method components that have
been demonstrated to work well in different situations. A method component,
therefore, is a small, reusable piece of information about a very specific aspect of
a methodology (such as a particular task to be performed or a particular product
to be used) that can be stored in a database to be selected and incorporated
into a methodology as necessary. This approach benefits from a large degree
of reuse, since method components are reused each time they are selected for
a particular methodology and are evaluated when the methodology is used,
thus establishing a feedback loop that can be used to alter the specification
of a method component from the data obtained during its real-world usage
(Figure 1.1). At the same time, this approach benefits from the fact that no
pre-existing overall fixed parts exist, and therefore the assumptions that need to
be made about the users of the methodologies are minimal.

An architectural simile is useful to understand the differences between these two
approaches. The tailoring approach is akin to buying a house and refurbishing
it by knocking down some walls and building a few extensions; the resulting
house will be better suited to its owners than the original one but will always
be constrained by the original assumptions and overall design. The method
engineering approach, on the other hand, is analogous to defining what kind
of house you would like to have, drafting some blueprints, obtaining the
components (such as doors, windows, bricks and tiles) and building the house
yourself. Although this is likely to be a more time-consuming task, the outcome
will be optimally adjusted to your needs.

In this book, we adopt a method engineering approach because of its evi-
dent advantages. This approach, however, emphasizes an additional aspect of
methodologies that must be considered carefully: if methodologies are to be

1More accurately, situational method engineering. However, for the sake of simplicity, in this book
we use the shorter ‘‘method engineering’’ (ME).



1.1 WHAT IS A METHODOLOGY? 7

repository

methodology

custom
component

requirements

endeavour

new
components usage data

monitoring

repository
maintenance

construction

enactment

software engineersmethod engineers

needs

Figure 1.1: Method engineering at work: the dashed line separates the domains
of method engineers and software engineers; processes (such as
‘‘enactment’’ or ‘‘monitoring’’) are indicated by arrows and labelled
in italics; entities (such as ‘‘repository’’ or ‘‘endeavour’’) are depicted
as shapes and labelled in roman typeface

created as complex assemblies of components, how is this done? Who should
do it? What tools and techniques are available to do it? Following our previous
example, an average citizen would not build a house herself, but would hire an
architect; similarly, the role of method engineers, as the community that creates
and maintain methodologies as first-order artefacts, must be introduced and its
relation with the community of methodology users must be described.

1.1.3 Communities and Uses

There are two contrasting communities of people that interact with and utilize
software development methodologies. Firstly, and most obviously, software
engineers use methodologies in order to create software systems. Secondly,
method engineers create and maintain methodologies according to the needs of



8 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

software engineers. Notice that the concept of a method engineer, i.e. a person
who designs and build methodologies according to some well-known needs, is
not peculiar to the software engineering discipline; any other discipline that uses
methodologies may utilize this concept as well.

Some vocabulary must be introduced. Method engineers are said to construct
methodologies from method components. Software engineers are said to enact
methodologies on endeavours. Enacting a methodology means, basically, apply-
ing it to solve a problem of the kind that it has been designed to solve. An
endeavour is the organizational and psychological scenario where the method-
ology is applied. Typically, endeavours are visible as projects, where a project
has as its purpose the development of a software system. However, non-project
endeavours, such as infrastructure management or organizational support activ-
ities, are also common. These are endeavours but not, strictly speaking, projects,
so we will use the broader term ‘‘endeavour’’ rather than ‘‘project’’.

An idealized method engineering scenario would appear as in Figure 1.1. The
raw material that method engineers use is method components, usually stored
in a specialized database often called a repository (some authors call this a
methodbase). This repository contains tools that allow method engineers to
browse and query the repository in order to locate the optimal components
for a specific need. Tools are used to create new components, modify or delete
existing components, transfer components between repositories and, in general,
maintain repositories and components in good working order.

When a team of software developers needs a methodology, the method engineer
negotiates with them a set of requirements for the methodology itself, require-
ments that are analogous to the requirements that a software engineer would
gather and document from his customers and other stakeholders prior to con-
structing a software application. Thus, the method engineer gathers, analyzes,
documents and validates a set of methodological requirements with the future
users of the methodology and other stakeholders. These requirements are for-
malized and fed into some tool that assists the method engineer in the process of
selecting the optimal components from the repository so that the best possible
methodology is created. Not all the requested method components are necessar-
ily available in the repository; sometimes, methodological requirements are so
special or deal with such unexpected situations that some custom-made method
components must be created by the method engineer for a specific endeavour. In
this case, she may choose to incorporate them into the repository, so that future
developments can benefit from them, or keep them ‘‘private’’ to the current
effort. This has obvious parallels to the challenges of maintaining class libraries
in object-oriented programming.



1.1 WHAT IS A METHODOLOGY? 9

Once the methodology has been assembled, it is delivered to its users, in an
appropriate form. By ‘‘appropriate’’ we mean a form that allows users to
apply the methodology to solve problems (e.g. to develop software systems).
A methodology that is delivered, for example, as a hard-copy document, can
be used by software engineers only at a high cost, since they would have
to read the document, make the correct interpretations and carry out the
gathered instructions manually. A better delivery form would be an electronic
specification of the instructions, which can be fed into an appropriate tool in
order to be enacted in an endeavour. During the lifetime of the endeavour, the
actual use of the methodology can be monitored by the same tools and the
collected data sent back to the method engineers so that they can gain further
understanding of how the selected method components operate in real-world
conditions. From these data, they will be able to make the necessary adjustments
to the method components, thus closing a loop. Thus, the quality both of the
components and of the constructed methodology can increase in time. This
means that this approach can provide an underpinning to the area of software
engineering known as software process improvement (SPI).

From our discussion here and from Figure 1.1, it seems clear that the two
communities involved in method engineering must be able to communicate
fluently and as unequivocally as possible. Misunderstandings often arise when
two different communities try to communicate, either because one community
does not understand the meaning of some terms used by the other or because
the first community uses the same term as the second one, but with a different
meaning. An obvious way to combat this problem is to establish a shared,
agreed-upon set of concepts and terms – often called an ontology – and use it
systematically for every communication. It is worth emphasizing that not only
must terms and concepts be standardized across communities, but also the
mappings between them. This means that there is little value in agreeing upon
the terms to be used and the major concepts in play if the relationships between
the terms and the concepts they denote are not equally well defined.

An excellent example of terminology clashes is that of the ever-present term
‘‘task’’. For a software developer or a software project manager (both belonging
to the software engineering community), a task is something like a period of
time, with well-defined start and end times and a duration in which a certain kind
of work is done. Roughly speaking, a task is a bar in a Gantt chart. However,
when a method engineer is using, for example, OMG’s SPEM 2.0 [16], a task
(interchangeably referred to as a ‘‘task definition’’; see [16, p. 87]) is something
along the lines of a description of the work being performed by a role. Notice
the word ‘‘description’’: for a software engineer, the task is the work actually
being undertaken, while for a SPEM-oriented method engineer, the task is the



10 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

description of what work must be done. These are different concepts, although
the same term is being used.

A good test that can be used to verify whether two possibly different meanings of
the same term are, in fact, different is to try to characterize each of the concepts
using properties. For example, it is obvious that, for a software engineer, tasks
have a duration. However, a SPEM-oriented method engineer would disagree;
for her, tasks have a description. It is the instances of the task that have a
duration. Relationships to other concepts are also useful in performing the test.
For the SPEM method engineer, each task has a list of mandatory inputs and
a list of optional inputs. The concept of ‘‘optional’’ is revealing, because it
indicates that something is still to be decided at the endeavour level. In fact, for
the software engineer, a task has a list of effective inputs, some of which would
be considered mandatory by SPEM and others optional.

At the same time that we stress the differences between the two communities,
we must also acknowledge the strong relationships that unite them. After all,
a software engineering task is an instance of a SPEM method engineering task
(task definition). As we saw with the mandatory versus optional inputs above,
the meaning of ‘‘task’’ for the method engineer influences the meaning of ‘‘task’’
for the software engineer. In fact, it should be the other way around, since the
software engineer is the user of the methodology and, as in any other engineering
discipline, the user should be the one who determines the requirements of the
product and therefore its overall semantics. In other words, the concepts used
by method engineers to describe the methodologies that they will construct for
software engineers must be chosen, shaped and adjusted according to the needs
of the latter.

Both communities need to be able to describe the particular aspects of a software
development methodology that they require. The software engineer needs to be
able to access advice on what to do, how to do it, when to do it and who to
do it. This advice may be available electronically or on paper. In both cases, the
advice is in the form of a written description of the methodological element.
For instance, it may be a description of the task of constructing a class model or
how to use a technique such as robustness analysis; it may be a description of
the role of a producer such as a business analyst or a description of an interim
work product such as an agent class diagram. In contrast, the method engineer
needs to be able to describe in a formal manner the concepts underlying the
notion of task, technique, producer and work product.

Both communities fulfil their needs by the use of models. However, since the
models used by the method engineer are at a higher level of conceptualization
(often called, somewhat inaccurately, a higher level of abstraction), we will



1.2 METAMODELLING NEEDS 11

denote this specific kind of model by the name ‘‘metamodel’’ (where meta-
indicates something ‘‘further’’ or ‘‘beyond’’).

In the next section of this chapter, we will introduce metamodelling and its
characterization and needs in a summary fashion before giving an in-depth
presentation of modelling and metamodelling basics in Chapter 2.

1.2 M E TA M O D E L L I N G N E E D S

Metamodelling is not an end in itself; it is a means to achieve a different end,
namely, in the context of this book, the delivery of methodologies that are
as useful as possible within any given set of constraints. The usefulness of a
methodology is given by a combination of, at least, two elements: its content and
its form. The content aspect refers to what the methodology says; for example,
a methodology that prescribes a waterfall lifecycle for a four-person team used
to agile development is unlikely to be highly useful. Similarly, an extremely agile
and coding-oriented methodology would be of little utility to a large, formal
organization that works with highly distributed teams of dozens of people.
As we said, methodologies must be fit for purpose; adjusting the contents of
the methodology to the characteristics of its users is essential for this. Since
the characteristics of the users vary from time to time, from organization to
organization and even from project to project, it is impossible to ‘‘freeze’’
methodological content; as we have discussed, one size does not fit all.

1.2.1 Language

There is a second aspect to utility: the form of the methodology. This means how
the methodology is expressed, regardless of what it says. A linguistic simile can
be used. The content of a methodology is like the meaning of what I utter; since
I utter different sentences at different times, depending on myriad conditions,
it is impossible to predict what I will say next. The form of a methodology,
on the other hand, is like the language I use to utter my words. I can certainly
change my language, but it is possible to fix a particular language and utter
almost anything using it. Similarly, it is possible to choose what language we
want to use to express methodologies, and express any necessary methodology
using it. Agreeing on a language and ‘‘freezing’’ it has the advantage that all the
stakeholders will know how to interpret what I say. Usually, the agreed-upon
language is a language known by all the parties involved; it offers the ability to
be able to express with richness of detail any foreseeable meaning. Of course,
some languages are better than others at expressing very specific things; for
example, some natural languages cannot express the difference between green
and blue colours [12, pp. 330–34], whereas others are extremely rich in their



12 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

colour-related vocabulary. This is why selecting the optimal language to express
something is not a trivial task; as in the linguistic simile, the language in which
a methodology is expressed can enhance or hinder the ability of people to
understand it and, as a consequence, to use it [4].

The most immediate language used to express a methodology is natural lan-
guage, e.g. English or Spanish. For example, the Catalysis approach [6] has
been expressed using English for the most part. Natural language is readily
understandable by humans but hardly intelligible by computers (at least not
currently). This means that Catalysis can be easily assimilated by a human
but only manipulated by a computer after tedious translation work. Natural
language is highly ambiguous with some words having a multitude of meanings,
even in one context. Natural language is also linear, meaning that it takes the
form of a sequence of symbols. This means that complex, non-linear structures
must be ‘‘serialized’’ and flattened into a sequential equivalent. For example,
consider a bidimensional matrix of figures printed on a sheet of paper. The
only way to dictate it to another person is to read it row by row or column by
column; in either case, it is being serialized into a sequential form.

A methodology is a much more complex structure than a bidimensional matrix
of figures; it is composed of numerous concepts that refer to each other
in complicated ways. A methodology can be visualized as a mesh of nodes
interconnected by arcs. It is possible to serialize it onto paper and describe it in
natural language (as was done in the early object-oriented methodology books,
for instance), but any non-local reference must be maintained by hand. For
example, imagine that the chosen serialization strategy consists of listing the
complete process specification first, followed by all of the product specification.
Process elements will necessarily refer to product elements; then the necessary
links, in the form of notes or citations, will need to be created. If a product
element changes its name later, it will be necessary to search for all the references
to it and update them accordingly. Also, completeness must be checked by hand.
Are all the product elements referred to in the process section? Are all the product
elements created and used by at least one process element? If not, there is a
consistency defect in the methodology. With natural language, the only way
to check this is by hand. Such maintenance of non-trivial methodologies is
daunting.

As an alternative to natural language, a modelling language can be used.
This idea may appear odd at first, but we must recall that a methodology
is a systematic way of doing things, i.e. the specification of the work to be
done. In other words, a methodology describes how a software development
team is expected to behave during an endeavour. From this point of view, a
methodology is a model of the future endeavours that are conceivably possible,



1.2 METAMODELLING NEEDS 13

like the blueprints of a building are a model of any future buildings that conform
to them.

Methodologies are models (indeed, some authors refer to them as ‘‘process
models’’) and, therefore, a suitable modelling language rather than a natural
language can be used to express a methodology, gaining in accuracy, reducing
ambiguity and gaining the possibility of expressing their complex, non-linear
structures of information, with no need for serialization. The ideal modelling
language used to express methodologies must be generic enough so that any
conceivable methodology can be expressed but, at the same time, concrete
enough so that major methodological concepts can be treated with specific
semantics. For example, some authors have used the Unified Modeling Language
(UML) [15] as a language to express methodologies. UML is a generic object-
oriented language described by a number of class diagrams. By the very nature
of object orientation, UML is multi-purpose – although at the same time limited
to the set of concepts its authors chose to include. Almost anything that we can
think of can be represented as a class. This is useful but, at the same time, means
that representing something as a class says very little about that something.
A domain-specific language (DSL), on the other hand, would have first-order
language elements that correspond to the major concepts of the subjects being
modelled. For example, a DSL for software development methodologies would
probably include elements such as Task, Team and Product whereas a DSL
for a software architecture model might focus instead on classes, patterns,
components and quality evaluation.

1.2.2 What to Represent

If a methodology is to be expressed as a model of all the elements necessary to
execute an endeavour, we need to study what an endeavour is made of in order
to determine what aspects must be included in a methodology. Traditionally,
three major aspects have been identified: processes, products and people [7].

The process aspect is concerned with the work that must be done. Usually, this
is stated in terms of tasks, steps, activities, techniques, processes, breakdown
elements or some other types of work-related elements. In general, these elements
can be named, collectively, ‘‘work units’’. The product aspect, on the other
hand, is concerned with the artefacts that must be produced or used during the
endeavour. This is often expressed in terms of models, documents, hardware or
software items, etc., all of them collectively named ‘‘work products’’. Finally,
the people aspect is related to the organizational structures that actually perform
the endeavour, usually in terms of people, roles, teams and tools. All of these
elements can be grouped under the name ‘‘producers’’.



14 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

The relationships between these three major aspects (Figure 1.2) can be summa-
rized in a single sentence: work products are the result of work units performed
by producers. However, the true relationships that exist between these aspects
are more rich and complex than this sentence may suggest. First of all, work
products are not just the result of work units but can also be the starting point of
work units. For example, a needs statement that acts as raw material from which
requirements are specified and, eventually, a system is built, is a product that
must be represented by a methodology, but is not created during the endeavour.
From an intuitive point of view, we can say that:

A work product is an artefact of interest for the endeavour.

Work Products Work Units

Producers

Figure 1.2: The three major aspects that any methodology must represent

This means that any artefact that is involved with the endeavour, either because
it is created during it or because it is used (and possibly modified), is considered
as a work product. Of course, the final system, which comprises the ultimate
objective of the methodology, is also a work product.

Secondly, we said that work units are performed by producers. This is true
but, from a project management perspective, we must acknowledge that work
units may be defined well in advance before a producer actually performs them.
For example, a project plan usually includes the tasks and activities that are
expected to be performed within the project. Consequently, we can say that



1.2 METAMODELLING NEEDS 15

A work unit is a job performed, or intended to be performed, within an
endeavour.

We said that producers perform work units. Since work units can be planned in
advance, it is better to define the relationship between producers and work units
in terms of responsibilities rather than actual performance. In other words, we
can say that

A producer is an agent that has the responsibility to execute work units.

This means that any person or team that has the responsibility to execute work
units in an endeavour is considered a producer.

In summary, a methodology must describe work products, work units and
producers. But, how should elements of these kinds be represented? The chosen
representational form must satisfy two purposes. First of all, it must be able to
supply the appropriate information to methodology users about the elements.
For example, the specification of a task should include its name, its purpose
and possibly a description of the steps to be taken. The specification of a
producer, on the other hand, should include a name and a collection of
responsibilities. Secondly, and in addition to information about each element,
the representational form must be adequate so that methodology users can
instantiate the methodology elements for use in their endeavour. In other
words, most methodology elements need to serve as templates to create related
endeavour elements. For example, the specification of a particular task kind
must not only describe the tasks of such a kind but must also serve as a template
from which actual tasks of that kind can be created in the endeavour. Similarly,
a specification of a particular work product kind not only describes work
products of that kind but must also be able to generate specific work products
of that kind in the endeavour.

1.2.3 Summary of Metamodelling Needs

In this section we have explained that a methodology needs to be useful to its
users. In order to achieve this, the following needs have been identified:

• The methodology contents must be purpose-fit, i.e. optimally adjusted to the
users’ needs, including organization, project and product aspects.

• The methodology must be expressed using a specialized modelling language,
so that it is minimally ambiguous and easily processed by computers.



16 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

• The methodology must deal with three major aspects: work products, work
units and producers, as well as the relationships between them.

• The methodology must describe the endeavour and also serve as a template
so that the endeavour can be generated from it.

How should metamodelling help us address the needs described in the previous
section? Let us analyze each need in turn.

With regard to methodology contents, metamodelling must ensure that organi-
zation, project and product requirements of the future users of the methodology
are taken into account, and that the methodology contents are established
according to them. Different requirements usually mean different solutions and,
therefore, metamodelling must be able to deliver optimal methodologies for
each project, domain or organization upon demand.

Regarding the modelling language, metamodelling must provide a language
(generic or, more likely, domain-specific) that offers the necessary expressiveness
so that any conceivable methodology can be appropriately specified. As few
assumptions as possible should be made about the organization, project and
product aspects of the future users when defining this language.

The modelling language must be able to describe at least the three major aspects
of the methodology (kinds of work products, work units and producers). Also,
the modelling language must be able to express concepts that, on the one hand,
carry information (so that the methodology can be described) and, on the other
hand, act as templates (so that endeavour elements can be generated from them).

A very important point must be made here. We have said that the modelling
language used to represent the methodology should be able to express concepts
such as kinds of work products, kinds of work units and kinds of producers.
From a cognitive perspective, this means categorizing work products, work
units and producers into well-defined groups, which, in turn, involves having
a clear notion of the concepts of work product, work unit and producer.
If the modelling language lacks the concept of work product, for example,
how could it implement the concept of work product kind? Again, from a
cognitive perspective, the only way to implement a categorization of a concept
is based on that particular concept. The consequence of this is very clear:
the modelling language must also be able to describe the endeavour-level,
uncategorized counterparts of the methodology-level, categorized concepts that
we have mentioned above.



1.3 WHAT IS METAMODELLING? 17

1.3 W H AT I S M E TA M O D E L L I N G ?

The term ‘‘metamodel’’ is, evidently, a qualified variant of ‘‘model’’. This sug-
gests that metamodelling is a specific kind of modelling. In fact, metamodelling
is the act and science of creating metamodels, which are a qualified variant of
models. The difference between a regular model (one that is not a metamodel)
and a metamodel is that the information represented by a metamodel is itself
a model. The prefix ‘‘meta-’’, in Greek, means ‘‘higher’’ or ‘‘posterior’’. In
epistemology and other branches of philosophy, the prefix ‘‘meta-’’ is often used
to mean ‘‘about its own category’’; in our case, ‘‘meta-’’ means that the model
that we are building represents other models i.e. a metamodel is a model of mod-
els [8; 14]. This relationship is often described as paralleling the Type–Instance
relationship. In other words, the metamodel (Type) and each of the models
(Instances) are of ‘‘different stuff’’ and are described using different languages
(natural or software engineering languages). Such type models therefore use
classification abstraction – which leads to a metamodelling hierarchy.

One might indeed argue that modelling skills and techniques should be inde-
pendent of the subject being modelled; a good modeller should be able to model
an aeroplane, a business or a social group using the same skills and techniques
(given the appropriate domain knowledge). If this is true, then the fact that
a metamodel represents another model rather than ‘‘real-world’’ information
should not be a reason to use a new term (‘‘metamodelling’’) rather than the
usual one (simply ‘‘modelling’’). Following this line of reasoning, metamodelling
should not be more special than aeroplane modelling or business modelling.
However, there is one aspect that makes metamodelling a very special kind of
modelling: the subject of metamodelling is models; in other words, the input and
output artefacts of a metamodelling job are ‘‘made of the same stuff’’, i.e. they
are of the same type. This gives metamodelling a recursive nature that makes
it much more complex than other modelling areas in which the subject being
modelled is of a different nature, making it especially tricky. As a simple but
pervasive example, consider the Class class in UML. Parsing this phrase (‘‘the
Class class in UML’’) is already complex, since it involves a certain degree of
recursiveness. The fact that UML contains a class named ‘‘Class’’ can bring up
questions such as: is the Class class the same as the Class class in MOF [13]?
What do we mean by ‘‘the same’’ here? Answering these questions is far from
trivial.

The description of metamodelling and metamodels that we have provided so far
is not especially related to methodologies; in fact, any model that provides the



18 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

language to represent models is a metamodel. For example, any modelling lan-
guage is a metamodel, according to this definition, since a modelling language,
by definition, represents any possible model that can be expressed with it. The
link to methodologies comes from the fact, explained earlier in this chapter,
that methodologies are models of endeavours. If a methodology is a model,
creating that methodology is modelling, whereas creating the language concepts
used to describe the methodology is metamodelling. Consequently, the language
that we use to express a methodology is a metamodel. Although the concepts
of metamodel and metamodelling are not necessarily tied to methodologies (as
specific kinds of model), this book is about software development methodolo-
gies; therefore we will focus on this particular application of metamodelling.
According to this, we can say that:

A metamodel is a domain-specific language oriented towards the representa-
tion of software development methodologies and endeavours.

We can also say:

Metamodelling is the act and science of engineering metamodels.

The rest of this book describes the characteristics that a good metamodel must
present and gives advice on constructing and using one. Since a metamodel is a
specific kind of model, the first step is to introduce the necessary modelling and
metamodelling concepts that, used as building blocks, will allow us to reason
about models (and metamodels) with minimal ambiguity. This is the focus of
Chapter 2.

1.4 S U M M A R Y

We have introduced the idea of a software development methodology as a
systematic way of doing things in the discipline of software engineering. We
have argued that it is fruitless to pursue the creation of a one-size-fits-all
methodology for software development, leading to our acceptance of situational
method engineering as currently the best way of proceeding. A single ‘‘frozen’’
or ‘‘branded’’ methodology can be regarded as one implicitly constructed using
ME and then having the method components welded together permanently.
Thus, our metamodelling discussion is equally applicable in this case also.



REFERENCES 19

We have drawn attention to the needs of two software communities: the method
engineer, or methodologist, who takes part in the creation of a methodology
specific to the organization’s situation and the software development team who
use that methodology on real endeavours.

This leads us to enquire about the way in which such a methodological approach
can be made rigorous. The answer currently used in the software engineering
community is metamodels (although ontologies are likely to be used much
more in the future). Metamodels can be used to underpin modelling languages,
process models and methodology creation.

R E F E R E N C E S

1. Bajec, M., Vavpotič, D. & Krisper, M. 2007. Practice-driven approach for
creating project-specific software development methods. Information and
Software Technology. 49: 345–365.

2. Beck, K. 2000. Extreme Programming Explained. Upper Saddle River, NJ:
Addison-Wesley.

3. Brinkkemper, S. 1996. Method engineering: engineering of information
systems development methods and tools. Inf. Software Technol. 38(4):
275–280.

4. Carroll, J.B. (ed.). 1956 and 1997. Language, Thought and Reality: Selected
writings of Benjamin Lee Whorf . Cambridge, MA: Technology Press of
Massachusetts Institute of Technology.

5. Cockburn, A. 2000. Selecting a project’s methodology. IEEE Software.
17(4): 64–71.

6. D’Souza, F.D. & Wills, A.C. 1999. Objects, Components and Frameworks
with UML: the Catalysis approach. Object Technology Series, G. Booch,
I. Jacobson & J. Rumbaugh (eds). Upper Saddle River, NJ: Addison-Wesley.

7. Firesmith, D.G. & Henderson-Sellers, B. 2002. The OPEN Process Frame-
work: An introduction. The OPEN Series. London: Addison-Wesley.

8. Flatscher, R.G. 2002. Metamodeling in EIA/CDIF: meta-metamodel and
metamodels. ACM Trans. Modeling and Computer Simulation. 12(4):
322–342.

9. Henderson-Sellers, B. 1995. Who needs an OO methodology anyway? J.
Obj.-Oriented Programming. 8(6): 6–8.



20 1 DEVELOPMENT METHODOLOGIES AND METAMODELLING

10. Kruchten, P. 1999. The Rational Unified Process: An introduction. Reading,
MA: Addison-Wesley.

11. Kumar, K. & Welke, R.J. 1992. Methodology Engineering: a proposal
for situation-specific methodology construction. In: W.W. Cotterman &
J.A. Senn (eds). Challenges and Strategies for Research in Systems Devel-
opment. Chichester, UK: John Wiley & Sons 257–269.

12. Lakoff, G. 1987. Women, Fire and Dangerous Things: what categories
reveal about the mind. University of Chicago Press.

13. OMG. 2002. formal/2002-04-03. Meta Object Facility (MOF) Specifica-
tion, version 1.4. Object Management Group.

14. OMG. 2003. omg/03-06-01. MDA Guide Version 1.0.1. Object Manage-
ment Group.

15. OMG. 2006. formal/05-07-05. Unified Modeling Language Specification:
Infrastructure, version 2. Object Management Group.

16. OMG. 2007. ptc/07-03-03. Software Process Engineering Metamodel Spec-
ification, version 2.0. Object Management Group.

17. Princeton University Cognitive Science Laboratory. 2006. WordNet.
http://wordnet.princeton.edu/. Accessed on 4 February 2007.

18. Ralyté, J. & Rolland, C. 2001. An approach for method engineering. Procs
20th Int. Conf on Conceptual Modelling (ER2001), LNCS 2224. Berlin:
Springer-Verlag. 471–484.

19. Tolvanen, J.-P., Rossi, M. & Liu, H. 1996. Method Engineering: current
research directions and implications for future research. In: S. Brinkkemper,
K. Lyytinen & R.J. Welke (eds). Method Engineering: principles of method
construction and tool support. Procs. IFIP TC8, WG8.1/8.2 Working
Conference on Method Engineering, 26–28 August 1996, Atlanta, USA.
London: Chapman & Hall. 296–317.


