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1
A Mathematical Framework
for Upscaling Operations

Microporomechanics is a continuum approach that allows one to scale of physical
quantities from the microscale to the macroscale. This chapter presents some of the
mathematical ingredients of this micro-to-macro approach that ultimately translates
into upscaling rules of physical quantities. Two approaches are presented in this regard:
one based on averaging techniques on a representative elementary volume, a second
one based on a periodic assumption. From an application of averaging techniques to
microscopic conservation laws we derive macroscopic conservation laws, and establish
the link between kinematics and internal forces employed in microporomechanics: that
is, from mass balance, the link between a microscopic velocity field and a macroscopic
velocity vector; and from momentum balance, the link between microscopic stress field
and macroscopic stress tensor.

1.1 Representative Elementary Volume (rev)

Continuum mechanics in general deals with the evolution of continuous ma-
terial systems in three dimensions and time. Poromechanics in particular deals
with the evolution of a porous continuum. One of the most critical elements
of the continuum approach is the concept of an elementary volume. By defini-
tion, the elementary volume is an infinitesimal part of the three-dimensional
material system under consideration. More precisely, if we denote by L and
� the characteristic lengths of respectively the structure and the elementary
volume, the condition � � L guarantees the relevance of the use of the tools
of differential calculus offered by a continuum description. Furthermore, the
elementary volume is expected to be large enough to be representative of the
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2 A Mathematical Framework for Upscaling Operations

constitutive material,1 which explains its name as representative elementary vol-
ume (in short rev). It is intuitively understood that this property requires the
characteristic size � of the rev to be chosen so as to capture in a statistical sense
all the information concerning the geometrical and physical properties of the
physics at stake. Roughly speaking, if we denote by d the characteristic length
scale of the local heterogeneities, typically the pore size in a porous medium,
the condition d � � is expected to ensure that the elementary volume is rep-
resentative. In summary, the two conditions on the size of the rev are:

d � � � L (1.1)

Relation (1.1) is often referred to as the condition for scale separation (or scale
separability condition), which is a necessary condition for the concept of rev
to be valid.

At the macroscopic scale, the rev is characterized by a position vector x.
The characteristic order of magnitude of the variation of x is the size L of the
studied material system. Furthermore, this material system is composed of
different constituents, i.e. in the case of a porous continuum, one (possibly
heterogeneous) solid phase and one or several fluid phases. These phases
represent heterogeneities. The macroscopic poromechanics theory accounts
for this heterogeneous nature of the porous material system by considering
each phase as a macroscopic particle. All these particles are located at the same
point x. In other words, from a macroscopic point of view, the rev is regarded
as the superposition of these particles in time and space.

By contrast, a poromechanics approach that starts at the microscopic scale
explicitly considers the heterogeneous structure of the rev. It represents the
solid and the fluid phases as individual separated domains in the rev. This
requires a refinement of the geometrical description, i.e. a change in length
scale. At the microscopic scale, the position vector is now denoted by z; the
characteristic order of magnitude of the variation of z is the size � of the
rev (Figure 1.1). Depending on z, the microscopic particle located at point z
belongs to the solid phase or to a fluid phase.

The very existence of an rev is a key element for both micro- and macrop-
oromechanics theories, albeit of different importance. In a pure macroscopic
approach, the existence of an rev must be postulated so that the macroscopic
constitutive laws derived experimentally or theoretically are representative
of the response of the rev to various loadings. The principle of a micro-to-
macro approach consists in replacing the real experiment that could be per-
formed on a representative material sample by a thought experiment on the
rev considered as a heterogeneous structure that is subjected to appropriate
boundary conditions. The underlying idea of micromechanics is to derive the

1 The conditions for an elementary volume to be representative have been discussed by many authors.
The interested reader is referred for instance to the work of Bear and Bachmat [6] or Torquato [50].
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Figure 1.1 Elementary volume of porous medium in a macroscopic structure. Micro-
scopic and macroscopic scales.

macroscopic response of the sample from the microscopic one. This requires,
as a first task, clarification of the mathematical relations between the physics
at each scale, the micro and the macro scales, and more particularly answers
to the following two critical questions relating to the description of the kine-
matics and the internal forces:� The velocity in any phase α of the porous material (e.g. α = s for the solid

phase and α = f for the fluid phase) is characterized at the macroscopic
scale by a vector Vα(x), and by the field v(z) at the microscopic scale. What
is the link between Vα(x) and v(z)?� The internal forces in the α phase are characterized at the macroscopic scale
by the partial stress tensor Σα(x), and by the field σ(z) at the microscopic
scale. What is the link between Σα(x) and σ(z)?

1.2 Averaging Operations

It is natural, at least for extensive physical quantities such as mass, energy,
etc., to define the link between micro- and macroscales through averaging
techniques defined on the rev; including the links between the derivative of
an average (with respect to time or spatial coordinates) and the average of the
derivatives. This is the focus of this section which sets out a mathematical basis
for the forthcoming application of these elements in microporomechanics.

1.2.1 Apparent and Intrinsic Averages

Let �0 be a time-independent geometrical domain centered at the origin O of
the coordinate system, which can be considered as an rev. For any value of x,
we assume that the elementary volume �(x) which is obtained from �0 by a
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translation2 of vector x is an rev for the material at the macroscopic point x,
in its current configuration. Furthermore, let f (z) be a C∞ function defined at
the microscopic scale. It is equal to zero outside �0 and satisfies:∫

f (z) dVz = 1 (1.2)

The average e(x) at the macroscopic point x of a physical quantity represented
in �(x) by the volume density e(z) is defined by:

e(x, t) =
∫

e(z, t) f (z − x) dVz (1.3)

This definition depends on the choice of the function f . In practice, f can
be chosen so as to tend towards the discontinuous function χ0/|�0|, where
|�0| is the volume of �0 and χ0 is the characteristic function of this domain
defined by χ0(z) = 1 if z ∈ �0 and χ0(z) = 0 if z /∈ �0. The definition (1.3) then
asymptotically corresponds to the more familiar definition of the average:

e(x, t) ≈ 1
|�(x)|

∫
�(x)

e(z, t) dVz (1.4)

However, it will be convenient for further calculations to take advantage of
the regularity of f (z) on the boundary of �0.

By way of illustration, consider the volume mass density of the porous
medium ρM(x), which at the macroscopic scale represents the total elementary
mass dm contained in the rev �(x) divided by its volume:

ρM = dm

|�(x)| (1.5)

With the approximation f ≈ χ0/|�0|, it is readily seen that:

ρM = ρ (1.6)

Another example is the volume fraction ϕ(x, t) of the pore space at the macro-
scopic point x, which can be determined from the geometry of the microstruc-
ture from:

ϕ(x, t) = χ p =
∫

χ p(z, t) f (z − x) dVz (1.7)

where χ p(z, t) is the characteristic function of the pore space. ϕ(x, t) is also
referred to as the porosity.

From now on, P s and P f respectively denote the domains occupied by
the solid and the fluid phase. In addition, P p refers to the pore space. In
the saturated case, we note that P f = P p. All these domains a priori depend

2 The image of point M by this translation is point M′ such that MM′ = x.
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on time. We also introduce the solid, fluid and porous parts of the rev �(x),
defined as �α(x, t) = Pα(t) ∩ �(x) (α = s, f, p).

For a physical quantity e(z, t) attached to the fluid, and thus defined on the
fluid domain P f only, we will encounter two different averages, namely the
‘apparent’ one, 〈e〉 f (x, t):

〈e〉 f (x, t) = χ f e(x, t) =
∫

χ f (z, t) e(z, t) f (z − x) dVz (1.8)

and the ‘intrinsic’ one, e f (x, t), defined by:

e f (x, t) = 1
ϕ

〈e〉 f (x, t) (1.9)

where χ f (z, t) is the characteristic function of the fluid phase. The apparent
and the intrinsic average both derive from the total amount of the physical
quantity e(z, t) available inP f . However, the apparent one 〈e〉 f refers this total
amount to the total volume of the rev, while the intrinsic average e f refers the
total amount to the actual domain |� f (x, t)| the fluid phase occupies in the
rev. Analogously, it is possible to define apparent and intrinsic averages of
the solid phase. It suffices indeed to replace χ f in (1.8) by the characteristic
function of the solid domain P s , χ s = 1 − χ p, to obtain the apparent average
〈e〉s(x, t) = χ se(x, t), and ϕ in (1.9) by the solid volume fraction 1 − ϕ, to obtain
the intrinsic average es(x, t) = 〈e〉s(x, t)/(1 − ϕ).

By way of example, consider a component γ of the fluid phase (for instance,
a solute which together with a solvent saturates the fluid domain P f ). Let
ργ (z, t) be the microscopic mass density, and dmγ the total mass of the γ

component in the rev. The macroscopic apparent and intrinsic mass densities
ρ

γ
a (x, t) and ρ

γ

M(x, t) are macroscopically defined by:

ργ
a (x, t) = dmγ

|�(x)| ; ρ
γ

M(x, t) = dmγ

|� f (x, t)| (1.10)

Using the approximation f ≈ χ0/|�0|, it is readily seen that ρ
γ
a (x, t) and

ρ
γ

M(x, t) are related to the field ργ (z, t) by:

ργ
a = 〈ργ 〉 f (1.11)

ρ
γ

M = ργ
a /ϕ = ργ f (1.12)

Clearly enough, it is also possible to define apparent and intrinsic averages
over the pore space. This amounts to replacing χ f in (1.8) by the characteristic
function χ p of the pore space. The case of a saturated porous medium can be
defined by the condition χ p(z, t) = χ f (z, t). In this situation, we note that the
operators 〈·〉p and 〈·〉 f are equivalent, as well as the operators (·)p

and (·) f
.
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1.2.2 Spatial Derivatives of an Average

Let us introduce a cartesian orthonormal frame (ei ). The derivative of the ap-
parent average 〈e〉 f (x) of a physical quantity e(z) defined on the fluid domain
P f with respect to the spatial coordinate xi is directly obtained from definition
(1.8):

∂

∂xi
〈e〉 f (x, t) = −

∫
χ f (z, t) e(z, t)

∂ f

∂zi
(z − x) dVz (1.13)

where the following identity has been employed:

∂

∂xi

(
f (z − x)

) = − ∂ f

∂zi
(z − x) (1.14)

Integration by parts of (1.13) then yields:

∂

∂xi
〈e〉 f (x, t) =

∫
∂(χ f e)

∂zi
(z, t) f (z − x) dVz (1.15)

Since χ f (z, t) is discontinuous across the solid–fluid interface Is f , relation
(1.15) is to be understood in the sense of the distribution theory. More pre-
cisely, let δIs f be the Dirac distribution of support Is f . It is defined by:

〈δIs f , ψ〉 =
∫

δIs f ψ dVz =
∫
Is f

ψ dSz (1.16)

where ψ is any function ofD(R3).3 According to the definition of the derivative
of a distribution, one obtains:〈∂χ f

∂zi
, ψ

〉
= −

〈
χ f ,

∂ψ

∂zi

〉
= −

∫
P f

∂ψ

∂zi
dVz = −

∫
Is f

ψni dSz (1.17)

where n = ni ei is the unit normal to Is f oriented towards the solid. Combining
(1.16) and (1.17) yields:

∂χ f

∂zi
= −niδIs f (1.18)

The expression (1.15) can now be developed in the form:

∂

∂xi
〈e〉 f (x, t) =

〈 ∂e

∂zi
(z, t)

〉
f

−
∫
Is f

e(z, t) ni (z, t) f (z − x) dSz (1.19)

Expression (1.19) establishes the sought link between the macroscopic spatial
derivative and the microscopic one in the fluid domain P f . With the same
reasoning applied to the apparent volume average of a physical quantity e(z)

3 D(R3) is the set of C∞ functions which are equal to zero out of a bounded domain.
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defined on the solid domain P s , one obtains:

∂

∂xi
〈e〉s(x, t) =

〈 ∂e

∂zi
(z, t)

〉
s

+
∫
Is f

e(z, t) ni (z, t) f (z − x) dSz (1.20)

where the change in sign of the second term on the right-hand side (r.h.s.)
stems from the opposite direction of the outward unit normal to the solid
phase.

1.2.3 Time Derivative of an Average

The time derivative of 〈e〉 f also comprises an extra term, in addition to the
volume average of the time derivative 〈∂e/∂t〉 f . Indeed, starting from (1.8),
we obtain:

∂

∂t
〈e〉 f (x, t) =

〈∂e

∂t
(z, t)

〉
f
+

∫
∂χ f

∂t
(z, t) e(z, t) f (z − x) dVz (1.21)

The second term on the r.h.s. accounts for the displacement of the boundary of
the fluid domain through the derivative ∂χ f /∂t. More precisely, introducing
the velocity u of the interface Is f , it can be shown that:

∂

∂t
〈e〉 f (x, t) =

〈∂e

∂t
(z, t)

〉
f
+

∫
Is f

e(z, t) (u · n)(z, t) f (z − x) dSz (1.22)

where u · n represents the normal velocity of the solid–fluid interface Is f ,
oriented by unit normal n pointing towards the solid phase.

Analogously, we obtain for the solid phase:

∂

∂t
〈e〉s(x, t) =

〈∂e

∂t
(z, t)

〉
s
−

∫
Is f

e(z, t) (u · n)(z, t) f (z − x) dSz (1.23)

1.2.4 Spatial and Time Derivatives of e

We finally consider the average e in the sense of (1.3) of a physical quantity
defined on the whole rev; that is, on both the solid and fluid phases. Using the
definition (1.3), (1.14) and integrating by parts, it is readily seen that:

∂

∂xi
(e) = −

∫
∂ f

∂zi
(z − x) e(z, t) dVz = ∂e

∂zi
(1.24)

In turn, the determination of the time derivative of e takes advantage of the
fact that the weighting function f (z) does not depend on time. It follows that:

∂

∂t
(e) =

∫
f (z − x)

∂e

∂t
(z, t) dVz = ∂e

∂t
(1.25)
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Expressions (1.24) and (1.25) could have been directly obtained from (1.19)–
(1.20) and (1.22)–(1.23), provided that the physical quantity e(z) defined on
both the fluid and the solid domain, P f and P s , i.e. on �(x), is continuous
over the solid–fluid interface. In the more general case, the spatial and time
derivatives of e on account of a possible discontinuity of e(z) on the solid–fluid
interface take the following form:

∂

∂xi
e(x, t) = ∂e

∂zi
+

∫
Is f

[e(z, t)] ni (z, t) f (z − x) dSz (1.26)

∂

∂t
(e) = ∂e

∂t
−

∫
Is f

[e(z, t)] (u · n)(z, t) f (z − x) dSz (1.27)

where [e(z, t)] = es(z, t) − e f (z, t) denotes the jump of e over Is f oriented by
the unit outward normal to the fluid phase.

1.3 Application to Balance Laws

Upscaling rules for several physical phenomena that are present at both the
microscopic and the macroscopic scale can be derived from the balance laws.
Indeed, each balance law can be formulated either at the microscopic scale or
at the macroscopic one. The consistency of these two approaches of the same
physical principle then delivers the upscaling rule. This technique is devel-
oped in this section.4 The starting point is the conservation laws at the micro-
scopic scale. Taking the average of the corresponding laws in the sense of (1.3)
or the apparent average in the sense of (1.8), we obtain macroscopic formula-
tions of the balance laws from a pure upscaling reasoning. The mass balance
law is considered first; the momentum balance is addressed in Section 1.3.2.

1.3.1 Mass Balance

The mathematical formulation of mass balance classically involves the concept
of velocity. For a component γ of a fluid phase, the velocity is represented at the
microscopic scale by a field vγ (z) defined on P f . The macroscopic counterpart
is a single vector Vγ (x). Hence, two macroscopic mass balance equations are
available: one to be derived from the average of the microscopic formulation;
the second from a purely macroscopic reasoning. Since mass conservation
must hold irrespective of the scale under consideration, the necessary consis-
tency of these two approaches provides the link between the field vγ (z) and
the vector Vγ (x). This is the problem we consider here.

4 A review of this technique can be found in [26] and [6].
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Mass Balance of a Component of a Fluid Phase

When the fluid comprises several chemical species, the macroscopic point of
view describes the fluid as the superposition of several macroscopic particles,
each corresponding to one of these chemical species. At the microscopic scale,
the approach is similar. At each point z of the fluid domain P f, the fluid is
considered as a superposition of microscopic particles. For the γ component of
the fluid, the local volume unit mass and velocity are represented by the fields
ργ (z) and vγ (z). The microscopic mass balance equation for this component
thus reads:

∂ργ

∂t
+ divz (ργ vγ ) = 0 (1.28)

where divz is the divergence operator acting on the microscopic coordinates
zi . Note clearly that the mass balance equation (1.28) disregards any mass
exchange between the γ component and any other components of the fluid.

The apparent average of (1.28) – in the sense of (1.8) – is straightforward:〈∂ργ

∂t

〉
f
+ 〈divz ργ vγ 〉 f = 0 (1.29)

We now apply (1.19) with e = ργ vγ

i and (1.22) with e = ργ. Taking (1.9) into
account, the mass balance (1.29) takes the form:

∂

∂t
(ϕργ f ) + divx(ϕργ vγ f ) =

∫
Is f

ργ (u − vγ ) · n f (z − x) dSz (1.30)

where divx is the divergence operator acting on the macroscopic coordinates
xi . The r.h.s. of (1.30) represents the mass flux of the γ component across
the solid–fluid interface. This term is non-zero for dissolution, precipitation
or adsorption phenomena that may take place at the solid–fluid interface. In
the absence of such mass exchange between γ and the solid, the flux is zero
and the following macroscopic formulation of the mass balance principle is
obtained:

∂

∂t
(ϕργ f ) + divx(ϕργ vγ f ) = 0 (1.31)

This macroscopic mass balance has been derived from the upscaling of its
microscopic counterpart (1.28). Alternatively, a pure macroscopic approach
to the mass balance principle reads:

∂ρ
γ
a

∂t
+ divx ργ

a Vγ = 0 (1.32)

where Vγ (x) is a macroscopic velocity vector of component γ , and ρ
γ
a has

been defined in (1.11). Finally, a comparison of (1.31) and (1.32) provides the
link between the microscopic and macroscopic descriptions of the kinematics.
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Indeed, the compatibility between (1.28) and (1.32) requires the macroscopic
momentum ρ

γ
a Vγ to be equal to the apparent average of the microscopic mo-

mentum ϕργ vγ f ; that is:

Vγ = ργ vγ f

ργ f
(1.33)

where we made use of (1.11) and (1.12).

Homogeneous Fluid

It is instructive to consider the case of a homogeneous fluid, which by defi-
nition comprises only one single component. In this case, replacing ργ (z) in
(1.33) by the fluid mass density ρ f (z), and vγ (z) by the velocity field v(z),
the link between the velocity of the macroscopic fluid particle V f (x) and the
microscopic velocity field is:

V f = ρ f v
f

ρ f
f

(1.34)

It is interesting to note that the macroscopic fluid velocity is not a priori the
volume average of the microscopic one. In fact, it is readily seen from (1.34)
that this is only the case when the fluid phase is incompressible; that is:

ρ f = ρ
f

0 ⇔ V f = v f (1.35)

1.3.2 Momentum Balance

We now turn to a second conservation law, the momentum balance, to derive
upscaling rules based on the compatibility of the micro- and macroscopic
expressions of the momentum balance.

Average Rules for Total and Partial Stresses

We consider a porous medium saturated by a homogeneous fluid. If we denote
by σ(z) the symmetric microscopic stress field,5 i.e. the stress field defined at

5 Throughout this book, all stress quantities that are introduced, whether microscopic or macroscopic,
satisfy the symmetry condition:

σi j = σ j i

The basis of the continuum mechanics approach employed here can be found in classical textbooks on
continuum mechanics (e.g. Salençon, [46]).
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the microscopic scale on the rev �(x), the momentum balance is:

∂σi j

∂z j
+ ρ fi = 0 (1.36)

where ρ f (z) is the density of volume forces acting at the microscopic point z.
For instance, for gravity forces the vector f is the acceleration due to gravity g.
The mass density ρ(z) depends (through z) on the phase to which z belongs.
In the particular case of incompressible solid and fluid phases, ρ(z) is equal to
either the intrinsic mass density ρs of the solid or ρ f of the fluid, depending
on the position vector z.

Using (1.24) with e = σi j , the average of (1.36) – in the sense of (1.3) – delivers
a first macroscopic expression of the momentum balance:

∂σi j

∂z j
+ ρ fi = ∂

∂xj
(σi j ) + ρ fi (1.37)

In addition, a second macroscopic expression of the momentum balance is
provided by the macroscopic approach:

∂i j

∂xj
+ ρMFi = 0 (1.38)

where Σ is a macroscopic stress tensor, while ρMF (x) now represents the
density of volume forces acting at the macroscopic scale at point x. From the
very definition of f (z) and F (x), it is readily seen that the comparison of (1.37)
and (1.38) provides the following remarkable results:� The macroscopic stress tensor Σ is the average of the microscopic stress

field:

Σ = σ (1.39)� The volume forces obey the following upscaling rule:

ρF = ρ f (1.40)

While readily verified for gravity forces, for which F = f = g, the upscal-
ing rule (1.40) is useful in some problems related, for example, to electro-
magnetism, allowing for the determination of F = ρ f /ρ from its microscopic
counterpart.

In addition to the total stress Σ, a common stress quantity encountered in
macroscopic approaches is known as partial stress Σα of the α phase (α = s
or f ). In the very same way as the total stress, this partial stress tensor is a
macroscopic physical quantity. Indeed, it represents the internal forces in one
of the two phases. Furthermore, in such macroscopic theories, called mixture
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theories, the interaction between the solid and the fluid phase is represented, at
the macroscopic scale, by a volume force a (x), such that a (x) |�(x)| represents
the elementary force applied by the macroscopic fluid particle located at point
x to the macroscopic solid particle located at the same point. The principle of
momentum balance applied to each phase at the macroscopic scale reads:

∂α
i j

∂xj
+ ρα

a F α
i + εαai = 0 (1.41)

where εs = 1 and ε f = −1.
We want to give a microscopic derivation of both the partial stress and the

interaction term in (1.41). To this end, we consider the partial average of (1.36):〈∂σi j

∂z j

〉
α

+ 〈ρα f α
i 〉α = 0 (1.42)

Then, applying (1.19)–(1.20) for e = σi j yields:

∂

∂xj
〈σi j 〉α =

〈 ∂

∂z j
σi j (z, t)

〉
α

+ εα

∫
Is f

σi j (z, t) nj (z, t) f (z − x) dSz (1.43)

Finally, substituting (1.43) in (1.42) yields a second macroscopic formulation
of the momentum balance of phase α, in addition to (1.41), which is obtained
independently from the former by means of upscaling the microscopic for-
mulation of the same principle:

divx〈σ〉α + 〈ρα f α〉α − εα

∫
Is f

σ(z, t) · n(z, t) f (z − x) dSz = 0 (1.44)

Finally, from a comparison of the two macroscopic momentum balance rela-
tions – the pure macroscopic one (1.41), and the one obtained by means of
upscaling (1.44) – it turns out that the partial stress Σα is the apparent average
of the microscopic stress field in the α phase:

Σα = 〈σ〉α (1.45)

In turn, the volume force vector a employed in the macroscopic approach to
represent the mechanical interaction between the solid and the fluid phases is
actually the integral of the interaction surface forces at the solid–fluid interface:

a = −
∫
Is f

σ(z, t) · n(z, t) f (z − x) dSz (1.46)

It is interesting to note that the same physical phenomenon, e.g. the solid–fluid
interaction, has different representations at different scales: a surface force at
the microscopic scale, and a volume force at the macroscopic scale, while the
link is provided by the surface integral (1.46).
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Partial Stress in an Incompressible Viscous Fluid

It is instructive to study the case of an incompressible Newtonian fluid, defined
by a viscosity coefficient μ f . For simplicity, the solid phase is assumed to be
rigid and the pore volume fraction ϕ is uniform. The microscopic stress state
in the fluid is related to the strain rate tensor d(z), defined as the symmetric
part of the microscopic velocity gradient v, by the classical state equation of
fluid mechanics:

σ = −p(z)1 + 2μ f d(z) with d = 1
2

(
gradz v + tgradzv

)
(1.47)

where p stands for the (thermodynamic) fluid pressure. We want to determine
the macroscopic partial stress Σ f in the fluid. To this end, the upscaling rule
(1.45) gives:

Σ f = 〈σ〉 f = −〈p〉 f 1 + 2μ f 〈d〉 f (1.48)

Then, applying (1.19) with e = vj , we obtain:

∂

∂xi
〈vj 〉 f (x, t) =

〈∂vj

∂zi
(z, t)

〉
f

−
∫
Is f

v j (z, t) ni (z, t) f (z − x) dSz (1.49)

This equation is simplified by the boundary condition v = 0 at the solid–fluid
interface Is f :

∂

∂xi
〈vj 〉 f (x, t) =

〈∂vj

∂zi
(z, t)

〉
f

(1.50)

Finally, recalling (1.35), (1.50) reveals that the macroscopic strain rate D(V f )
associated with the velocity V f is the intrinsic average of the microscopic
strain rate:

D(V f ) = 1
2

(
gradx V f + tgradxV f

) = 1
ϕ

〈d〉 f = d
f

(1.51)

We note that the incompressibility condition tr d = 0 is upscaled in the form
tr D = 0. Furthermore, substitution of (1.51) in (1.48) yields:

Σ f = −ϕ p f 1 + 2ϕμ f D(V f ) (1.52)

It therefore turns out that the partial stress Σ f which represents, at the macro-
scopic scale, the internal forces in the fluid phase is identical to the stress in
a homogeneous viscous fluid of viscosity ϕμ f which is subjected to the pres-
sure ϕ p f . In what follows, we will refer to p f as the macroscopic pressure
denoted by P :

P = p f (1.53)

Finally, it is instructive to determine the solid–fluid interaction volume force
a for the considered case. To this end, we insert expression (1.52) for the partial
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stress Σ f into the macroscopic balance equation of the fluid (1.41). As the
porosity ϕ is homogeneous, we obtain:

ϕ
(
−grad

x
P + μ f �xV f + ρ f F f

)
− a = 0 (1.54)

where the differential operators, the Laplace operator � and the gradient
operator grad act on the macroscopic position vector x. We will see in Chapter 2
that grad P can be related to the macroscopic fluid velocity (Darcy’s law), for
which relation (1.54) will provide a means of determining a as a function of
the macroscopic velocity and its derivatives.

1.4 The Periodic Cell Assumption

1.4.1 Introduction

Natural porous media and particularly geomaterials are disordered materials.
These materials are a priori best addressed through the rev concept introduced
in Section 1.1. Nevertheless, in some situations it will prove helpful to model
a microstructure in the framework of periodic media. The idea of the periodic
media theory is that the fundamental information concerning the physical
properties of the constituents and the morphology of the microstructure can
be captured in an elementary cell. Then, a periodic model for the real material
can be obtained by filling the entire space with this elementary pattern in a
periodic way.

The characteristic size of the elementary cell is a priori of the order of the local
inhomogeneity d (see Section 1.1). For clarity and without loss of generality,
the periodic framework is hereafter presented with the assumption that the
cell is a cube, the edges of which are parallel to the directions (e1, e2, e3) of
an orthonormal frame. The edge length a is of the order of d; U denotes the
cubic domain [0, a ] × [0, a ] × [0, a ]. Us and Uf respectively denote the solid
and fluid domains in U.

As in Section 1.1, we will consider a macroscopic structure of characteristic
size L . The scale separation condition still reads d � L , and means here that
the macrostructure comprises a sufficient large number of elementary cells.

In the framework of the periodic assumption, the elementary cell concept is
used instead of an rev. The elementary cell is not an rev, since its characteristic
length is not necessarily large with respect to that of the heterogeneities.6

The periodic media theory is based on the premise that it is possible to
represent spatial variations of a physical quantity as a combination of local

6 However, accurate estimates of macroscopic properties in the periodic framework require a refined
description of the microstructure within the elementary cell whose size may become larger.
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fluctuations at the level of the elementary cell and a drift at the level of the
macroscopic structure. This separation is represented by two dimensionless
spatial variables, Z = z/a and X = z/L , which allow a representation of any
physical quantity e(z) in the form e(Z, X). The mathematical way by which
X is responsible for the long scale drift, and local fluctuations are taken into
account through the variable Z, is to introduce the condition that e(Z, X) is a
periodic function of Z for any prescribed value of X:

(∀ n1, n2, n3 ∈ N) e(Z + n1 e1 + n2 e2 + n3 e3, X) = e(Z, X) (1.55)

This periodicity condition actually proves that the drift δe of e on one period
in the direction i is related to the derivative of e with respect to Xi :

δe = e(z + aei ) − e(z) = e
(

Z, X + a

L
ei

)
− e(Z, X) = a

L

∂e

∂ Xi
+ o

( a

L

)
(1.56)

In fact, X appears as the dimensionless counterpart of the macroscopic position
vector x. In particular, we note that:

1
L

∂

∂ Xi
= ∂

∂xi
⇒ δe = a

∂e

∂xi
(1.57)

The dimensionless variables X and Z are now regarded as independent. Tak-
ing advantage of the periodicity of e with respect to the ‘fluctuation’ variable
Z, the average e of the physical quantity e is defined by integration with re-
spect to Z over any elementary cell, while X is regarded as a constant. More
precisely, let UZ denote the domain obtained by applying the transformation
Zi = zi/a to the elementary cell U. In other words, UZ is the cubic domain
[0, 1] × [0, 1] × [0, 1]. The average e is:

e(X, t) =
∫

UZ

e(Z, X, t) dVZ (1.58)

By construction, we thus define e as a macroscopic quantity which depends
only on the ‘drift’ variable X.

In turn, the apparent average 〈e〉α is defined by analogy with (1.8) as χαe:

〈e〉α(X, t) =
∫

UZ

(χαe)(Z, X, t) dVZ (1.59)

Furthermore, the intrinsic average eα is defined by analogy with (1.9). Hence,
for the fluid:

e f (X, t) = 1
ϕ

∫
UZ

(χ f e)(Z, X, t) dVZ (1.60)

Since the reference microstructure is itself periodic, the characteristic func-
tion χα in the reference state is periodic as well. However, in the case of a



JWBK100-01 JWBK100-Dormieux May 15, 2006 9:43 Char Count= 0

16 A Mathematical Framework for Upscaling Operations

deformable solid phase, χα becomes a function of time and can also depend
on the drift variable X if the microscopic displacement does.

The idea to define the average by integration over a period aims at capturing
all the information available on the morphology of the microstructure as well
as the physical properties of the constituents. The integral in (1.58), however,
is performed on the period corresponding to the reference (i.e. non-deformed)
state, which restricts its application to small perturbations of the geometry of
the microstructure. In particular, the dependence of χα with respect to the
drift variable is disregarded.

The following chain rule for differentiation is the starting point for the
derivation of the periodic counterpart of (1.19), (1.22) and (1.24):

∂e

∂zi
= 1

a

∂e

∂ Zi
+ 1

L

∂e

∂ Xi
(1.61)

Given the scale separation condition d � L , and the fact that a is on the order
of d, it could be appealing to consider in the total spatial derivation the first
term on the r.h.s., i.e. the fluctuation term (1/a ) (∂e/∂ Zi ), as dominant over
the drift term (1/L) (∂e/∂ Xi ). This depends, however, on the function e(Z, X).
To illustrate this purpose, consider in a one-dimensional setting the displace-
ment ξ (z) = u(X) + δnv(Z), where δ = a/L . Application of the chain rule (1.61)
yields the linearized strain:

ε = ∂ξ

∂z
= 1

L

(
δn−1 dv

d Z
+ du

d X

)
(1.62)

Given a � L , and provided that dv/dZ and du/d X are on the same order of
magnitude, we observe indeed, for n = 0, that the fluctuation term dominates
the drift term in the total spatial derivative. On the other hand, for n = 1,
both terms may be equally important; for higher values n ≥ 2, the drift term
dominates the fluctuation term.

1.4.2 Spatial and Time Derivative of e in the Periodic Case

Integrating the chain rule (1.61) with respect to Z, we obtain:∫
UZ

∂e

∂zi
dVZ = 1

a

∫
UZ

∂e

∂ Zi
dVZ + 1

L

∫
UZ

∂e

∂ Xi
dVZ (1.63)

The first integral on the r.h.s. is transformed into a surface integral over the
cell boundary: ∫

UZ

∂e

∂ Zi
dVZ =

∫
∂UZ

e ni dSZ (1.64)
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which is equal to zero because of the periodicity condition (1.55). On the other
hand, the second integral on the r.h.s. in (1.63) can be developed in the form:∫

UZ

∂e

∂ Xi
dVZ = ∂

∂ Xi

(∫
UZ

e(Z, X, t) dVZ

)
= ∂

∂ Xi
(e) (1.65)

Thus, the periodic counterpart of (1.24) is:

∂e

∂zi
= 1

L

∂

∂ Xi
(e) = ∂

∂xi
(e) (1.66)

As in Section 1.3.2, this equation can be used to derive the link between the
microscopic stress field and the macroscopic stress tensor. Indeed, by letting
e = σi j in (1.66), identical results are obtained, namely Σ = σ. Similarly, the
upscaling rules (1.33), (1.34) and (1.35) concerning the fluid velocities can be
extended to the periodic case.

Lastly, the average rule concerning the time derivative is straightforward:

∂

∂t
(e) =

∫
UZ

∂e

∂t
(Z, X, t) dVZ = ∂e

∂t
(1.67)

1.4.3 Spatial and Time Derivative of 〈e〉α in the Periodic Case

The spatial derivative 〈e〉α is developed here for the fluid phase. We recall
that the geometry changes of the solid–fluid interface are neglected. This im-
plies that the characteristic function χ f of the fluid domain is a periodic func-
tion. Hence, it depends only on Z and not on the drift variable X. Applying
definition (1.59), we thus obtain:

∂

∂ Xi
(〈e〉 f ) =

∫
UZ

∂

∂ Xi
(χ f e) dVZ =

∫
UZ

χ f (Z)
∂e

∂ Xi
dVZ (1.68)

The chain rule (1.61) integrated over the fluid domain in the elementary cell
UZ gives: 〈 ∂e

∂zi

〉
f
=

∫
UZ

χ f (Z)
∂e

∂zi
dVZ

= 1
a

∫
UZ

χ f (Z)
∂e

∂ Zi
dVZ + 1

L

∫
UZ

χ f (Z)
∂e

∂ Xi
dVZ (1.69)

In order to calculate the first integral on the r.h.s., we observe that:

χ f ∂e

∂ Zi
= ∂

∂ Zi
(χ f e) − e

∂χ f

∂ Zi
(1.70)

As in Section 1.2.2, the above identity must be understood in the sense of the
distribution theory, since it involves the derivatives of the discontinuous func-
tion χ f . In addition, the fact that χ f e is a periodic function of the fluctuation
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variable Z implies that:∫
UZ

∂

∂ Zi
(χ f e) dVZ =

∫
∂UZ

nZ
i χ f e dSZ = 0 (1.71)

Let Is f
Z be the image of the solid–fluid interface Is f in U obtained by the trans-

formation Zi = zi/a . Recalling that χ f does not depend on the drift variable
X, the derivative of the discontinuous function χ f in (1.70) can be determined
as in (1.18):

∂χ f

∂ Zi
= −nZ

i δIs f
Z

(Z) (1.72)

where nZ
i are the components of the unit normal to the interface Is f

Z oriented
towards the solid. Substituting (1.69), (1.70), (1.71) and (1.72) into (1.68) yields
the periodic counterpart of (1.19):

∂

∂xi

(〈e〉 f

) = 1
L

∂

∂ Xi
(〈e〉 f ) =

〈 ∂e

∂zi

〉
f
− 1

a

∫
Is f

Z

e nZ
i dSZ

=
〈 ∂e

∂zi

〉
f
− 1

|U|
∫
Is f

e ni dSz (1.73)

Finally, the time derivative of an apparent average is derived as in (1.21):

∂

∂t
〈e〉 f (x, t) =

〈∂e

∂t

〉
f
+

∫
UZ

∂χ f

∂t
e dVZ (1.74)

The second term on the r.h.s. of (1.74) accounts for the velocity u of the solid–
fluid interface, and reduces to u/a in the domain of dimensionless coordinates.
Hence, the periodic counterpart of (1.22) is:

∂

∂t
〈e〉 f (x, t) =

〈∂e

∂t

〉
f
+ 1

a

∫
Is f

Z

e (u · n) dSZ

=
〈∂e

∂t

〉
f
+ 1

|U|
∫
Is f

e (u · n) dSz (1.75)

The previous relations, (1.73) and (1.75), are readily employed for extending
the upscaling rules of partial stresses (see Section 1.3.2) to the periodic case.

1.4.4 Application: Micro- versus Macroscopic Compatibility

One question which comes immediately to mind when micro-to-macro ap-
proaches are applied to deformable media is the question of geometrical com-
patibility on both scales. To address this question, we first postulate7 that

7 A detailed discussion is given in Sections 4.2.3 and 4.2.5.
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the macroscopic linearized strain tensor E(x) is the volume average of the
linearized microscopic strains ε(z):

E(x) = ε(z) (1.76)

A necessary condition for the validity of an average relation of the form (1.76)
is that the geometrical compatibility of the microscopic strain field ε(z) en-
tails the geometrical compatibility of the macroscopic strain tensor E(x). The
microscopic conditions of geometrical compatibility are:

∂2

∂zkzl
(εi j ) + ∂2

∂zi z j
(εkl) − ∂2

∂z j zl
(εik) − ∂2

∂zi zk
(ε jl) = 0 (1.77)

and their macroscopic counterparts are:

∂2

∂xk xl
(Ei j ) + ∂2

∂xi xj
(Ekl) − ∂2

∂xj xl
(Eik) − ∂2

∂xi xk
(E jl) = 0 (1.78)

with i,j,k,l = 1,2,3. A proof of this result can be obtained with (1.24) (resp.
(1.66)). It comprises two identical steps. First, this identity is applied to e = εi j

and gives:

∂εi j

∂zk
= ∂

∂xk
(εi j ) = ∂

∂xk
(Ei j ) (1.79)

The second step consists of applying the same identity to e = ∂εi j/∂zk . We
now obtain:

∂

∂zl

(
∂εi j

∂zk

)
= ∂

∂xl

(
∂εi j

∂zk

)
(1.80)

Finally, a combination of (1.79) and (1.80) yields:

∂

∂zl

(
∂εi j

∂zk

)
= ∂2

∂xk xl
(Ei j ) (1.81)

Hence, the macroscopic compatibility (1.78) is a direct consequence of (1.81).
It is instructive to note that the previous result could have been directly

obtained by application of relation (1.24) with a microscopic displacement e =
ξ j (z) associated with the microscopic strain field ε(ξ ) = 1

2 (gradzξ + tgradzξ ),
as follows:

ε(ξ ) = ε(ξ ) = E(x) (1.82)

where ξ (x) is the volume average of the microscopic displacement field. In
other words, E(x) is the strain tensor associated with ξ (x). This immediately
ensures the geometrical compatibility of E(x).
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