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Introduction

1.1 OBJECTIVE AND CONTENTS OF THE BOOK

Hysteresis is a nonlinear phenomenon exhibited by systems stemming
from various science and engineering areas: under a low-frequency
periodic excitation, the relationship between the system’s input and
output is not the same for loading and unloading. More precisely,
consider a single-input single-output (SISO) system excited by a peri-
odic signal that has a loading–unloading shape. Then, hysteretic
systems often present a periodic response that has the same frequency
of the input. When this frequency goes to zero, the quasi-static
response of the system has an output versus input plot that is a cycle
(not a line as would be the case for linear systems).

A fundamental theory allowing a general mathematical frame-
work for modelling hysteresis has not been developed up to now.
For specific problems, models describing hysteretic systems can be
derived from an understanding of physical laws. Usually this is an
arduous task and the resulting models are too complex to be used
in practical applications. In general, engineering practice seeks for
alternative more simple models which, although not giving the ‘best’
description of the physical behaviour of the system, do keep relevant
input–output features and are useful for characterization, design and
control purposes. These models are referred to as phenomenological
or semi-physical models.
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2 INTRODUCTION

In this context, several mathematical models have been proposed
to describe the behaviour of hysteretic processes [1]. The Duhem
model [2] uses the property that a hysteretic system’s output
changes its character when the input changes direction; the Ishlinskii
hysteresis operator has been proposed as a model for plasticity–
elasticity [3] and the Preisach model has been used for modelling
electromagnetic hysteresis [4]. A survey of mathematical models for
hysteresis may be found in [5]. In the areas of smart structures
and civil engineering, another model has been used extensively to
describe the hysteresis phenomenon: the so-called Bouc–Wen model
[6,7]. It consists of a first-order nonlinear differential equation that
relates the input displacement to the output restoring force in a
rate-independent hysteretic way. The parameters that appear in the
differential equation can be tuned to match the hysteresis loop of the
system under study.

The current literature devoted to the Bouc–Wen model is extensive
and focuses mainly on:

1. Tuning the model parameters to obtain a reasonable matching of
the physical hysteretic system under consideration.

2. Use of the obtained tuned model for simulation and control
purposes.

It is known that most works on this model have been practically
oriented. In general, rigorous mathematical justifications of the tech-
niques associated with the use of the model have been missing. To
give an example, while many papers have been devoted to tuning
the Bouc–Wen model parameters (that is the identification problem),
rigorous proofs on the convergence of the identified model param-
eters to their true counterparts are still lacking. Most works rely
mainly on numerical simulations to show this convergence.

The objective of this book is to contribute to fill this gap by
providing the reader with a rigorous treatment of this model. This
book is based on original works by the authors that have been
published in scientific journals within the last three years. It includes
a mathematical treatment of the subject along with several numerical
simulation examples. The book covers basically four topics:

1. Analysis of the compatibility of the model with some laws of
physics.



OBJECTIVE AND CONTENTS OF THE BOOK 3

2. Relationship between the model parameters and the hysteresis
loop.

3. Identification of the model parameters.
4. Control of systems that include a hysteretic part described by the

Bouc–Wen model.

The first topic is about checking whether the semi-physical Bouc–
Wen model is consistent with some general laws of physics. In partic-
ular, the conditions are given under which the model is input–output
stable and passive. These conditions translate into inequalities that
have to be satisfied by the Bouc–Wen model parameters in order
to comply with the stability and the passivity properties. Also cited
is a parallel work by other authors that checks the thermodynam-
ical admissibility of the Bouc–Wen model [8]. The techniques used
in this part of the book include Lyapunov techniques for checking
the stability of the model and passivity methods for the analysis of
energy dissipation. The result of this analysis is a set of inequalities to
be held by the Bouc–Wen model parameters. These inequalities will
prove to be fundamental in deriving a new form of the Bouc–Wen
model that can be called the normalized one. This new form will be
used extensively in the rest of the book. This first topic is the subject
of Chapter 2.

The second topic is the subject of Chapters 3 and 4. Chapter 3 is
devoted to the analytical description of the hysteresis loop. Indeed,
it is well known that, under loading and unloading, physical systems
with hysteresis do not follow the same path, which results in a
hysteresis loop. Due to the nonlinearity of the Bouc–Wen model, the
hysteresis loop has never been described analytically in an explicit
way. This lack of knowledge has impeded analytical studies on the
relationship between the model parameters and the shape and size of
the hysteresis loop. Chapter 3 presents a novel result of the authors
where, using a simple but rigorous mathematical framework, the
hysteresis loop is described analytically using some explicit functions
that can be computed numerically in an easy way. This analytical
description is illustrated and commented upon by means of a numer-
ical simulation example.

Chapter 4 uses the analytical description of Chapter 3 to study
the behaviour of the hysteresis loop when the Bouc–Wen model
parameters change. This chapter is basically divided into two parts.
The first part is focused on the variation of a given point of the
hysteresis loop along the axes of abscissas and ordinates when the
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parameters of the normalized Bouc–Wen model vary. The results of
this part are summarized in tables to facilitate their use. In the second
part of Chapter 4, the hysteresis loop of the Bouc–Wen model is
divided into four regions: the linear region, the plastic region and
two regions of transition. The points that define each region are
defined rigorously, which allows an analysis of the behaviour of the
different regions with respect to the normalized Bouc–Wen model
parameters. These regions are illustrated by means of several figures.

The third topic is the subject of Chapter 5. Identification of the
parameters of the Bouc–Wen model is a crucial issue and a technical
challenge for its practical use. This issue has been treated in the
literature using numerical simulations, and, to the best of the authors’
knowledge, no currently available method ensures analytically that
the identified parameters converge to their true counterparts. In this
chapter, a new identification technique is presented that uses the
results of Chapter 3 to identify in an exact way the parameters of the
normalized Bouc–Wen model. The technique consists of imposing
two specific input displacement functions that are wave-periodic; this
means that the displacements have a loading–unloading shape, and
are periodic in time. Then the two obtained limit cycles are used to
identify the Bouc–Wen model parameters. Chapter 5 is divided into
two parts:

1. The first part presents the identification methodology and analyses
its robustness with respect to external disturbances.

2. The second part of the chapter consists in applying this method-
ology to a magnetorheological (MR) damper, which is described
by a model that includes a Bouc–Wen hysteresis. The values of
the parameters of the model are taken from the literature and are
unknown to the identification algorithm. Numerical simulations
are carried out to illustrate the applicability of the identification
method.

The fourth topic is the subject of Chapter 6. It consists of the
control of a mechanical/structural system containing a hysteresis
described by the Bouc–Wen model, and represents a base-isolated
structure. The system parameters are not known exactly but they lie
in known intervals. The control objective is to regulate the system
around zero while maintaining the boundedness of the closed-loop
signals. The control law is a simple proportional-integral-derivative
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(PID) whose parameters are to be tuned in a specific way to guar-
antee the boundedness of all the closed-loop signals. Furthermore,
the controller ensures the asymptotic convergence to zero of the mass
displacement and velocity. The interest of this chapter is to show that
a linear controller may ensure the control objective in the presence
of a Bouc–Wen hysteresis.

1.2 THE BOUC–WEN MODEL: ORIGIN AND
LITERATURE REVIEW

The starting point of the so-called Bouc–Wen model is the early
paper by Bouc [6], where a functional that describes the hysteresis
phenomenon was proposed. Consider Figure 1.1, where � is a force
and x a displacement. Four values of � correspond to the single
point x = x0, which means that � is not a function. If it is considered
that x is a function of time, then the value of the force at the instant
time t will depend not only on the value of the displacement x at the
time t, but also on the past values of x. The following simplifying
assumption is made in Reference [6].

Assumption 1. The graph of Figure 1.1 remains the same for all
increasing functions x�·� between 0 and x1, for all decreasing functions
x�·� between the values x1 and x2, etc.
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Figure 1.1 Graph force versus displacement for a hysteresis functional.
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Assumption 1 is what, in the current literature, is called the
rate-independent property [1]. To define the form of the func-
tional � , Reference [6] elaborates on previous works to propose the
following form:

d�
dt

= g

(
x�� � sign

(
dx

dt

))
dx

dt
(1.1)

Consider the equation

d2x

dt2
+� �t� = p�t� (1.2)

for some given input p�t� and initial conditions

dx

dt
�t0�� x�t0� and � �t0�

at the initial time instant t0. Equations (1.1) and (1.2) describe
completely a hysteretic oscillator.

Paper [6] notes that it is difficult to give explicitly the solution
of Equation (1.1) due to the nonlinearity of the function g. For
this reason, the author proposes the use of a variant of the Stieltjes
integral to define the functional � :

� �t� = �2x�t�+
∫ t

�
F �V t

s �dx�s� (1.3)

where � ∈ �−��+�� is the time instant after which the displacement
and force are defined. The term V t

s is the total variation of x in
the time interval [s� t]. The function F is chosen in such a way
that it satisfies some mathematical properties compatible with the
hysteresis property. The following is an example of this choice given
in Reference [6] so that these mathematical properties are satisfied:

F �u� =
N∑

i=1

Aie
−�iu with �i > 0 (1.4)

Equations (1.2) to (1.4) can then be written in the form

d2x

dt2
+�2x+

N∑
i=1

Zi = p�t� (1.5)
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dZi

dt
+�i

∣∣∣∣dx

dt

∣∣∣∣Zi −Ai

dx

dt
= 0� i = 1� 	 	 	 �N (1.6)

Equations (1.5) and (1.6) are what is now known as the Bouc
model. The derivation of these equations is detailed in Reference [6].
The objective here is not to enter in these details, but only to give
a short idea of the origin of the model. Equation (1.6) has been
extended in Reference [7] to describe restoring forces with hysteresis
in the following form:

ż = −��ẋ�zn −�ẋ�zn�+Aẋ for n odd (1.7)

ż = −��ẋ�zn−1�z�−�ẋzn +Aẋ for n even (1.8)

Equations (1.7) and (1.8) constitute the earliest version of what is
now called the Bouc–Wen model. The shape of the hysteresis loop is
given in Reference [7] for different values of the model parameters.
Some subsequent works have proposed different modifications of the
model to take into account some physical properties observed exper-
imentally in some hysteretic systems. In Reference [9], the authors
consider the modelling of degradation in civil engineering struc-
tures. A multidegree of freedom shear beam structure is modelled in
the form

mi

(
i∑

j=1

üj + 
̈B

)
+qi −qi+1 = 0 for i = 1� 	 	 	 �n (1.9)

in which mi is the mass of the ith floor, 
̈B is the ground acceleration
and qi is the ith restoring force, including viscous damping. The
quantities ui are the relative displacement of the ith and the �i+1�th
stories, and qi is given as

qi = ciu̇i +�ikiui + �1−�i�kizi for i = 1� 	 	 	 �n (1.10)

in which ci is the viscous damping, ki controls the initial tangent
stiffness, �i controls the ratio of post-yield to pre-yield stiffness and
zi is the ith hysteresis which obeys the equation

żi = Aiu̇i −�i

(
�i�u̇i��zi�ni−1zi +�iu̇i�zi�ni

)
i

for i = 1� 	 	 	 �n

(1.11)
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where Ai� �i� �i� �i� i and ni are parameters that control the
hysteresis shape and the degradation of the system. System degrada-
tion is introduced into the model for zi by allowing the parameters of
the model to vary as a function of the response duration and severity.
Pinching has been considered in Reference [10] by modifying the
Bouc–Wen model in the form

ż = h�z�
u̇−�

(
��u̇��z�n−1z+�u̇�z�n)


(1.12)

where h�z� is the function that describes pinching. A discussion on
how to choose this function for wood systems is given in Refer-
ence [11]. Other modifications of the Bouc–Wen model include ones
to describe a soft soil [12], an asymmetric response as observed
in shape memory alloys [13], the response of steel buildings under
earthquakes [14], the drift observed under a zero-mean, broad-band,
stationary-random load [15] and the behaviour of low yield strength
steel [16]. In a parallel research line, extensions of the Bouc or
Bouc–Wen models to the multivariate case have been done in Refer-
ences [17] and [18].

Figure 1.2 illustrates that the literature on the Bouc–Wen model
has increased rapidly during the last few years. It quantifies the
number of papers published in journal papers, most of which are
quoted in the references given at the end of the book.

One of the main issues in the literature devoted to the Bouc–
Wen model is parameter identification. Several techniques have been
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Figure 1.2 Evolution of the Bouc–Wen model literature.
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used to deal with this problem. In Reference [19], a nonrecur-
sive least error minimization algorithm is used. A recursive least-
squares algorithm has been used in Reference [20], along with
the Newton method and the extended Kalman filtering technique.
More recent works that use some version of the least-squares algo-
rithm include References [21] to [25]. For example, Reference [21]
considers a second-order single-degree-of-freedom system which is
a mass subject to a nonlinear restoring force and an external exci-
tation. The restoring force is represented as a Bouc–Wen hysteresis
whose input is the velocity of the mass. When the mass is exactly
known, the restoring force can be calculated knowing the instanta-
neous external excitation and the acceleration of the mass. In this
case, all the Bouc–Wen model parameters appear linearly except
the exponent of the differential equation. This nonlinearity is coped
with by assuming knowledge of an upper bound on the exponent
and writing the Bouc–Wen differential equation as a sum of terms
whose number is the upper bound. Then, a first-order filter is used
to write the nonlinear system in a way that allows the use of the
least-squares algorithm to identify the system parameters. The case
of unknown mass is treated similarly by using an on-line estimation
of the restoring force.

Genetic-type algorithms for the determination of the Bouc–Wen
model parameters have been used in References [26] to [29]. For
example, Reference [27] uses a differential evolution algorithm
whose main difference with conventional genetic algorithms is in the
way the mechanisms of mutations and crossover are performed using
real floating point numbers instead of long strings of zeros and ones.
This algorithm starts with an initial pool of 15 three-dimensional
vectors drawn from uniform probability distributions. The differen-
tial evolution mutates a randomly selected number of the featured
generation with vector differentials. Each differential is the difference
between two randomly selected vectors, scaled with a parameter.
This process generates a new mutated vector. Natural selection is
implemented via a comparison process between the cost of the trial
vector and the cost of the target vector. The differential evolution
algorithm generates a new set of 15 three-dimensional vectors, which
is a new generation with improved characteristics.

Methods that use the frequency domain have been utilized in Refer-
ences [30] to [33]. For example, Reference [30] considers a second-
order system coupled with a Bouc hysteresis. The nonlinear system
is excited with a periodic input and the Bouc model parameters
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are determined by using a first harmonic approximation. A higher
number of harmonics is considered in Reference [31].

Neural networks have been used in Reference [34]. In this work, an
inverse model for a magnetorheological damper has been developed
using a multilayer perception network and system identification-
based ARX model.

Bayesian parameter estimation is used in References [35] to [38].
For example, Reference [35] uses a modified version of the extended
Kalman filter and the particle filter to determine the parameters of a
second-order Bouc–Wen hysteresis.

A nonparametric identification method has been proposed in
Reference [39]. The nonlinear hysteresis part of the system is written
as a linear combination of polynomial functions with unknown coef-
ficients. These coefficients are determined using a least-squares algo-
rithm.

Other proposed identification techniques are included in Refer-
ences [40] to [48].

Control of mechanical systems and structures with Bouc–Wen
hysteretic behaviour has also spurred much effort in the current liter-
ature. In this sense, it may be useful to distinguish between active
and semi-active control. A control law is said to be active when the
control signal directly feeds an actuator that applies the desired feed-
back control force. With an active control scheme, energy is injected
into the closed-loop system. A control law is semi-active when the
corresponding actuator does not pour energy into the closed loop.
Instead, the control signal is generated by the controller to modify
the characteristics of an adaptive passive-like actuator. Examples of
semi-active actuators are the devices based on smart materials, in
particular the magnetorheological dampers.

Now a brief overview of the recent control literature related to
the Bouc–Wen model is given. Active control is described in Refer-
ences [49] to [58]. In Reference [49] fuzzy control is used for a
structure modelled as a second-order single-degree-of-freedom struc-
tural system that includes a Bouc–Wen hysteresis. In Reference [51],
an H� controller is proposed to cope with the presence of uncertain-
ties. In the other references nonlinear controllers based on Lyapunov
techniques are used to ensure stability and some degree of perfor-
mance in spite of the uncertainties.

Semi-active control is often used in relation to MR dampers.
Reference [59] gives a state-of-the-art review of semi-active control
systems for the seismic protection of structures. Recent references
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include [53] and [60] to [72]. For example, Reference [60] considers
several semi-active control strategies using MR dampers for the
control of a six-storey building. These control algorithms include a
Lyapunov controller, decentralized bang-bang controller, modulated
homogeneous friction algorithm and a clipped optimal controller.
Each algorithm uses measurements of the absolute acceleration and
device displacements for determining the control action to ensure
that the algorithms would be implementable on a physical structure.
The performance of the algorithms is compared through a numerical
example, and the advantages of each algorithm are discussed.

The Bouc–Wen model has been extensively used for modelling
hysteresis in structural and mechanical systems [44, 62, 73–95].
For example, Reference [88] considers an MR damper for which a
dynamic model is to be developed. The damper force is written as
the sum of several terms:

1. The damper friction due to seals and measurement bias.
2. The product of the equivalent mass which represents the MR fluid

stiction phenomenon and inertial effect, and the acceleration of
the piston.

3. The product of the piston velocity and the post-yield plastic
damping coefficient.

4. The product of the piston position and the factor that accounts
for the accumulator stiffness and the MR fluid compressibility.

5. A hysteretic term.

The hysteresis part of the model is assumed to follow a Bouc–
Wen equation. Experiments are carried out to verify the validity of
the model.

There are other works that have used the Bouc–Wen model [8,
96–123]. These works are difficult to classify into a single homo-
geneous group as their research subjects are diverse. However, they
mostly deal with the analysis of some properties of systems that
include a Bouc–Wen hysteresis. For example, Reference [107] anal-
yses the influence of hysteresis dissipation on chaotic responses,
Reference [113] studies the nonlinear response of a Bouc–Wen
hysteretic oscillator under evolutionary excitation and Refer-
ence [110] addresses strategies for finding the design point in
nonlinear finite element reliability analysis.

This book treats the univariate basic Bouc–Wen model, that is
the one that has one input and one output, and describes only
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the hysteresis phenomenon regardless of other types of nonlinear
behaviours (like pinching and others). This choice is motivated by the
fact that most references treat only this basic Bouc–Wen model. The
extension of the results of this book to the multivariate model, which
may include other types of nonlinearities, is still an open problem
and a possible subject for future research.


