Chapter 1

Introduction to
Computational Intelligence

A major thrust in algorithmic development is the design of algorithmic models to
solve increasingly complex problems. Enormous successes have been achieved through
the modeling of biological and natural intelligence, resulting in so-called “intelligent
systems”. These intelligent algorithms include artificial neural networks, evolution-
ary computation, swarm intelligence, artificial immune systems, and fuzzy systems.
Together with logic, deductive reasoning, expert systems, case-based reasoning and
symbolic machine learning systems, these intelligent algorithms form part of the field
of Artificial Intelligence (AI). Just looking at this wide variety of AI techniques, Al
can be seen as a combination of several research disciplines, for example, computer
science, physiology, philosophy, sociology and biology.

But what is intelligence? Attempts to find definitions of intelligence still provoke heavy
debate. Dictionaries define intelligence as the ability to comprehend, to understand
and profit from experience, to interpret intelligence, having the capacity for thought
and reason (especially to a high degree). Other keywords that describe aspects of
intelligence include creativity, skill, consciousness, emotion and intuition.

Can computers be intelligent? This is a question that to this day causes more debate
than the definitions of intelligence. In the mid-1900s, Alan Turing gave much thought
to this question. He believed that machines could be created that would mimic the
processes of the human brain. Turing strongly believed that there was nothing the
brain could do that a well-designed computer could not. More than fifty years later
his statements are still visionary. While successes have been achieved in modeling
small parts of biological neural systems, there are still no solutions to the complex
problem of modeling intuition, consciousness and emotion — which form integral parts
of human intelligence.

In 1950 Turing published his test of computer intelligence, referred to as the Turing
test [858]. The test consisted of a person asking questions via a keyboard to both a
person and a computer. If the interrogator could not tell the computer apart from the
human, the computer could be perceived as being intelligent. Turing believed that it
would be possible for a computer with 10° bits of storage space to pass a 5-minute
version of the test with 70% probability by the year 2000. Has his belief come true?
The answer to this question is left to the reader, in fear of running head first into
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4 1. Introduction to Computational Intelligence

another debate! However, the contents of this book may help to shed some light on
the answer to this question.

A more recent definition of artificial intelligence came from the IEEE Neural Networks
Council of 1996: the study of how to make computers do things at which people are
doing better. A definition that is flawed, but this is left to the reader to explore in
one of the assignments at the end of this chapter.

This book concentrates on a sub-branch of AI, namely Computational Intelligence
(CI) — the study of adaptive mechanisms to enable or facilitate intelligent behavior in
complex and changing environments. These mechanisms include those Al paradigms
that exhibit an ability to learn or adapt to new situations, to generalize, abstract,
discover and associate. The following CI paradigms are covered: artificial neural net-
works, evolutionary computation, swarm intelligence, artificial immune systems, and
fuzzy systems. While individual techniques from these CI paradigms have been ap-
plied successfully to solve real-world problems, the current trend is to develop hybrids
of paradigms, since no one paradigm is superior to the others in all situations. In
doing so, we capitalize on the respective strengths of the components of the hybrid CI
system, and eliminate weaknesses of individual components.

The rest of this chapter is organized as follows: Section 1.1 of this chapter presents a
short overview of the different CI paradigms, also discussing the biological motivation
for each paradigm. A short history of Al is presented in Section 1.2.

At this point it is necessary to state that there are different definitions of what con-
stitutes CI. This book reflects the opinion of the author, and may well cause some
debate. For example, swarm intelligence (SI) and artificial immune systems (AIS)
are classified as CI paradigms, while many researchers consider these paradigms to
belong only under Artificial Life. However, both particle swarm optimization (PSO)
and ant colony optimization (ACQO), as treated under SI, satisfy the definition of CI
given above, and are therefore included in this book as being CI techniques. The same
applies to AISs.

1.1 Computational Intelligence Paradigms

This book considers five main paradigms of Computation Intelligence (CI), namely
artificial neural networks (NN), evolutionary computation (EC), swarm intelligence
(SI), artificial immune systems (AIS), and fuzzy systems (FS). Figure 1.1 gives a
summary of the aim of the book. In addition to CI paradigms, probabilistic methods
are frequently used together with CI techniques, which is also shown in the figure.
Soft computing, a term coined by Lotfi Zadeh, is a different grouping of paradigms,
which usually refers to the collective set of CI paradigms and probabilistic methods.
The arrows indicate that techniques from different paradigms can be combined to form
hybrid systems.

Each of the CI paradigms has its origins in biological systems. NNs model biological
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Probabilistic
Techniques

Figure 1.1 Computational Intelligence Paradigms

neural systems, EC models natural evolution (including genetic and behavioral evo-
lution), ST models the social behavior of organisms living in swarms or colonies, AIS
models the human immune system, and FS originated from studies of how organisms
interact with their environment.

1.1.1 Artificial Neural Networks

The brain is a complex, nonlinear and parallel computer. It has the ability to perform
tasks such as pattern recognition, perception and motor control much faster than any
computer — even though events occur in the nanosecond range for silicon gates, and
milliseconds for neural systems. In addition to these characteristics, others such as
the ability to learn, memorize and still generalize, prompted research in algorithmic
modeling of biological neural systems — referred to as artificial neural networks (NN).

It is estimated that there is in the order of 10-500 billion neurons in the human cortex,
with 60 trillion synapses. The neurons are arranged in approximately 1000 main
modules, each having about 500 neural networks. Will it then be possible to truly
model the human brain? Not now. Current successes in neural modeling are for small
artificial NNs aimed at solving a specific task. Problems with a single objective can
be solved quite easily with moderate-sized NNs as constrained by the capabilities of
modern computing power and storage space. The brain has, however, the ability to
solve several problems simultaneously using distributed parts of the brain. We still
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have a long way to go ...

The basic building blocks of biological neural systems are nerve cells, referred to as
neurons. As illustrated in Figure 1.2, a neuron consists of a cell body, dendrites and
an axon. Neurons are massively interconnected, where an interconnection is between
the axon of one neuron and a dendrite of another neuron. This connection is referred
to as a synapse. Signals propagate from the dendrites, through the cell body to the
axon; from where the signals are propagated to all connected dendrites. A signal is
transmitted to the axon of a neuron only when the cell “fires”. A neuron can either
inhibit or excite a signal.
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Figure 1.2 A Biological Neuron

An artificial neuron (AN) is a model of a biological neuron (BN). Each AN receives
signals from the environment, or other ANs, gathers these signals, and when fired,
transmits a signal to all connected ANs. Figure 1.3 is a representation of an artificial
neuron. Input signals are inhibited or excited through negative and positive numerical
weights associated with each connection to the AN. The firing of an AN and the
strength of the exiting signal are controlled via a function, referred to as the activation
function. The AN collects all incoming signals, and computes a net input signal as
a function of the respective weights. The net input signal serves as input to the
activation function which calculates the output signal of the AN.

input signals

Figure 1.3 An Artificial Neuron
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An artificial neural network (NN) is a layered network of ANs. An NN may consist
of an input layer, hidden layers and an output layer. ANs in one layer are connected,
fully or partially, to the ANs in the next layer. Feedback connections to previous layers
are also possible. A typical NN structure is depicted in Figure 1.4.

hidden layer

input layer

output layer

Figure 1.4 An Artificial Neural Network

Several different NN types have been developed, for example (the reader should note
that the list below is by no means complete):

single-layer NNs, such as the Hopfield network;

multilayer feedforward NNs, including, for example, standard backpropagation,
functional link and product unit networks;

temporal NNs, such as the Elman and Jordan simple recurrent networks as well
as time-delay neural networks;

self-organizing NNs, such as the Kohonen self-organizing feature maps and the
learning vector quantizer;

combined supervised and unsupervised NNs, e.g. some radial basis function
networks.

These NN types have been used for a wide range of applications, including diagno-
sis of diseases, speech recognition, data mining, composing music, image processing,
forecasting, robot control, credit approval, classification, pattern recognition, planning
game strategies, compression, and many others.
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1.1.2 Evolutionary Computation

Evolutionary computation (EC) has as its objective to mimic processes from natural
evolution, where the main concept is survival of the fittest: the weak must die. In
natural evolution, survival is achieved through reproduction. Offspring, reproduced
from two parents (sometimes more than two), contain genetic material of both (or
all) parents — hopefully the best characteristics of each parent. Those individuals
that inherit bad characteristics are weak and lose the battle to survive. This is nicely
illustrated in some bird species where one hatchling manages to get more food, gets
stronger, and at the end kicks out all its siblings from the nest to die.

Evolutionary algorithms use a population of individuals, where an individual is re-
ferred to as a chromosome. A chromosome defines the characteristics of individuals in
the population. Each characteristic is referred to as a gene. The value of a gene is re-
ferred to as an allele. For each generation, individuals compete to reproduce offspring.
Those individuals with the best survival capabilities have the best chance to repro-
duce. Offspring are generated by combining parts of the parents, a process referred
to as crossover. Each individual in the population can also undergo mutation which
alters some of the allele of the chromosome. The survival strength of an individual
is measured using a fitness function which reflects the objectives and constraints of
the problem to be solved. After each generation, individuals may undergo culling, or
individuals may survive to the next generation (referred to as elitism). Additionally,
behavioral characteristics (as encapsulated in phenotypes) can be used to influence the
evolutionary process in two ways: phenotypes may influence genetic changes, and/or
behavioral characteristics evolve separately.

Different classes of evolutionary algorithms (EA) have been developed:

e Genetic algorithms which model genetic evolution.

e Genetic programming which is based on genetic algorithms, but individuals
are programs (represented as trees).

e Evolutionary programming which is derived from the simulation of adaptive
behavior in evolution (phenotypic evolution).

¢ Evolution strategies which are geared toward modeling the strategy parame-
ters that control variation in evolution, i.e. the evolution of evolution.

e Differential evolution, which is similar to genetic algorithms, differing in the
reproduction mechanism used.

e Cultural evolution which models the evolution of culture of a population and
how the culture influences the genetic and phenotypic evolution of individuals.

e Coevolution where initially “dumb” individuals evolve through cooperation,
or in competition with one another, acquiring the necessary characteristics to
survive.

Other aspects of natural evolution have also been modeled. For example, mass ex-
tinction, and distributed (island) genetic algorithms, where different populations are
maintained with genetic evolution taking place in each population. In addition, as-
pects such as migration among populations are modeled. The modeling of parasitic



1.1 Computational Intelligence Paradigms 9

behavior has also contributed to improved evolutionary techniques. In this case para-
sites infect individuals. Those individuals that are too weak die. On the other hand,
immunology has been used to study the evolution of viruses and how antibodies should
evolve to kill virus infections.

Evolutionary computation has been used successfully in real-world applications, for
example, data mining, combinatorial optimization, fault diagnosis, classification, clus-
tering, scheduling, and time series approximation.

1.1.3 Swarm Intelligence

Swarm intelligence (SI) originated from the study of colonies, or swarms of social or-
ganisms. Studies of the social behavior of organisms (individuals) in swarms prompted
the design of very efficient optimization and clustering algorithms. For example, sim-
ulation studies of the graceful, but unpredictable, choreography of bird flocks led to
the design of the particle swarm optimization algorithm, and studies of the foraging
behavior of ants resulted in ant colony optimization algorithms.

Particle swarm optimization (PSO) is a stochastic optimization approach, modeled on
the social behavior of bird flocks. PSO is a population-based search procedure where
the individuals, referred to as particles, are grouped into a swarm. Each particle in
the swarm represents a candidate solution to the optimization problem. In a PSO
system, each particle is “flown” through the multidimensional search space, adjusting
its position in search space according to its own experience and that of neighboring
particles. A particle therefore makes use of the best position encountered by itself
and the best position of its neighbors to position itself toward an optimum solution.
The effect is that particles “fly” toward an optimum, while still searching a wide area
around the current best solution. The performance of each particle (i.e. the “closeness”
of a particle to the global minimum) is measured according to a predefined fitness
function which is related to the problem being solved. Applications of PSO include
function approximation, clustering, optimization of mechanical structures, and solving
systems of equations.

Studies of ant colonies have contributed in abundance to the set of intelligent algo-
rithms. The modeling of pheromone depositing by ants in their search for the shortest
paths to food sources resulted in the development of shortest path optimization al-
gorithms. Other applications of ant colony optimization include routing optimization
in telecommunications networks, graph coloring, scheduling and solving the quadratic
assignment problem. Studies of the nest building of ants and bees resulted in the
development of clustering and structural optimization algorithms.

1.1.4 Artificial Immune Systems

The natural immune system (NIS) has an amazing pattern matching ability, used to
distinguish between foreign cells entering the body (referred to as non-self, or antigen)
and the cells belonging to the body (referred to as self). As the NIS encounters antigen,
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the adaptive nature of the NIS is exhibited, with the NIS memorizing the structure of
these antigen for faster future response the antigen.

In NIS research, four models of the NIS can be found:

e The classical view of the immune system is that the immune system distin-
guishes between self and non-self, using lymphocytes produced in the lymphoid
organs. These lymphocytes “learn” to bind to antigen.

e Clonal selection theory, where an active B-Cell produces antibodies through
a cloning process. The produced clones are also mutated.

e Danger theory, where the immune system has the ability to distinguish be-
tween dangerous and non-dangerous antigen.

e Network theory, where it is assumed that B-Cells form a network. When a
B-Cell responds to an antigen, that B-Cell becomes activated and stimulates all
other B-Cells to which it is connected in the network.

An artificial immune system (AIS) models some of the aspects of a NIS, and is mainly
applied to solve pattern recognition problems, to perform classification tasks, and to
cluster data. One of the main application areas of AISs is in anomaly detection, such
as fraud detection, and computer virus detection.

1.1.5 Fuzzy Systems

Traditional set theory requires elements to be either part of a set or not. Similarly,
binary-valued logic requires the values of parameters to be either 0 or 1, with similar
constraints on the outcome of an inferencing process. Human reasoning is, however,
almost always not this exact. Our observations and reasoning usually include a mea-
sure of uncertainty. For example, humans are capable of understanding the sentence:
“Some Computer Science students can program in most languages”. But how can a
computer represent and reason with this fact?

Fuzzy sets and fuzzy logic allow what is referred to as approximate reasoning. With
fuzzy sets, an element belongs to a set to a certain degree of certainty. Fuzzy logic
allows reasoning with these uncertain facts to infer new facts, with a degree of certainty
associated with each fact. In a sense, fuzzy sets and logic allow the modeling of common
sense.

The uncertainty in fuzzy systems is referred to as nonstatistical uncertainty, and should
not be confused with statistical uncertainty. Statistical uncertainty is based on the
laws of probability, whereas nonstatistical uncertainty is based on vagueness, impre-
cision and/or ambiguity. Statistical uncertainty is resolved through observations. For
example, when a coin is tossed we are certain what the outcome is, while before toss-
ing the coin, we know that the probability of each outcome is 50%. Nonstatistical
uncertainty, or fuzziness, is an inherent property of a system and cannot be altered or
resolved by observations.

Fuzzy systems have been applied successfully to control systems, gear transmission
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and braking systems in vehicles, controlling lifts, home appliances, controlling traffic
signals, and many others.

1.2 Short History

Aristotle (384-322 bc) was possibly the first to move toward the concept of artificial
intelligence. His aim was to explain and codify styles of deductive reasoning, which
he referred to as syllogisms. Ramon Llull (1235-1316) developed the Ars Magna:
an optimistic attempt to build a machine, consisting of a set of wheels, which was
supposed to be able to answer all questions. Today this is still just a dream — or
rather, an illusion. The mathematician Gottfried Leibniz (1646-1716) reasoned about
the existence of a calculus philosophicus, a universal algebra that can be used to
represent all knowledge (including moral truths) in a deductive system.

The first major contribution was by George Boole in 1854, with his development of the
foundations of propositional logic. In 1879, Gottlieb Frege developed the foundations
of predicate calculus. Both propositional and predicate calculus formed part of the
first Al tools.

It was only in the 1950s that the first definition of artificial intelligence was established
by Alan Turing. Turing studied how machinery could be used to mimic processes of
the human brain. His studies resulted in one of the first publications of AI, entitled
Intelligent Machinery. In addition to his interest in intelligent machines, he had an
interest in how and why organisms developed particular shapes. In 1952 he published
a paper, entitled The Chemical Basis of Morphogenesis — possibly the first studies in
what is now known as artificial life.

The term artificial intelligence was first coined in 1956 at the Dartmouth conference,
organized by John MacCarthy — now regarded as the father of AI. From 1956 to 1969
much research was done in modeling biological neurons. Most notable was the work on
perceptrons by Rosenblatt, and the adaline by Widrow and Hoff. In 1969, Minsky and
Papert caused a major setback to artificial neural network research. With their book,
called Perceptrons, they concluded that, in their “intuitive judgment”, the extension
of simple perceptrons to multilayer perceptrons “is sterile”. This caused research in
NNs to go into hibernation until the mid-1980s. During this period of hibernation a
few researchers, most notably Grossberg, Carpenter, Amari, Kohonen and Fukushima,
continued their research efforts.

The resurrection of NN research came with landmark publications from Hopfield,
Hinton, and Rumelhart and McLelland in the early and mid-1980s. From the late
1980s research in NNs started to explode, and is today one of the largest research
areas in Computer Science.

The development of evolutionary computation (EC) started with genetic algorithms
in the 1950s with the work of Fraser, Bremermann and Reed. However, it is John
Holland who is generally viewed as the father of EC, most specifically of genetic algo-
rithms. In these works, elements of Darwin’s theory of evolution [173] were modeled
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algorithmically. In the 1960s, Rechenberg developed evolutionary strategies (ES). In-
dependently from this work, Lawrence Fogel developed evolutionary programming as
an approach to evolve behavioral models. Other important contributions that shaped
the field were by De Jong, Schaffer, Goldberg, Koza, Schwefel, Storn, and Price.

Many people believe that the history of fuzzy logic started with Gautama Buddha
(563 be) and Buddhism, which often described things in shades of gray. However, the
Western community considers the work of Aristotle on two-valued logic as the birth of
fuzzy logic. In 1920 Lukasiewicz published the first deviation from two-valued logic in
his work on three-valued logic — later expanded to an arbitrary number of values. The
quantum philosopher Max Black was the first to introduce quasi-fuzzy sets, wherein
degrees of membership to sets were assigned to elements. It was Lotfi Zadeh who
contributed most to the field of fuzzy logic, being the developer of fuzzy sets [944].
From then, until the 1980s fuzzy systems was an active field, producing names such
as Mamdani, Sugeno, Takagi and Bezdek. Then, fuzzy systems also experienced a
dark age in the 1980s, but was revived by Japanese researchers in the late 1980s.
Today it is a very active field with many successful applications, especially in control
systems. In 1991, Pawlak introduced rough set theory, where the fundamental concept
is that of finding a lower and upper approximation to input space. All elements within
the lower approximation have full membership, while the boundary elements (those
elements between the upper and lower approximation) belong to the set to a certain
degree.

Interestingly enough, it was an unacknowledged South African poet, Eugene N Marais
(1871-1936), who produced some of the first and most significant contributions to
swarm intelligence in his studies of the social behavior of both apes and ants. Two
books on his findings were published more than 30 years after his death, namely The
Soul of the White Ant [560] and The Soul of the Ape [559]. The algorithmic modeling
of swarms only gained momentum in the early 1990s with the work of Marco Dorigo on
the modeling of ant colonies. In 1995, Eberhart and Kennedy [224, 449] developed the
particle swarm optimization algorithm as a model of bird flocks. Swarm intelligence
is in its infancy, and is a promising field resulting in interesting applications.

The different theories in the science of immunology inspired different artificial immune
models (AISs), which are either based on a specific theory on immunology or a combi-
nation of the different theories. The initial classical view and theory of clonal selection
in the natural immune system was defined by Burnet [96] as B-Cells and Killer-T-Cells
with antigen-specific receptors. This view was enhanced by the definition of Bretscher
and Cohn [87] by introducing the concept of a helper T-Cell. Lafferty and Cunning-
ham [497] added a co-stimulatory signal to the helper T-Cell model of Bretscher and
Cohn [87].

The first work in AIS on the modeling of the discrimination between self and non-self
with mature T-Cells was introduced by Forrest et al. [281]. Forrest et al. introduced
a training technique known as the negative selection of T-Cells [281]. The model of
Mori et al [606] was the first to implement the clonal selection theory, which was
applied to optimization problems. The network theory of the natural immune system
was introduced and formulated by Jerne [416] and further developed by Perelson [677].
The theory of Jerne is that the B-Cells are interconnected to form a network of cells
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[416, 677]. The first mathematical model on the theory of Jerne was proposed by
Farmer et al. [255]. The network theory has been modeled into artificial immune
systems (AISs) for data mining and data analysis tasks. The earliest AIS research
based on the mathematical model of the network theory [255], was published by Hunt
and Cooke [398]. The model of Hunt and Cooke was applied to the recognition of DNA
sequences. The danger theory was introduced by Matzinger [567, 568] and is based
on the co-stimulated model of Lafferty and Cunningham [497]. The main idea of the
danger theory is that the immune system distinguishes between what is dangerous
and non-dangerous in the body. The first work on danger theory inspired AISs was
published by Aickelin and Cayzer [14].

1.3 Assignments

1. Comment on the eligibility of Turing’s test for computer intelligence, and his
belief that computers with 10° bits of storage would pass a 5-minute version of
his test with 70% probability.

2. Comment on the eligibility of the definition of artificial intelligence as given by
the 1996 IEEE Neural Networks Council.

3. Based on the definition of CI given in this chapter, show that each of the
paradigms (NN, EC, SI, AIS, and FS) does satisfy the definition.






