
1

Basic Concepts and Techniques

This chapter introduces the foundations of modeling and simulation, and elucidates

their importance. We survey the different approaches to modeling that are used in

practice and discuss at a high level the methodology that should be followed when

executing a modeling project.

1.1 Why is Simulation Important?

Simulation is the imitation of a real-world system through a computational

re-enactment of its behavior according to the rules described in a mathematical

model.1 Simulation serves to imitate a real system or process. The act of simulating a

system generally entails considering a limited number of key characteristics and

behaviors within the physical or abstract system of interest, which is otherwise

infinitely complex and detailed. A simulation allows us to examine the system’s

behavior under different scenarios,which are assessed by re-enactmentwithin a virtual

computational world. Simulation can be used, among other things, to identify bottle-

necks in a process, provide a safe and relatively cheaper (in term of both cost and time)

test bed to evaluate the side effects, and optimize the performance of the system—all

before realizing these systems in the physical world.

Early in the twentieth century, modeling and simulation played only a minor role in

the system design process. Having few alternatives, engineers moved straight from

paper designs to production so they could test their designs. For example, when

HowardHugheswanted to build a new aircraft, he never knew if it would fly until it was

Network Modeling and Simulation M. Guizani, A. Rayes, B. Khan and A. Al-Fuqaha

� 2010 John Wiley & Sons, Ltd.

1 Alan Turing used the term simulation to refer to what happens when a digital computer runs a finite state machine

(FSM) that describes the state transitions, inputs, and outputs of a subject discrete-state system. In this case, the

computer simulates the subject system by executing a corresponding FSM.

CO
PYRIG

HTED
 M

ATERIA
L

actually built. Redesignsmeant starting from scratch andwerevery costly. AfterWorld

War II, as design and production processes became much more expensive, industrial

companies like Hughes Aircraft collapsed due to massive losses. Clearly, new

alternatives were needed. Two events initiated the trend toward modeling and

simulation: the advent of computers; and NASA’s space program. Computing

machinery enabled large-scale calculations to be performed quickly. This was essen-

tial for the space program, where projections of launch and re-entry were critical. The

simulations performed by NASA saved lives and millions of dollars that would have

been lost through conventional rocket testing. Today, modeling and simulation are

used extensively. They are used not just to find if a given system design works, but to

discover a system design that works best. More importantly, modeling and simulation

are often used as an inexpensive technique to perform exception and “what-if”

analyses, especially when the cost would be prohibitive when using the actual system.

They are also used as a reasonable means to carry out stress testing under exceedingly

elevated volumes of input data.

Japanese companies use modeling and simulation to improve quality, and often spend

more than 50% of their design time in this phase. The rest of the world is only now

beginning to emulate this procedure.ManyAmerican companies now participate in rapid

prototyping, where computer models and simulations are used to quickly design and test

product concept ideas before committing resources to real-world in-depth designs.

Today, simulation is used in many contexts, including the modeling of natural

systems in order to gain insight into their functioning. Key issues in simulation include

acquisition of valid source information about the referent, selection of key character-

istics and behaviors, the use of simplifying approximations and assumptionswithin the

simulation, and fidelity and validity of the simulation outcomes. Simulation enables

goal-directed experimentation with dynamical systems, i.e., systems with time-

dependent behavior. It has become an important technology, and is widely used in

many scientific research areas.

In addition, modeling and simulation are essential stages in the engineering design

and problem-solving process and are undertaken before a physical prototype is built.

Engineers use computers to draw physical structures and to make mathematical

models that simulate the operation of a device or technique. The modeling and

simulation phases are often the longest part of the engineering design process. When

starting this phase, engineers keep several goals in mind:

. Does the product/problem meet its specifications?

. What are the limits of the product/problem?

. Do alternative designs/solutions work better?

The modeling and simulation phases usually go through several iterations as

engineers test various designs to create the best product or the best solution to a

Basic Concepts and Techniques 2

problem. Table 1.1 provides a summary of some typical uses of simulation

modeling in academia and industry to provide students and professionals with the

right skill set.

Simulation provides a method for checking one’s understanding of the world and

helps in producing better results faster. A simulation environment likeMATLAB is an

important tool that one can use to:

. Predict the course and results of certain actions.

. Understand why observed events occur.

. Identify problem areas before implementation.

. Explore the effects of modifications.

Table 1.1 Examples of simulation usage in training and education

Usage of simulation Examples

Training to enhance motor and operational skills

(and associated decision-making skills)

. Virtual simulation which uses virtual equipment

and real people (human-in-the-loop) in a

simulation study
. Aircraft simulator for pilot training
. Augmented reality simulation (such as in-flight

pilot training with additional artificial

intelligence aircraft)
. Virtual body for medicine
. Nuclear reactor simulator
. Power plant simulator
. Simulators for the selection of operators (such

as pilots)
. Live simulation (use of simulated weapons along

with real equipment and people)

Training to enhance decision-making skills . Constructive simulation (war game simulation)
. Simulation for operations other than war

(non-article 5 operations, inNATO terminology):

peace support operations; conflict management

(between individuals, groups, nations)
. Business game simulations
. Agent-based simulations
. Holonic agent simulations that aim to explore

benefits of cooperation between individuals,

companies (mergers), and nations

Education . Simulation for the teaching/learning of dynamic

systems (which may have trajectory and/or

structural behavior): simulation of adaptive

systems, time-varying systems, evolutionary

systems, etc.

3 Why is Simulation Important?

. Confirm that all variables are known.

. Evaluate ideas and identify inefficiencies.

. Gain insight and stimulate creative thinking.

. Communicate the integrity and feasibility of one’s plans.

One can use simulation when the analytical solution does not exist, is too

complicated, or requires more computational time than the simulation. Simulation

should not be used in the following cases:

. The simulation requires months or years of CPU time. In this scenario, it is probably

not feasible to run simulations.
. The analytical solution exists and is simple. In this scenario, it is easier to use the

analytical solution to solve the problem rather than use simulation (unless onewants

to relax some assumptions or compare the analytical solution to the simulation).

1.2 What is a Model?

A computer model is a computer program that attempts to simulate an abstract model

of a particular system. Computer models can be classified according to several

orthogonal binary criteria including:

. Continuous state or discrete state: If the state variables of the system can assume

any value, then the system is modeled using a continuous-state model. On the other

hand, a model in which the state variables can assume only discrete values is called a

discrete-state model. Discrete-state models can be continuous- or discrete-time

models.
. Continuous-time or discrete-time models: If the state variables of the system

can change their values at any instant in time, then the system can be modeled by a

continuous-time model. On the other hand, a model in which the state variables

can change their values only at discrete instants of time is called adiscrete-timemodel.

A continuous simulation uses differential equations (either partial or ordinary),

implemented numerically. Periodically, the simulation program solves all the equa-

tions, and uses the numbers to change the state and output of the simulation.Most flight

and racing-car simulations are of this type. It may also be used to simulate electric

circuits. Originally, these kinds of simulations were actually implemented on analog

computers, where the differential equations could be represented directly by various

electrical components such as op-amps. By the late 1980s, however, most “analog”

simulations were run on conventional digital computers that emulated the behavior of

an analog computer.

Basic Concepts and Techniques 4

A discrete-time event-driven simulation (DES) manages events in time [3]. In this

type of simulation, the simulator maintains a queue of events sorted by the simulated

time they should occur. The simulator reads the queue and triggers new events as each

event is processed. It is not important to execute the simulation in real time. It is often

more important to be able to access the data produced by the simulation, to discover

logic defects in the design or the sequence of events. Most computer, logic test and

fault-tree simulations are of this type.

A special type of discrete simulation that does not rely on a model with an

underlying equation, but can nonetheless be represented formally, is agent-based

simulation. In agent-based simulation, the individual entities (such as molecules,

cells, trees, or consumers) in the model are represented directly (rather than by

their density or concentration) and possess an internal state and set of behaviors or

rules which determine how the agent’s state is updated from one time step to the

next.

. Deterministic or probabilistic: In a deterministic model, repetition of the same

input will always yield the same output. On the other hand, in a probabilistic model,

repetition of the same input may lead to different outputs. Probabilistic models use

random number generators to model the chance or random events; they are also

called Monte Carlo (MC) simulations (this is discussed in detail in Chapter 4).

Chaotic models constitute a special case of deterministic continuous-state models,

in which the output is extremely sensitive to input values.
. Linear or nonlinear models: If the outputs of the model are linearly related to the

inputs, then the model is called a linear model. However, if the outputs are not linear

functions of the inputs, then the model is called a nonlinear model.
. Open or closed models: If the model has one or more external inputs, then the

model is called an openmodel. On the other hand, themodel is called a closedmodel

if it has no external inputs at all.
. Stable or unstable models: If the dynamic behavior of the model comes to a

steady state with time, then the model is called stable. Models that do not come to a

steady state with time are called unstable models. Note that stability refers to

time, while the notion of chaos is related to behavioral sensitivities to the input

parameters.
. Local or distributed: If the model executes only on a single computer then it is

called a local model. Distributed models, on the other hand, run on a network of

interconnected computers, possibly in a wide area, over the Internet. Simulations

dispersed across multiple host computers are often referred to as distributed

simulations. There are several military standards for distributed simulation, includ-

ing Aggregate Level Simulation Protocol (ALSP), Distributed Interactive Simula-

tion (DIS), and the High Level Architecture (HLA).

5 What is a Model?

1.2.1 Modeling and System Terminology

The following are some of the important terms that are used in simulation modeling:

. State variables: The variables whose values describe the state of the system. They

characterize an attribute in the system such as level of stock in an inventory or

number of jobs waiting for processing. In the case where the simulation is

interrupted, it can be completed by assigning to the state variables the values they

held before interruption of the simulation.
. Event: An occurrence at a point in time, which may change the state of the system,

e.g., the arrival of a customer or start of work on a job.
. Entity: An object that passes through the system, such as cars at an intersection or

orders in a factory. Often events (e.g., arrival) are associated with interactions

between one or more entities (e.g., customer and store), with each entity having its

own state variables (e.g., customer’s cash and store’s inventory).
. Queue: Aqueue is a linearly ordered list, e.g., a physical queue of people, a task list,

a buffer of finished goods waiting for transportation. In short, a place where entities

are waiting for something to happen for some coherent reason.
. Creating: Causing the arrival of a new entity to the system at some point in time. Its

dual process will be referred to as killing (the departure of a state).
. Scheduling: The act of assigning a new future event to an existing entity.
. Random variable: A random variable is a quantity that is uncertain, such as the

arrival time between two incoming flights or the number of defective parts in a

shipment.
. Random variate: A random variate is an artificially generated random variable.
. Distribution: A distribution is the mathematical law that governs the probabilistic

features of a random variable. Examples of frequently used distributions are

discussed in Chapter 7.

1.2.2 Example of a Model: Electric Car Battery Charging Station

Let us discuss the process of building a simulation of a charging station for electric cars

at a single station served by a single operative. We assume that the arrival of electric

cars as well as their service times are random. First, we have to identify:

. Entities: The entities are of three types: cars (multiple instances), the charging

station server (single instance), and the traffic generator (single instance) which

creates cars and sends them to the battery charging station.
. States: The charging station has a server that is in either idle or free mode. Each car

Ci has a battery of some capacity Ki and some amount of power Pi present within

it. The traffic generator has parameters that specify the distribution of random

inter-creation times of cars.

Basic Concepts and Techniques 6

. Events: One kind of event is “service car,” which is an instruction to the server to

charge the next car’s battery. Another kind of event is the arrival event, which is sent

by the traffic generator to the charging station to inform it that a car has arrived.

Finally, there is the “create car event,”which is sent by the traffic generator to itself to

trigger the creation of a car.
. Queue: The queue of cars Q in front of the charging station.
. Random realizations: Car inter-creation times, car battery capacities, battery

charge levels (and, consequently, car service times), etc.
. Distributions: Assume uniform distributions for the car inter-creation times,

battery capacities, and charge levels.

Next, we specify what to do at each event.

The traffic generator sends itself a car creation event. Upon receipt of this event, it

creates a car with a battery capacity that is randomly chosen uniformly in the interval

[0. . .F], and the battery is set to be L% full, where L is randomly chosen in the interval

[0. . .100]. The traffic generator encapsulates the car in a car arrival event and sends the
event to the charging station. It also sends itself another car creation event for some

time (chosen uniformly from an interval [0. . .D] minutes) in the future.

When a car arrival event is received at the charging station, the car is added to the end

of the queue. If (at the moment just prior to this occurrence) the server was in free

mode, and the queue transitioned from empty to non-empty, then the server is sent a

service car event.

The server, upon receiving a service car event, checks ifQ is empty. If it is, the server

goes into idlemode. IfQ is not empty, the server puts itself in a busymode, removes one

car Ci from the head of the queue Q, and charges its battery. In addition, the server

calculates how long it will take to charge the car’s battery as (Ki�Pi)/M, whereM is

the maximum rate at which power can be charged. The server then schedules another

service car event to be sent to itself after this amount of time has elapsed.

As this simulation process runs, the program records interesting facts about the

system, such as the number of cars inQ as time progresses and the fraction of time that

the server is in idle versus busy modes. The maximum size of Q over the simulation’s

duration, and the average percentage of time the server is busy, are two examples of

performance metrics that we might be interested in.

Some initiation is required for the simulation; specifically we need to know the

values of D (which governs car inter-creation intervals), F (which governs battery

size), andM (which is themaximumcharging rate (power flow rate)). ThusD,F, andM

are system parameters of the simulation. The values of these parameters must be set to

reasonable values for the simulation to produce interpretable results. The choice of

values requires detailed domain expertise—in this case, perhaps through consultation

with experts, or by statistical analysis of real trace data from a real-world charging

station.

7 What is a Model?

Once these event-driven behaviors are defined, they can be translated into code. This

is easywith an appropriate library that has subroutines for the creation, scheduling, and

proper timing of events, queue manipulations, random variable generation, and

collecting statistics. This charging station system will be implemented as a case

study in Chapter 4, using a discrete-event simulation framework that will be designed

and implemented in Chapter 2.

The performancemeasures (maximum size ofQ over the simulation’s duration, and

the average percentage of time the server is busy) depend heavily on random choices

made in the course of the simulation. Thus, the system is non-deterministic and the

performance measures are themselves random variables. The distributions of these

randomvariables using techniques such asMonteCarlo simulationwill be discussed in

Chapter 4.

1.3 Performance Evaluation Techniques

Modeling deals with the representation of interconnected subsystems and subpro-

cesses with the eventual objective of obtaining an estimate of an aggregate systemic

property, or performance measure. The mechanism by which one can obtain this

estimate (1) efficiently and (2) with confidence is the subject of performance

evaluation. In this section, we will lay out the methodological issues that lie therein.

A performance evaluation technique (PET) is a set of assumptions and analytical

processes (applied in the context of a simulation), whose purpose is the efficient

estimation of some performance measure. PETs fall into two broad classes: (1) direct

measurement and (2) modeling:

1. Directmeasurement: Themost obvious technique to evaluate the performance of

a system. However, limitations exist in the available traffic measurements because

of the following reasons:

(a) The direct measurement of a system is only available with operational

systems. Direct measurement is not feasible with systems under design and

development.

(b) Direct measurement of the system may affect the measured system while

obtaining the required data. This may lead to false measurements of the

measured system.

(c) It may not be practical to measure directly the level of end-to-end performance

sustained on all paths of the system. Hence, to obtain the performance

objectives, analyticalmodels have to be set up to convert the rawmeasurements

into meaningful performance measures.

2. Modeling: During the design and development phases of a system, modeling can

be used to estimate the performance measures to be obtained when the system is

Basic Concepts and Techniques 8

implemented. Modeling can be used to evaluate the performance of a working

system, especially after the system undergoes some modifications. Modeling does

not affect themeasured system as it does in the direct measurement technique and it

can be used during the design phases. However, modeling suffers from the

following problems:

(a) The problem of system abstraction. This may lead to analyzing a model that

does not represent the real system under evaluation.

(b) Problems in representing the workload of the system.

(c) Problems in obtaining performance measures for the model and mapping the

results back to the real system.

Needless to say, the direct measurement of physical systems is not the subject of this

book. Even within the modeling, only a sub-branch is considered here. To see where

this sub-branch lies, it should be noted that at the heart of every model is its formal

description. This can almost always be given in terms of a collection of interconnected

queues. Once a system has been modeled as a collection of interconnected queues,

there are two broadly defined approaches for determining actual performance mea-

sures: (1) analytical modeling and (2) simulation modeling. Analytical modeling of

such a system seeks to deduce the parameters throughmathematical derivation, and so

leads into the domain of queuing theory—a fascinating mathematical subject for

which many texts are already available. In contrast, simulation modeling (which is the

subject of this book) determines performance measures by making direct measure-

ments of a simplified virtual system that has been created through computational

means.

In simulation modeling, there are few PETs that can be applied generally, though

many PETs are based on modifications of the so-called Monte Carlo method that will

be discussed in depth in Chapter 4. More frequently, each PET typically has to be

designed on a case-by-case basis given the system at hand. The process of defining a

PET involves:

1. Assumptions or simplifications of the properties of the atomic elements within a

system and the logic underlying their evolution through interactions.2

2. Statistical assumptions on the properties of non-deterministic aspects of the system,

e.g., its constituent waveforms.

3. Statistical techniques for aggregating performance measure estimates obtained

from disparate simulations of different system configurations.3

2 Note that this implies that a PET may be intertwined with the process of model construction, and because of this,

certain PETs imply or require departure from an established model.
3 At the simplest level, we can consider Monte Carlo simulation to be a PET. It satisfies our efficiency objective to the

extent that the computations associatedwith missing or simplified operations reduce the overall computational burden.

9 Performance Evaluation Techniques

To illustrate, let us consider an example of a PETmethodology thatmight be applied

in the study of a high data rate system over slowly fading channels.Without going into

too many details, such a system’s performance depends upon two random processes

with widely different rates of change in time. One of the processes is “fast” in terms of

its dynamismwhile the other is “slow.” For example, the fast process in this casemight

be thermal noise, while the slow process might be signal fading. If the latter process is

sufficiently slow relative to the first, then it can be approximated as being considered

fixed with respect to the fast process. In such a system, the evolution of a received

waveform could be simulated, by considering a sequence of time segments over each

of which the state of the slow process is different, but fixed. We might simulate such a

sequence of segments, and view each segment as being an experiment (conditioned on

the state of the slow process) and obtain conditional performance metrics. The final

performance measure estimate might then be taken as the average over these

conditional estimates. This narrative illustrates the process of selecting and specifying

a PET.

1.3.1 Example of Electric Car Battery Charging Station

In Section 1.2.1, a model of a charging station was described. What might the

associated performance measures be when we simulate the model? There are many

possible interesting aggregate performance measures we could consider, such as the

number of cars inQ as time progresses and the fraction of timewhen the server is in idle

versus busy modes.

1.3.1.1 Practical Considerations

Simulation is, in some sense, an act of pretending that one is dealing with a real

object when actually one is working with an imitation of reality. It may beworthwhile

to consider when such pretense is warranted, and the benefits/dangers of engaging

in it.

1.3.1.2 Why Use Models?

Models reduce cost using different simplifying assumptions.A spacecraft simulator on

a certain computer (or simulator system) is also a computer model of some aspects of

the spacecraft. It shows on the computer screen the controls and functions that the

spacecraft user is supposed to seewhen using the spacecraft. To train individuals using

a simulator is more convenient, safer, and cheaper than a real spacecraft that usually

cost billions of dollars. It is prohibitive (and impossible) to use a real spacecraft as a

Basic Concepts and Techniques 10

training system. Therefore, industry, commerce, and the military often use models

rather than real experiments. Real experiments can be as costly and dangerous as real

systems so, provided that models are adequate descriptions of reality, they can give

results that are closer to those achieved by a real system analysis.

1.3.1.3 When to Use Simulations?

Simulation is used in many situations, such as:

1. When the analytical model/solution is not possible or feasible. In such cases,

experts resort to simulations.

2. Many times, simulation results are used to verify analytical solutions in order to

make sure that the system is modeled correctly using analytical approaches.

3. Dynamic systems, which involve randomness and change of state with time. An

example is our electric car charging station where cars come and go unpredictably

to charge their batteries. In such systems, it is difficult (sometimes impossible) to

predict exactly what time the next car should arrive at the station.

4. Complex dynamic systems, which are so complex that when analyzed theoretically

will require too many simplifications. In such cases, it is not possible to study the

system and analyze it analytically. Therefore, simulation is the best approach to

study the behavior of such a complex system.

1.3.1.4 How to Simulate?

Suppose one is interested in studying the performance of an electric car charging

station (the example treated above). The behavior of this system may be described

graphically by plotting the number of cars in the charging station and the state of the

system. Every time a car arrives, the graph increases by one unit, while a departing car

causes the graph to drop one unit. This graph, also called a sample path, could be

obtained from observation of a real electric car charging station, but could also be

constructed artificially. Such artificial construction and the analysis of the resulting

sample path (or more sample paths in more complex cases) constitute the simulation

process.

1.3.1.5 How Is Simulation Performed?

Simulations may be performed manually (on paper for instance). More frequently,

however, the systemmodel is written either as a computer program or as some kind of

input to simulation software, as shown in Figure 1.1.

11 Performance Evaluation Techniques

Start

End

Iteration = 0

Read Input ()
Write Output ()
Initialization ()
Print Status ()

++ Iteration
Timing ()

Print Status ()

Event Type
= Type 1

Event Type
= Type 3

Event Type
= Type 2

Event Type
= Type 4

Generated Cells <
Required Cells

Event Type
= Type 5

Event routine of Type 1

Event routine of Type 2

Event routine of Type 3

Event routine of Type 4

Event routine of Type 5

Report Generation

Figure 1.1 Overall structure of a simulation program

Basic Concepts and Techniques 12

1.3.2 Common Pitfalls

In the following, we discuss the most common modeling and programming mistakes

that lead to inaccurate or misleading simulation results:

1. Inappropriate level of detail: Normally, analytical modeling is carried out after

some simplifications are adopted, since, without such simplifications, analysis

tends to be intractable. In contrast, in simulation modeling, it is often tempting to

include a very high level of simulation detail, since the approach is computational

and not analytical. Such a decision is not always recommended, however, since

much more time is needed to develop and run the computations. Even more

importantly, having a model that is too detailed introduces a large number of

interdependent parameters, whose influence on system performance becomes

difficult to determine and isolate. For example, suppose we made our electric car

charging stationmodel includewhether or not the server had a conversation with a

passenger in the car, changed one of the car tires, and/or washed the car. In

addition, each car had state variables concerning its battery charging level,

passenger’s gender, and battery type/size. If this model is used, it should contain

details of this dynamic system. In this case, the simulation will get more

complicated since it should contain details of the model that will make it so

precise. But is this the best way to deal with the system? Is it worth including these

details in the simulation model? Will the simulation results be better keeping the

modeling details or it is better to leave them out since they will not add any

necessary improvements to the results? Even if they do, will that be worth the

added complexity to the system?

2. Improper selection of the programming language: The choice of program-

ming language to be used in implementing the simulationmodel greatly affects the

development time of themodel. Special-purpose simulation languages require less

time for development, while general-purpose languages are more efficient during

the run time of the simulation program.

3. Unverified models: Simulation models are generally very large computer pro-

grams. These programs can contain several programming (or, evenworse, logical)

errors. If these programs are not verified to be correct, theywill lead to misleading

results and conclusions and invalid performance evaluation of the system.

4. Invalid models: Simulation programs may have no errors, but they may not

represent the behavior of the real system that wewant to evaluate. Hence, domain

experts must verify the simulation assumptions codified by the mathematical

model.

5. Improperly selected initial conditions: The initial conditions and parameter

values used by a simulation program normally do not reflect the system’s behavior

in the steady state. Poorly selected initial conditions can lead to convergence to

13 Performance Evaluation Techniques

atypical steady states, suggesting misleading conclusions about the system. Thus,

domain experts must verify the initial conditions and parameters before they are

used within the simulation program.

6. Short run times: System analysts may try to save time by running simulation

programs for short periods. Short runs lead to false results that are strongly

dependent on the initial conditions and thus do not reflect the true performance of

the system in typical steady-state conditions.

7. Poor random number generators: Random number generators employed in

simulation programs can greatly affect simulation results. It is important to use a

randomnumbergenerator that has been extensively tested and analyzed. The seeds

that are supplied to the random number generator should also be selected to ensure

that there is no correlation between the different processes in the system.

8. Inadequate time estimate: Most simulation models fail to give an adequate

estimate of time needed for the development and implementation of the simulation

model. The development, implementation, and testing of a simulation model

require a great deal of time and effort.

9. No achievable goals: Simulation models may fail because no specific, achiev-

able goals are set before beginning the process of developing the simulation

model.

10. Incomplete mix of essential skills: For a simulation project to be successful, it

should employ personnelwho have different types of skills, such as project leaders

and programmers, people who have skills in statistics and modeling, and people

who have a good domain knowledge and experience with the actual system being

modeled.

11. Inadequate level of user participation: Simulation models that are developed

without end user’s participation are usually not successful. Regular meetings

among end users, system developers, and system implementers are important for a

successful simulation program.

12. Inability to manage the simulation project: Most simulation projects are

extremely complex, so it is important to employ software engineering tools to

keep track of the progress and functionality of a project.

1.3.3 Types of Simulation Techniques

The most important types of simulations described in the literature that are of special

importance to engineers are:

1. Emulation: The process of designing and building hardware or firmware

(i.e., prototype) that imitates the functionality of the real system.

2. Monte Carlo simulation: Any simulation that has no time axis. Monte Carlo

simulation is used to model probabilistic phenomena that do not change with time,

Basic Concepts and Techniques 14

or to evaluate non-probabilistic expressions using probabilistic techniques. This

kind of simulation will be discussed in greater detail in Chapter 4.

3. Trace-driven simulation: Any simulation that uses an ordered list of real-world

events as input.

4. Continuous-event simulation: In some systems, the state changes occur all the

time, not merely at discrete times. For example, the water level in a reservoir with

given in- and outflows may change all the time. In such cases “continuous

simulation” is more appropriate, although discrete-event simulation can serve as

an approximation.

5. Discrete-event simulation: A discrete-event simulation is characterized by two

features: (1)within any interval of time, one can find a subinterval inwhich no event

occurs and no state variables change; (2) the number of events is finite. All discrete-

event simulations have the following components:

(a) Event queue: A list that contains all the events waiting to happen (in the

future). The implementation of the event list and the functions to be performed

on it can significantly affect the efficiency of the simulation program.

(b) Simulation clock: A global variable that represents the simulated time.

Simulation time can be advanced by time-driven or event-driven methods.

In the time-driven approach, time is divided into constant, small increments,

and then events occurring within each increment are checked. In the event-

driven approach, on the other hand, time is incremented to the time of the next

imminent event. This event is processed and then the simulation clock is

incremented again to the time of the next imminent event, and so on. This latter

approach is the one that is generally used in computer simulations.

(c) State variables: Variables that together completely describe the state of the

system.

(d) Event routines: Routines that handle the occurrence of events. If an event

occurs, its corresponding event routine is executed to update the state variables

and the event queue appropriately.

(e) Input routine: The routine that gets the input parameters from the user and

supplies them to the model.

(f) Report generation routine: The routine responsible for calculating results and

printing them out to the end user.

(g) Initialization routine: The routine responsible for initializing the values of the

various state variables, global variables, and statistical variables at the begin-

ning of the simulation program.

(h) Main program: The program where the other routines are called. The main

program calls the initialization routine; the input routine executes various

iterations, finally calls the report generation routine, and terminates the

simulation. Figure 1.1 shows the overall structure that should be followed to

implement a simulation program.

15 Performance Evaluation Techniques

1.4 Development of Systems Simulation

Discrete-event systems are dynamic systems that evolve in time by the occurrence of

events at possibly irregular time intervals. Examples include traffic systems, flexible

manufacturing systems, computer communications systems, production lines, coher-

ent lifetime systems, and flow networks. Most of these systems can be modeled in

terms of discrete events whose occurrence causes the system to change state. In

designing, analyzing, and simulating such complex systems, one is interested not only

in performance evaluation, but also in analysis of the sensitivity of the system to design

parameters and optimal selection of parameter values.

A typical stochastic system has a large number of control parameters, each of

which can have a significant impact on the performance of the system. An overarching

objective of simulation is to determine the relationship between system behavior and

input parameter values, and to estimate the relative importance of these parameters and

their relationships to one another as mediated by the system itself. The technique

by which this information is deduced is termed sensitivity analysis. The methodology

is to apply small perturbations to the nominal values of input parameters and observe

the effects on system performance measures. For systems simulation, variations of

the input parameter values cannot be made infinitely small (since this would then

require an infinite number of simulations to be conducted). The sensitivity (of the

performance measure with respect to an input parameter) is taken to be an approxi-

mation of the partial derivative of the performance measure with respect to the

parameter value.

The development process of system simulation involves some or all of the following

stages:

. Problem formulation: This involves identifying the controllable and uncontrol-

lable inputs (see Figure 1.2), identifying constraints on the decision variables,

defining a measure of performance (i.e., an objective function), and developing a

preliminary model structure to interrelate the system inputs to the values of the

performance measure.

System
Controllable

Input

Output

Uncontrollable
input

Figure 1.2 System block diagram

Basic Concepts and Techniques 16

. Data collection and analysis: Decide what data to collect about the real system,

and how much to collect. This decision is a tradeoff between cost and accuracy.
. Simulationmodel development: Acquire sufficient understanding of the system to

develop an appropriate conceptual, logical model of the entities and their states, as

well as the events codifying the interactions between entities (and time). This is the

heart of simulation design.
. Model validation, verification, and calibration: In general, verification focuses

on the internal consistency of a model, while validation is concerned with the

correspondence between the model and the reality. The term validation is applied to

those processes that seek to determine whether or not a simulation is correct with

respect to the “real” system. More precisely, validation is concerned with the

question “arewe building the right system?”Verification, on the other hand, seeks to

answer the question “are we building the system right?” Verification checks that the

implementation of the simulation model (program) corresponds to the model.

Validation checks that the model corresponds to reality. Finally, calibration checks

that the data generated by the simulation matches real (observed) data.
. Validation: The process of comparing the model’s output to the behavior of the

phenomenon. In other words, comparing model execution to reality (physical or

otherwise). This process and its role in simulation are described in Figure 1.3.
. Verification: The process of comparing the computer code to the model to ensure

that the code is a correct implementation of the model.
. Calibration: The process of parameter estimation for a model. Calibration is a

tweaking/tuning of existing parameters which usually does not involve the intro-

duction of new ones, changing the model structure. In the context of optimization,

Simulation
Environment

Device
Models

Random Process
Models

System
Model

Performance
Evaluation

Performance
Evaluation Techniques

Validation

Figure 1.3 Validation process

17 Development of Systems Simulation

calibration is an optimization procedure involved in system identification or during

the experimental design.
. Input and output analysis: Discrete-event simulation models typically have

stochastic components that mimic the probabilistic nature of the system under

consideration. Successful input modeling requires a close match between the input

model and the true underlying probabilistic mechanism associated with the system.

The input data analysis is tomodel an element (e.g., arrival process, service times) in

a discrete-event simulation given a data set collected on the element of interest. This

stage performs intensive error checking on the input data, including external, policy,

random, and deterministic variables. System simulation experiments aim to learn

about its behavior. Careful planning, or designing, of simulation experiments is

generally a great help, saving time and effort by providing efficient ways to estimate

the effects of changes in the model’s inputs on its outputs. Statistical experimental

design methods are mostly used in the context of simulation experiments.
. Performance evaluation and “what-if” analysis: The “what-if” analysis involves

trying to run the simulation with different input parameters (i.e., under different

“scenarios”) to see how performance measures are affected.
. Sensitivity estimation: Users must be provided with affordable techniques for

sensitivity analysis if they are to understand the relationships and tradeoffs between

system parameters and performancemeasures in ameaningful way that allows them

to make good system design decisions.
. Optimization: Traditional optimization techniques require gradient estimation. As

with sensitivity analysis, the current approach for optimization requires intensive

simulation to construct an approximate surface response function. Sophisticated

simulations incorporate gradient estimation techniques into convergent algorithms

such as Robbins–Monroe in order to efficiently determine system parameter values

which optimize performance measures. There are many other gradient estimation

(sensitivity analysis) techniques, including: local information, structural properties,

response surface generation, the goal-seeking problem, optimization, the “what-if”

problem, and meta-modeling.
. Report generating: Report generation is a critical link in the communication

process between the model and the end user.

Figure 1.4 shows a block diagram describing the development process for systems

simulation. It describes each stage of the development as above.

1.4.1 Overview of a Modeling Project Life Cycle

A software life cycle model (SLCM) is a schematic of the major components

of software development work and their interrelationships in a graphical framework

Basic Concepts and Techniques 18

that can be easily understood and communicated. The SLCM partitions the work to be

done into manageable work units. Having a defined SLCM for your project allows

you to:

1. Define the work to be performed.

2. Divide up the work into manageable pieces.

3. Determine project milestones at which project performance can be evaluated.

4. Define the sequence of work units.

5. Provide a framework for definition and storage of the deliverables produced during

the project.

6. Communicate your development strategy to project stakeholders.

An SLCM achieves this by:

1. Providing a simple graphical representation of the work to be performed.

Validated, Verified Base Model

Goal Seeking
Problem

Optimization
Problem

Stability and the What-If-Analysis

1. Descriptive Analysis

2. Prescriptive Analysis

3. Post-Prescriptive
Analysis

Figure 1.4 Development process for simulation

19 Development of Systems Simulation

2. Allowing focus on important features of the work, downplaying excessive

detail.

3. Providing a standardwork unit hierarchy for progressivedecomposition of thework

into manageable chunks.

4. Providing for changes (tailoring) at low cost.

Before specifying how this is achieved, we need to classify the life cycle processes

dealing with the software development process.

1.4.2 Classifying Life Cycle Processes

Figure 1.5 shows the three main classes of a software development process and gives

examples of the members of each class:

. Project support processes: are involved with the management of the software

development exercise. They are performed throughout the life of the project.
. Development processes: embody all work that directly contributes to the devel-

opment of the project deliverable. They are typically interdependent.
. Integral processes: are common processes that are performed in the context of

more than one development activity. For example, the reviewprocess is performed in

the context of requirements definition, design, and coding.

Software
Development
Processes

Project Support Processes

Development Processes

Integral Processes

Project Management

Quality Management

Configuration Management

Concept

Requirements

Design

Coding

Testing

Installation

Maintenance
Retirement

Planning

Training

Review

Problem Resolution

Risk Management

Document Management

Interview

Joint Session

Technical Investigation

Test

Figure 1.5 Software life cycle process classifications

Basic Concepts and Techniques 20

1.4.3 Describing a Process

Processes are described in terms of a series of work units. Work units are logically

related chunks ofwork. For example, all preliminary design effort is naturally chunked

together. Figure 1.6 describes the components of a work unit.

A work unit is described in terms of:

. Work flow input/output: Work flows are the work products that flow from one

work unit to the next. For example, in Figure 1.6, the design specification flows from

the output of the design work unit to the input of the code work unit. Work flows are

the deliverables from the work unit. All work units must have a deliverable. The life

cycle model should provide detailed descriptions of the format and content of all

deliverables.
. Entry criteria: The conditions that must exist before a work unit can commence.
. Statement of work (SOW): The SOW describes the work to be performed on the

work flow inputs to create the outputs.
. Exit criteria: The conditions that must exist for the work to be deemed complete.

The above terms are further explained through the usage of examples in Table 1.2.

Feedback paths are the paths by which work performed in one work unit impacts

work either in progress or completed in a preceding work unit. For example, themodel

depicted in Figure 1.7 allows for the common situation where the act of coding often

uncovers inconsistencies and omissions in the design. The issues raised by program-

mers then require a reworking of the baseline design document.

Defining feedback paths provides a mechanism for iterative development of work

products. That is, it allows for the real-world fact that specifications and code are

seldom complete and correct at their first approval point. The feedback path allows for

planning, quantification, and control of the rework effort. Implementing feedback

paths on a project requires the following procedures:

1. A procedure to raise issues or defects with baseline deliverables.

2. A procedure to review issues and approve rework of baseline deliverables.

3. Allocation of budget for rework in each project phase.

Entry
Criteria

Statement
of Work

Exit
Criteria

Out In

Feedback

Work Flow
Input

Work Flow
Output

Figure 1.6 Components of a work unit

21 Development of Systems Simulation

1.4.4 Sequencing Work Units

Figure 1.8 provides an example of a life cycle model constructed by sequencing work

units. We see work flows of requirements specification and design specification. The

work units are design, code, and test, and the feedback paths carry requirements,

design, and coding issues.

Note that the arrows in a life cycle model do not signify precedence. For example,

in Figure 1.8, the design does not have to be complete for coding to commence.

Table 1.2 Examples of entry and exit criteria and statements of work

Entry criteria Statement of work Exit criteria

1. Prior tasks complete 1. Produce deliverable 1. Deliverable complete

2. Prior deliverables approved

and baselined

2. Interview user 2. Deliverable approved

3. Tasks defined for this work

unit

3. Conduct review 3. Test passed

4. Deliverables defined for this

work unit

4. Conduct test 4. Acceptance criteria satisfied

5. Resources available 5. Conduct technical investigation 5. Milestone reached

6. Responsibilities defined 6. Perform rework

7. Procedures defined

8. Process measurements

defined

9. Work authorized

Design Code Test

Design Issues
Coding

Requirements
Specs.

Unit
Tested
Code

Design
Specs.

Test
Units

Requirements
Issues

Figure 1.8 Life cycle model

Design Code

Design Issues

Requirement
Spec. Test Units

Design
Spec.

Figure 1.7 Example of a feedback path

Basic Concepts and Techniques 22

Design may be continuing while some unrelated elements of the system are being

coded.

1.4.5 Phases, Activities, and Tasks

A primary purpose of the life cycle model is to communicate the work to be done

among human beings. Conventional wisdom dictates that, to guarantee comprehen-

sion, a single life cycle model should therefore not have more than nine work units.

Clearly this would not be enough to describe even the simplest projects.

In large-scale projects, the solution is to decompose large work units into a set of

levels with each level providingmore detail about the level above it. Figure 1.9 depicts

three levels of decomposition:

1. The phase level: Phases describe the highest levels of activity in the project.

Examples of phasesmight be requirements capture and design. Phases are typically

used in the description of development processes.

2. The activity level: Activities are logically related work units within a phase. An

activity is typicallyworked on by a teamof individuals. Examples of activitiesmight

include interviewing users as an activity within the requirements capture phase.

3. The task level: Tasks are components of an activity that are typically performedby

one or two people. For example, conducting a purchasing manager interview is a

specific task that is within the interviewing users activity. Tasks are where the work

Phase

Activity

Activity

Activity

Task

Task

Task

Task

Figure 1.9 Work unit decomposition

23 Development of Systems Simulation

is done. A task will have time booked to it on a time sheet. Conventional guidelines

specify that a single task should be completed in an average elapsed time of 5

working days and its duration should not exceed 15 working days.

Note that phases, activities, and tasks are all types of a work unit. You can therefore

describe them all in terms of entry criteria, statement of work, and exit criteria.

As a concrete example, Figure 1.10 provides a phase-level life cycle model for a

typical software development project.

1.5 Summary

In this chapter, we introduced the foundations of modeling and simulation.

We highlighted the importance, the needs, and the usage of simulation and modeling

in practical and physical systems. We also discussed the different approaches to

modeling that are used in practice and discussed at a high level the methodology that

should be followed when executing a modeling project.

Recommended Reading

[1] J. Sokolowski and C. Banks (Editors), Principles of Modeling and Simulation: A Multidisciplinary

Approach, John Wiley & Sons, Inc., 2009.
[2] J. Banks (Editor), Handbook of Simulation: Principles, Methodology, Advances, Applications, and

Practice, John Wiley & Sons, Inc., 1998.
[3] B. Zeigler, H. Praehofer, and T.-G. Kim, Theory of Modeling and Simulation, 2nd Edition, Academic

Press, 2000.
[4] A. Law, Simulation Modeling and Analysis, 4th Edition, McGraw-Hill, 2007.

Requirements
Capture

System Test
Planning

Preliminary
Design

Integration Test
Planning

Detailed
Design

Unit Test
Planning

System
Testing

Integration
Testing

Unit
Testing

Deployment

Maintenance
and

Enhancement

Coding

Main Work Flow

Feedback Path

Figure 1.10 A generic project model for software development

Basic Concepts and Techniques 24

