
1
Introduction

With the recent advances in micro electro-mechanical systems (MEMS) technology, wireless commu-
nications, and digital electronics, the design and development of low-cost, low-power, multifunctional
sensor nodes that are small in size and communicate untethered in short distances have become feasible.
The ever-increasing capabilities of these tiny sensor nodes, which include sensing, data processing, and
communicating, enable the realization of wireless sensor networks (WSNs) based on the collaborative
effort of a large number of sensor nodes.

WSNs have a wide range of applications. In accordance with our vision [18], WSNs are slowly
becoming an integral part of our lives. Recently, considerable amounts of research efforts have enabled
the actual implementation and deployment of sensor networks tailored to the unique requirements of
certain sensing and monitoring applications.

In order to realize the existing and potential applications for WSNs, sophisticated and extremely
efficient communication protocols are required. WSNs are composed of a large number of sensor nodes,
which are densely deployed either inside a physical phenomenon or very close to it. In order to enable
reliable and efficient observation and to initiate the right actions, physical features of the phenomenon
should be reliably detected/estimated from the collective information provided by the sensor nodes [18].
Moreover, instead of sending the raw data to the nodes responsible for the fusion, sensor nodes use
their processing capabilities to locally carry out simple computations and transmit only the required and
partially processed data. Hence, these properties of WSNs present unique challenges for the development
of communication protocols.

The intrinsic properties of individual sensor nodes pose additional challenges to the communication
protocols in terms of energy consumption. As will be explained in the later chapters, WSN applications
and communication protocols are mainly tailored to provide high energy efficiency. Sensor nodes carry
limited power sources. Therefore, while traditional networks are designed to improve performance
metrics such as throughput and delay, WSN protocols focus primarily on power conservation. The
deployment of WSNs is another factor that is considered in developing WSN protocols. The position
of the sensor nodes need not be engineered or predetermined. This allows random deployment in
inaccessible terrains or disaster relief operations. On the other hand, this random deployment requires
the development of self-organizing protocols for the communication protocol stack. In addition to
the placement of nodes, the density in the network is also exploited in WSN protocols. Due to the
short transmission ranges, large numbers of sensor nodes are densely deployed and neighboring nodes
may be very close to each other. Hence, multi-hop communication is exploited in communications
between nodes since it leads to less power consumption than the traditional single hop communication.
Furthermore, the dense deployment coupled with the physical properties of the sensed phenomenon
introduce correlation in spatial and temporal domains. As a result, the spatio-temporal correlation-based
protocols emerged for improved efficiency in networking wireless sensors.
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2 Wireless Sensor Networks

In this book, we present a detailed explanation of existing products, developed protocols, and research
on algorithms designed thus far for WSNs. Our aim is to provide a contemporary look at the current state
of the art in WSNs and discuss the still-open research issues in this field.

1.1 Sensor Mote Platforms
WSNs are composed of individual embedded systems that are capable of (1) interacting with their
environment through various sensors, (2) processing information locally, and (3) communicating this
information wirelessly with their neighbors. A sensor node typically consists of three components and
can be either an individual board or embedded into a single system:

• Wireless modules or motes are the key components of the sensor network as they possess the
communication capabilities and the programmable memory where the application code resides.
A mote usually consists of a microcontroller, transceiver, power source, memory unit, and may
contain a few sensors. A wide variety of platforms have been developed in recent years including
Mica2 [3], Cricket [2], MicaZ [3], Iris [3], Telos [3], SunSPOT [9], and Imote2 [3].

• A sensor board is mounted on the mote and is embedded with multiple types of sensors. The
sensor board may also include a prototyping area, which is used to connect additional custom-
made sensors. Available sensor boards include the MTS300/400 and MDA100/300 [3] that are
used in the Mica family of motes. Alternatively, the sensors can be integrated into the wireless
module such as in the Telos or the SunSPOT platform.

• A programming board, also known as the gateway board, provides multiple interfaces including
Ethernet, WiFi, USB, or serial ports for connecting different motes to an enterprise or industrial
network or locally to a PC/laptop. These boards are used either to program the motes or gather
data from them. Some examples of programming boards include the MIB510, MIB520, and
MIB600 [3]. Particular platforms need to be connected to a programming board to load the
application into the programmable memory. They could also be programmed over the radio.

While the particular sensor types vary significantly depending on the application, a limited number
of wireless modules have been developed to aid research in WSNs. Table 1.1 captures the major
characteristics of popular platforms that were designed over the past few years in terms of their processor
speed, programmable and storage memory size, operating frequency, and transmission rate. The timeline
for these platforms is also shown in Figure 1.1. As can be observed, the capabilities of these platforms
vary significantly. However, in general, the existing platforms can be classified into two based on both
their capabilities and the usage. Next, we overview these existing platforms as low-end and high-end
platforms. Moreover, several standardization efforts that have been undertaken for the proliferation of
application development will be explained in Section 1.1.3. Finally, the software packages that have been
used within these devices are described.

1.1.1 Low-End Platforms

The low-end platforms are characterized by their limited capabilities in terms of processing, memory,
and communication. These platforms are usually envisioned to be deployed in large numbers in a WSN
to accomplish sensing tasks as well as providing a connectivity infrastructure. The following platforms
have been mostly used in developing communication protocols recently:

Mica family: The Mica family of nodes consist of Mica, Mica2, MicaZ, and IRIS nodes and are
produced by Crossbow [3]. Each node is equipped with 8-bit Atmel AVR microcontrollers with a speed
of 4–16 MHz and 128–256 kB of programmable flash. While the microcontrollers are similar, the Mica
family of nodes have been equipped with a wide range of transceivers. The Mica node includes a 916
or 433 MHz transceiver at 40 kbps, while the Mica2 platform is equipped with a 433/868/916 MHz



Introduction 3

Table 1.1 Mote hardware.

CPU speed Prog. mem. RAM Radio freq. Tx. rate
Mote type (MHz) (kB) (kB) (MHz) (kbps)

Berkeley [3]
WeC 8 8 0.5 916 10
rene 8 8 0.5 916 10
rene2 8 16 1 916 10
dot 8 16 1 916 10
mica 6 128 4 868 10/40
mica2 16 128 4 433/868/916 38.4 kbaud
micaz 16 128 4 2.4 GHz 250

Cricket [3] 16 128 4 433 38.4 kbaud
EyesIFX [17] 8 60 2 868 115
TelosB/Tmote [3] 16 48 10 2.4 GHz 250
SHIMMER [16] 8 48 10 BT/2.4 GHza 250
Sun SPOT [9] 16–60 2 MB 256 2.4 GHz 250
BTnode [1] 8 128 64 BT/433–915a Varies
IRIS [3] 16 128 8 2.4 GHz 250
V-Link [15] N/A N/A N/A 2.4 GHz 250
TEHU-1121 [7] N/A N/A N/A 0.9/2.4 GHz N/A
NI WSN-3202 [6] N/A N/A N/A 2.4 GHz 250
Imote [3] 12 512 64 2.4 GHz (BT) 100
Imote2 [3] 13–416 32 MB 256 2.4 GHz 250
Stargate [3] 400 32 MB 64 MB SD 2.4 GHz Variesb

Netbridge NB-100 [3] 266 8 MB 32 MB Variesb Variesb

a BTnode and SHIMMER motes are equipped with two transceivers: Bluetooth and a low-power radio.
b The transmission rate of the Stargate board and the Netbridge depends on the communication device
connected to it (MicaZ node, WLAN card, etc.).

Figure 1.1 Timeline for the sensor mote platforms.
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transceiver at 40 kbps. On the other hand, the MicaZ and IRIS nodes are equipped with IEEE 802.15.4
compliant transceivers, which operate at 2.4 GHz with 250 kbps data rate. Each platform has limited
memory in terms of RAM (4–8 kB) and data memory (512 kB). Moreover, each version is equipped
with a 51-pin connector that is used to connect additional sensor boards and programming boards to
the mote.

Telos/Tmote: An architecture similar to the MicaZ platform has been adopted for the Telos motes from
Crossbow and Tmote Sky motes from Sentilla (formerly Moteiv). While the transceiver is kept intact,
Telos/Tmote motes have larger RAM since an 8 MHz TI MSP430 microcontroller with 10 kB RAM
is used. Furthermore, Telos/Tmote platforms are integrated with several sensors including light, IR,
humidity, and temperature as well as a USB connector, which eliminates the need for additional sensor
or programming boards. Moreover, 6- and 10-pin connectors are included for additional sensors.

EYES: The EYES platform has been designed as a result of a 3-year European project and is similar
to the Telos/Tmote architectures. A 16-bit microcontroller with 60 kB of program memory and 2 kB
data memory is used in EYES [24]. Moreover, the following sensors are embedded with the mote:
compass, accelerometer, and temperature, light, and pressure sensors. The EYES platform includes the
TR1001 transceiver, which supports transmission rates up to 115.2 kbps with a power consumption of
14.4 mW, 16.0 mW, and 15.0 µW during receive, transmit, and sleep modes, respectively. The platform
also includes an RS232 serial interface for programming.

In addition to these platforms, several low-end platforms have been developed with similar capabilities
as listed in Table 1.1 and shown in Figure 1.1. An important trend to note is the appearance of proprietary
platforms from the industry such as V-Link, TEHU, and the National Instruments motes in recent years
(2008–2009).

The low-end platforms are used for sensing tasks in WSNs and they provide a connectivity
infrastructure through multi-hop networking. These nodes are generally equipped with low-power
microcontrollers and transceivers to decrease the cost and energy consumption. As a result, they are used
in large numbers in the deployment of WSNs. It can be observed that wireless sensor platforms generally
employ the Industrial, Scientific, and Medical (ISM) bands, which offer license-free communication in
most countries. More specifically, most recent platforms include the CC2420 transceiver, which operates
in the 2.4 GHz band and is compatible with the IEEE 802.15.4 standard. This standardization provides
heterogeneous deployments of WSNs, where various platforms are used in a network. Most of the
communication protocols discussed in this book are developed using these platforms.

1.1.2 High-End Platforms

In addition to sensing, local processing, and multi-hop communication, WSNs require additional
functionalities that cannot be efficiently carried out by the low-end platforms. High-level tasks such as
network management require higher processing power and memory compared to the capabilities of these
platforms. Moreover, the integration of WSNs with existing networking infrastructure requires multiple
communication techniques to be integrated through gateway modules. Furthermore, in networks where
processing or storage hubs are integrated with sensor nodes, higher capacity nodes are required. To
address these requirements, high-end platforms have been developed for WSNs.

Stargate: The Stargate board [8] is a high-performance processing platform designed for sensing, signal
processing, control, and sensor network management. Stargate is based on Intel’s PXA-255 Xscale
400 MHz RISC processor, which is the same processor found in many handheld computers including the
Compaq IPAQ and the Dell Axim. Stargate has 32 MB of flash memory, 64 MB of SDRAM, and an on-
board connector for Crossbow’s Mica family motes as well as PCMCIA Bluetooth or IEEE 802.11 cards.
Hence, it can work as a wireless gateway and computational hub for in-network processing algorithms.
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When connected with a webcam or other capturing device, it can function as a medium-resolution
multimedia sensor, although its energy consumption is still high [22].

Stargate NetBridge was developed as a successor to Stargate and is based on the Intel IXP420 XScale
processor running at 266 MHz. It features one wired Ethernet and two USB 2.0 ports and is equipped
with 8 MB of program flash, 32 MB of RAM, and a 2 GB USB 2.0 system disk, where the Linux
operating system is run. Using the USB ports, a sensor node can be connected for gateway functionalities.

Imote and Imote2: Intel has developed two prototypal generations of wireless sensors, known as
Imote and Imote2 for high-performance sensing and gateway applications [3]. Imote is built around an
integrated wireless microcontroller consisting of an 8-bit 12 MHz ARM7 processor, a Bluetooth radio,
64 kB RAM, and 32 kB flash memory, as well as several I/O options. The software architecture is based
on an ARM port of TinyOS.

The second generation of Intel motes, Imote2, is built around a new low-power 32-bit PXA271
XScale processor at 320/416/520 MHz, which enables DSP operations for storage or compression, and
an IEEE 802.15.4 ChipCon CC2420 radio. It has large on-board RAM and flash memories (32 MB),
additional support for alternate radios, and a variety of high-speed I/O to connect digital sensors or
cameras. Its size is also very limited, 48 × 33 mm, and it can run the Linux operating system and
Java applications.

1.1.3 Standardization Efforts

The heterogeneity in the available sensor platforms results in compatibility issues for the realization of
envisioned applications. Hence, standardization of certain aspects of communication is necessary. To this
end, the IEEE 802.15.4 [14] standards body was formed for the specification of low-data-rate wireless
transceiver technology with long battery life and very low complexity. Three different bands were
chosen for communication, i.e., 2.4 GHz (global), 915 MHz (the Americas), and 868 MHz (Europe).
While the PHY layer uses binary phase shift keying (BPSK) in the 868/915 MHz bands and offset
quadrature phase shift keying (O-QPSK) in the 2.4 GHz band, the MAC (Medium Access Control)
layer provides communication for star, mesh, and cluster tree-based topologies with controllers. The
transmission range of the nodes is assumed to be 10–100 m with data rates of 20 to 250 kbps [14]. Most
of the recent platforms developed for WSN research comply with the IEEE 802.15.4 standard. Actually,
the IEEE 802.15.4 standard, explained in Chapter 4, acquired a broad audience and became the de facto
standard for PHY and MAC layers in low-power communication. This allows the integration of platforms
with different capabilities into the same network.

On top of the IEEE 802.15.4 standard, several standard bodies have been formed to proliferate
the development of low-power networks in various areas. It is widely recognized that standards such
as Bluetooth and WLAN are not well suited for low-power sensor applications. On the other hand,
standardization attempts such as ZigBee, WirelessHART, WINA, and SP100.11a, which specifically
address the typical needs of wireless control and monitoring applications, are expected to enable rapid
improvement of WSNs in the industry. In addition, standardization efforts such as 6LoWPAN are focused
on providing compatibility between WSNs and existing networks such as the Internet.

Next, three major standardization efforts will be described in detail: namely, ZigBee [13], Wire-
lessHART [12], and 6LoWPAN [4]. In addition, other standardization efforts will be summarized.

ZigBee

The ZigBee [13] standard has been developed by the ZigBee Alliance, which is an international, non-
profit industrial consortium of leading semiconductor manufacturers and technology providers. The
ZigBee standard was created to address the market need for cost-effective, standard-based wireless
networking solutions that support low data rates, low power consumption, security, and reliability
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Figure 1.2 IEEE 802.15.4 and the ZigBee protocol stack [13].

through wireless personal area networks (WPANs). Five main application areas are targeted: home
automation, smart energy, building automation, telecommunication services, and personal health care.

The ZigBee standard is defined specifically in conjunction with the IEEE 802.15.4 standard.
Therefore, both are usually confused. However, as shown in Figure 1.2, each standard defines specific
layers of the protocol stack. The PHY and MAC layers are defined by the IEEE 802.15.4 standard while
the ZigBee standard defines the network layer (NWK) and the application framework. Application
objects are defined by the user. To accommodate a large variety of applications, three types of traffic
are defined, Firstly, periodic data traffic is required for monitoring applications, where sensors provide
continuous information regarding a physical phenomenon The data exchange is controlled through the
network controller or a router. Secondly, Intermittent data traffic applies to most event-based applications
and is triggered through either the application or an external factor. This type of traffic is handled
through each router node. To save energy, the devices may operate in disconnected mode, whereas they
operate in sleep mode most of the time. Whenever information needs to be transmitted, the transceiver
is turned on and the device associates itself with the network. Finally, repetitive low-latency data traffic
is defined for certain communications such as a mouse click that needs to be completed within a certain
time. This type of traffic is accommodated through the polling-based frame structure defined by the
IEEE 802.15.4 standard.

The ZigBee network (NWK) layer provides management functionalities for the network operation.
The procedures for establishing a new network and the devices to gain or relinquish membership of the
network are defined. Furthermore, depending on the network operation, the communication stack of each
device can be configured. Since ZigBee devices can be a part of different networks during their lifetime,
the standard also defines a flexible addressing mechanism. Accordingly, the network coordinator assigns
an address to the devices as they join the network. As a result, the unique ID of each device is not used for
communication but a shorter address is assigned to improve the efficiency during communication. In a
tree architecture, the address of a device also identifies its parent, which is used for routing purposes. The
NWK layer also provides synchronization between devices and network controllers. Finally, multi-hop
routes are generated by the NWK layer according to defined protocols.
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As shown in Figure 1.2, the ZigBee standard also defines certain components in the application
layer. This layer consists of the APS sub-layer, the ZigBee device object (ZDO), and the manufacturer-
defined application objects [13]. The applications are implemented through these manufacturer-defined
application objects and implementation is based on requirements defined by the standard. The ZDO
defines functions provided by the device for network operation. More specifically, the role of devices
such as a network coordinator or a router is defined through the ZDO. Moreover, whenever a device
needs to be associated with the network, the binding requests are handled through the ZDO. Finally,
the APS sub-layer provides discovery capability to devices so that the neighbors of a device and the
functionalities provided by these neighbors can be stored. This information is also used to match the
binding requests of the neighbors with specific functions.

WirelessHART

WirelessHART [12] has been developed as a wireless extension to the industry standard Highway
Addressable Remote Transducer (HART) protocol. HART is the most used communication protocol
in the automation and industrial applications that require real-time support with a device count around
20 million [12]. It is based on superimposing a digital FSK-modulated signal on top of the 4–20 mA
analog current loop between different components. HART provides a master/slave communication
scheme, where up to two masters are accommodated in the network. Accordingly, devices connected
to the system can be controlled through a permanent system and handheld devices for monitoring and
control purposes.

The WirelessHART standard has been released as a part of the HART 7 specification as the first
open wireless communication standard specifically designed for process measurement and control
applications [12]. WirelessHART relies on the IEEE 802.15.4 PHY layer standard for the 2.4 GHz band.
Moreover, a TDMA-based MAC protocol is defined to provide several messaging modes: one-way
publishing of process and control values, spontaneous notification by exception, ad hoc request and
response, and auto-segmented block transfers of large data sets.

The network architecture of the WirelessHART standard is shown in Figure 1.3. Accordingly, five
types of components are defined: WirelessHART field devices (WFDs) are the sensor and control
elements that are connected to process or plant equipment. Gateways provide interfaces with wireless
portions of the network and the wired infrastructure. As a result, host application and the controller
can interact with the WFDs. The network manager maintains operation of the network by scheduling
communication slots for devices, determining routing tables, and monitoring the health of the network. In
addition to the three main components, the WirelessHART adapters provide backward compatibility by
integrating existing HART field devices with the wireless network. Finally, handhelds are equipped with
on-board transceivers to provide on-site access to the wireless network and interface with the WFDs.

Based on these components, a full protocol stack has been defined by the WirelessHART standard. As
explained above, at the PHY layer, the IEEE 802.15.4 standard is employed and a TDMA-based MAC
protocol is used at the data link layer. In addition, the network topology is designed as a mesh network
and each device can act as a source or a router in the network. This network topology is very similar to
what is generally accepted for WSNs.

At the network layer, table-based routing is used so that multiple redundant paths are established
during network formation and these paths are continuously verified. Accordingly, even if a communi-
cation path between a WFD and a gateway is corrupted, alternate paths are used to provide network
reliability greater than 3σ (99.7300204%). In addition to established paths, source routing techniques
are used to establish ad hoc communication paths. Moreover, the network layer supports dynamic
bandwidth management by assigning allocated bandwidth to certain devices. This is also supported
by the underlying TDMA structure by assigning appropriate numbers of slots to these devices. The
bandwidth is allocated on a demand basis and can be configured when a device joins the network.
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Figure 1.3 WirelessHART architecture and components [12].

The transport layer of the WirelessHART standard provides reliability on the end-to-end path and
supports TCP-like reliable block transfers of large data sets. End-to-end monitoring and control of
the network are also provided. Accordingly, WFDs continuously broadcast statistics related to their
communication success and neighbors, which is monitored by the network manager to establish
redundant routes and improve energy efficiency.

Finally, the application layer supports the standard HART application layer, where existing solutions
can be implemented seamlessly.

6LoWPAN

The existing standards enable application-specific solutions to be developed for WSNs. Accordingly,
stand-alone networks of sensors can be implemented for specific applications. However, these networks
cannot be easily integrated with the Internet since the protocols based on IEEE 802.15.4 are not
compliant with the IP. Therefore, sensors cannot easily communicate with web-based devices, servers,
or browsers. Instead, gateways are required to collect the information from the WSN and communicate
with the Internet. This creates single-point-of-failure problems at the gateways and stresses the neighbors
of the gateway.

To integrate WSNs with the Internet, the Internet Engineering Task Force (IETF) is developing the
IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) standard [4]. This standard defines
the implementation of the IPv6 stack on top of IEEE 802.15.4 to let any device be accessible from and
with the Internet.

The basic challenge in integrating IPv6 and WSNs is the addressing structure of IPv6, which defines
a header and address information field of 40 bytes. However, IEEE 802.15.4 allows up to 127 bytes for
the whole packet including header and payload information. Accordingly, straightforward integration of
both standards is not efficient. Instead, 6LoWPAN adds an adaptation layer that lets the radio stack and
IPv6 communications operate together. A stacked header structure has been proposed for the 6LoWPAN
standard [23], where, instead of a single monolithic header, four types of headers are utilized according
to the type of packet being sent. In addition, stateless compression techniques are used to decrease the
size of the header from 40 bytes to around 4 bytes, which is suitable for WSNs.
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The four header types are as follows:

• Dispatch header (1 byte): This header type defines the type of header following it. The first
2 bits are set to 01 for the dispatch header and the remaining 6 bits define the type of header
following it (uncompressed IPv6 header or a header compression header).

• Mesh header (4 bytes): This header is identified by 10 in the first 2 bits and is used in mesh
topologies for routing purposes. The first 2 bits are followed by additional 2 bits that indicate
whether the source and destination addresses are 16-bit short or 64-bit long addresses. A 4-bit
hop left field is used to indicate the number of hops left. Originally, 15 hops are supported but an
extra byte can be used to support 255 hops. Finally, the remaining fields indicate the source and
the destination addresses of the packet. This information can be used by the routing protocols to
find the next hop.

• Fragmentation header (4–5 bytes): IPv6 can support payloads up to 1280 bytes whereas this is
102 bytes for IEEE 802.15.4. This is solved by fragmenting larger payloads into several packets
and the fragmentation header is used to fragment and reassemble these packets. The first fragment
includes a header of 4 bytes, which is indicated by 11 in the first 2 bits and by 000 in the next
3 bits. This is followed by the datagram size and datagram tag fields. The following fragment
header uses 11100 in the first 5 bits followed by the datagram size, tag, and the datagram offset.

• Header compression header (1 byte): Finally, the 40-byte IPv6 header is compressed into
2 bytes including the header compression header. This compression exploits the fact that
IEEE 802.15.4 packet headers already include the MAC addresses of the source and destination
pairs. These MAC addresses can be mapped to the lowest 64 bits of an IPv6 address. As a result,
the source and destination addresses are completely eliminated from the IPv6 header. Similar
techniques are used to eliminate the unnecessary fields for each communication and allow these
fields to be inserted when the packet reaches a gateway to the Internet.

Header compression is not the only challenge for WSN–Internet integration. The ongoing efforts in
the development of the 6LoWPAN standard aim to address some of these challenges including routing
and transport control to provide seamless interoperation of WSNs and the Internet.

Other Standardization Efforts

In addition to the above efforts, several additional platforms have been engaged with defining standards
for WSN applications. The ISA SP100.11a standard [5] also centers around the process and factory
automation and is being developed by the Systems and Automation Society (ISA). Moreover, the
Wireless Industrial Networking Alliance (WINA) [11] was formed in 2003 to stimulate the development
and promote the adoption of wireless networking technologies and practices to help increase industrial
efficiency. As a first step, this ad hoc group of suppliers and end-users is working to define end-
user needs and priorities for industrial wireless systems. The standardization attempts such as ZigBee,
WirelessHART, WINA, and SP100.11a, which specifically address the typical needs of wireless control
and monitoring applications, are expected to enable rapid improvement of WSNs in the industry.

WSN applications have gained significant momentum during the past decade with the acceleration
in research in this field. Although existing applications provide a wide variety of possibilities where
the WSN phenomenon can be exploited, there exists many areas waiting for WSN empowerment.
Moreover, further enhancements in WSN protocols will open up new areas of applications. Nevertheless,
commercialization of these potential applications is still a major challenge.

1.1.4 Software

In addition to hardware platforms and standards, several software platforms have also been developed
specifically for WSNs. Among these, the most accepted platform is the TinyOS [10], which is an
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open-source operating system designed for wireless embedded sensor networks. TinyOS incorporates
a component-based architecture, which minimizes the code size and provides a flexible platform
for implementing new communication protocols. Its component library includes network protocols,
distributed services, sensor drivers, and data acquisition tools, which can be further modified or improved
based on the specific application requirements. TinyOS is based on an event-driven execution model that
enables fine-grained power management strategies.

Most of the existing software code for communication protocols today is written for the TinyOS
platform. Coupled with TinyOS, a TinyOS mote simulator, TOSSIM, has been introduced to simplify the
development of sensor network protocols and applications [21]. TOSSIM provides a scalable simulation
environment and compiles directly from the TinyOS code. It simulates the TinyOS network stack at the
bit level, allowing experimentation with low-level protocols in addition to top-level application systems.
It also provides a graphical user interface tool, TinyViz, in order to visualize and interact with running
simulations.

In addition to TinyOS, several software platforms and operating systems have been introduced
recently. LiteOS [19] is a multi-threading operating system that provides Unix-like abstractions.
Compared to TinyOS, LiteOS provides multi-threaded operation, dynamic memory management, and
command-line shell support. The shell support, LiteShell, provides a command-line interface at the user
side, i.e., the PC, to provide interaction with the sensor node to be programmed.

Contiki [20] is an open-source, multitasking operating system developed for use on a variety of
platforms including microcontrollers such as the TI MSP430 and the Atmel AVR, which are used in
the Telos, Tmote, and Mica families. Contiki has been built around an event-driven kernel but it is
possible to employ preemptive multithreading for certain programs as well as dynamic loading and
replacement of individual programs and services. As a result, compared to TinyOS, which is statically
linked at compile-time, Contiki allows programs and drivers to be replaced during run-time and without
relinking. Moreover, TCP/IP support is also provided through the µIP stack.

The recent SunSPOT platform [9] does not use an operating system but runs a Java virtual machine
(VM), Squawk, on the bare metal, which is a fully capable Java ME implementation. The VM executes
directly out of flash memory.

While several operating systems with additional capabilities have become available, TinyOS is still
being widely used in WSN research. One of the main reasons for this popularity is the vast code space
built throughout the development of WSN solutions. Clearly, it is hard to port existing applications
and communication protocols to these new operating systems. This calls for platforms that support
interoperability for existing code space so that additional flexibility and capabilities are provided to
both the research community and industry.

1.2 WSN Architecture and Protocol Stack
The sensor nodes are usually scattered in a sensor field as shown in Figure 1.4. Each of these scattered
sensor nodes has the capability to collect data and route data back to the sink/gateway and the end-users.
Data are routed back to the end-user by a multi-hop infrastructureless architecture through the sink as
shown in Figure 1.4. The sink may communicate with the task manager/end-user via the Internet or
satellite or any type of wireless network (like WiFi, mesh networks, cellular systems, WiMAX, etc.), or
without any of these networks where the sink can be directly connected to the end-users. Note that there
may be multiple sinks/gateways and multiple end-users in the architecture shown in Figure 1.4.

In WSNs, the sensor nodes have the dual functionality of being both data originators and data routers.
Hence, communication is performed for two reasons:

• Source function: Source nodes with event information perform communication functionalities
in order to transmit their packets to the sink.

• Router function: Sensor nodes also participate in forwarding the packets received from other
nodes to the next destination in the multi-hop path to the sink.
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The protocol stack used by the sink and all sensor nodes is given in Figure 1.5. This protocol stack
combines power and routing awareness, integrates data with networking protocols, communicates power
efficiently through the wireless medium, and promotes cooperative efforts of sensor nodes. The protocol
stack consists of the physical layer, data link layer, network layer, transport layer, application layer,
as well as synchronization plane, localization plane, topology management plane, power management
plane, mobility management plane, and task management plane. The physical layer addresses the needs
of simple but robust modulation, transmission, and receiving techniques. Since the environment is noisy
and sensor nodes can be mobile, the link layer is responsible for ensuring reliable communication
through error control techniques and manage channel access through the MAC to minimize collision
with neighbors’ broadcasts. Depending on the sensing tasks, different types of application software can
be built and used on the application layer. The network layer takes care of routing the data supplied by
the transport layer. The transport layer helps to maintain the flow of data if the sensor network application
requires it. In addition, the power, mobility, and task management planes monitor the power, movement,
and task distribution among the sensor nodes. These planes help the sensor nodes coordinate the sensing
task and lower the overall power consumption.

The power management plane manages how a sensor node uses its power. For example, the sensor
node may turn off its receiver after receiving a message from one of its neighbors. This is to avoid getting
duplicated messages. Also, when the power level of the sensor node is low, the sensor node broadcasts
to its neighbors that it is low in power and cannot participate in routing messages. The remaining power
is reserved for sensing. The mobility management plane detects and registers the movement of sensor
nodes, so a route back to the user is always maintained, and the sensor nodes can keep track of their
neighbors. By knowing these neighbor sensor nodes, the sensor nodes can balance their power and task
usage. The task management plane balances and schedules the sensing tasks given to a specific region.
Not all sensor nodes in that region are required to perform the sensing task at the same time. As a
result, some sensor nodes perform the task more than others, depending on their power level. These
management planes are needed so that sensor nodes can work together in a power-efficient way, route
data in a mobile sensor network, and share resources between sensor nodes. Without them, each sensor
node will just work individually. From the standpoint of the whole sensor network, it is more efficient if
sensor nodes can collaborate with each other, so the lifetime of the sensor networks can be prolonged.
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Figure 1.5 The sensor network protocol stack.

1.2.1 Physical Layer

The physical layer is responsible for frequency selection, carrier frequency generation, signal detection,
modulation, and data encryption. Frequency generation and signal detection have more to do with
the underlying hardware and transceiver design and hence are beyond the scope of our book. More
specifically, we focus on signal propagation effects, power efficiency, and modulation schemes for
sensor networks.

1.2.2 Data Link Layer

The data link layer is responsible for the multiplexing of data streams, data frame detection, and medium
access and error control. It ensures reliable point-to-point and point-to-multipoint connections in a
communication network. More specifically, we discuss the medium access and error control strategies
for sensor networks.

MAC

The MAC protocol in a wireless multi-hop self-organizing sensor network must achieve two goals. The
first goal is creation of the network infrastructure. Since thousands of sensor nodes can be densely
scattered in a sensor field, the MAC scheme must establish communication links for data transfer. This
forms the basic infrastructure needed for hop-by-hop wireless communication and provides the self-
organizing capability. The second objective is to fairly and efficiently share communication resources
between sensor nodes. These resources include time, energy, and frequency. Several MAC protocols
have been developed for WSNs to address these requirements over the last decade.

Regardless of the medium access scheme, energy efficiency is of utmost importance. A MAC protocol
must certainly support the operation of power saving modes for the sensor node. The most obvious
means of power conservation is to turn the transceiver off when it is not required. Though this power
saving method seemingly provides significant energy gains, it may hamper the connectivity of the
network. Once a transceiver is turned off, the sensor node cannot receive any packets from its neighbors,
essentially becoming disconnected from the network. Moreover, turning a radio on and off has an
overhead in terms of energy consumption due to the startup and shutdown procedures required for both
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hardware and software. In fact, if the radio is blindly turned off during each idling slot, over a period
of time the sensor may end up expending more energy than if the radio had been left on. As a result,
operation in a power saving mode is energy efficient only if the time spent in that mode is greater than a
certain threshold. There can be a number of such useful modes of operation for the wireless sensor node,
depending on the number of states of the microprocessor, memory, A/D converter, and the transceiver.
Each of these modes can be characterized by its power consumption and the latency overhead, which is
the transition power to and from that mode.

Error Control

Another important function of the data link layer is the error control of transmission data. Two important
modes of error control in communication networks are forward error correction (FEC) and automatic
repeat request (ARQ), and hybrid ARQ. The usefulness of ARQ in sensor network applications is limited
by the additional retransmission cost and overhead. On the other hand, decoding complexity is greater
in FEC, as error correction capabilities need to be built in. Consequently, simple error control codes
with low-complexity encoding and decoding might present the best solutions for sensor networks. In the
design of such a scheme, it is important to have a good knowledge of the channel characteristics and
implementation techniques.

1.2.3 Network Layer

Sensor nodes are scattered densely in a field either close to or inside the phenomenon as shown in
Figure 1.4. The information collected relating to the phenomenon should be transmitted to the sink,
which may be located far from the sensor field. However, the limited communication range of the sensor
nodes prevents direct communication between each sensor node and the sink node. This requires efficient
multi-hop wireless routing protocols between the sensor nodes and the sink node using intermediate
sensor nodes as relays. The existing routing techniques, which have been developed for wireless ad hoc
networks, do not usually fit the requirements of the sensor networks. The networking layer of sensor
networks is usually designed according to the following principles:

• Power efficiency is always an important consideration.
• Sensor networks are mostly data-centric.
• In addition to routing, relay nodes can aggregate the data from multiple neighbors through local

processing.
• Due to the large number of nodes in a WSN, unique IDs for each node may not be provided and

the nodes may need to be addressed based on their data or location.

An important issue for routing in WSNs is that routing may be based on data-centric queries. Based
on the information requested by the user, the routing protocol should address different nodes that would
provide the requested information. More specifically, the users are more interested in querying an
attribute of the phenomenon rather than querying an individual node. For instance, “the areas where the
temperature is over 70 ◦F (21 ◦C)” is a more common query than “the temperature read by node #47.”

One other important function of the network layer is to provide internetworking with external
networks such as other sensor networks, command and control systems, and the Internet. In one scenario,
the sink nodes can be used as a gateway to other networks, while another scenario is to create a backbone
by connecting sink nodes together and making this backbone access other networks via a gateway.

1.2.4 Transport Layer

The transport layer is especially needed when the network is planned to be accessed through the Internet
or other external networks. TCP, with its current transmission window mechanisms, does not address
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the unique challenges posed by the WSN environment. Unlike protocols such as TCP, the end-to-end
communication schemes in sensor networks are not based on global addressing. These schemes must
consider that addressing based on data or location is used to indicate the destinations of the data packets.
Factors such as power consumption and scalability, and characteristics like data-centric routing, mean
sensor networks need different handling in the transport layer. Thus, these requirements stress the need
for new types of transport layer protocols.

The development of transport layer protocols is a challenging task because the sensor nodes are
influenced by hardware constraints such as limited power and memory. As a result, each sensor node
cannot store large amounts of data like a server in the Internet, and acknowledgments are too costly for
sensor networks. Therefore, new schemes that split the end-to-end communication probably at the sinks
may be needed where UDP-type protocols are used in the sensor network.

For communication inside a WSN, transport layer protocols are required for two main functionalities:
reliability and congestion control. Limited resources and high energy costs prevent end-to-end reliability
mechanisms from being employed in WSNs. Instead, localized reliability mechanisms are necessary.
Moreover, congestion that may occur because of the high traffic during events should be mitigated by
the transport layer protocols. Since sensor nodes are limited in terms of processing, storage, and energy
consumption, transport layer protocols aim to exploit the collaborative capabilities of these sensor nodes
and shift the intelligence to the sink rather than the sensor nodes.

1.2.5 Application Layer

The application layer includes the main application as well as several management functionalities. In
addition to the application code that is specific for each application, query processing and network
management functionalities also reside at this layer.

The layered architecture stack has been initially adopted in the development of WSNs due to its
success with the Internet. However, the large-scale implementations of WSN applications reveal that the
wireless channel has significant impact on the higher layer protocols. Moreover, resource constraints
and the application-specific nature of the WSN paradigm leads to cross-layer solutions that tightly
integrate the layered protocol stack. By removing the boundaries between layers as well as the associated
interfaces, increased efficiency in code space and operating overhead can be achieved.

In addition to the communication functionalities in the layered stack, WSNs have also been equipped
with several functionalities that aid the operation of the proposed solutions. In a WSN, each sensor
device is equipped with its own local clock for internal operations. Each event that is related to
operation of the sensor device including sensing, processing, and communication is associated with
timing information controlled through the local clock. Since users are interested in the collaborative
information from multiple sensors, timing information associated with the data at each sensor device
needs to be consistent. Moreover, the WSN should be able to correctly order the events sensed by
distributed sensors to accurately model the physical environment. These timing requirements have led to
the development of time synchronization protocols in WSNs.

The close interaction with physical phenomena requires location information to be associated in
addition to time. WSNs are closely associated with physical phenomena in their surroundings. The
gathered information needs to be associated with the location of the sensor nodes to provide an accurate
view of the observed sensor field. Moreover, WSNs may be used for tracking certain objects for
monitoring applications, which also requires location information to be incorporated into the tracking
algorithms. Further, location-based services and communication protocols require position information.
Hence, localization protocols have been incorporated into the communication stack.

Finally, several topology management solutions are required to maintain the connectivity and coverage
of the WSN. The topology management algorithms provide efficient methods for network deployment
that result in longer lifetime and efficient information coverage. Moreover, topology control protocols
help determine the transmit power levels as well as the activity durations of sensor nodes to minimize
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energy consumption while still ensuring network connectivity. Finally, clustering protocols are used to
organize the network into clusters to improve scalability and improve network lifetime.

The integration of each of the components for efficient operation depends on the applications running
on the WSN. This application-dependent nature of the WSNs defines several unique properties compared
to traditional networking solutions. Although the initial research and deployment of WSNs have focused
on data transfer in wireless settings, several novel application areas of WSNs have also emerged.
These include wireless sensor and actor networks, which consist of actuators in addition to sensors
that convert sensed information into actions to act on the environment, and wireless multimedia sensor
networks, which support multimedia traffic in terms of visual and audio information in addition to scalar
data. Furthermore, recently the WSN phenomenon has been adopted in constrained environments such
as underwater and underground settings to create wireless underwater sensor networks and wireless
underground sensor networks. These new fields of study pose additional challenges that have not been
considered by the vast number of solutions developed for traditional WSNs.

The flexibility, fault tolerance, high sensing fidelity, low cost, and rapid deployment characteristics
of sensor networks create many new and exciting application areas for remote sensing. In the future,
this wide range of application areas will make sensor networks an integral part of our lives. However,
realization of sensor networks needs to satisfy the constraints introduced by factors such as fault
tolerance, scalability, cost, hardware, topology change, environment, and power consumption. Since
these constraints are highly stringent and specific for sensor networks, new wireless ad hoc networking
techniques are required. Many researchers are currently engaged in developing the technologies needed
for different layers of the sensor network protocol stack. Commercial viability of WSNs has also been
shown in several fields. Along with the current developments, we encourage more insight into the
problems and more development of solutions to the open research issues as described in this book.
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