
CHAPTER 1

Fundamental Parameters and Definitions
for Antennas

CONSTANTINE A. BALANIS

1.1 INTRODUCTION

To describe the performance of an antenna, definitions of various parameters are neces-
sary. Some of the parameters are interrelated and not all of them need be specified for
complete description of the antenna performance. Parameter definitions are given in this
chapter. Many of those in quotation marks are from the IEEE Standard Definitions of
Terms for Antennas (IEEE Std 145-1983).† This is a revision of the IEEE Std 145-1973.
A more detailed discussion can be found in Ref. 1.

1.2 RADIATION PATTERN

An antenna radiation pattern or antenna pattern is defined as “a mathematical function
or a graphical representation of the radiation properties of the antenna as a function
of space coordinates. In most cases, the radiation pattern is determined in the far-field
region and is represented as a function of the directional coordinates. Radiation proper-
ties include power flux density, radiation intensity, field strength, directivity, phase, or
polarization.” The radiation property of most concern is the two- or three-dimensional
spatial distribution of radiated energy as a function of the observer’s position along a
path or surface of constant radius. A convenient set of coordinates is shown in Figure 1.1.
A trace of the received electric (magnetic) field at a constant radius is called the ampli-
tude field pattern . On the other hand, a graph of the spatial variation of the power density
along a constant radius is called an amplitude power pattern .

Often the field and power patterns are normalized with respect to their maximum
value, yielding normalized field and power patterns . Also, the power pattern is usually
plotted on a logarithmic scale or more commonly in decibels (dB). This scale is usually
desirable because a logarithmic scale can accentuate in more detail those parts of the

†IEEE Transactions on Antennas and Propagation, Vol. AP-17, No. 3, May 1969; Vol. AP-22, No. 1, January
1974; and Vol. AP-31, No. 6, Part II, November 1983.
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Figure 1.1 Coordinate system for antenna analysis.

pattern that have very low values, which later we refer to as minor lobes. For an antenna,
(1) the field pattern in (linear scale) typically represents a plot of the magnitude of the
electric or magnetic field as a function of the angular space; (2) the power pattern in
(linear scale) typically represents a plot of the square of the magnitude of the electric
or magnetic field as a function of the angular space; and (3) the power pattern in (dB)
represents the magnitude of the electric or magnetic field, in decibels, as a function of
the angular space.

To demonstrate this, the two-dimensional normalized field pattern (plotted in linear
scale), power pattern (plotted in linear scale), and power pattern (plotted on a logarithmic
dB scale) of a 10-element linear antenna array of isotropic sources, with a spacing of
d = 0.25λ between the elements, are shown in Figure 1.2. In this and subsequent patterns,
the plus (+) and minus (−) signs in the lobes indicate the relative polarization of the
amplitude between the various lobes, which changes (alternates) as the nulls are crossed .
To find the points where the pattern achieves its half-power (−3 dB points), relative to
the maximum value of the pattern, you set the value of (1) the field pattern at 0.707
value of its maximum, as shown in Figure 1.2a; (2) the power pattern (in a linear scale)
at its 0.5 value of its maximum, as shown in Figure 1.2b; and (3) the power pattern (in
dB) at −3 dB value of its maximum, as shown in Figure 1.2c. All three patterns yield the
same angular separation between the two half-power points, 38.64◦, on their respective
patterns, referred to as HPBW and illustrated in Figure 1.2. This is discussed in detail
in Section 1.5.

In practice, the three-dimensional pattern is measured and recorded in a series of
two-dimensional patterns. However, for most practical applications, a few plots of the
pattern as a function of θ for some particular values of φ, plus a few plots as a function
of φ for some particular values of θ , give most of the useful and needed information.
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(a) Field pattern (in linear scale) (b) Power pattern (in linear scale)

(c) Power pattern (in dB)
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Figure 1.2 Two-dimensional normalized field pattern (linear scale), power pattern (linear scale),
and power pattern (in dB) of a 10-element linear array with a spacing of d = 0.25λ.
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1.2.1 Radiation Pattern Lobes

Various parts of a radiation pattern are referred to as lobes , which may be subclassified
into major or main, minor, side, and back lobes.

A radiation lobe is a “portion of the radiation pattern bounded by regions of relatively
weak radiation intensity.” Figure 1.3a demonstrates a symmetrical three-dimensional
polar pattern with a number of radiation lobes. Some are of greater radiation intensity
than others, but all are classified as lobes. Figure 1.3b illustrates a linear two-dimensional
pattern (one plane of Figure 1.3a) where the same pattern characteristics are indicated.

MATLAB-based computer programs, designated as polar and spherical , have been
developed and are included in the CD of [1]. These programs can be used to plot the
two-dimensional patterns, both polar and semipolar (in linear and dB scales), in polar
form and spherical three-dimensional patterns (in linear and dB scales). A description
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Figure 1.3 (a) Radiation lobes and beamwidths of an antenna pattern. (b) Linear plot of power
pattern and its associated lobes and beamwidths.
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of these programs is found in the CD attached to Ref. 1. Other programs that have been
developed for plotting rectangular and polar plots are those of Refs. 1–5.

A major lobe (also called main beam) is defined as “the radiation lobe containing the
direction of maximum radiation.” In Figure 1.3 the major lobe is pointing in the θ = 0
direction. In some antennas, such as split-beam antennas, there may exist more than one
major lobe. A minor lobe is any lobe except a major lobe. In Figures 1.3a and 1.3b all
the lobes with the exception of the major can be classified as minor lobes. A side lobe
is “a radiation lobe in any direction other than the intended lobe.” (Usually a side lobe
is adjacent to the main lobe and occupies the hemisphere in the direction of the main
beam.) A back lobe is “a radiation lobe whose axis makes an angle of approximately
180◦ with respect to the beam of an antenna.” Usually it refers to a minor lobe that
occupies the hemisphere in a direction opposite to that of the major (main) lobe.

Minor lobes usually represent radiation in undesired directions, and they should be
minimized. Side lobes are normally the largest of the minor lobes. The level of minor
lobes is usually expressed as a ratio of the power density in the lobe in question to
that of the major lobe. This ratio is often termed the side lobe ratio or side lobe level.
Side lobe levels of −20 dB or smaller are usually not desirable in many applications.
Attainment of a side lobe level smaller than −30 dB usually requires very careful design
and construction. In most radar systems, low side lobe ratios are very important to
minimize false target indications through the side lobes.

A normalized three-dimensional far-field amplitude pattern, plotted on a linear scale,
of a 10-element linear antenna array of isotropic sources with a spacing of d = 0.25λ

and progressive phase shift β = −0.6π between the elements is shown in Figure 1.4. It
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Figure 1.4 Normalized three-dimensional amplitude field pattern (in linear scale) of a 10-element
linear array antenna with a uniform spacing of d = 0.25λ and progressive phase shift β = −0.6π

between the elements.
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is evident that this pattern has one major lobe, five minor lobes, and one back lobe. The
level of the side lobe is about −9 dB relative to the maximum. A detailed presentation of
arrays is found in Chapter 6 of Ref. 1. For an amplitude pattern of an antenna, there would
be, in general, three electric-field components (E r , E θ , Eφ) at each observation point
on the surface of a sphere of constant radius r = rc , as shown in Figure 1.1. In the far
field, the radial E r component for all antennas is zero or, vanishingly small compared
to either one, or both, of the other two components (see Section 3.6 of Chapter 3 of
Ref. 1). Some antennas, depending on their geometry and also observation distance,
may have only one, two, or all three components. In general, the magnitude of the total
electric field would be |E| = √|Er |2 + |Eθ |2 + |Eφ |2. The radial distance in Figure 1.4,
and similar ones, represents the magnitude of |E|.

1.2.2 Isotropic, Directional, and Omnidirectional Patterns

An isotropic radiator is defined as “a hypothetical lossless antenna having equal radiation
in all directions.” Although it is ideal and not physically realizable, it is often taken
as a reference for expressing the directive properties of actual antennas. A directional
antenna is one “having the property of radiating or receiving electromagnetic waves
more effectively in some directions than in others. This term is usually applied to an
antenna whose maximum directivity is significantly greater than that of a half-wave
dipole.” Examples of antennas with directional radiation patterns are shown in Figures 1.5
and 1.6. It is seen that the pattern in Figure 1.6 is nondirectional in the azimuth plane
(f (φ), θ = π /2) and directional in the elevation plane (g(θ ), φ = constant). This type of a
pattern is designated as omnidirectional , and it is defined as one “having an essentially
nondirectional pattern in a given plane (in this case in azimuth) and a directional pattern
in any orthogonal plane (in this case in elevation).” An omnidirectional pattern is then
a special type of a directional pattern.

1.2.3 Principal Patterns

For a linearly polarized antenna, performance is often described in terms of its principal
E - and H -plane patterns. The E-plane is defined as “the plane containing the electric-field
vector and the direction of maximum radiation,” and the H-plane as “the plane containing
the magnetic-field vector and the direction of maximum radiation.” Although it is very
difficult to illustrate the principal patterns without considering a specific example, it is
the usual practice to orient most antennas so that at least one of the principal plane
patterns coincides with one of the geometrical principal planes. An illustration is shown
in Figure 1.5. For this example, the x-z plane (elevation plane; φ = 0) is the principal
E -plane and the x-y plane (azimuthal plane; θ = π /2) is the principal H -plane. Other
coordinate orientations can be selected.

The omnidirectional pattern of Figure 1.6 has an infinite number of principal E -planes
(elevation planes; φ = φc) and one principal H -plane (azimuthal plane; θ = 90◦).

1.2.4 Field Regions

The space surrounding an antenna is usually subdivided into three regions: (1) reactive
near-field , (2) radiating near-field (Fresnel ), and (3) far-field (Fraunhofer) regions as
shown in Figure 1.7. These regions are so designated to identify the field structure in
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Figure 1.5 Principal E - and H -plane patterns for a pyramidal horn antenna.
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Figure 1.6 Omnidirectional antenna pattern.
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Far-field (Fraunhofer)
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Radiating near-field (Fresnel) region

Reactive
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D
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R1 = 0.62 √D3/l
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Figure 1.7 Field regions of an antenna.

each. Although no abrupt changes in the field configurations are noted as the boundaries
are crossed, there are distinct differences among them. The boundaries separating these
regions are not unique, although various criteria have been established and are commonly
used to identify the regions.

Reactive near-field region is defined as “that portion of the near-field region imme-
diately surrounding the antenna wherein the reactive field predominates.” For most
antennas, the outer boundary of this region is commonly taken to exist at a distance
R < 0.62

√
D3/λ from the antenna surface, where λ is the wavelength and D is the

largest dimension of the antenna. “For a very short dipole, or equivalent radiator, the
outer boundary is commonly taken to exist at a distance λ/2π from the antenna surface.”

Radiating near-field (Fresnel) region is defined as “that region of the field of an
antenna between the reactive near-field region and the far-field region wherein radia-
tion fields predominate and wherein the angular field distribution is dependent upon the
distance from the antenna. If the antenna has a maximum dimension that is not large
compared to the wavelength, this region may not exist. For an antenna focused at infin-
ity, the radiating near-field region is sometimes referred to as the Fresnel region on the
basis of analogy to optical terminology. If the antenna has a maximum overall dimension
which is very small compared to the wavelength, this field region may not exist.” The
inner boundary is taken to be the distance R ≥ 0.62

√
D3/λ and the outer boundary the

distance R < 2D2/λ, where D is the largest† dimension of the antenna. This criterion is
based on a maximum phase error of π /8. In this region the field pattern is, in general, a
function of the radial distance and the radial field component may be appreciable.

Far-field (Fraunhofer) region is defined as “that region of the field of an antenna
where the angular field distribution is essentially independent of the distance from the

†To be valid, D must also be large compared to the wavelength (D >λ).
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Figure 1.8 Typical changes of antenna amplitude pattern shape from reactive near field toward
the far field. (From: Y. Rahmat-Samii, L. I. Williams, and R. G. Yoccarino, The UCLA bi-polar
planar-near-field antenna measurement and diagnostics range, IEEE Antennas Propag. Mag .,
Vol. 37, No. 6, December 1995. Copyright  1995 IEEE.)

antenna. If the antenna has a maximum† overall dimension D , the far-field region is
commonly taken to exist at distances greater than 2D2/λ from the antenna, λ being the
wavelength. The far-field patterns of certain antennas, such as multibeam reflector anten-
nas, are sensitive to variations in phase over their apertures. For these antennas 2D2/λ
may be inadequate. In physical media, if the antenna has a maximum overall dimen-
sion, D , which is large compared to π /|γ |, the far-field region can be taken to begin
approximately at a distance equal to |γ |D2/π from the antenna, γ being the propaga-
tion constant in the medium. For an antenna focused at infinity, the far-field region is
sometimes referred to as the Fraunhofer region on the basis of analogy to optical termi-
nology.” In this region, the field components are essentially transverse and the angular
distribution is independent of the radial distance where the measurements are made.
The inner boundary is taken to be the radial distance R = 2D2/λ and the outer one at
infinity.

The amplitude pattern of an antenna, as the observation distance is varied from the
reactive near field to the far field, changes in shape because of variations of the fields,
both magnitude and phase. A typical progression of the shape of an antenna, with the
largest dimension D , is shown in Figure 1.8. It is apparent that in the reactive near-field
region the pattern is more spread out and nearly uniform, with slight variations. As the
observation is moved to the radiating near-field region (Fresnel), the pattern begins to
smooth and form lobes. In the far-field region (Fraunhofer), the pattern is well formed,
usually consisting of few minor lobes and one, or more, major lobes.

†To be valid, D must also be large compared to the wavelength (D > λ).
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Figure 1.9 Calculated radiation patterns of a paraboloid antenna for different distances from the
antenna. (From Ref. 6.)

To illustrate the pattern variation as a function of radial distance beyond the minimum
2D2/λ far-field distance, in Figure 1.9 we have included three patterns of a parabolic
reflector calculated at distances of R = 2D2/λ, 4D2/λ, and infinity [6]. It is observed
that the patterns are almost identical, except for some differences in the pattern structure
around the first null and at a level below 25 dB. Because infinite distances are not
realizable in practice, the most commonly used criterion for minimum distance of far-field
observations is 2D2/λ.

1.2.5 Radian and Steradian

The measure of a plane angle is a radian. One radian is defined as the plane angle with
its vertex at the center of a circle of radius r that is subtended by an arc whose length is
the radius r . A graphical illustration is shown in Figure 1.10a. Since the circumference
of a circle of radius r is C = 2πr , there are 2π rads (2πr /r) in a full circle.

The measure of a solid angle is a steradian. One steradian is defined as the solid
angle with its vertex at the center of a sphere of radius r that is subtended by a spherical
surface area equal to that of a square with each side of length r . A graphical illustration
is shown in Figure 1.10b. Since the area of a sphere of radius r is A = 4πr2, there are
4π sr (4πr2/r2) in a closed sphere.
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Figure 1.10 Geometrical arrangements for defining a radian and a steradian.

The infinitesimal area dA on the surface of a sphere of radius r , shown in Figure 1.1,
is given by

dA = r2 sin θ dθ dφ (m2) (1.1)

Therefore the element of solid angle d� of a sphere can be written

d� = dA

r2
= sin θ dθ dφ (sr) (1.2)

1.3 RADIATION POWER DENSITY

Electromagnetic waves are used to transport information through a wireless medium or
a guiding structure, from one point to the other. It is then natural to assume that power
and energy are associated with electromagnetic fields. The quantity used to describe
the power associated with an electromagnetic wave is the instantaneous Poynting vector
defined as

W = E × H (1.3)
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where

W = instantaneous Poynting vector (W/m2)

E = instantaneous electric-field intensity (V/m)

H = instantaneous magnetic-field intensity (A/m)

Note that script letters are used to denote instantaneous fields and quantities, while roman
letters are used to represent their complex counterparts.

Since the Poynting vector is a power density, the total power crossing a closed surface
can be obtained by integrating the normal component of the Poynting vector over the
entire surface. In equation form

P =
∫∫
©
s

W · ds =
∫∫
©
s

W · n̂ da (1.4)

where

P = instantaneous total power (W)

n̂ = unit vector normal to the surface

da = infinitesimal area of the closed surface (m2)

The time-average Poynting vector (average power density) can be written

Wav(x, y, z) = [W (x, y, z; t)]av = 1

2
Re(E × H∗) (W/m2) (1.5)

The 1
2 factor appears in Eq. (1.5) because the E and H fields represent peak values, and

it should be omitted for RMS values. Based on the definition of Eq. (1.5), the average
power radiated by an antenna (radiated power) can be written

Prad = Pav =
∫∫
©
s

Wrad · ds =
∫∫
©
s

Wav · n̂ da

= 1

2

∫∫
©
s

Re(E × H∗) · ds
(1.6)

1.4 RADIATION INTENSITY

Radiation intensity in a given direction is defined as “the power radiated from an antenna
per unit solid angle.” The radiation intensity is a far-field parameter, and it can be obtained
by simply multiplying the radiation density by the square of the distance. In mathematical
form it is expressed as

U = r2Wrad (1.7)



1.5 BEAMWIDTH 15

where

U = radiation intensity (W/unit solid angle)

W rad = radiation density (W/m2)

The radiation intensity is also related to the far-zone electric field of an antenna, referring
to Figure 1.4, by

U(θ, φ) = r2

2η
|E(r, θ, φ)|2 � r2

2η
[|Eθ(r, θ, φ)|2 + |Eφ(r, θ, φ)|2] (1.7a)

� 1

2η
[|E0

θ (θ, φ)|2 + |E0
φ(θ, φ)|2]

where

E(r, θ, φ) = far-zone electric-field intensity of the antenna = E0(θ, φ) e−jkr

r

E θ , Eφ = far-zone electric-field components of the antenna

η = intrinsic impedance of the medium

The radical electric-field component (E r ) is assumed, if present, to be small in the far
zone. Thus the power pattern is also a measure of the radiation intensity.

The total power is obtained by integrating the radiation intensity, as given by Eq. (1.7),
over the entire solid angle of 4π . Thus

Prad =
∫∫
©
�

U d� =
∫ 2π

0

∫ π

0
U sin θ dθ dφ (1.8)

where d� = element of solid angle = sin θ dθ dφ.

1.5 BEAMWIDTH

Associated with the pattern of an antenna is a parameter designated as beamwidth . The
beamwidth of a pattern is defined as the angular separation between two identical points
on opposite sides of the pattern maximum. In an antenna pattern, there are a number
of beamwidths. One of the most widely used beamwidths is the half-power beamwidth
(HPBW ), which is defined by IEEE as: “In a plane containing the direction of the
maximum of a beam, the angle between the two directions in which the radiation intensity
is one-half value of the beam.” This is demonstrated in Figure 1.2. Another important
beamwidth is the angular separation between the first nulls of the pattern, and it is referred
to as the first-null beamwidth (FNBW ). Both the HPBW and FNBW are demonstrated
for the pattern in Figure 1.11. Other beamwidths are those where the pattern is −10 dB
from the maximum, or any other value. However, in practice, the term beamwidth , with
no other identification, usually refers to the HPBW .

The beamwidth of an antenna is a very important figure-of-merit and often is used as
a trade-off between it and the side lobe level; that is, as the beamwidth decreases, the
side lobe increases and vice versa. In addition, the beamwidth of the antenna is also used
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Figure 1.11 Three- and two-dimensional power patterns (in linear scale) of U (θ ) = cos2(θ )
cos2(3θ ).

to describe the resolution capabilities of the antenna to distinguish between two adjacent
radiating sources or radar targets. The most common resolution criterion states that the
resolution capability of an antenna to distinguish between two sources is equal to half
the first-null beamwidth (FNBW/2), which is usually used to approximate the half-power
beamwidth (HPBW) [7, 8]. That is, two sources separated by angular distances equal
to or greater than FNBW/2 ≈ HPBW of an antenna with a uniform distribution can be
resolved. If the separation is smaller, then the antenna will tend to smooth the angular
separation distance.

1.6 DIRECTIVITY

In the 1983 version of the IEEE Standard Definitions of Terms for Antennas , there was a
substantive change in the definition of directivity , compared to the definition of the 1973
version. Basically the term directivity in the 1983 version has been used to replace the
term directive gain of the 1973 version. In the 1983 version the term directive gain has
been deprecated. According to the authors of the 1983 standards, “this change brings this
standard in line with common usage among antenna engineers and with other interna-
tional standards, notably those of the International Electrotechnical Commission (IEC).”
Therefore directivity of an antenna is defined as “the ratio of the radiation intensity in a
given direction from the antenna to the radiation intensity averaged over all directions.
The average radiation intensity is equal to the total power radiated by the antenna divided



1.6 DIRECTIVITY 17

by 4π . If the direction is not specified, the direction of maximum radiation intensity is
implied.” Stated more simply, the directivity of a nonisotropic source is equal to the
ratio of its radiation intensity in a given direction over that of an isotropic source. In
mathematical form, it can be written

D = U

U0
= 4πU

Prad
(1.9)

If the direction is not specified, it implies the direction of maximum radiation intensity
(maximum directivity) expressed as

Dmax = D0 = U |max

U0
= Umax

U0
= 4πUmax

Prad
(1.9a)

where

D = directivity (dimensionless)

D0 = maximum directivity (dimensionless)

U = radiation intensity (W/unit solid angle)

U max = maximum radiation intensity (W/unit solid angle)

U 0 = radiation intensity of isotropic source (W/unit solid angle)

P rad = total radiated power (W)

For an isotropic source, it is very obvious from Eq. (1.9) or (1.9a) that the directivity is
unity since U , U max, and U 0 are all equal to each other.

For antennas with orthogonal polarization components, we define the partial directivity
of an antenna for a given polarization in a given direction as “that part of the radiation
intensity corresponding to a given polarization divided by the total radiation intensity
averaged over all directions.” With this definition for the partial directivity, then in
a given direction “the total directivity is the sum of the partial directivities for any
two orthogonal polarizations.” For a spherical coordinate system, the total maximum
directivity D0 for the orthogonal θ and φ components of an antenna can be written

D0 = Dθ + Dφ (1.10)

while the partial directivities D θ and Dφ are expressed as

Dθ = 4πUθ

(Prad)θ + (Prad)φ
(1.10a)

Dφ = 4πUφ

(Prad)θ + (Prad)φ
(1.10b)

where

U θ = radiation intensity in a given direction contained in θ field component

U φ = radiation intensity in a given direction contained in φ field component

(P rad)θ = radiated power in all directions contained in θ field component

(P rad)φ = radiated power in all directions contained in φ field component
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The directivity of an isotropic source is unity since its power is radiated equally well
in all directions. For all other sources, the maximum directivity will always be greater
than unity, and it is a relative “figure-of-merit” that gives an indication of the directional
properties of the antenna as compared with those of an isotropic source. In equation form,
this is indicated in Eq. (1.9a). The directivity can be smaller than unity; in fact it can be
equal to zero. The values of directivity will be equal to or greater than zero and equal to
or less than the maximum directivity (0 ≤ D ≤ D0).

A more general expression for the directivity can be developed to include sources
with radiation patterns that may be functions of both spherical coordinate angles θ and
φ. The radiation intensity of an antenna can be written

U = B0F(θ, φ) � 1

2η
[|E0

θ (θ, φ)|2 + |E0
φ(θ, φ)|2] (1.11)

where B0 is a constant, and E0
θ and E0

φ are the antenna’s far-zone electric-field compo-
nents. The maximum value of Eq. (1.11) is given by

Umax = B0F(θ, φ)|max = B0Fmax(θ, φ) (1.11a)

The maximum directivity can be written

D0 = 4π(∫ 2π

0

∫ π

0 F(θ, φ) sin θ dθ dφ
) /

F(θ, φ)|max

= 4π

�A

(1.12)

where �A is the beam solid angle, and it is given by

�A = 1

F(θ, φ)|max

∫ 2π

0

∫ π

0
F(θ, φ) sin θ dθ dφ =

∫ 2π

0

∫ π

0
Fn(θ, φ) sin θ dθ dφ

(1.12a)

Fn(θ, φ) = F(θ, φ)

F (θ, φ)|max
(1.12b)

Dividing by F (θ , φ)|max merely normalizes the radiation intensity F (θ , φ), and it makes
its maximum value unity.

The beam solid angle �A is defined as the solid angle through which all the power of
the antenna would flow if its radiation intensity is constant (and equal to the maximum
value of U) for all angles within �A.

1.6.1 Directional Patterns

Instead of using the exact expression of Eq. (1.12) to compute the directivity, it is often
convenient to derive simpler expressions, even if they are approximate, to compute the
directivity. These can also be used for design purposes. For antennas with one narrow
major lobe and very negligible minor lobes, the beam solid angle is approximately equal
to the product of the half-power beamwidths in two perpendicular planes [7] shown in
Figure 1.12(a). For a rotationally symmetric pattern, the half-power beamwidths in any
two perpendicular planes are the same, as illustrated in Figure 1.12(b).
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Figure 1.12 Beam solid angles for nonsymmetrical and symmetrical radiation patterns.

With this approximation, Eq. (1.12) can be approximated by

D0 = 4π

�A

� 4π

	1r	2r

(1.13)

The beam solid angle �A has been approximated by

�A � 	1r	2r (1.13a)

where

	1r = half-power beamwidth in one plane (rad)

	2r = half-power beamwidth in a plane at a right angle to the other (rad)

If the beamwidths are known in degrees, Eq. (1.13) can be written

D0 � 4π(180/π)2

	1d	2d

= 41, 253

	1d	2d

(1.14)

where

	1d = half-power beamwidth in one plane (degrees)

	2d = half-power beamwidth in a plane at a right angle to the other (degrees)

For planar arrays, a better approximation to Eq. (1.14) is [9]

D0 � 32,400

�A(degrees)2
= 32,400

	1d	2d

(1.14a)
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The validity of Eqs. (1.13) and (1.14) is based on a pattern that has only one major
lobe and any minor lobes, if present, should be of very low intensity. For a pattern with
two identical major lobes, the value of the maximum directivity using Eq. (1.13) or (1.14)
will be twice its actual value. For patterns with significant minor lobes, the values of
maximum directivity obtained using Eq. (1.13) or (1.14), which neglect any minor lobes,
will usually be too high.

Many times it is desirable to express the directivity in decibels (dB) instead of
dimensionless quantities. The expressions for converting the dimensionless quantities
of directivity and maximum directivity to decibels (dB) are

D(dB) = 10 log10[D(dimensionless)] (1.15a)

D0(dB) = 10 log10[D0(dimensionless)] (1.15b)

It has also been proposed [10] that the maximum directivity of an antenna can also
be obtained approximately by using the formula

1

D0
= 1

2

(
1

D1
+ 1

D2

)
(1.16)

where

D1 � 1(
1

2 ln 2

∫ 	1r /2
0 sin θdθ

) � 16 ln 2

	2
1r

(1.16a)

D2 � 1(
1

2 ln 2

∫ 	2r /2
0 sin θdθ

) � 16 ln 2

	2
2r

(1.16b)

	1r and 	2r are the half-power beamwidths (in radians) of the E and H planes, respec-
tively. Formula (1.16) will be referred to as the arithmetic mean of the maximum
directivity. Using Eqs. (1.16a) and (1.16b) we can write Eq. (1.16) as

1

D0
� 1

2 ln 2

(
	2

1r

16
+ 	2

2r

16

)
= 	2

1r + 	2
2r

32 ln 2
(1.17)

or

D0 � 32 ln 2

	2
1r + 	2

2r

= 22.181

	2
1r + 	2

2r

(1.17a)

D0 � 22.181(180/π)2

	2
1d + 	2

2d

= 72,815

	2
1d + 	2

2d

(1.17b)

where 	1d and 	2d are the half-power beamwidths in degrees.
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1.6.2 Omnidirectional Patterns

Some antennas (such as dipoles, loops, and broadside arrays) exhibit omnidirectional
patterns, as illustrated by the three-dimensional patterns in Figure 1.13. Approximate
directivity formulas have been derived [11, 12] for antennas with omnidirectional patterns
similar to the ones shown in Figure 1.13. The approximate directivity formula for an
omnidirectional pattern as a function of the pattern half-power beamwidth (in degrees),
which is reported by McDonald in [11], was derived based on the array factor of a
broadside collinear array, and it is given by

D0 � 101

HPBW (degrees) − 0.0027[HPBW (degrees)]2
(1.18a)

However, that reported by Pozar [12] is given by

D0 � −172.4 + 191
√

0.818 + 1/HPBW (degrees) (1.18b)

(a) With minor lobes

(b) Without minor lobes

Figure 1.13 Omnidirectional patterns with and without minor lobes.
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1.7 NUMERICAL TECHNIQUES

For most practical antennas, their radiation patterns are so complex that closed-form
mathematical expressions are not available. Even in those cases where expressions are
available, their form is so complex that integration to find the radiated power, required to
compute the maximum directivity, cannot be performed. Instead of using the approximate
expressions of Kraus, Tai and Pereira, McDonald, or Pozar, alternate and more accurate
techniques may be desirable. With the high speed computer systems now available, the
answer may be to apply numerical methods.

Let us assume that the radiation intensity of a given antenna is given by

U = B0 F(θ, φ) (1.19)

where B0 is a constant. The directivity for such a system is given, in general, by

D0 = 4πUmax

Prad
(1.20)

where

Prad = B0

∫ 2π

0

(∫ π

0
F(θ, φ) sin θ dθ

)
dφ (1.20a)

For N uniform divisions over the π interval of θ and M uniform divisions over the 2π

interval of φ, the digital form of the radiated power (Eq. (1.20a)) can be written as

Prad = B0

( π

N

) (
2π

M

) M∑
j=1

(
N∑

i=1

F(θi, φj ) sin θi

)
(1.21)

where θ i and φj represent the discrete values of θ and φ.
A MATLAB and FORTRAN computer program called Directivity has been

developed to compute the maximum directivity of any antenna whose radiation intensity
is U = F (θ , φ) based on the formulation of Eq. (1.21). The intensity function F does not
have to be a function of both θ and φ. The program is included in the CD attached to
[1]. It contains a subroutine for which the intensity factor U = F (θ , φ) for the required
application must be specified by the user. As an illustration, the antenna intensity
U = sin θ sin2 φ has been inserted in the subroutine. In addition, the upper and lower
limits of θ and φ must be specified for each application of the same pattern.

1.8 ANTENNA EFFICIENCY

Associated with an antenna are a number of efficiencies that can be defined using
Figure 1.14. The total antenna efficiency e0 is used to take into account losses at the
input terminals and within the structure of the antenna. Such losses may be due, referring
to Figure 1.14(b), to (1) reflections because of the mismatch between the transmission
line and the antenna and (2) I 2R losses (conduction and dielectric).
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Figure 1.14 Reference terminals and losses of an antenna.

In general, the overall efficiency can be written

e0 = ereced (1.22)

where

e0 = total efficiency (dimensionless)

er = reflection (mismatch) efficiency = (1 − |
|2) (dimensionless)

ec = conduction efficiency (dimensionless)

ed = dielectric efficiency (dimensionless)


 = voltage reflection coefficient at the input terminals of the antenna
[
 = (Z in − Z 0)/(Z in + Z 0) where Z in = antenna input impedance and
Z 0 = characteristic impedance of the transmission line]

VSWR = voltage standing wave ratio = (1 + |
|)/(1 − |
|)

Usually ec and ed are very difficult to compute, but they can be determined experimen-
tally. Even by measurements they cannot be separated, and it is usually more convenient
to write Eq. (1.22) as

e0 = erecd = ecd (1 − |
|2) (1.23)

where ecd = eced = antenna radiation efficiency, which is used to relate the gain and
directivity.

1.9 GAIN

Another useful measure describing the performance of an antenna is the gain . Although
the gain of the antenna is closely related to the directivity, it is a measure that takes into
account the efficiency of the antenna as well as its directional capabilities.
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Gain of an antenna (in a given direction) is defined as “the ratio of the intensity, in
a given direction, to the radiation intensity that would be obtained if the power accepted
by the antenna were radiated isotropically. The radiation intensity corresponding to the
isotropically radiated power is equal to the power accepted (input) by the antenna divided
by 4π .”

In most cases we deal with relative gain , which is defined as “the ratio of the power
gain in a given direction to the power gain of a reference antenna in its referenced
direction.” The power input must be the same for both antennas. The reference antenna
is usually a dipole, horn, or any other antenna whose gain can be calculated or it is
known. In most cases, however, the reference antenna is a lossless isotropic source.
Thus

G = 4πU(θ, φ)

Pin(lossless isotropic source)
(dimensionless) (1.24)

When the direction is not stated, the power gain is usually taken in the direction of
maximum radiation .

Referring to Figure 1.14(a), we can write that the total radiated power (P rad) is related
to the total input power (P in) by

Prad = ecdPin (1.25)

where ecd is the antenna radiation efficiency (dimensionless), which is defined in
Eqs. (1.22) and (1.23). According to the IEEE Standards, “gain does not include losses
arising from impedance mismatches (reflection losses) and polarization mismatches
(losses).”

Here we define two gains: one, referred to as gain (G), and the other, referred to as
absolute gain (Gabs), that also takes into account the reflection/mismatch losses repre-
sented in both Eqs. (1.22) and (1.23).

Using Eq. (1.25) reduces Eq. (1.24) to

G(θ, φ) = ecd

(
4π

U(θ, φ)

Prad

)
(1.26)

which is related to the directivity of Eq. (1.9) by

G(θ, φ) = ecdD(θ, φ) (1.27)

In a similar manner, the maximum value of the gain is related to the maximum directivity
of Eq. (1.9a) and (1.12) by

G0 = G(θ, φ)|max = ecdD(θ, φ)|max = ecdD0 (1.27a)

While Eq. (1.25) does take into account the losses of the antenna element itself,
it does not take into account the losses when the antenna element is connected to a
transmission line, as shown in Figure 1.14. These connection losses are usually referred
to as reflections (mismatch) losses , and they are taken into account by introducing a
reflection (mismatch) efficiency er , which is related to the reflection coefficient as shown
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in Eq. (1.23) or er = (1 − |
|2). Thus we can introduce an absolute gain Gabs that takes
into account the reflection/mismatch losses (due to the connection of the antenna element
to the transmission line), and it can be written

Gabs(θ, φ)= erG(θ, φ) = (1 − |
|2)G(θ, φ)

= erecdD(θ, φ) = eoD(θ, φ)
(1.28)

where eo is the overall efficiency as defined in Eqs. (1.22) and (1.23). Similarly, the
maximum absolute gain G0abs of Eq. (1.28) is related to the maximum directivity
D0 by

G0abs =Gabs(θ, φ)|max = erG(θ, φ)|max = (1 − |
|2)G(θ, φ)|max

= erecdD(θ, φ)|max = eoD(θ, φ)|max = eoD0
(1.28a)

If the antenna is matched to the transmission line, that is, the antenna input impedance
Z in is equal to the characteristic impedance Z 0 of the line (|
| = 0), then the two gains
are equal (Gabs = G).

As was done with the directivity, we can define the partial gain of an antenna for
a given polarization in a given direction as “that part of the radiation intensity corre-
sponding to a given polarization divided by the total radiation intensity that would be
obtained if the power accepted by the antenna were radiated isotropically.” With this
definition for the partial gain, then, in a given direction, “the total gain is the sum of the
partial gains for any two orthogonal polarizations.” For a spherical coordinate system,
the total maximum gain G0 for the orthogonal θ and φ components of an antenna can
be written, in a similar form as was the maximum directivity in Eqs. (1.10), (1.10a) and
(1.10b), as

G0 = Gθ + Gφ (1.29)

while the partial gains Gθ and Gφ are expressed as

Gθ = 4πUθ

Pin
(1.29a)

Gφ = 4πUφ

Pin
(1.29b)

where

U θ = radiation intensity in a given direction contained in E θ field component

U φ = radiation intensity in a given direction contained in Eφ field component

P in = total input (accepted) power

For many practical antennas an approximate formula for the gain, corresponding to
Eq. (1.14) or (1.14a) for the directivity, is

G0 � 30,000

	1d	2d

(1.30)
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In practice, whenever the term “gain” is used, it usually refers to the maximum gain
as defined by Eq. (1.27a) or (1.28a).

Usually the gain is given in terms of decibels instead of the dimensionless quantity
of Eq. (1.27a). The conversion formula is given by

G0(dB) = 10 log10[ecdD0 (dimensionless)] (1.31)

1.10 BEAM EFFICIENCY

Another parameter that is frequently used to judge the quality of transmitting and receiv-
ing antennas is the beam efficiency . For an antenna with its major lobe directed along
the z -axis (θ = 0), as shown in Figure 1.1, the beam efficiency (BE) is defined by

BE = power transmitted (received) within cone angle θ1

power transmitted (received) by the antenna
(dimensionless) (1.32)

where θ1 is the half-angle of the cone within which the percentage of the total power is
to be found. Equation (1.32) can be written

BE =

∫ 2π

0

∫ θ1

0
U(θ, φ) sin θ dθ dφ∫ 2π

0

∫ π

0
U(θ, φ) sin θ dθ dφ

(1.33)

If θ1 is chosen as the angle where the first null or minimum occurs (see Figure 1.1), then
the beam efficiency will indicate the amount of power in the major lobe compared to the
total power. A very high beam efficiency (between the nulls or minimums), usually in
the high 90s, is necessary for antennas used in radiometry, astronomy, radar, and other
applications where received signals through the minor lobes must be minimized.

1.11 BANDWIDTH

The bandwidth of an antenna is defined as “the range of frequencies within which the
performance of the antenna, with respect to some characteristic, conforms to a specified
standard.” The bandwidth can be considered to be the range of frequencies, on either
side of a center frequency (usually the resonance frequency for a dipole), where the
antenna characteristics (such as input impedance, pattern, beamwidth, polarization, side
lobe level, gain, beam direction, radiation efficiency) are within an acceptable value of
those at the center frequency. For broadband antennas, the bandwidth is usually expressed
as the ratio of the upper-to-lower frequencies of acceptable operation. For example, a
10:1 bandwidth indicates that the upper frequency is 10 times greater than the lower.
For narrowband antennas, the bandwidth is expressed as a percentage of the frequency
difference (upper minus lower) over the center frequency of the bandwidth. For example,
a 5% bandwidth indicates that the frequency difference of acceptable operation is 5% of
the center frequency of the bandwidth.
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Because the characteristics (input impedance, pattern, gain, polarization, etc.) of an
antenna do not necessarily vary in the same manner or are not even critically affected by
the frequency, there is no unique characterization of the bandwidth. The specifications
are set in each case to meet the needs of the particular application. Usually there is a
distinction made between pattern and input impedance variations. Accordingly pattern
bandwidth and impedance bandwidth are used to emphasize this distinction. Associated
with pattern bandwidth are gain, side lobe level, beamwidth, polarization, and beam direc-
tion while input impedance and radiation efficiency are related to impedance bandwidth.
For example, the pattern of a linear dipole with overall length less than a half-wavelength
(l < λ/2) is insensitive to frequency. The limiting factor for this antenna is its impedance,
and its bandwidth can be formulated in terms of the Q . The Q of antennas or arrays
with dimensions large compared to the wavelength, excluding superdirective designs, is
near unity. Therefore the bandwidth is usually formulated in terms of beamwidth, side
lobe level, and pattern characteristics. For intermediate length antennas, the bandwidth
may be limited by either pattern or impedance variations, depending on the particular
application. For these antennas, a 2:1 bandwidth indicates a good design. For others,
large bandwidths are needed. Antennas with very large bandwidths (like 40:1 or greater)
have been designed in recent years. These are known as frequency-independent antennas.

The above discussion presumes that the coupling networks (transformers, baluns, etc.)
and/or the dimensions of the antenna are not altered in any manner as the frequency
is changed. It is possible to increase the acceptable frequency range of a narrowband
antenna if proper adjustments can be made on the critical dimensions of the antenna
and/or on the coupling networks as the frequency is changed. Although not an easy or
possible task in general, there are applications where this can be accomplished. The most
common examples are the antenna of a car radio and the “rabbit ears” of a television.
Both usually have adjustable lengths that can be used to tune the antenna for better
reception.

1.12 POLARIZATION

Polarization of an antenna in a given direction is defined as “the polarization of the
wave transmitted (radiated) by the antenna. Note: When the direction is not stated, the
polarization is taken to be the polarization in the direction of maximum gain.” In practice,
polarization of the radiated energy varies with the direction from the center of the antenna,
so that different parts of the pattern may have different polarizations.

Polarization of a radiated wave is defined as “that property of an electromagnetic
wave describing the time-varying direction and relative magnitude of the electric-field
vector; specifically, the figure traced as a function of time by the extremity of the vector
at a fixed location in space, and the sense in which it is traced, as observed along the
direction of propagation .” Polarization then is the curve traced by the end point of the
arrow (vector) representing the instantaneous electric field. The field must be observed
along the direction of propagation. A typical trace as a function of time is shown in
Figure 1.15.

The polarization of a wave can be defined in terms of a wave radiated (transmitted)
or received by an antenna in a given direction. The polarization of a wave radiated by
an antenna in a specified direction at a point in the far field is defined as “the polarization
of the (locally) plane wave which is used to represent the radiated wave at that point. At
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(b) Polarization ellipse
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Figure 1.15 Rotation of a plane electromagnetic wave and its polarization ellipse at z = 0 as a
function of time.

any point in the far field of an antenna the radiated wave can be represented by a plane
wave whose electric-field strength is the same as that of the wave and whose direction of
propagation is in the radial direction from the antenna. As the radial distance approaches
infinity, the radius of curvature of the radiated wave’s phase front also approaches infinity
and thus in any specified direction the wave appears locally as a plane wave.” This is
a far-field characteristic of waves radiated by all practical antennas. The polarization of
a wave received by an antenna is defined as the “polarization of a plane wave, incident
from a given direction and having a given power flux density, which results in maximum
available power at the antenna terminals.”
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Polarization may be classified as linear , circular , or elliptical . If the vector that
describes the electric field at a point in space as a function of time is always directed
along a line, the field is said to be linearly polarized. In general, however, the figure that
the electric field traces is an ellipse, and the field is said to be elliptically polarized. Linear
and circular polarizations are special cases of elliptical, and they can be obtained when the
ellipse becomes a straight line or a circle, respectively. The figure of the electric field is
traced in a clockwise (CW) or counterclockwise (CCW) sense. Clockwise rotation of the
electric-field vector is also designated as right-hand polarization and counterclockwise
as left-hand polarization .

In general, the polarization characteristics of an antenna can be represented by its
polarization pattern whose one definition is “the spatial distribution of the polarizations
of a field vector excited (radiated) by an antenna taken over its radiation sphere. When
describing the polarizations over the radiation sphere, or portion of it, reference lines shall
be specified over the sphere, in order to measure the tilt angles (see tilt angle) of the
polarization ellipses and the direction of polarization for linear polarizations. An obvious
choice, though by no means the only one, is a family of lines tangent at each point on
the sphere to either the θ or φ coordinate line associated with a spherical coordinate
system of the radiation sphere. At each point on the radiation sphere the polarization
is usually resolved into a pair of orthogonal polarizations, the co-polarization and cross
polarization . To accomplish this, the co-polarization must be specified at each point on the
radiation sphere. . . . Co-polarization represents the polarization the antenna is intended
to radiate (receive) while Cross polarization represents the polarization orthogonal to a
specified polarization which is usually the co-polarization.

“For certain linearly polarized antennas, it is common practice to define the co-
polarization in the following manner: First specify the orientation of the co-polar electric-
field vector at a pole of the radiation sphere. Then, for all other directions of interest
(points on the radiation sphere), require that the angle that the co-polar electric-field vec-
tor makes with each great circle line through the pole remain constant over that circle,
the angle being that at the pole.

“In practice, the axis of the antenna’s main beam should be directed along the polar
axis of the radiation sphere. The antenna is then appropriately oriented about this axis
to align the direction of its polarization with that of the defined co-polarization at the
pole. . . .This manner of defining co-polarization can be extended to the case of elliptical
polarization by defining the constant angles using the major axes of the polarization
ellipses rather than the co-polar electric-field vector. The sense of polarization (rotation)
must also be specified.”

The polarization of the wave radiated by the antenna can also be represented on
the Poincaré sphere [13–16]. Each point on the Poincaré sphere represents a unique
polarization. The north pole represents left circular polarization, the south pole represents
right circular, and points along the equator represent linear polarization of different
tilt angles. All other points on the Poincaré sphere represent elliptical polarization. For
details, see Figure 17.24 of Chapter 17 [1].

1.12.1 Linear, Circular, and Elliptical Polarizations

We summarize the discussion on polarization by stating the general characteristics and
the necessary and sufficient conditions that the wave must have in order to possess linear,
circular , or elliptical polarization.
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Linear Polarization A time-harmonic wave is linearly polarized at a given point in
space if the electric-field (or magnetic-field) vector at that point is always oriented along
the same straight line at every instant of time. This is accomplished if the field vector
(electric or magnetic) possesses the following:

1. Only one component, or

2. Two orthogonal linear components that are in time phase or 180◦ (or multiples of
180◦) out-of-phase.

Circular Polarization A time-harmonic wave is circularly polarized at a given point in
space if the electric (or magnetic) field vector at that point traces a circle as a function
of time.

The necessary and sufficient conditions to accomplish this are if the field vector
(electric or magnetic) possesses all of the following:

1. The field must have two orthogonal linear components, and

2. The two components must have the same magnitude, and

3. The two components must have a time-phase difference of odd multiples of 90◦.

The sense of rotation is always determined by rotating the phase-leading component
toward the phase-lagging component and observing the field rotation as the wave is
viewed as it travels away from the observer. If the rotation is clockwise, the wave is
right-hand (or clockwise) circularly polarized; if the rotation is counterclockwise, the wave
is left-hand (or counterclockwise) circularly polarized. The rotation of the phase-leading
component toward the phase-lagging component should be done along the angular sepa-
ration between the two components that is less than 180◦. Phases equal to or greater than
0◦ and less than 180◦ should be considered leading whereas those equal to or greater
than 180◦ and less than 360◦ should be considered lagging .

Elliptical Polarization A time-harmonic wave is elliptically polarized if the tip of the
field vector (electric or magnetic) traces an elliptical locus in space. At various instants
of time the field vector changes continuously with time in such a manner as to describe an
elliptical locus. It is right-hand (clockwise) elliptically polarized if the field vector rotates
clockwise, and it is left-hand (counterclockwise) elliptically polarized if the field vector of
the ellipse rotates counterclockwise [13]. The sense of rotation is determined using the
same rules as for the circular polarization. In addition to the sense of rotation, elliptically
polarized waves are also specified by their axial ratio whose magnitude is the ratio of
the major to the minor axis.

A wave is elliptically polarized if it is not linearly or circularly polarized. Although
linear and circular polarizations are special cases of elliptical, usually in practice elliptical
polarization refers to other than linear or circular. The necessary and sufficient conditions
to accomplish this are if the field vector (electric or magnetic) possesses all of the
following:

1. The field must have two orthogonal linear components, and

2. The two components can be of the same or different magnitude.
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3. (a) If the two components are not of the same magnitude, the time-phase difference
between the two components must not be 0◦ or multiples of 180◦ (because it will
then be linear). (b) If the two components are of the same magnitude, the time-phase
difference between the two components must not be odd multiples of 90◦ (because
it will then be circular).

If the wave is elliptically polarized with two components not of the same magnitude
but with odd multiples of 90◦ time-phase difference, the polarization ellipse will not be
tilted but it will be aligned with the principal axes of the field components. The major
axis of the ellipse will align with the axis of the field component that is the larger of the
two, while the minor axis of the ellipse will align with the axis of the field component
that is the smaller of the two.

For elliptical polarization of a wave traveling along the negative z axis, the curve
traced at a given z position as a function of time is, in general, a tilted ellipse, as shown
in Figure 1.15(b). The ratio of the major axis to the minor axis is referred to as the axial
ratio (AR), and it is equal to

AR = major axis

minor axis
= OA

OB
, 1 ≤ AR ≤ ∞ (1.34)

where

OA = [ 1
2 {E2

xo + E2
yo + [E4

xo + E4
yo + 2E2

xoE
2
yo cos(2�φ)]1/2}]1/2

(1.34a)

OB = [ 1
2 {E2

xo + E2
yo − [E4

xo + E4
yo + 2E2

xoE
2
yo cos(2�φ)]1/2}]1/2

(1.34b)

where E xo and E yo represent, respectively, the maximum magnitudes of the two electric
field components while �φ is the time-phase difference between them. The tilt of the
ellipse, relative to the y axis , is represented by the angle τ given by

τ = π

2
− 1

2
tan−1

[
2ExoEyo

E2
xo − E2

yo

cos(�φ)

]
(1.35)

When the ellipse is aligned with the principal axes [τ = nπ /2, n = 0, 1, 2, . . .], the
major (minor) axis is equal to E xo (E yo ) or E yo(E xo ) and the axial ratio is equal to
E xo /E yo or E yo /E xo .

1.12.2 Polarization Loss Factor and Efficiency

In general, the polarization of the receiving antenna will not be the same as the polariza-
tion of the incoming (incident) wave. This is commonly stated as “polarization mismatch.”
The amount of power extracted by the antenna from the incoming signal will not be max-
imum because of the polarization loss. Assuming that the electric field of the incoming
wave can be written

Ei = ρ̂wEi (1.36)

where ρ̂w is the unit vector of the wave, and the polarization of the electric field of the
receiving antenna can be expressed as

Ea = ρ̂aEa (1.37)
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Figure 1.16 Polarization unit vectors of incident wave (ρ̂w) and antenna (ρ̂a), and polarization
loss factor (PLF).

where ρ̂a is its unit vector (polarization vector), the polarization loss can be taken into
account by introducing a polarization loss factor (PLF). It is defined, based on the
polarization of the antenna in its transmitting mode, as

PLF = |ρ̂w · ρ̂a|2 = | cos ψp|2 (dimensionless) (1.38)

where ψp is the angle between the two unit vectors. The relative alignment of the polar-
ization of the incoming wave and of the antenna is shown in Figure 1.16. If the antenna
is polarization matched, its PLF will be unity and the antenna will extract maximum
power from the incoming wave.

Another figure of merit that is used to describe the polarization characteristics of a
wave and that of an antenna is the polarization efficiency (polarization mismatch or loss
factor), which is defined as “the ratio of the power received by an antenna from a given
plane wave of arbitrary polarization to the power that would be received by the same
antenna from a plane wave of the same power flux density and direction of propagation,
whose state of polarization has been adjusted for a maximum received power.” This is
similar to the PLF and it is expressed as

pe = |�e · Einc|2
|�e|2|Einc|2 (1.39)

where

�e = vector effective length of the antenna

Einc = incident electric field

The vector effective length �e of the antenna has not yet been defined, and it is
introduced in Section 1.15. It is a vector that describes the polarization characteristics of
the antenna. Both the PLF and pe lead to the same answers.

The conjugate (*) is not used in Eq. (1.38) or (1.39) so that a right-hand circularly
polarized incident wave (when viewed in its direction of propagation) is matched to a
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right-hand circularly polarized receiving antenna (when its polarization is determined in
the transmitting mode). Similarly, a left-hand circularly polarized wave will be matched
to a left-hand circularly polarized antenna.

Based on the definitions of the wave transmitted and received by an antenna, the
polarization of an antenna in the receiving mode is related to that in the transmitting
mode as follows:

1. “In the same plane of polarization, the polarization ellipses have the same axial
ratio, the same sense of polarization (rotation) and the same spatial orientation.

2. “Since their senses of polarization and spatial orientation are specified by viewing
their polarization ellipses in the respective directions in which they are propagating,
one should note that:

(a) Although their senses of polarization are the same, they would appear to be
opposite if both waves were viewed in the same direction.

(b) Their tilt angles are such that they are the negative of one another with respect
to a common reference.”

Since the polarization of an antenna will almost always be defined in its transmitting
mode, according to the IEEE Std 145-1983, “the receiving polarization may be used to
specify the polarization characteristic of a nonreciprocal antenna which may transmit and
receive arbitrarily different polarizations.”

The polarization loss must always be taken into account in the link calculations design
of a communication system because in some cases it may be a very critical factor. Link
calculations of communication systems for outer space explorations are very stringent
because of limitations in spacecraft weight. In such cases, power is a limiting consider-
ation. The design must properly take into account all loss factors to ensure a successful
operation of the system.

An antenna that is elliptically polarized is that composed of two crossed dipoles, as
shown in Figure 1.17. The two crossed dipoles provide the two orthogonal field compo-
nents that are not necessarily of the same field intensity toward all observation angles.
If the two dipoles are identical, the field intensity of each along zenith (perpendicular to
the plane of the two dipoles) would be of the same intensity. Also, if the two dipoles
were fed with a 90◦ time-phase difference (phase quadrature), the polarization along
zenith would be circular and elliptical toward other directions. One way to obtain the
90◦ time-phase difference �φ between the two orthogonal field components, radiated
respectively by the two dipoles, is by feeding one of the two dipoles with a transmission
line that is λ/4 longer or shorter than that of the other (�φ = k�� = (2π /λ)(λ/4) = π /2).
One of the lengths (longer or shorter) will provide right-hand (CW) rotation while the
other will provide left-hand (CCW) rotation.

1.13 INPUT IMPEDANCE

Input impedance is defined as “the impedance presented by an antenna at its terminals
or the ratio of the voltage to current at a pair of terminals or the ratio of the appropriate
components of the electric to magnetic fields at a point.” In this section we are primarily
interested in the input impedance at a pair of terminals that are the input terminals of
the antenna. In Figure 1.18a these terminals are designated as a –b. The ratio of the
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Figure 1.17 Geometry of elliptically polarized cross-dipole antenna.

voltage to current at these terminals, with no load attached, defines the impedance of the
antenna as

ZA = RA + jXA (1.40)

where

Z A = antenna impedance at terminals a –b (ohms)

RA = antenna resistance at terminals a –b (ohms)

X A = antenna reactance at terminals a –b (ohms)

In general, the resistive part of Eq. (1.40) consists of two components; that is,

RA = Rr + RL (1.41)

where

Rr = radiation resistance of the antenna

RL = loss resistance of the antenna

The radiation resistance is used to represent the power delivered to the antenna for
radiation.

If we assume that the antenna is attached to a generator with internal impedance

Zg = Rg + jXg (1.42)

where

Rg = resistance of generator impedance (ohms)

X g = reactance of generator impedance (ohms)
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Figure 1.18 Transmitting antenna and its equivalent circuits.

and the antenna is used in the transmitting mode, we can represent the antenna and
generator by an equivalent circuit† shown in Figure 1.18b.

The maximum power delivered to the antenna occurs when we have conjugate match-
ing; that is, when

Rr + RL = Rg (1.43a)

XA = −Xg (1.43b)

Under conjugate matching, of the power that is provided by the generator, half is dissi-
pated as heat in the internal resistance (Rg ) of the generator and the other half is delivered

†This circuit can be used to represent small and simple antennas. It cannot be used for antennas with lossy
dielectric or antennas over lossy ground because their loss resistance cannot be represented in series with the
radiation resistance.
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to the antenna. This only happens when we have conjugate matching . Of the power that
is delivered to the antenna, part is radiated through the mechanism provided by the radi-
ation resistance and the other is dissipated as heat, which influences part of the overall
efficiency of the antenna. If the antenna is lossless and matched to the transmission line
(eo = 1), then half of the total power supplied by the generator is radiated by the antenna
during conjugate matching, and the other half is dissipated as heat in the generator. Thus
to radiate half of the available power through Rr you must dissipate the other half as heat
in the generator through Rg . These two powers are, respectively, analogous to the power
transferred to the load and the power scattered by the antenna in the receiving mode. In
Figure 1.18 it is assumed that the generator is directly connected to the antenna. If there
is a transmission line between the two, which is usually the case, then Z g represents the
equivalent impedance of the generator transferred to the input terminals of the antenna
using the impedance transfer equation. If, in addition, the transmission line is lossy, then
the available power to be radiated by the antenna will be reduced by the losses of the
transmission line. Figure 1.18c illustrates the Norton equivalent of the antenna and its
source in the transmitting mode.

The input impedance of an antenna is generally a function of frequency. Thus the
antenna will be matched to the interconnecting transmission line and other associated
equipment only within a bandwidth. In addition, the input impedance of the antenna
depends on many factors including its geometry, its method of excitation, and its proxim-
ity to surrounding objects. Because of their complex geometries, only a limited number
of practical antennas have been investigated analytically. For many others, the input
impedance has been determined experimentally.

1.14 ANTENNA RADIATION EFFICIENCY

The antenna efficiency that takes into account the reflection, conduction, and dielectric
losses was discussed in Section 1.8. The conduction and dielectric losses of an antenna
are very difficult to compute and in most cases they are measured. Even with measure-
ments, they are difficult to separate and they are usually lumped together to form the ecd

efficiency. The resistance RL is used to represent the conduction–dielectric losses.
The conduction–dielectric efficiency ecd is defined as the ratio of the power delivered

to the radiation resistance Rr to the power delivered to Rr and RL.
The radiation efficiency can be written

ecd = Rr

RL + Rr

(dimensionless) (1.44)

For a metal rod of length l and uniform cross-sectional area A, the dc resistance is
given by

Rdc = 1

σ

l

A
(ohms) (1.45a)

If the skin depth δ (δ = √
2/ωµ0σ) of the metal is very small compared to the smallest

diagonal of the cross section of the rod, the current is confined to a thin layer near the
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conductor surface. Therefore the high frequency resistance, based on a uniform current
distribution , can be written

Rhf = l

P
Rs = l

P

√
ωµ0

2σ
(ohms) (1.45b)

where P is the perimeter of the cross section of the rod (P = C = 2πb for a circular wire
of radius b), Rs is the conductor surface resistance, ω is the angular frequency, µ0 is the
permeability of free space, and σ is the conductivity of the metal. For a λ/2 dipole with
a sinusoidal current distribution RL = 1

2Rhf, where Rhf is given by Eq. (1.45b).

1.15 ANTENNA VECTOR EFFECTIVE LENGTH AND EQUIVALENT AREAS

An antenna in the receiving mode, whether it is in the form of a wire, horn, aperture,
array, or dielectric rod, is used to capture (collect) electromagnetic waves and to extract
power from them, as shown in Figures 1.19. For each antenna, an equivalent length and
a number of equivalent areas can then be defined.

These equivalent quantities are used to describe the receiving characteristics of an
antenna, whether it be a linear or an aperture type, when a wave is incident on the
antenna.

1.15.1 Vector Effective Length

The effective length of an antenna, whether it be a linear or an aperture antenna, is a
quantity that is used to determine the voltage induced on the open-circuit terminals of
the antenna when a wave impinges on it. The vector effective length �e for an antenna
is usually a complex vector quantity represented by

�e(θ, φ) = âθ lθ (θ, φ) + âφlφ(θ, φ) (1.46)

It should be noted that it is also referred to as the effective height . It is a far-field quantity
and it is related to the far-zone field Ea radiated by the antenna, with current I in in its
terminals, by [13–18]

Ea = âθEθ + âφEφ = −jη
kIin

4πr
�ee

−jkr (1.47)

The effective length represents the antenna in its transmitting and receiving modes, and it
is particularly useful in relating the open-circuit voltage Voc of receiving antennas. This
relation can be expressed as

Voc = Ei · �e (1.48)

where

Voc = open-circuit voltage at antenna terminals

Ei = incident electric field

�e = vector effective length
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Figure 1.19 Uniform plane wave incident on dipole and aperture antennas.

In Eq. (1.48) Voc can be thought of as the voltage induced in a linear antenna of length
�e when �e and Ei are linearly polarized [19, 20]. From relation Eq. (1.48) the effec-
tive length of a linearly polarized antenna receiving a plane wave in a given direction
is defined as “the ratio of the magnitude of the open-circuit voltage developed at the
terminals of the antenna to the magnitude of the electric-field strength in the direction of
the antenna polarization. Alternatively, the effective length is the length of a thin straight
conductor oriented perpendicular to the given direction and parallel to the antenna polar-
ization, having a uniform current equal to that at the antenna terminals and producing
the same far-field strength as the antenna in that direction.”

In addition, as shown in Section 1.12.2, the antenna vector effective length is used to
determine the polarization efficiency of the antenna.
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1.15.2 Antenna Equivalent Areas

With each antenna, we can associate a number of equivalent areas. These are used to
describe the power capturing characteristics of the antenna when a wave impinges on it.
One of these equivalent areas is the effective area (aperture), which in a given direction
is defined as “the ratio of the available power at the terminals of a receiving antenna
to the power flux density of a plane wave incident on the antenna from that direction,
the wave being polarization-matched to the antenna. If the direction is not specified, the
direction of maximum radiation intensity is implied.” In equation form it is written as

Ae = PT

Wi

= |IT |2RT /2

Wi

(1.49)

where

Ae = effective area (effective aperture) (m2)

PT = power delivered to the load (W)

W i = power density of incident wave (W/m2)

The effective aperture is the area that when multiplied by the incident power density
gives the power delivered to the load. We can write Eq. (1.49) as

Ae = |VT |2
2Wi

(
RT

(Rr + RL + RT )2 + (XA + XT )2

)
(1.50)

Under conditions of maximum power transfer (conjugate matching), Rr + RL = RT and
X A = −X T , the effective area of Eq. (1.50) reduces to the maximum effective aperture
given by

Aem = |VT |2
8Wi

(
RT

(RL + Rr)2

)
= |VT |2

8Wi

(
1

Rr + RL

)
(1.51)

1.16 MAXIMUM DIRECTIVITY AND MAXIMUM EFFECTIVE AREA

In general then, the maximum effective area (Aem ) of any antenna is related to its maximum
directivity (D0) by [1]

Aem = λ2

4π
D0 (1.52)

Thus when Eq. (1.52) is multiplied by the power density of the incident wave it leads
to the maximum power that can be delivered to the load. This assumes that there are no
conduction-dielectirc losses (radiation efficiency ecd is unity), the antenna is matched to
the load (reflection efficiency er is unity), and the polarization of the impinging wave
matches that of the antenna (polarization loss factor PLF and polarization efficiency pe

are unity). If there are losses associated with an antenna, its maximum effective aperture
of Eq. (1.52) must be modified to account for conduction-dielectric losses (radiation
efficiency). Thus

Aem = ecd

(
λ2

4π

)
D0 (1.53)
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The maximum value of Eq. (1.53) assumes that the antenna is matched to the load and
the incoming wave is polarization-matched to the antenna. If reflection and polarization
losses are also included, then the maximum effective area of Eq. (1.53) is represented by

Aem = e0

(
λ2

4π

)
D0|ρ̂w·ρ̂a|2

= ecd(1 − |
|2)
(

λ2

4π

)
D0|ρ̂w · ρ̂a|2

(1.54)

1.17 FRIIS TRANSMISSION EQUATION AND RADAR RANGE EQUATION

The analysis and design of radar and communications systems often require the use of
the Friis transmission equation and the radar range equation . Because of the importance
[21] of the two equations, a few pages will be devoted to them.

1.17.1 Friis Transmission Equation

The Friis transmission equation relates the power received Pr to the power transmitted
Pt between two antennas separated by a distance R > 2D2/λ, where D is the largest
dimension of either antenna. Referring to Figure 1.20, we can write the ratio of received
power Pr to transmitted power Pt as

Pr

Pt

= eter

λ2Dt(θt , φt )Dr(θr , φr)

(4πR)2
(1.55)

where

et = radiation efficiency of transmitting antenna

er = radiation efficiency of receiving antenna

Dt = directivity of transmitting antenna

Dr = directivity of receiving antenna

The power received based on Eq. (1.55) assumes that the transmitting and receiving
antennas are matched to their respective lines or loads (reflection efficiencies are unity)

(θr , φr)

(θt , φt)

Transmitting antenna
(Pt, Gt, Dt, ecdt, Γt,    t)

^

Receiving antenna
(Pr , Gr , Dr , ecdr , Γr ,    r)

^
R

Figure 1.20 Geometrical orientation of transmitting and receiving antennas for Friis transmission
equation.
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and the polarization of the receiving antenna is polarization-matched to the impinging
wave (polarization loss factor and polarization efficiency are unity). If these two factors
are also included, then the ratio of the received to the input power of Eq. (1.55) is
represented by

Pr

Pt

= ecdt ecdr (1 − |
t |2)(1 − |
r |2)
(

λ

4πR

)2

Dt(θt , φt )Dr(θr , φr)|ρ̂ t · ρ̂r |2 (1.56)

For reflection and polarization-matched antennas aligned for maximum directional
radiation and reception, Eq. (1.56) reduces to

Pr

Pt

=
(

λ

4πR

)2

G0tG0r (1.57)

Equation Eq. (1.55) or (1.56), or (1.57) is known as the Friis transmission equation ,
and it relates the power Pr (delivered to the receiver load) to the input power of the
transmitting antenna Pt . The term (λ/4πR)2 is called the free-space loss factor , and it
takes into account the losses due to the spherical spreading of the energy by the antenna.

1.17.2 Radar Range Equation

Now let us assume that the transmitted power is incident on a target, as shown in
Figure 1.21. We now introduce a quantity known as the radar cross section or echo
area (σ ) of a target, which is defined as the area intercepting that amount of power
which, when scattered isotropically, produces at the receiver a density that is equal to
that scattered by the actual target [1]. In equation form,

lim
R→∞

(
σWi

4πR2

)
= Ws (1.58)

Incident wave

Transmitting antenna
(Pt, Gt, Dt, ecdt, Γt,   t) Scattered wave

(  w)

Target σ

Receiving antenna
(Pr , Gr , Dr , ecdr , Γr ,    r)

R1

R2

^

^

^

Figure 1.21 Geometrical arrangement of transmitter, target, and receiver for radar range equation.
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or

σ = lim
R→∞

(
4πR2 Ws

Wi

)
= lim

R→∞

(
4πR2 |Es |2

|Ei |2
)

= lim
R→∞

(
4πR2 |Hs |2

|Hi |2
) (1.59)

where

σ = radar cross section or echo area (m2)

R = observation distance from target (m)

Wi = incident power density (W/m2)

Ws = scattered power density (W/m2)

Ei (Es ) = incident (scattered) electric field (V/m)

Hi (Hs ) = incident (scattered) magnetic field (A/m)

Any of the definitions in Eq. (1.59) can be used to derive the radar cross section of any
antenna or target. For some polarization one of the definitions based either on the power
density, electric field, or magnetic field may simplify the derivation, although all should
give the same answers [13].

The ratio of received power Pr to transmitted power Pt , that has been scattered by the
target with a radar cross section of σ , can be written

Pr

Pt

= ecdt ecdrσ
Dt(θt , φt )Dr(θr , φr)

4π

(
λ

4πR1R2

)2

(1.60)

Expression (1.60) is used to relate the received power to the input power, and it takes
into account only conduction–dielectric losses (radiation efficiency) of the transmitting
and receiving antennas. It does not include reflection losses (reflection efficiency) and
polarization losses (polarization loss factor or polarization efficiency). If these two losses
are also included, then Eq. (1.60) must be expressed as

Pr

Pt

= ecdt ecdr (1 − |
t |2)(1 − |
r |2)σ Dt(θt , φt )Dr(θr , φr)

4π

×
(

λ

4πR1R2

)2

|ρ̂w · ρ̂r |2
(1.61)

where

ρ̂w = polarization unit vector of the scattered waves

ρ̂r = polarization unit vector of the receiving antenna

For polarization-matched antennas aligned for maximum directional radiation and
reception, Eq. (1.61) reduces to

Pr

Pt

= σ
G0tG0r

4π

(
λ

4πR1R2

)2

(1.62)
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Equation (1.60), or (1.61), or (1.62) is known as the radar range equation . It relates
the power Pr (delivered to the receiver load) to the input power Pt transmitted by an
antenna, after it has been scattered by a target with a radar cross section (echo area)
of σ .

1.17.3 Antenna Radar Cross Section

The radar cross section, usually referred to as RCS, is a far-field parameter, which is
used to characterize the scattering properties of a radar target. For a target, there is
monostatic or backscattering RCS when the transmitter and receiver of Figure 1.21 are
at the same location, and a bistatic RCS when the transmitter and receiver are not at
the same location. In designing low-observable or low-profile (stealth) targets, it is the
parameter that you attempt to minimize. For complex targets (such as aircraft, spacecraft,
missiles, ships, tanks, or automobiles) it is a complex parameter to derive. In general,
the RCS of a target is a function of the polarization of the incident wave, the angle of
incidence, the angle of observation, the geometry of the target, the electrical properties of
the target, and the frequency of operation. The units of RCS of three-dimensional targets
are meters squared (m2) or for normalized values decibels per squared meter (dBsm) or
RCS per squared wavelength in decibels (RCS /λ2 in dB). Representative values of some
typical targets are shown in Table 1.1 [22]. Although the frequency was not stated [22],
these numbers could be representative at X-band.

The RCS of a target can be controlled using primarily two basic methods: shaping
and the use of materials . Shaping is used to attempt to direct the scattered energy
toward directions other than the desired. However, for many targets shaping has to be
compromised in order to meet other requirements, such as aerodynamic specifications
for flying targets. Materials are used to trap the incident energy within the target and to
dissipate part of the energy as heat or to direct it toward directions other than the desired.
Usually both methods, shaping and materials, are used together in order to optimize the
performance of a radar target. One of the “golden rules” to observe in order to achieve
low RCS is to “round corners, avoid flat and concave surfaces, and use material treatment
in flare spots .”

TABLE 1.1 RCS of Some Typical Targets

Typical RCSs [22]

Object RCS (m2) RCS (dBsm)

Pickup truck 200 23
Automobile 100 20
Jumbo jet airliner 100 20
Large bomber or commercial jet 40 16
Cabin cruiser boat 10 10
Large fighter aircraft 6 7.78
Small fighter aircraft or four-passenger jet 2 3
Adult male 1 0
Conventional winged missile 0.5 −3
Bird 0.01 −20
Insect 0.00001 −50
Advanced tactical fighter 0.000001 −60
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There are many methods of analysis to predict the RCS of a target [13, 22–33]. Some
of them are full-wave methods, others are designated as asymptotic methods, either
low frequency or high frequency, and some are considered as numerical methods. The
methods of analysis are often contingent on the shape, size, and material composition of
the target. Some targets, because of their geometrical complexity, are often simplified and
are decomposed into a number of basic shapes (such as strips, plates, cylinders, cones,
wedges), which when put together represent a very good replica of the actual target.
This has been used extensively and proved to be a very good approach. The topic is
very extensive to be treated here in any detail, and the reader is referred to the literature
[13, 22–33]. There are a plethora of references but because of space limitations, only a
limited number are included here to get the reader started on the subject. Chapter 21 in
this and book is devoted to the antenna scattering and design considerations.

Antennas individually are radar targets that many exhibit large radar cross section. In
many applications, antennas are mounted on the surface of other complex targets (such
as aircraft, spacecraft, satellites, missiles, or automobiles) and become part of the overall
radar target. In such configurations, many antennas, especially aperture types (such as
waveguides and horns) become large contributors to the total RCS, monostatic or bistatic,
of the target. Therefore in designing low-observable targets, the antenna type, location,
and contributions become important considerations of the overall design.

The scattering and transmitting (radiation) characteristics of an antenna are related
[34–36]. There are various methods that can be used to analyze the fields scattered by
an antenna. The presentation here parallels that in Refs. 23 and 37–40. In general, the
electric field scattered by an antenna with a load impedance Z L can be expressed by

Es(ZL) = Es(0) − Is

It

ZL

ZL + ZA

Et (1.63)

where

Es (Z L) = electric field scattered by antenna with a load Z L

Es (0) = electric field scattered by short-circuited antenna (Z L = 0)

I s = short-circuited current induced by the incident field on the antenna with
Z L = 0

I t = antenna current in transmitting mode

Z A = RA + jX A = antenna input impedance

Et = electric field radiated by the antenna in transmitting mode

By defining an antenna reflection coefficient of


A = ZL − ZA

ZL + ZA

(1.64)

the scattered field of Eq. (1.63) can be written

Es(ZL) = Es(0) − Is

It

1

2
(1 + �A)Et (1.65)

Therefore according to Eq. (1.65) the scattered field by an antenna with a load Z L is
equal to the scattered field when the antenna is short-circuited (Z L = 0) minus a term
related to the reflection coefficient and the field transmitted by the antenna.
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Green has expressed the field scattered by an antenna terminated with a load Z L in
a more convenient form that allows it to be separated into the structural and antenna
mode scattering terms [23, 37–40]. This is accomplished by assuming that the antenna is
loaded with a conjugate-matched impedance (ZL = Z∗

A). Doing this and using Eq. (1.63)
generates another equation for the field scattered by the antenna with a load ZL = Z∗

A.
When this new equation is subtracted from Eq. (1.63) it eliminates the short-circuited
scattered field, and we can write that the field scattered by the antenna with a load
Z L is

Es(ZL) = Es(Z∗
A) − Is

It

�∗ZA

2RA

Et (1.66)

�∗ = ZL − Z∗
A

ZL + Z∗
A

(1.66a)

where

Es (Z L) = electric field scattered by the antenna with load Z L

Es(Z∗
A) = electric field scattered by the antenna with a conjugate-matched load

I (Z∗
A) = current induced by the incident wave at the antenna terminals matched

with a conjugate impedance load


* = conjugate-matched reflection coefficient

Z L = load impedance attached to antenna terminals

For the short-circuited case and the conjugate-matched transmitting (radiating) case,
the product of their currents and antenna impedance are related by [34]

IsZA = I ∗
m(ZA + Z∗

A) = 2RAI ∗
m (1.67)

where I ∗
m is the scattering current when the antenna is conjugate-matched (ZL = Z∗

A).
Substituting Eq. (1.67) into (1.66) for I s reduces Eq. (1.66) to

Es(ZL) = Es(Z∗
A) − I ∗

m

It

�∗Et (1.68)

It can also be shown that if the antenna is matched with a load Z A (instead of Z∗
A), then

Eq. (1.68) can be written

Es(ZL) = Es(ZA) − Im

It


AEt (1.69)

Therefore the field scattered by an antenna loaded with an impedance Z L is related
to the field radiated by the antenna in the transmitting mode in three different ways, as
shown by Eqs. (1.65), (1.68), and (1.69). According to Eq. (1.65) the field scattered by
an antenna when it is loaded with an impedance Z L is equal to the field scattered by the
antenna when it is short-circuited (Z L = 0) minus a term related to the antenna reflection
coefficient and the field transmitted by the antenna. In addition, according to Eq. (1.68),
the field scattered by an antenna when it is terminated with an impedance Z L is equal
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to the field scattered by the antenna when it is conjugate-matched with an impedance
Z∗

A minus the field transmitted (radiated) times the conjugate reflection coefficient. The
second term is weighted by the two currents. Alternatively, according to Eq. (1.69), the
field scattered by the antenna when it is terminated with an impedance Z L is equal to
the field scattered by the antenna when it is matched with an impedance Z A minus the
field transmitted (radiated) times the reflection coefficient weighted by the two currents.

In Eq. (1.68) the first term consists of the structural scattering term and the second
of the antenna mode scattering term. The structural scattering term is introduced by the
currents induced on the surface of the antenna by the incident field when the antenna
is conjugate-matched, and it is independent of the load impedance. The antenna mode
scattering term is only a function of the radiation characteristics of the antenna, and
its scattering pattern is the square of the antenna radiation pattern. The antenna mode
depends on the power absorbed in the load of a lossless antenna and the power that is
radiated by the antenna due to a load mismatch. This term vanishes when the antenna is
conjugate-matched.

From the scattered field expression of Eq. (1.65), it can be shown that the total radar
cross section of the antenna terminated with a load Z L can be written as [40]

σ = |√σ s − (1 + 
A)
√

σ aejφr |2 (1.70)

where

σ = total RCS with antenna terminated with Z L

σ s = RCS due to structural term

σ a = RCS due to antenna mode term

φr = relative phase between the structural and antenna mode terms

If the antenna is short-circuited (
A = −1), then according to Eq. (1.70)

σshort = σ s (1.71)

If the antenna is open-circuited (
A = +1), then according to Eq. (1.70)

σopen = |√σ s − 2
√

σ aejφr |2 = σresidual (1.72)

Lastly, if the antenna is matched Z L = Z A(
A = 0), then according to (1.70)

σmatch = |√σ s − √
σ aejφr |2 (1.73)

Therefore under matched conditions, according to Eq. (1.73), the range of values (mini-
mum to maximum) of the radar cross section is

|σ s − σ a| ≤ σ ≤ |σ s + σ a| (1.74)

The minimum value occurs when the two RCSs are in phase while the maximum occurs
when they are out of phase.
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To produce a zero RCS, Eq. (1.70) must vanish. This is accomplished if

Re(
A) = −1 + cos φr

√
σ s/σ a (1.75a)

Im(
A) = − sin φr

√
σ s/σ a (1.75b)

Assuming positive values of resistances, the real value of 
A cannot be greater than
unity. Thus there are some cases where the RCS cannot be reduced to zero by choosing
Z L. Because Z A can be complex, there is no limit on the imaginary part of 
A.

In general, the structural and antenna mode scattering terms are very difficult to predict
and usually require that the antenna is solved as a boundary-value problem. However,
these two terms have been obtained experimentally utilizing the Smith chart [37–39].

For a monostatic system the receiving and transmitting antennas are collocated. In
addition, if the antennas are identical (G0r = G0t = G0) and are polarization-matched
(Pr = Pt = 1), the total radar cross section of the antenna for backscattering can be
written as

σ = λ2
0

4π
G2

0|A − 
∗|2 (1.76)

where A is a complex parameter independent of the load.
If the antenna is a thin dipole, then A � 1 and Eq. (1.76) reduces to

σ � λ2
0

4π
G2

0|1 − 
∗|2 = λ2
0

4π
G2

0

∣∣∣∣1 − ZL − Z∗
A

ZL + ZA

∣∣∣∣
= λ2

0

4π
G2

0

∣∣∣∣ 2RA

ZL + ZA

∣∣∣∣
2

(1.77)

If in addition we assume that the dipole length is l = λ0/2 and is short-circuited (Z L = 0),
then the normalized radar cross section of Eq. (1.77) is equal to

σ

λ2
0

� G2
0

π
= (1.643)2

π
= 0.8593 � 0.86 (1.78)

which agrees with the experimental corresponding maximum monostatic value of
Figure 1.22 and those reported in the literature [41, 42].

Shown in Figure 1.22 is the measured E -plane monostatic RCS of a half-wavelength
dipole when it is matched to a load, short-circuited (straight wire), and open-circuited
(gap at the feed). The aspect angle is measured from the normal to the wire. As expected,
the RCS is a function of the observation (aspect) angle. Also it is apparent that there
are appreciable differences between the three responses. For the short-circuited case, the
maximum value is approximately −24 dBsm, which closely agrees with the computed
value of −22.5 dBsm using Eq. (1.78). Similar responses for the monostatic RCS of a
pyramidal horn are shown in Figure 1.23(a) for the E -plane and in Figure 1.23(b) for
the H -plane. The antenna is a commercial X-band (8.2–12.4 GHz) 20-dB standard gain
horn with aperture dimension of 9.2 cm by 12.4 cm. The length of the horn is 25.6 cm.
As for the dipole, there are differences between the three responses for each plane. It is
seen that the short-circuited response exhibits the largest return.

Antenna RCS from model measurements [43] and microstrip patches [44, 45] have
been reported.
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Figure 1.22 E -plane monostatic RCS (σ θθ ) versus incidence angle for a half-wavelength dipole.

1.18 ANTENNA TEMPERATURE

Every object with a physical temperature above absolute zero (0 K = −273◦C) radi-
ates energy [8]. The amount of energy radiated is usually represented by an equivalent
temperature T B , better known as brightness temperature, and it is defined as

TB(θ, φ) = ε(θ, φ)Tm = (1 − |
|2)Tm (1.79)

where

T B = brightness temperature (equivalent temperature; K)

ε = emissivity (dimensionless)

T m = molecular (physical) temperature (K)


(θ , φ) = reflection coefficient of the surface for the polarization of the wave

Since the values of emissivity are 0 ≤ ε ≤ 1, the maximum value the brightness tem-
perature can achieve is equal to the molecular temperature. Usually the emissivity is a
function of the frequency of operation, polarization of the emitted energy, and molecu-
lar structure of the object. Some of the better natural emitters of energy at microwave
frequencies are (1) the ground with equivalent temperature of about 300 K and (2) the
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Figure 1.23 E - and H -plane monostatic RCS versus incidence angle for a pyramidal horn.

sky with equivalent temperature of about 5 K when looking toward zenith and about
100–150 K toward the horizon.

The brightness temperature emitted by the different sources is intercepted by antennas,
and it appears at their terminals as an antenna temperature. The temperature appearing
at the terminals of an antenna is that given by Eq. (1.79), after it is weighted by the gain
pattern of the antenna. In equation form, this can be written
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TA =

∫ 2π

0

∫ π

0
TB(θ, φ)G(θ, φ) sin θ dθ dφ∫ 2π

0

∫ π

0
G(θ, φ) sin θ dθ dφ

(1.80)

where

T A = antenna temperature (effective noise temperature of the antenna radiation
resistance; K)

G(θ , φ) = gain (power) pattern of the antenna

Assuming no losses or other contributions between the antenna and the receiver, the
noise power transferred to the receiver is given by

Pr = kTA �f (1.81)

where

Pr = antenna noise power (W)

k = Boltzmann’s constant (1.38 × 10−23 J/K)

T A = antenna temperature (K)

�f = bandwidth (Hz)

If the antenna and transmission line are maintained at certain physical temperatures,
and the transmission line between the antenna and receiver is lossy, the antenna temper-
ature T A as seen by the receiver through Eq. (1.81) must be modified to include the other
contributions and the line losses. If the antenna itself is maintained at a certain physical
temperature T p and a transmission line of length l , constant physical temperature T 0

throughout its length, and uniform attenuation of α (Np/unit length) is used to connect
an antenna to a receiver, as shown in Figure 1.24, the effective antenna temperature at
the receiver terminals is given by

Ta = TAe−2αl + TAP e−2αl + T0(1 − e−2αl) (1.82)

l

Ta

Ts =  Ta + Tr

Tr

Receiver Transmission line Antenna

T0

TA + TAP TB

TP

Emitting
source

Figure 1.24 Antenna, transmission line, and receiver arrangement for system noise power cal-
culation.
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where

TAP =
(

1

eA

− 1

)
Tp (1.82a)

T a = antenna temperature at the receiver terminals (K)

T A = antenna noise temperature at the antenna terminals (Eq. (1.80)) (K)

T AP = antenna temperature at the antenna terminals due to physical temperature
(Eq. (1.82a)) (K)

T p = antenna physical temperature (K)

α = attenuation coefficient of transmission line (Np/m)

eA = thermal efficiency of antenna (dimensionless)

l = length of transmission line (m)

T 0 = physical temperature of the transmission line (K)

The antenna noise power of Eq. (1.81) must also be modified and written as

Pr = kTa �f (1.83)

where T a is the antenna temperature at the receiver input as given by Eq. (1.82).
If the receiver itself has a certain noise temperature T r (due to thermal noise in the

receiver components), the system noise power at the receiver terminals is given by

Ps = k(Ta + Tr) �f = kTs �f (1.84)

where

Ps = system noise power (at receiver terminals)

T a = antenna noise temperature (at receiver terminals)

T r = receiver noise temperature (at receiver terminals)

T s = T a + T r = effective system noise temperature (at receiver terminals)

A graphical relation of all the parameters is shown in Figure 1.24. The effective
system noise temperature T s of radio astronomy antennas and receivers varies from
very few degrees (typically � 10 K) to thousands of Kelvins depending on the type
of antenna, receiver, and frequency of operation. Antenna temperature changes at the
antenna terminals, due to variations in the target emissions, may be as small as a fraction
of one degree. To detect such changes, the receiver must be very sensitive and be able
to differentiate changes of a fraction of a degree.

A summary of the pertinent parameters and associated formulas and equation numbers
for this chapter are listed in Table 1.2.
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TABLE 1.2 Summary of Important Parameters and Associated Formulas and Equation
Numbers

Equation
Parameter Formula Number

Infinitesimal area of sphere dA = r2sin θ dθ dφ (1.1)

Elemental solid angle of
sphere

d�= sin θ dθ dφ (1.2)

Average power density Wav = 1
2 Re(E × H*) (1.5)

Radiated power/average
radiated power

Prad = Pav =
∫∫
©
S

Wav · ds = 1

2

∫∫
©
S

Re(E × H∗) · ds (1.6)

Radiation density of
isotropic radiator

W0 = Prad

4πr2

Radiation intensity (far field) U = r2Wrad = B0F(θ, φ)

� r2

2η
[|Eθ(r, θ, φ)|2 + |Eφ(r, θ, φ)|2]

(1.7),
(1.7a)

Directivity D(θ , φ) D = U

U0
= 4πU

Prad
= 4π

�A

(1.9),
(1.12)

Beam solid angle �A �A =
∫ 2π

0

∫ π

0
Fn(θ, φ) sin θdθdφ

Fn(θ, φ) = F(θ,φ)

|F(θ,φ)|max

(1.12a)
(1.12b)

Maximum directivity D0 Dmax = D0 = Umax

U0
= 4πUmax

Prad
(1.9a)

Partial directivities Dθ ,Dφ D0 = Dθ + Dφ

Dθ = 4πUθ

Prad
= 4πUθ

(Prad)θ + (Prad)φ

Dφ = 4πUφ

Prad
= 4πUφ

(Prad)θ + (Prad)φ

(1.10)

(1.10a)

(1.10b)

Approximate maximum
directivity (one main lobe
pattern)

D0 � 4π

	1r	2r

= 41, 253

	1d	2d

(Kraus)

D0 � 32 ln 2

	2
1r + 	2

2r

= 22.181

	2
1r + 	2

2r

= 72,815

	2
1d + 	2

2d

(Tai–Pereira)

(1.13),
(1.14)

(1.17a),
(1.17b)

Approximate maximum
directivity
(omnidirectional pattern)

D0 � 101

HPBW (degrees) − 0.0027[HPBW (degrees)]2

(McDonald)

D0 � −172.4 + 191

√
0.818 + 1

HPBW (degrees)
(Pozar)

(1.18a)

(1.18b)
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TABLE 1.2 (Continued )

Equation
Parameter Formula Number

Gain G(θ , φ) G = 4πU(θ, φ)

Pin
= ecd

(
4πU(θ, φ)

Prad

)
= ecdD(θ, φ)

Prad = ecdPin

(1.24),
(1.27),
(1.25)

Antenna radiation efficiency
ecd

ecd = Rr

Rr + RL

(1.44)

Loss resistance RL (straight
wire/uniform current )

RL = Rhf = l

P

√
ωµ0

2σ
(1.45b)

Loss resistance RL (straight
wire/λ/2 dipole)

RL = l

2P

√
ωµ0

2σ

Maximum gain G0 G0 = ecd Dmax = ecd D0 (1.27a)

Partial gains Gθ , Gφ G0 = Gθ + Gφ

Gθ = 4πUθ

Pin
, Gφ = 4πUφ

Pin

(1.29)
(1.29a)
(1.29b)

Absolute gain Gabs Gabs = er G(θ , φ) = er ecd D(θ , φ)
= (1 − |
|2)ecd D(θ ,φ) = e0D(θ ,φ)

(1.28)
(1.28b)

Total antenna efficiency e0 e0 = er eced = er ecd = (1 − |
|2)ecd (1.22),
(1.23)

Reflection efficiency er er = (1 − |
|2) (1.23)

Beam efficiency BE BE =

∫ 2π

0

∫ θ1

0
U(θ, φ) sin θ dθ dφ∫ 2π

0

∫ π

0
U(θ, φ) sin θ dθ dφ

(1.33)

Polarization loss factor (PLF) PLF = |ρ̂w · ρ̂a |2 (1.38)

Vector effective length
�e(θ , φ)

�e(θ , φ) = âθ l θ (θ , φ) + âφ lφ(θ , φ) (1.46)

Polarization efficiency pe pe = |�e · Einc|2
|�e|2|Einc|2 (1.39)

Antenna impedance Z A Z A = RA + jX A = (Rr + RL) + jX A (1.40),
(1.41)

Maximum effective area Aem Aem = |VT |2
8Wi

(
1

Rr + RL

)
= ecd

(
λ2

4π

)
D0|ρ̂w · ρ̂a |2

=
(

λ2

4π

)
G0|ρ̂w · ρ̂a |2

(1.51),
(1.53),
(1.54)

(continued )
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TABLE 1.2 (Continued )

Equation
Parameter Formula Number

Aperture efficiency εap εap = Aem

Ap

= maximum effective area

physical area

Friis transmission equation
Pr

Pt

=
(

λ

4πR

)2

G0tG0r |ρ̂t · ρ̂r |2 (1.56),
(1.57)

Radar range equation
Pr

Pt

= σ
G0tG0r

4π

(
λ

4πR1R2

)2

|ρ̂w · ρ̂r |2 (1.61),
(1.62)

Radar cross section (RCS) σ = lim
R→∞

(
4πR2 Ws

Wi

)
= lim

R→∞

(
4πR2 |Es |2

|Ei |2
)

= lim
R→∞

(
4πR2 |Hs |2

|Hi |2
) (1.59)

Brightness temperature
T B (θ , φ)

T B (θ , φ) = ε(θ , φ)T m = (1 − |
|2)T m (1.79)

Antenna temperature T A TA =

∫ 2π

0

∫ π

0
TB(θ, φ)G(θ, φ) sin θ dθ dφ∫ 2π

0

∫ π

0
G(θ, φ) sin θ dθ dφ

(1.80)
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