
Chapter 1: What the Heck Is VBA?

In This Chapter
� Understanding Visual Basic for Applications (VBA)

� Using the Visual Basic Editor

� Discovering code as you go

Visual Basic for Applications — often abbreviated VBA — is a program-
ming language you can use to extend the functionality of Microsoft

Access and other products in the Microsoft Office suite of programs. A pro-
gramming language is a means of writing instructions for the computer to
execute (perform). Programmers often refer to the written instructions as
code because the instructions aren’t in plain English. Rather, they’re in a
code that the computer can interpret and execute.

You can create sophisticated Access databases without using VBA at all. In
most cases, the other objects offered by Access — tables, queries, forms,
reports, and macros — offer more than enough flexibility and power to
create just about any database imaginable. But once in a while, you come
across a situation where you want to do something that none of those other
objects can do. That’s where VBA comes in. If you can find no other way to
accomplish some goal in Access, writing code is usually the solution.

Finding VBA Code
So what the heck is VBA code, anyway? To the untrained eye, VBA code
looks like gibberish — perhaps some secret code written by aliens from
another planet. But to Access, the code represents very specific instruc-
tions on how to perform some task.

Within any given database, Access stores code in two places:

✦ Class modules (Code-Behind Forms): Every form and report you create
automatically contains a class module (also called a code-behind form),
as illustrated in Figure 1-1. The class module for a given form or report
is empty unless you place controls that require VBA code on that form
or report.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 571

CO
PYRIG

HTED
 M

ATERIA
L



Finding VBA Code572

✦ Standard modules: Code can also be stored in standard modules. Code in
standard modules is accessible to all objects in your database, not just a
single form or report.

Opening a class module
If you want to view or change the code for a form or report’s class module,
first open, in Design view, the form or report to which the module is attached.
Then click the View Code button, shown near the mouse pointer in Figure 1-2.

Figure 1-2:
The View
Code
button.

Class module (Code Behind Form)

Form

Figure 1-1:
Every form
and report
has a class
module
behind it.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 572



Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Finding VBA Code 573

You can also get to a class module from the Event tab of the Property sheet
in the Design View window. The Property sheet allows you to zoom right in
on the VBA code that’s associated with a given control. For example, some
controls contain code created by wizards. When you click such a control and
then click the Events tab in the Property sheet, the property value chose
[Event Procedure]. When you click [Event Procedure], you see a
button with three dots, like the one near the mouse pointer in Figure 1-3.
That’s the Build button. Click it to see the code that executes in response to
the event.

To write custom code for a control, select the control in Design view, open
the Property sheet, click the Event tab, click the event to which you want to
attach some custom code, click the Build button, and then choose Code
Builder.

After you open a module, you’re taken to an entirely separate program
window called the Visual Basic Editor, where you see the module in all its
glory.

Creating or opening a standard module
Standard modules contain VBA code that isn’t associated with a specific
form or report. The code in a standard module is available to all tables,
queries, forms, reports, macros, and other modules in your database. You
won’t see Module as an option when you’re viewing All Access Objects in the
shutter bar until you create at least one standard module. You have to go
looking for options to create and work with modules.

Figure 1-3:
Look for the
code that
executes in
response to
the event.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 573



Finding VBA Code574

To create a new module, click the Create tab. Then click the arrow under the
Macros button and choose Module (Figure 1-4). The Visual Basic Editor
opens.

Standard modules don’t show up automatically in the shutter bar, not even
when you’re viewing all Access object types. To view standard modules in
your database, you have to click the drop-down button and choose Modules,
as in Figure 1-5. If you’ve already created and saved a standard module, you
can open it by double-clicking its name. If the current database contains no
standard Modules, you won’t even see Modules as a category.

Regardless of whether you create or open a module, you end up in the Visual
Basic Editor. The editor is a completely separate program with its own
taskbar button. The editor retains the old-style Windows look and feel. We
cover that in more detail in a moment. For now, keep in mind that you can
close the Visual Basic Editor and return to Access at any time. Just click the
Close (X) button in the Editor’s upper-right corner.

Figure 1-5:
Open a
pane to see
standard
modules.

Figure 1-4:
Create a
new
module.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 574



Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Enabling VBA Code 575

Enabling VBA Code
Like any programming language, people can use VBA to create code that
does good things or code that does bad things. Whenever you open a data-
base that contains code, Access displays a warning in the Security bar. The
warning doesn’t mean that there’s “bad code” in the database; it just means
that there is code in the database. Access has no way of determining
whether the code is beneficial or malicious. That’s a judgment call only a
human can make.

If you trust the source of that code, you have to click the Enable Content
button to make the code executable. Otherwise, the code is disabled, as are
many features of the Visual Basic Editor.

How code is organized
All modules organize their code into a Declaration section at the top, fol-
lowed by individual procedures, as shown in Figure 1-6. The Declaration
section contains options, written in code format, that apply to all procedures
in the module. Each procedure is also a chunk of VBA code that, when exe-
cuted, performs a specific set of steps.

Declarations

Sub procedure

Function procedure

Figure 1-6:
Modules
consist of
declarations
and
procedures.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 575



Using the Visual Basic Editor576

Procedures in a module fall into two major categories: sub procedures and
function procedures. Both types of procedures use VBA code to perform
some task. The next sections outline some subtle differences in how and
where they’re used.

Sub procedures
A sub procedure is one or more lines of code that make Access perform a par-
ticular task. Every sub procedure starts with the word Sub (or Private
Sub) and ends with End Sub, using one of the following general structures:

Sub name()
...code...

End Sub

Private Sub name()
...code...

End Sub

name is the name of the procedure, and ...code... is any amount of VBA
code.

Text that appears to be written in plain English within a module represents
programmer comments — notes for other programmers. The computer
ignores the comments. Every comment starts with an apostrophe (‘).

Function procedures
A function procedure is enclosed in Function...End Function state-
ments, as the following code shows:

Function name()
<...code...>

End Function

Unlike a sub procedure, which simply performs some task, a function proce-
dure performs a task and returns a value. In fact, an Access function proce-
dure is no different from any of the built-in functions you use in Access
expressions. And you can use a custom function procedure wherever you
can use a built-in procedure.

Using the Visual Basic Editor
Regardless of how you open a module, you end up in the Visual Basic Editor.
The Visual Basic Editor is where you write, edit, and test your VBA code. The
Visual Basic Editor is entirely separate from the Access program window. If

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 576



Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 577

you click outside the Visual Basic Editor window, the window may disappear
as whatever window you clicked comes to the front.

The Visual Basic Editor retains the view it had in previous versions of Access.
There is no Ribbon or shutter bar. In fact, the Visual Basic Editor is virtually
identical to Microsoft’s Visual Studio, the IDE (Integrated Development
Environment) used for all kinds of programming with Microsoft products.

Like all program windows, the Visual Basic Editor has its own Windows
taskbar button, as shown in the top half of Figure 1-7. If the taskbar is partic-
ularly crowded with buttons, the editor and Access may share a taskbar
button, as in the bottom half of Figure 1-7. If you suddenly lose the VBA
Editor window, click its taskbar button to bring the window back to the top
of the stack of program windows on your desktop.

In most versions of Windows, you can right-click the Windows taskbar and
choose the Tile Windows Vertically option from the shortcut menu to make
all open program windows visible on-screen without overlap.

Figure 1-7:
Taskbar
buttons for
Access and
the Visual
Basic Editor.

Talkin’ the talk
Programmers have their own slang terms to
describe what they do. For example, the term
code, which refers to the actual instructions
written in a programming language, is always
singular, like the terms hardware and software.
You don’t add hardwares and softwares to your
computer system. You add hardware and soft-
ware. Likewise, you never write, or cut and
paste codes. You write, or cut and paste, code.

The term GUI (pronounced goo-ey) refers to
Graphical User Interface. Anything you can
accomplish by using a mouse (that is, without

writing code) is considered part of the GUI. You
create tables, queries, forms, reports, data
access pages, and macros using the GUI. You
only need to write code in modules.

A database may be referred to as an app, which
is short for application. If a programmer says, “I
created most of the app with the GUI; I hardly
wrote any code at all,” he means he spent most
of his time creating tables, queries, forms,
reports, data access pages, and macros —
using the mouse — and relatively little time
typing code in VBA.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 577



Using the Visual Basic Editor578

The Visual Basic Editor provides many tools designed to help you write
code. Most of the tools are optional and can be turned on or off using the
View menu in the Visual Basic Editor menu. The windows are shown in
Figure 1-8. We provide more information on each of the optional windows
when they become relevant to the type of code we’re demonstrating. For
now, knowing how to make them appear and disappear is sufficient.

You can move and size most of the windows in the Visual Basic Editor using
standard methods. For instance, you can move most windows by dragging
their title bars. You size windows by dragging any corner or edge. Most of
the time, you won’t need to have all those optional windows open to write
code. Feel free to close any optional window open in your editor by clicking
its Close (X) button. To open a window, choose View from the menu, and
click the name of the window you want to open.

If you have multiple monitors connected to your computer, you can put the
Access window on one monitor and the Visual Basic Editor window on the
other.

Locals windowProject Explorer

Properties
window

Code
window

Immediate
window

Watches
window

Figure 1-8:
Visual Basic
Editor
components.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 578



Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 579

Using the Code window
The Code window is where you type your VBA code. Similar to a word
processor or text editor, the Code window supports all the standard
Windows text-editing techniques. You can type text and use the Backspace
and Delete keys on your keyboard to delete text. You can use the Tab key to
indent text. You can select text by dragging the mouse pointer through it.
You can copy and paste text to, and from, the Code window. In short, the
Code window is a text editor. 

The Code window acts like the document window in most other programs.
Click its Maximize button, shown near the mouse pointer at the top of
Figure 1-9, to enlarge it. To restore it to its previous size, click the Restore
Window button, shown at the bottom of that same figure.

Tools in the Code window are pointed out in Figure 1-10 and summarized
in the following list:

✦ Object box: When you’re viewing a class module, this box shows the
name of the object associated with the current code and allows you to
choose a different object. In a standard module, only the word General
appears because a standard module isn’t associated with any specific
form or report.

✦ Procedure/Events box: When you’re viewing a class module, this box
lists events supported by the object whose name appears in the Object
box. When viewing a standard module, the Procedure/Events box lists
the names of all procedures in that module. To jump to a procedure or
event, just choose its name from the drop-down list. 

Figure 1-9:
Code
Windows
Maximize
and Restore
Window
buttons.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 579



Using the Visual Basic Editor580

✦ Split bar: This divvies up the screen for you. Drag the Split bar down to
separate the Code window into two independently scrollable panes.
Drag the Split bar back to the top of the scroll bar to unsplit the window.

✦ Procedure view: When clicked, it hides declarations, and only proce-
dures are visible.

✦ Full Module view: When clicked, it makes declarations and procedures
visible.

✦ Sizing handle: Drag it to size the window. (You can drag any corner or
edge as well.)

Using the Immediate window
The Immediate window, or debug window, in the Visual Basic Editor allows
you to run code at any time, right on the spot. Use the Immediate window for
testing and debugging (removing errors from) code. If the Immediate window
isn’t open in the Visual Basic Editor, you can bring it out of hiding at any
time by choosing View➪Immediate Window from the editor’s menu. 

Object box

Procedure/ Events box

Split box

Procedure view

Full module view Sizing handle

Figure 1-10:
The Code
window
tools.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 580



Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 581

When the Immediate window is open, you can anchor it to the bottom of the
Visual Basic Editor just by dragging its title bar to the bottom of the window.
Optionally, you can make the Immediate window free-floating by dragging its
title bar up and away from the bottom of the Visual Basic Editor program
window. You can also dock and undock the Immediate window by right-
clicking within the Immediate window and choosing the Dockable option
from the shortcut menu that appears.

The Immediate window allows you to test expressions, run VBA procedures
you create, and more. To test an expression, you can use the debug.print
command, or the abbreviated ? version, followed by a blank space and the
expression. Which command you use doesn’t matter, although obviously,
typing the question mark is easier. You may think of the ? character in the
Immediate window as standing for “What is . . . ?” Typing ? 1+1 into the
Immediate window and pressing Enter is like asking, “What is one plus one?”
The Immediate window returns the answer to your question, 2, as shown in
Figure 1-11.

If you see a message about macro content being blocked, switch over to
the Access program window and click the Enable Content button on the
Security bar.

If you want to re-execute a line that you already typed into the Immediate
window, you don’t need to type that same line in again. Instead, just move
the cursor to the end of the line that you want to re-execute and press Enter.
To erase text from the Immediate window, drag the mouse pointer through
whatever text you want to erase. Then press the Delete (Del) key or right-
click the selected text and choose the Cut option from the shortcut menu.

You see many examples of using the Immediate window in the forthcoming
chapters of this book. For the purposes of this chapter, knowing the
Immediate window exists and basically how it works is enough. 

Figure 1-11:
The free-
floating
Immediate
window
solves 1 + 1
calculation.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 581



Using the Visual Basic Editor582

Do bear in mind that the Immediate window is just for testing and debug-
ging. The Code window is where you type (or paste in) VBA code. 

Using the Object Browser
VBA code can manipulate Access objects programmatically. Remember,
everything in Access is an object — tables, forms, reports, and even a single
control on a form or report are objects. Every Access object you see on-
screen in Access is managed either interactively or programmatically. When
you work with objects in the Access program window, using your mouse and
keyboard, you use Access interactively. You do something with your mouse
and keyboard and the object responds accordingly.

When you write code, you write instructions that tell Access to manipulate
an object programmatically, without user intervention. You write instructions
to automate some task that you may otherwise do interactively with mouse
and keyboard. In order to manipulate an object programmatically, you write
code that refers to the object by name. 

All the objects that make up Access and the current database are organized
into an object model, which comprises one or more object libraries. An object
library is an actual file on your hard drive that provides the names of objects
that VBA refers to and manipulates. 

Each object consists of classes, where each class is a single programmable
object. Each class has members, and some members are properties.
Properties are characteristics of the class, such as its name, or the number
of items it contains. Other members are methods, which expose things you
can do to the class programmatically.

The object model is huge and contains many libraries and classes. There’s
no way to memorize everything in the object model. It’s just too darn big.
The Visual Basic Editor provides an Object Browser that acts as a central
resource for finding things as well as getting help with things in the model.
It’s especially useful for deciphering other peoples’ code, like the examples
you’ll see in this book.

To view the objects that VBA can access, follow these steps to open the
Object Browser:

1. Make sure you’re in the Visual Basic Editor.

2. Click the Object Browser button in the toolbar, choose View➪Object
Browser from the menu, or press the F2 key.

The Object Browser opens. Figure 1-12 shows the Object Browser and points
out some of the major features of its window. The following list describes
each component:

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 582



Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 583

✦ Project/Library list: This allows you to choose a single library or proj-
ect to work with, or <All Libraries>.

✦ Search tools: Use these tools to help you find information in the libraries.

✦ Classes list: This shows the names of all classes in the currently selected
library or project name (or all libraries).

✦ Members list: When you click a name in the Classes list, this pane shows
the members (properties, methods, events, functions, objects) that
belong to that class.

✦ Details pane: When you click a member name in the Members list, the
Details pane shows the syntax for using the name as well as the name
of the library to which the member belongs. You can copy text from
the Details pane to the Code window.

✦ Split bar: Drag the Split bar left or right to adjust the size of the panes.
(Drag any edge or corner of the Object Browser window to size the
window as a whole.)

Searching the Object Library
For a beginning programmer, the sheer quantity of items in the Object
Browser is daunting. However, learning about the pre-written code you pick
up elsewhere is useful. Suppose you find and use a procedure that has a
DoCmd object in it. You’re wondering what this DoCmd thingy is.

Project/Library list Search tools Members list

Classes list Split bars Details pane

Figure 1-12:
The Object
Browser.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 583



Using the Visual Basic Editor584

You can search the Object Library for information about any object, includ-
ing DoCmd, by following these steps:

1. In the Object Browser, type the word you’re searching for in the
Search box.

In this example, type DoCmd, as shown in Figure 1-13.

2. Click the Search button.

The search results appear in the Search Results pane.

3. Click the word you searched for.

4. Click the Help (question mark) button on the Object Browser toolbar.

Figure 1-14 shows the Help window for the DoCmd object. For the absolute
beginner, even the information in the Help text may be a bit advanced.
However, as you gain experience and dig a little deeper into VBA, you’ll find
the Object Browser and Help windows useful for constructing references to
objects, properties, and methods from within your code. 

Search box

Search button Show/Hide search results

Help

Search results

Figure 1-13:
Object
Browser
search
tools.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 584



Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 585

Referring to objects and collections
Objects in the object model all have a syntax that works like this: You start
with the largest, most encompassing object, and work your way down to the
most specific object, property, or method. Sort of like a path to a filename,
as in C:\My Documents\MyFile.doc, where you start with the largest
container (disk drive C:), down to the next container (the folder named My
Documents), and then to the specific file (MyFile.doc).

For example, the Application object refers to the entire Access pro-
gram. It includes a CurrentProject object. If you were to look up the
CurrentProject object in the Object Browser and view its Help window,
you see CurrentProject houses several collections, including one named
AllForms. The AllForms collection contains the name of every form in the
current database.

The AllForms collection, in turn, supports a Count property. That property
returns the number of forms in the collection. Say that you have a database
open and that database contains some forms. If you go to the Immediate
window and type

? Application.CurrentProject.AllForms.Count

and then press Enter, the Immediate window displays a number matching
the total number of forms in the database.

Figure 1-14:
Help for the
DoCmd
object.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 585



Using the Visual Basic Editor586

At the risk of confusing matters, typing the following line in the Immediate
window returns the same result:

? CurrentProject.AllForms.Count

The shortened version works because the Application option is the
default parent object used if you don’t specify a parent object before
CurrentProject. (The Application object is the parent of Current-
Project because CurrentProject is a member of the Application
object library.)

The bottom line is that when you see a bunch of words separated by dots in
code (such as CurrentProject.AllForms.Count), be aware that those
words refer to some object. In a sense, the words are a path to the object —
going from the largest object down to a single, specific object, property,
method, or event. You can use the Object Browser as a means of looking up
the meanings of the words to gain an understanding of how the pre-written
code works. 

As you gain experience, you can use the Object Browser to look up informa-
tion about objects, collections, properties, methods, events, and constants
within your code. For now, consider the Object Browser as a tool for discov-
ering VBA as you go.

Choosing object libraries
Most likely, the object libraries that appear automatically in the Object
Browser’s Project/Library drop-down list are all you need. However, should a
given project require you to add some other object library, follow these
steps to add it:

1. Choose Tools➪References from the Visual Basic Editor main menu.

The References dialog box opens.

2. Choose any library name from the list. 

In the unlikely event that you need a library that isn’t in the list — but
you know you stored it on your hard drive — click the Browse button,
navigate to the folder that contains the object library you need, click its
name, and then click the Open button. 

3. Click OK when the object libraries you need have check marks.

The Project/Library list in the Object Browser now includes all the
libraries you selected in the References dialog box.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 586



Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Discovering Code as You Go 587

Closing the Visual Basic Editor
When you’re done working in the Visual Basic Editor, you can close it by
using whichever of the following techniques is most convenient for you:

✦ Choose File➪Close and return to Microsoft Access from the Visual Basic
Editor main menu.

✦ Click the Close button in the upper-right corner of the Visual Basic
Editor program window.

✦ Right-click the Visual Basic Editor button on the taskbar, and then
choose the Close option from the shortcut menu.

✦ Press Alt+Q.

Access continues to run even after you close the Visual Basic Editor window.

Discovering Code as You Go
Most beginning programmers start by working with code they pick up else-
where, such as code generated by code wizards, or code copied from a Web
site. You can also create VBA code, without writing it, by converting any
macro to VBA code.

Converting macros to VBA code
Any macro you create in Access can be converted to VBA code. Converting
macros to code is easier than writing code from scratch. For example, say
you need to write some code because a macro can’t do the job. But a macro
can do 90 percent of the job. If you create the macro and convert it to VBA
code, 90 percent of your code is already written. You just have to add the
other ten percent (which is especially helpful if you can’t type worth beans).

See Book VI, Chapter 1 for how macros work and how to create them.

As an example, suppose you click the Create tab, click the last Other button,
and then choose Macros, as in Figure 1-15, to create a new macro.

Then you create your macro. The macro can be as large or as small as you
want. Figure 1-16 shows a small simple example of a macro that shows a mes-
sage on the screen. After you create your macro, close and save it. For this
example, say I saved the macro in Figure 1-16 with the name TinyMacro.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 587



Discovering Code as You Go588

When you convert a macro to VBA code, you actually convert all the macros
in the macro group to code. Follow these steps for the basic procedure of
converting macros to VBA:

1. Choose Macros from the top of the Navigation Pane. Or choose All
Access Objects and expand the Macros category.

2. Click the name of the macro you want to convert.

3. Click the Database Tools tab.

4. Click the Convert Macros to Visual Basic button shown at the mouse
pointer in Figure 1-17.

Figure 1-17:
Convert
Macros to
Visual Basic
button.

Figure 1-16:
Sample
TinyMacro
macro.

Figure 1-15:
Create a
new macro.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 588



Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Discovering Code as You Go 589

A dialog box appears, asking whether you want to include error-handling
code or comments in the code. If you want to keep the code relatively
simple, you can clear the first option and select only the second option.

5. Click the Convert button and then click OK when your conversion is
complete. 

To see the name of the converted macro, expand the Modules category as in
Figure 1-18. The name of the module is Converted Macro - followed by
the name of the macro you converted.

To see the converted macro as VBA code, double-click its name. Like all VBA
code, the code from the converted macro opens in the Visual Basic Editor
Code window, as shown in Figure 1-19. 

Figure 1-19:
Converted
macro in
Code
window.

Figure 1-18:
TinyMacro
converted
to module
named
Converted
Macro -
Tiny
Macro.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 589



Discovering Code as You Go590

Cutting and pasting code
Many VBA programmers post examples of code they’ve written on Web
pages. When you come across some sample code you want to incorporate
into your own database, retyping it all into the Visual Basic Editor is not nec-
essary. Instead, just use standard Windows cut-and-paste techniques to copy
the code from the Web page into the Visual Basic Editor.

Say you come across some code in a Web page you want to use in your own
database. Here’s the sequence:

1. In the Web page, you drag the mouse pointer through the code you
want to copy to select that code. Then press Ctrl+C to copy that
selected code to the Windows Clipboard.

2. Back in Access, create a new module or open an existing module in
which you want to place the code.

3. In the Code window, click at the position where you want to put the
copied code. Then paste the code to the cursor position by pressing
Ctrl+V.

Bear in mind, however, that just pasting code into the Code window doesn’t
make the code do anything. Most code examples are based on a sample
database. Just dropping the example into your database may not be enough
to get it to work.

When you copy and paste from a Web page, you might get some HTML tags,
weird characters, weird spacing, and so forth. If that happens, you can copy
the code from the page and paste it into a simple text editor like Notepad first.
That should get rid of any unusual tags and characters. Then copy and paste
the text from the Notepad document into the VBA Editor’s Code window.

But even if you do find an example that’s generic enough to work in any data-
base, the code won’t actually do anything until some event in your database
triggers it into action. We’ll look at the many ways you can trigger code into
action in the next chapter.

38_036494 bk08ch01.qxp  11/17/06  8:34 AM  Page 590


