
Q1
PART I

BACKGROUND AND MOTIVATION

We start by introducing Domain-Specific Modeling (DSM). First we highlight the

difference to manual coding and to modeling languages originating from the code

world. This difference is demonstrated with a practical example. In Chapter 2, we

describe the main benefits of DSM: increase in productivity and quality as well as

use of expertise to share the knowledge within the development team.

CO
PYRIG

HTED
 M

ATERIA
L





CHAPTER 1

INTRODUCTION

1.1 SEEKING A BETTER LEVEL OF ABSTRACTION

Throughout the history of software development, developers have always sought

to improve productivity by improving abstraction. The new level of abstraction

has then been automatically transformed to the earlier ones. Today, however,

advances in traditional programming languages and modeling languages are

contributing relatively little to productivity—at least if we compare them to the

productivity increases gained when we moved from assembler to third generation

languages (3GLs) decades ago. A developer could then effectively get the same

functionality by writing just one line instead of several earlier. Today, hardly

anybody considers using UML or Java because of similar productivity gains.

Here Domain-Specific Modeling (DSM) makes a difference: DSM raises the level

of abstraction beyond current programming languages by specifying the solution

directly using problem domain concepts. The final products are then generated from

these high level specifications. This automation is possible because both the language

and generators need fit the requirements of only one company and domain. We define

a domain as an area of interest to a particular development effort. Domains can be a

horizontal, technical domain, such as persistency, user interface, communication, or

transactions, or a vertical, functional, business domain, such as telecommunication,

banking, robot control, insurance, or retail. In practice, each DSM solution focuses

on even smaller domains because the narrower focus enables better possibilities for

Domain-Specific Modeling: Enabling Full Code Generation, Steven Kelly and Juha-Pekka Tolvanen
Copyright # 2008 John Wiley & Sons, Inc.

3



automation and they are also easier to define. Usually, DSM solutions are used in

relation to a particular product, product line, target environment, or platform.

The challenge that companies—or rather their expert developers—face is how

to come up with a suitable DSM solution. The main parts of this book aim to answer

that question. We describe how to define modeling languages, code generators and

framework code—the key elements of a DSM solution. We don’t stop after creating

a DSM solution though. It needs to be tested and delivered to modelers and to be

maintained once there are users for itQ2 . The applicability of DSM is demonstrated

with five different examples, each targeting a different kind of domain and gen-

erating code for a different programming language. These cases are then used to

exemplify the creation and use of DSM.

New technologies often require changes from an organization: What if most

code is generated and developers work with domain-specific models? For managers,

we describe the economics of DSM and its introduction process: how to estimate the

suitability of the DSM approach andwhat kinds of expertise and resources are needed.

Finally, we need to recognize the importance of automation for DSM creation: tools

for creating DSM solutions. This book is not about any particular tool, and there is a

range of new tools available helping to make creation of a DSM solution easier,

allowing expert developers to encapsulate their expertise andmakework easier, faster,

and more fun for the rest.

1.2 CODE-DRIVEN AND MODEL-DRIVEN DEVELOPMENT

Developers generally differentiate between modeling and coding. Models are used

for designing systems, understanding them better, specifying required functionality,

and creating documentation. Code is then written to implement the designs.

Debugging, testing, and maintenance are done on the code level too. Quite often

these two different “media” are unnecessarily seen as being rather disconnected,

although there are also various ways to align code and models. Figure 1.1 illustrates

these different approaches.

At one extreme, we don’t create any models but specify the functionality directly

in code. If the developed feature is small and the functionality can be expressed

directly in code, this is an approach that works well. It works because programming

environments can translate the specification made with a programming language

into an executable program or other kind of finished product. Code can then be

tested and debugged, and if something needs to be changed, we change the code—

not the executable.

Most software developers, however, also create models. Pure coding concepts

are, in most cases, too far from the requirements and from the actual problem

domain. Models are used to raise the level of abstraction and hide the imple-

mentation details. In a traditional development process, models are, however, kept

totally separate from the code as there is no automated transformation available

from those models to code. Instead developers read the models and interpret

them while coding the application and producing executable software. During

4 INTRODUCTION



implementation, models are no longer updated and are often discarded once the

coding is done. This is simply because the cost of keeping the models up-to-date is

greater than the benefits we get from the models. The cost of maintaining the same

information in two places, code and models, is high because it is a manual process,

tedious, and error prone.

Models can also be used in reverse engineering: trying to understand the

software after it is designed and built. While creating model-based documentation

afterwards is understandable, code visualization can also be useful when trying to

understand what a program does or importing libraries or other constructs from

code to be used as elements in models. Such models, however, are typically not used

for implementing, debugging, or testing the software as we have the code.

Round-tripping aims to automate the work of keeping the same information

up-to-date in two places, models and code. Round-tripping works only when the

formats are very similar and there is no loss of information between the translations.

In software development, this is true in relatively few areas and typically only for

the structural specifications. For instance, a model of a schema can be created from

a database and a database schema can be generated from a model. Round-tripping

with program code is more problematic since modeling languages don’t cover the

details of programming languages and vice versa. Usually the class skeletons can be

shown in models but the rest—behavior, interaction, and dynamics—are not

covered in the round-trip process and they stay in the code. This partial link is

represented with a dotted line in Fig. 1.1.

If we inspect the round-trip process in more detail, we can also see that mappings

between structural code and models are not without problems. For example, there

are no well-defined mappings on how different relationship types used in class

diagrams, such as association, aggregation, and composition, are related to program

FIGURE 1.1 Aligning code and models

CODE-DRIVEN AND MODEL-DRIVEN DEVELOPMENT 5



code. Code does not explicitly specify these relationship types. One approach to

solve this problem is to use just a single source, usually the code, and show part of

it in the models. A classical example is to use only part of the expressive power of

class diagrams. That parts is, where the class diagram maps exactly to the class

code. This kind of alignment between code and models is often pure overhead.

Having a rectangle symbol to illustrate a class in a diagram and then an equivalent

textual presentation in a programming language hardly adds any value. There is

no raise in the level of abstraction and no information hiding, just an extra

representation duplicating the same information.

In model-driven development, we use models as the primary artifacts in the

development process: we have source models instead of source code. Throughout

this book, we argue that whenever possible this approach should be applied

because it raises the level of abstraction and hides complexity. Truly model-driven

development uses automated transformations in a manner similar to the way a pure

coding approach uses compilers. Once models are created, target code can be

generated and then compiled or interpreted for execution. From a modeler’s

perspective, generated code is complete and it does not need to be modified after

generation. This means, however, that the “intelligence” is not just in the models

but in the code generator and underlying framework. Otherwise, there would be no

raise in the level of abstraction and we would be round-tripping again. The

completeness of the translation to code should not be anything new to code-only

developers as compilers and libraries work similarly. Actually, if we inspect

compiler development, the code expressed, for instance in C, is a high-level

specification: the “real” code is the running binary.

Model-Driven Development is Domain-Specific To raise the level of

abstraction in model-driven development, both the modeling language and the

generator need to be domain-specific, that is, restricted to developing only certain

kinds of applications. While it is obvious that we can’t have only one code generator

for all software, it seems surprising to many that this applies for modeling languages

too.

This book is based on the finding that while seeking to raise the level of

abstraction further, languages need to be better aware of the domain. Focusing on

a narrow area of interest makes it possible to map a language closer to the

actual problem and makes full code generation realistic—something that is difficult,

if not impossible, to achieve with general-purpose modeling languages.

For instance, UML was developed to be able to model all kinds of application

domains (Rumbaugh et al., 1999), but it has not proven to be successful in truly

model-driven development. If it would, the past decade would have demonstrated

hundreds of successful cases. Instead, if we look at industrial cases and different

application areas where models are used effectively as the primary development

artifact, we recognize that the modeling languages applied were not general-

purpose but domain-specific. Some well-known examples are languages for

database design and user interface development. Most of the domain-specific

6 INTRODUCTION



languages are made in-house and typically less widely publicized. They are,

however, generally more productive, having a tighter fit to a narrower domain, and

easier to create as they need only satisfy in-house needs. Reported cases include

various domains such as automotive manufacturing (Long et al., 1998), telecom

(Kieburtz et al., 1996; Weiss and Lai, 1999), digital signal processing (Sztipanovits

et al., 1998), consumer devices (Kelly and Tolvanen, 2000), and electrical utilities

(Moore et al., 2000). The use of general-purpose languages for model-driven

development will be discussed further in Chapter 3.

1.3 AN EXAMPLE: MODELING WITH A GENERAL-PURPOSE
LANGUAGE AND A DOMAIN-SPECIFIC LANGUAGE

Let’s illustrate the use of general-purpose modeling and domain-specific modeling

through a small example. For this illustration, we use a domain that is well known

since it is already in our pockets: a mobile phone and its applications. Our task as a

software developer for this example is to implement a conference registration

application for a mobile phone. This small application needs to do just a few things:

A user can register for a conference using text messages, choose among alternative

payment methods, view program and speaker information, or browse the conference

program via the web. These are the basic requirements for the application.

In addition to these requirements, software developers need also to master the

underlying target environment and available platform services. When executing the

application in a mobile phone or other similar handheld device, we normally need to

know about the programming model to be followed, libraries and application

program interfaces (APIs) available, as well as architectural rules that guide

application development for a particular target environment.

We start the comparison by illustrating possible development processes, first

based on a general-purpose modeling language and then based on a domain-specific

modeling language. UML is a well known modeling language created to specify

almost any software system. As it is intended to be universal and general-purpose

according to its authors (Rumbaugh et al., 1999),Q3 it can be expected to fit our task of

developing the conference registration application. The domain-specific language is

obviously made for developing mobile applications.

1.3.1 UML Usage Scenario

Use of UML and other code-oriented approaches normally involves an initial

modeling stage followed by manual coding to implement the application func-

tionality. Design models either stay totally separate from the implementation or are

used to produce parts of the code, such as the class skeletons. The generated code is

then modified and extended by filling in the missing parts that could not be

generated from UML models. At the end of the development phase, most of the

models made will be thrown away as they no longer specify what was actually

AN EXAMPLE: MODELING WITH A GENERAL-PURPOSE LANGUAGE 7



developed while programming the application. The cost of updating these models is

too high as there is no automation available.

Modeling Application Structure Let’s look at this scenario in more detail

using our conference registration example. The common way to use UML for

modeling starts with defining the use cases, as illustrated in Fig. 1.2. For each

identified use case, we would specify in more detail its functionality, such as

actions, pre- and postconditions, expected result, and possible exceptions. We

would most likely describe these use cases in text rather than in the diagram. After

having specified the use cases, we could review them with a customer through a

generated requirements document or, if the customer can understand the language,

at least partly with the diagram.

Although use cases raise the level of abstraction away from the programming

code, they do not enable automation via code generation. Use case models and their

implementation stay separate. Having identified what the customer is looking for,

we would move to the next phase of modeling: Define a static structure of the

application with class diagrams, or alternatively start to specify the behavior using

sequence diagrams or state diagrams. A class diagram in Fig. 1.3 shows the

structure of the application: some of the classes and their relationships.

While creating the class diagram, we would start to consider the application

domain: what widgets are available and how they should be used, where to place

FIGURE 1.2 Use cases of the conference application

8 INTRODUCTION



menus, what is required to send text messages, and so forth. Unfortunately, UML

will not help us at all since it does not know anything about mobile applications.

Our job as developers is to first find a solution using the domain concepts and then

map the solution into the UML concepts. So instead of describing the phone

application, we would describe classes, their attributes and operations, and various

connections they may have. Even if our class diagram only targets analysis or is

platform independent, it would not change the situation as we would still be using

implementation concepts to describe our solution.

Adding Implementation Details to the Models In a later design phase, we

need to extend the analysis model with implementation details. Here we would

expect the coding concepts of the class diagram to be helpful as they map to

implementation details, but in reality UML helps us very little during the

application design. We could draw whatever we like into the class diagram! It would

be relatively easy, and likely too, to end up with a design that will never work, for

example, because it breaks the architecture rules and programming model of the

phone. To make the model properly, we need to study the phone framework, find out

its services, learn its API, and study the architectural rules. These would then be

kept in mind while creating the models and entering their details. For instance,

sending text messages requires that we use a SendSMS operation (see Fig. 1.3) and

give it the right parameters: a mandatory phone number followed by a message

header and message contents.

FIGURE 1.3 Class structure of the application

AN EXAMPLE: MODELING WITH A GENERAL-PURPOSE LANGUAGE 9



After finishing the class diagram, we could generate skeleton code and continue

writing the code details, the largest part, manually. Alternatively, we could continue

modeling and create other kinds of designs that cover those parts the class diagram

did not specify. Perhaps even in parallel to static structures, we would also specify

what the application does. Here we would start to think about the application

behavior, such as menu actions, accessing the web, user navigation, and canceling

during the actions.

Modeling Application Behavior In the UML world, we could apply state

machines, collaboration diagrams, or perhaps sequence diagrams to address

application behavior. With a sequence diagram, our designs could look something

like Fig. 1.4.

When specifying the interaction between the objects, we would need to know in

more detail the functionality offered by the device, the APIs to use, what they

return, the expected programming model to be followed, and architectural rules to

be obeyed. We simply can’t draw the sequence diagram without knowing what the

phone can do! So for many of the details in a design model, we must first consult

libraries and APIs.

Unfortunately, sequence diagrams would not be enough for specifying the

application behavior as they don’t adequately capture details like alternative choices

or decisions. We can apply other behavioral modeling languages, like activity

diagrams or state diagrams, to specify these. Figure 1.5 illustrates an activity diagram

that shows how the application handles conference unregistration. Thismodel is partly

related to the code, for example, through services it calls, but not adequately so that it

could be used for code generation.We could naturally fill more implementation details

into the activity diagram and start using the activity modeling language as a

programming language, but most developers switch to a programming language to

make it more concise.

If we were to continue our example, the activity diagrams could be made to

specify other functions as well, but to save space we have omitted them. We should

also note that there is no explicit phase or time to stop the modeling effort. How can

we know when the application is fully designed without any guidance as to what

constitutes a full design? If we had UML fever (see Bell, 2004), we could continue

the modeling effort and create further models. There are still nine other kinds of

modeling languages. Should we use them and stop modeling here or should we have

stopped earlier? Since development is usually iterative in this model creation

process, we most likely would also update the previously made class diagrams,

sequence diagrams, activity diagrams, etc. If we wouldn’t do that our models

would not be consistent. This inconsistency might be fine for sketching but not for

model-driven development.

Implementing the Application The example models described earlier are

clearly helpful for understanding and documenting the application. After all the mod-

eling work, we could expect to get more out of the created models too. Generate

code perhaps? Unfortunately a skeleton is the best we can generate here and then

10 INTRODUCTION



F
IG

U
R
E
1.
4

A
v
ie
w
o
f
th
e
ap
p
li
ca
ti
o
n
b
eh
av
io
r

11



continue by modifying the generated code to implement the functionality and

logic—the largest part of the application. To get the finished application, we would

implement it by writing the application code.

At this point, our models and code start to be separate. During the programming,

we will face aspects that were inadequately specified, false, or totally ignored while

modeling. It is also likely that our design models did not recognize the architectural

rules that the application must follow to execute. After all, UML models did not

know about the libraries, framework rules, and programming model for our mobile

applications. As the changes made to the code during implementation are no longer

in synch with the designs, we need to decide what to do with the models. Should we

take the time to update the models or ignore them and throw them away? Updating

the models requires manual work as the semantics of the code is different than

most of the concepts used in UML models. Even keeping part of the class diagram

FIGURE 1.5 Activity diagram specifying steps while unregistering from a conference

12 INTRODUCTION



up-to-date in parallel with the code does not help much since it just describes the

implementation code.

1.3.2 DSM Usage Scenario

Next let’s contrast the above UML approach to DSM. Here the modeling language

is naturally made for developing applications for mobile phones. Figure 1.6 shows a

model that describes the conference registration application. If you are familiar with

some phone applications, like a phone book or calendar, you most likely already

understand what the application does. This model also describes the application

sufficiently unambiguously, that it can be generated from this high-level

specification. Take a look of the modeling in Fig. 1.6 and then compare it to UML

models that did not get even close to having something running.

In Domain-Specific Modeling we would start modeling by directly using the

domain concepts, such as Note, Pop-up, SMS, Form, and Query. These are specific

to the mobile phone’s services and its user-interface widgets. The same concepts are

also language constructs. They are not new or extra concepts as we must always

apply these regardless of how the mobile application is implemented. With this

modeling language, we would develop the conference registration application by

FIGURE 1.6 Conference registration application

AN EXAMPLE: MODELING WITH A GENERAL-PURPOSE LANGUAGE 13



adding elements to the model and linking them together to follow the flow of

navigation and application control.

The Domain-Specific Modeling language also includes domain rules that prevent

us from making illegal designs. For example, after sending an SMS message, only

one UI element or phone service can be triggered. The modeling language “knows”

this rule and won’t let us draw another flow from an SMS element. If a relevant part of

the design is still missing, for example, the application never reaches a certain widget,

model checking reports warn us about incomplete parts. This means that we do not

need to master the details of the software architecture and required programming

model, and we can focus instead on finding the solution using the phone concepts.

As can be seen from this DSM example, all the implementation concepts are

hidden from the models and are not even necessary to know. This shows that the

level of abstraction in models is clearly higher. Once the design, or a relevant part of

it, is done, we can generate and execute the conference registration application in a

phone. There is no need to map the solution manually to implementation concepts

in code or in UML models visualizing the code. Unlike with UML, in DSM we

stopped modeling when the application was ready. If the application needs to be

modified, we do it in the model.

For the DSM case, we left the code out of the scenario since it is not so relevant

anymore. This is in sharp contrast to the UML approach, where the modeling

constructs originate from the code constructs. Naturally in DSM code is also

generated, but since the generator is defined by the developers of the DSM language

and not by the developers of this particular mobile application, we won’t inspect the

implementation in code here. Later in Part III of this book we look at examples of

DSM in more detail, including this mobile application case.

1.3.3 Comparing UML and DSM

The above example illustrates several key differences between general-purpose and

Domain-Specific Modeling languages. Do the comparison yourself and think about

the following questions:

. Which of these two is a faster way to develop the application?

. Which leads to better quality?

. Which language guided the modeler in developing a working application?

. Which specifications are easier to read and understand?

. Which requires less modeling work?

. Which approach detects errors earlier or even prevents them from happening?

. Which language is easier to introduce and learn?

No doubt, DSM performed better compared to UML or any other general-

purpose language. For example, the time to develop the application using DSM is a

fraction of the time to create the UML diagrams and write the code manually. DSM

also prevents errors early on since the language does not allow illegal designs or

14 INTRODUCTION



designs that don’t follow the underlying architectural rules. The code produced is

also free of most kinds of careless mistakes, syntax, and logic errors since a more

experienced developer has specified the code generator. We inspect the effect of

DSM development on productivity, product quality, and required developer expertise

in more detail in the next chapter.

One example obviously cannot cover the wide spectrum of possible development

situations and application domains. The mobile example is one of thousands, if not

hundreds of thousands, of different application domains. In principle, different

DSM solutions can be used in all of them since every development project needs to

find a solution in the problem domain and map it into an implementation in the

solution domain. All development projects have faced the same challenge. In Part

III of this book, we inspect different cases of DSM and aim to cover a wider range

of problem domains generating different kinds of code, from Assembler to 3GL and

object-oriented to scripting languages and XML.

The benefits of DSM are readily available when the DSM solution—the language

and generator—is available. Usually that is not the case as we need to develop the

DSM solution first. In Part IV we show how to define modeling languages and code

generators for application domains. These guidelines are based on our experience of

building model-driven development with DSM in multiple different domains

generating different target code for different target environments.

1.4 WHAT IS DSM?

Domain-Specific Modeling mainly aims to do two things. First, raise the level of

abstraction beyond programming by specifying the solution in a language that

directly uses concepts and rules from a specific problem domain. Second, generate

final products in a chosen programming language or other form from these high-

level specifications. Usually the code generation is further supported by framework

code that provides the common atomic implementations for the applications within

the domain. The more extensive automation of application development is possible

because the modeling language, code generator, and framework code need fit the

requirements of a narrow application domain. In other words, they are domain-

specific and are fully under the control of their users.

1.4.1 Higher Levels of Abstraction

Abstractions are extremely relevant for software development. Throughout the

history of software development, raising the level of abstraction has been the cause

of the largest leaps in developer productivity. The most recent example was the

move from Assembler to Third Generation Languages (3GLs), which happened

decades ago. As we all know, 3GLs such as FORTRAN and C gave developers

much more expressive power than Assembler and in a much easier-to-understand

format, yet compilers could automatically translate them into Assembler. According

WHAT IS DSM? 15



to Capers Jones’ Software Productivity Research (SPR, 2006), 3GLs increased

developer productivity by an astonishing 450%. In contrast, the later introduction

of object-oriented languages did not raise the abstraction level much further.

For example, the same research suggests that Java allows developers to be only

20% more productive than BASIC. Since the figures for C++ and C# do not differ

much from Java, the use of newer programming languages can hardly be justified by

claims of improved productivity.

If raising the level of abstraction reduces complexity, then we need to ask

ourselves how we can raise it further. Figure 1.7 shows how developers at different

times have bridged the abstraction gap between an idea in domain terms and its

implementation.

The first step in developing any software is always to think of a solution in terms

that relate to the problem domain—a solution on a high abstraction level (step one).

An example here would be deciding whether we should first ask for a person name

or for a payment method while registering to a conference. Having found a solution,

we would then map that to a specification in some language (step two). With

traditional programming, here the developers map domain concepts to coding

concepts: “wait for choice” maps to a while loop in code. With UML or other

general-purpose modeling languages, developers map the problem domain solution

to the specification with the modeling language: like “wait for choice” triggers an

action in activity diagram. Step three then implements the full solution: giving the

right condition and code content for the loop code. However, if general-purpose

modeling languages are used, there is an extra mapping from a model to code. It is

most remarkable that developers still have to perform step one without any tool

Domain
idea

Finished
product

S
ol

ve
 p

ro
bl

em
 in

 d
om

ai
n 

te
rm

s Assembler
Map to code, implement

UML model
Map to UML

Generate,
add bodies

Code
Map to code, implement

Domain
 framework

Domain
model

Generates codeNo need

to map!

FIGURE 1.7 Bridging the abstraction gap of an idea in domain terms and its

implementation

16 INTRODUCTION



support, especially when we know that mistakes in this phase of development are

the most costly ones to solve. Most of us will also argue that finding the right

solution on this level is exactly what has been the most complex.

1.4.2 Automation with Generators

While making a design before starting implementation makes a lot of sense, most

companies want more from the models than just throwaway specification or

documentation that often does not reflect what is actually built. UML and other

code-level modeling languages often just add an extra stepping stone on the way to

the finished product. Automatically generating code from the UML designs

(automating step three) would remove the duplicate work, but this is where UML

generally falls short. In practice, it is possible to generate only very little usable

code from UML models.

Rather than having extra stepping stones and requiring developers to master

the problem domain, UML, and coding, a better situation would allow developers to

specify applications in terms they already know and use and then have generators

take those specifications and produce the same kind of code that developers used to

write by hand. This would raise the abstraction level significantly, moving

away from programming with bits and bytes, attributes, and return values and

toward the concepts and rules of the problem domain in which developers are

working. This new “programming” language then essentially merges steps one and

two and completely automates step three. That raised abstraction level coupled with

automatically-generated code is the goal of Domain-Specific Modeling.

DSM does not expect that all code can be generated from models, but anything

that is modeled from the modelers’ perspective, generates complete finished code.

This completeness of the transformation has been the cornerstone of automation and

raising abstraction in the past. In DSM, the generated code is functional, readable,

and efficient—ideally looking like code handwritten by the experienced developer

who defined the generator. Here DSM differs from earlier CASE and UML tools:

the generator is written by a company’s own expert developer who has written

several applications in that domain. The code is thus just like the best in-house code

at that particular company rather than the one-size-fits-all code produced by a

generator supplied by a modeling tool vendor.

The generated code is usually supported by purpose-built framework code as

well as by existing platforms, libraries, components, and other legacy code. Their

use is dependent on the generation needs, and later in this book (Part III), we

illustrate DSM cases that apply and integrate to existing code differently. Some

cases don’t use any additional support other than having a generator.

At this point, we need to emphasize that code generation is not restricted to

any particular programming language or paradigm: the generation target can be,

for instance, an object-oriented as well as a structural or functional programming

language. It can be a traditional programming language, a scripting language, data

definitions, or a configuration file.

WHAT IS DSM? 17



1.4.3 DSM Solution Evolves

Changes to the DSM language and generators are more the norm than an exception.

A DSM solution should never be considered ready unless all the applications for

that domain are already known. The DSM solution needs to be changed because

the domain itself and related requirements change over time. Usually this leads to

changes in the modeling language and related generators. If a change occurs only on

the implementation side, like a new version of the programming language to be

generated or using a new library, changes to just the code generators can be

adequate. This keeps the design models untouched and hides implementation details

from developers using DSM.

A DSM solution also needs to be updated because your understanding of a

domain, even if you are an expert in it, will improve while defining languages and

generators for it. Even after your language is used, your understanding of your

domain will improve through modeling or from getting feedback from others that

model with the language you defined. Partly you will understand the domain better

and partly you will see possible improvements for your language.

1.5 WHEN TO USE DSM?

Languages and tools that are made to solve the particular task that we are working

with always perform better than general-purpose ones. Therefore DSM solutions

should be applied whenever it is possible. DSM is not a solution for every devel-

opment situation though. We need to know what we are doing before we can

automate it. A DSM solution is therefore implausible when building an application

or a feature unlike anything developed earlier. It is something unique that we don’t

know about. In such a situation we usually can only make prototypes and mock-up

applications and follow the trial-and-error method, hopefully in small, agile, and

iterative steps.

In reality, we don’t often face such unique development situations. It is much

more likely that after coding some features we start to find similarities in the code

and patterns that seem to repeat. In such situations, developers usually agree that it

does not make sense to write all code character by character. For most developers,

it would then make sense to focus on just the unique functionality, the differences

between the various features and products, rather than wasting time and effort

reimplementing similar functionality again and again. Avoiding reinventing the

wheel is good advice for a single developer, but even more so if colleagues are

implementing almost identical code too.

In code-driven development, patterns can evolve into libraries, reusable com-

ponents, and services to be used. Building a DSM solution requires a similar

mindset as it offers a way to find a balance between writing the code manually and

generating it. How the actual decision is made differs between application domains.

In Part III, we describe five DSM cases where the partitioning is done in various

ways, and in Part IV, we give guidelines on how you can do it.

18 INTRODUCTION



Using resources to build a DSM solution implies that development work is

conducted over a longer period within the same domain. DSM is therefore a less

likely option for companies that are working in short term projects without knowing

which kind of application domain the next customer has. Similarly, it is less suitable

for generalist consultancy companies and for those having their core competence in

a particular programming language rather than a problem domain.

Although the time to implement a DSM solution can be short, from a few weeks

to months, the expected time to benefit from it can decrease the investment interest.

The longer a company can predict to be working in the same domain, the more

likely it will be interested in developing a DSM solution. Some typical cases for

DSM are companies having a product line, making similar kinds of products, or

building applications on top of a common library or platform. For product lines, a

typical case of using domain-specific languages (e.g., Weiss and Lai, 1999) is to

focus on specifying just variation: how products are different. The commonalities

are then provided by the underlying framework. For companies making applications

on top of a platform, DSM works well as it allows having languages that hide the

details of the libraries and APIs by raising the level of abstraction on which the

applications are built. Application developers can model the applications using

these high level concepts and generate working code that takes the best advantage of

the platform and its services. DSM is also suitable for situations where domain

experts, who often can be nonprogrammers, can make complete specifications using

their own terminology and run generators to produce the application code. This

capability to support domain experts’ concepts makes DSM applicable for end-user

programming too.

1.6 SUMMARY

Domain-Specific Modeling fundamentally raises the level of abstraction while at

the same time narrowing down the design space, often to a single range of products

for a single company. With a DSM language, the problem is solved only once by

visually modeling the solution using only familiar domain concepts. The final

products are then automatically generated from these high-level specifications with

domain-specific code generators. With DSM, there is no longer any need to make

error-prone mappings from domain concepts to design concepts and on to

programming language concepts. In this sense, DSM follows the same recipe that

made programming languages successful in the past: offer a higher level of abstrac-

tion and make an automated mapping from the higher level concepts to the lower-

level concepts known and used earlier. Today, DSM provides a way for continuing

to raise the description of software to more abstract levels. These higher

abstractions are based not on current coding concepts or on general-purpose

concepts but on concepts that are specific to each application domain.

In the vast majority of development cases general-purpose modeling languages

like UML cannot enable model-driven development, since the core models are

at substantially the same level of abstraction as the programming languages

SUMMARY 19



supported. The benefits of visual modeling are offset by the resources used in

keeping all models and code synchronized with only semiautomatic support.

In practice, part of the code structure is duplicated in the static models, and the

rest of the design—user view, dynamics, behavior, interaction, and so on—and the

code are maintained manually.

Domain-specific languages always work better than general-purpose languages.

The real question is: does your domain already have such languages available or do

you need to define them? This book aims to answer the latter: it guides you in

defining DSM for your problem domain and introducing in into your organization.

20 INTRODUCTION


