Hello ASP.NET 2.0!

The evolution of ASPNET continues! The progression from Active Server Pages 3.0 to ASP.NET 1.0
was revolutionary, to say the least; and we are here to tell you that the evolution from ASPNET
1.0/1.1 to ASP.NET 2.0 is just as exciting and dramatic.

The introduction of ASP.NET 1.0/1.1 changed the Web programming model; but ASPNET 2.0 is
just as revolutionary in the way it increases productivity. The primary goal of ASPNET 2.0 is to
enable you to build powerful, secure, and dynamic applications using the least possible amount of
code. Although this book covers the new features provided by ASP.NET 2.0, it also covers most of
what the ASPNET technology offers.

A Little Bit of History

Before organizations were even thinking about developing applications for the Internet, much of
the application development focused on thick desktop applications. These thick-client applications
were used for everything from home computing and gaming to office productivity and more. No
end was in sight for the popularity of this application model.

During that time, Microsoft developers developed its thick-client applications using mainly Visual
Basic (VB).

Visual Basic was not only a programming language; it was tied to an IDE that allowed for easy
thick-client application development. In the Visual Basic model, developers could drop controls
onto a form, set properties for these controls, and provide code behind them to manipulate the
events of the control. For example, when an end user clicked a button on one of the Visual Basic
forms, the code behind the form handled the event.

Then, in the mid-1990s, the Internet arrived on the scene. Microsoft was unable to move the Visual
Basic model to the development of Internet-based applications. The Internet definitely had a lot of

Chapter 1

power, and right away the problems facing the thick-client application model were revealed. Internet-
based applications created a single instance of the application that everyone could access. Having one
instance of an application meant that when the application was upgraded or patched, the changes made
to this single instance were immediately available to each and every user visiting the application
through a browser.

To participate in the Web application world, Microsoft developed Active Server Pages (ASP). ASP was a
quick and easy way to develop Web pages. ASP pages consisted of a single page that contained a mix of
markup and languages. The power of ASP was that you could include VBScript or JScript code instruc-
tions in the page executed on the Web server before the page was sent to the end user’s Web browser.
This was an easy way to create dynamic Web pages customized based on instructions dictated by the
developer.

ASP used script between brackets and percentage signs— <% %>—to control server-side behaviors. A
developer could then build an ASP page by starting with a set of static HTML. Any dynamic element
needed by the page was defined using a scripting language (such as VBScript or JScript). When a user
requested the page from the server by using a browser, the asp.d11 (an ISAPI application that provided
a bridge between the scripting language and the Web server) would take hold of the page and define all
the dynamic aspects of the page on-the-fly based on the programming logic specified in the script. After
all the dynamic aspects of the page were defined, the result was an HTML page output to the browser of
the requesting client.

As the Web application model developed, more and more languages mixed in with the static HTML to
help manipulate the behavior and look of the output page. Over time, such a large number of languages,
scripts, and plain text could be placed in a typical ASP page that developers began to refer to pages that
utilized these features as spaghetti code. For example, it was quite possible to have a page that used
HTML, VBScript, JavaScript, Cascading Style Sheets, T-SQL, and more. In certain instances, it became a
manageability nightmare.

ASP evolved and new versions were released. ASP 2.0 and 3.0 were popular because the technology
made it relatively straightforward and easy to create Web pages. Their popularity was enhanced because
they appeared in the late 1990s, just as the dotcom era was born. During this time, a mountain of new
Web pages and portals were developed, and ASP was one of the leading technologies individuals and
companies used to build them. Even today, you can still find a lot of . asp pages on the Internet—
including some of Microsoft’s own Web pages.

But even at the time of the final release of Active Server Pages in late 1998, Microsoft employees Marc
Anders and Scott Guthrie had other ideas. Their ideas generated what they called XSP (an abbreviation
with no meaning) —a new way of creating Web applications in an object-oriented manner instead of the
procedural manner of ASP 3.0. They showed their idea to many different groups within Microsoft, and
were well received. In the summer of 2000, the beta of what was then called ASP+ was released at
Microsoft’s Professional Developers Conference. The attendees eagerly started working with it. When
the technology became available (with the final release of the NET Framework 1.0), it was renamed
ASP.NET —receiving the .NET moniker that most of Microsoft’s new products were receiving at that
time.

Before the introduction of .NET, the model that classic ASP provided and what developed in Visual Basic
were so different that few VB developers also developed Web applications —and few Web application
developers also developed the thick-client applications of the VB world. There was a great divide.
ASPNET bridged this gap. ASPNET brought a Visual Basic-style eventing model to Web application

Hello ASPNET 2.0!

development, providing much-needed state management techniques over stateless HTTP. Its model is
much like the earlier Visual Basic model in that a developer can drag and drop a control onto a design
surface or form, manipulate the control’s properties, and even work with the code behind these controls
to act on certain events that occur during their lifecycles. What ASPNET created is really the best of both
models, as you will see throughout this book.

I know you’'ll enjoy working with this latest release of ASP.NET 2.0. Nothing is better than getting your
hands on a new technology and seeing what’s possible. The following section discusses the goals of
ASP.NET 2.0 so you can find out what to expect from this new offering!

The Goals of ASP.NET 2.0

ASP.NET 2.0 is a major release of the product and is an integral part of the NET Framework 2.0. This
release of the Framework was code-named Whidbey internally at Microsoft. You might hear others refer-
ring to this release of ASP.NET as ASP.NET Whidbey. ASPNET 2.0 heralds a new wave of development
that should eliminate any of the remaining barriers to adopting this new way of coding Web applications.

When the ASP.NET team started working on ASPNET 2.0, it had specific goals to achieve. These goals
focused around developer productivity, administration, and management, as well as performance and
scalability. These goals are achieved with this milestone product release. The next sections look at each of
these goals.

Developer Productivity

Much of the focus of ASP.NET 2.0 is on productivity. Huge productivity gains were made with the
release of ASPNET 1.x; could it be possible to expand further on those gains?

One goal the development team had for ASPNET 2.0 was to eliminate much of the tedious coding that
ASPNET originally required and to make common ASP.NET tasks easier. The ASPNET team developing
ASPNET 2.0 had the goal of reducing by two-thirds the number of lines of code required for an ASPNET
application! It succeeded in this release; you will be amazed at how quickly you can create your applica-
tions in ASPNET 2.0.

The new developer productivity capabilities are presented throughout this book. Before venturing into
these new capabilities, first start by taking a look at the older ASP.NET technology in order to make a
comparison to ASP.NET 2.0. Listing 1-1 provides an example of using ASP.NET 1.0 to build a table in a
Web page that includes the capability to perform simple paging of the data provided.

Listing 1-1: Showing data in a DataGrid server control with paging enabled (VB only)
<%@ Page Language="VB" AutoEventWireup="True" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SglClient" %>

<script runat="server">

Private Sub Page_Load(ByVal sender As System.Object, _

(continued)

Chapter 1

Listing 1-1: (continued)

ByVal e As System.EventArgs)
If Not Page.IsPostBack Then
BindData ()
End If
End Sub

Private Sub BindData ()
Dim conn As SglConnection = New SglConnection ("server='localhost';
trusted_connection=true; Database='Northwind'")
Dim cmd As SglCommand = New SglCommand("Select * From Customers", conn)
conn.Open ()

Dim da As SglDataAdapter = New SglDataAdapter (cmd)
Dim ds As New DataSet

da.Fill(ds, "Customers")

DataGridl.DataSource = ds
DataGridl.DataBind ()
End Sub

Private Sub DataGridl_PageIndexChanged (ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs)
DataGridl.CurrentPageIndex = e.NewPageIndex
BindData ()
End Sub

</script>
<html>
<head>
</head>
<body>
<form runat="server">
<asp:DataGrid id="DataGridl" runat="server" AllowPaging="True"
OnPageIndexChanged="DataGridl_PageIndexChanged"></asp:DataGrid>
</form>
</body>
</html>

Although quite a bit of code is used here, this is a dramatic improvement over the amount of code
required to accomplish this task using classic Active Server Pages 3.0. We won’t go into the details of this
older code; we just want to demonstrate that in order to add any additional common functionality (such
as paging) for the data shown in a table, the developer had to create custom code.

This is one area where the new developer productivity gains are most evident. ASPNET 2.0 now provides
a new control called the GridView server control. This control is much like the DataGrid server control
that you may already know and love, but the GridView server control (besides offering many other new

Hello ASPNET 2.0!

features) contains the built-in capability to apply paging, sorting, and editing of data with relatively little
work on your part. Listing 1-2 shows you an example of the GridView server control. This example builds
a table of data from the Customers table in the Northwind database that includes paging.

Listing 1-2: Viewing a paged dataset with the new GridView server control
<%@ Page Language="VB" %>
<script runat="server">
</script>

<html xmlns=http://www.w3.0rg/1999/xhtml>
<head runat="server">
<title>Gridview Demo</title>
</head>
<body>
<form runat="server">
<asp:Gridview ID="GridViewl" Runat="server" AllowPaging="True"
DataSourceId="Sgldatasourcel" />
<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="Select * From Customers"
ProviderName="System.Data.0OleDb"
ConnectionString="Provider=SQLOLEDB; Server=1ocalhost;uid=sa;
pwd=password;database=Northwind" />
</form>
</body>
</html>

That'’s it! You can apply paging by using a couple of new server controls. You turn on this capability
using a server control attribute, the Al1lowPaging attribute of the GridView control:

<asp:Gridview ID="GridViewl" Runat="server" allowraging="Truan
DataSourceId="SglDataSourcel" />

The other interesting event occurs in the code section of the document:
<script runat="server">
</script>

These two lines of code aren’t actually needed to run the file. They are included here to make a point—
you don’t need to write any server-side code to make this all work! You have to include only some server con-
trols: one control to get the data and one control to display the data. Then the controls are wired
together. Running this page produces the results shown in Figure 1-1.

This is just one of thousands of possible examples, so at this point you likely can’t grasp how much more
productive you can be with ASPNET 2.0. As you work through the book, however, you will see plenty
of examples that demonstrate this new level of productivity.

Chapter 1

[€] GridView Demo - Microsoft Internet Explorer (S]]
File Edit View Favorites Tools Help ﬂ’
Qback * % & n - search ¢ Favorites @8 Meda £ LB OB
Addrass ﬁj http:fflocalhost: 20228/ Chapterdl Ve ListingD2, aspx v/ Go Links *

CustomerID CompanyIame Contactlame ContactTitle Address City Eegion PostalCode Country Phone Fax
GoygL ~ Fewmet ndrd Sales Associate Av.Brasi 442 Campinas SP 04876.786Brazl G000
Lanchonetes Fenseca 9482
Great Lakes Food Howard Ifarketing (503 555-
GREAL 2732 Baker Blwd, Ea OF. 27403 TEA
Market Snpder Manager BrEG, [Fuaene 7555
GROSELLA- . 5 Ave, Los Palos (2)283- (2)283-
1
GEROEE Restanrante Ifanuel Pereira Cromer Grendes Caracas DF 1081 Wenemela 3551 S397
HANAR HonaiCames Mario Pontes %8 RugdoPago, 67 0% R7 05454876 Brad 0000 U39
Ianager Janeire 00%1 2165
y Carrera 22 con Ave
HILARION- Catlos Sales San . (3) 355- (3) 553
[
HILAA 4 astos Heménder Representative 58”13"; Soublette c\ipgpg Tachira 3022 Venezuela 124y 1948
Hungry Coyote Lo Sales City Center Plaza ; 7897 (503) 535~ (303) 555-
HUNGC g ot Store VoshiTatiner oo ecentative 516 Main St Elgn OR [9782 USh oma 2376
Hungry Owl All- Patricia . Co.
HUNGO Might Grocers McE enna Sales Associate B Johnstewn Foad Cork Clotk Treland 2967 342 2967 3333
. . MMarketing Garden House Isle of (1598) 555-
ISLAT Island Trading Helen Bennett Manager Crowther Way Cowes Wight POZ17R] TE 3588
ECENE Eémghch Essen Phibp Cramer Sales Associate Maubelstr, 90 Brandenburg 14776 Germany 0555-09876
Lacop Lacome Daniel Tonni oo Slavenede g o 78000 France 3059.84.10 30598511
d'abondance Eepresentatire 1Europe
12345678510
&) Dane & Local intranst

Figure 1-1

Administration and Management

The initial release of ASP.NET focused on the developer, and little thought was given to the people who
had to administer and manage all the ASP.NET applications that were built and deployed. Instead of
working with consoles and wizards as they did in the past, administrators and managers of these new
applications now had to work with unfamiliar XML configuration files such as machine.config and
web.config.

To remedy this situation, ASP.NET 2.0 now includes a Microsoft Management Console (MMC) snap-in
that enables Web application administrators to edit configuration settings easily on the fly through IIS.
Figure 1-2 shows the ASPNET Configuration Settings dialog open on one of the available tabs.

This dialog allows system administrators to edit the contents of the machine.configand the web.config
files directly from the dialog instead of having them examine the contents of an XML file.

In addition to this dialog, Web or system administrators have a Web-based way to administer their
ASP.NET 2.0 applications — using the new Web Administration Tool shown here in Figure 1-3 (this is
also covered extensively in Chapter 33 of this book).

Hello ASPNET 2.0!

‘Default Web Site Properties e

| Web Site || ISAP| Fitters || Home Directory || Documents || Directory Security |
| HTTP Headers || Custom Emors | ASP.NET Server Extensions

net

Mi

ASPET v

Virtual path: |Defaun Web Stte |
File location: |c:\inetpub\ww'.\rroot\web.conﬂg |
File creation date: |Date not available. |
File last modified: |Date not available. |

Edit Global Corfigumstion.. | | it Configuration... |

Cox JCae) o

Figure 1-2
&1 ASP.Net Web Application Administration - Microsoft | Explorer S]]
Eile Edit View Favorites Tools Help Lo

O © HEG P e @ 2- 2= LIE B

&] hitp: a5t 1358 3sp i

ysicalPath=C:\Documents %20and % 2052 tings \Administrator My % 20000 \ w205

Go | Links *
ASP Web Site Administration Tool How do Luse this tool? (Z)

Welcome to the Web Site Administration Tool

Application:/WebSitel
Current User Name:REUTERS- EVIEN\ADMINISTRATOR.

T Enables you to set up and edit users, roles, and access permissions for your site.

Site is using wil for user
li n ration Enables you to manage your application's configuration settings.
Provider Configuration Enables you to specify where and how to store administration data used by your Web site.

& % Local intranet :

Figure 1-3

Chapter 1

You might be asking yourself how you can access these new tools programmatically. Well, that’s the
exciting part. These tools build off new APIs that are now part of the .NET Framework 2.0 and that are
open to developers. These new APIs give you programmatic access to many of the configurations of
your Web applications such as reading and writing to . config files. They enable you to create similar
tools or even deployment and management scripts.

In addition to these new capabilities, one exciting new feature allows you to easily encrypt sections of
your configuration files. In the past, many programmers stored vital details —such as usernames, pass-
words, or even their SQL connection strings — directly in the web. config file. With the capability to
easily encrypt sections of these files, you can now store these items in a more secure manner. As an
example, suppose you have a <connectionStrings> section in your web. config file, like this:

<connectionStrings>
<add name="Northwind"
connectionString="Server=1localhost;Integrated Security=True;Database=Northwind"
providerName="System.Data.SglClient" />

</connectionStrings>

You can now use the new Configuration class to encrypt this portion of the web. config file. Doing
this causes the <connectionStrings> section of the web. config file to be changed to something simi-
lar to the following;:

<connectionStrings configProtectionProvider="RsaProtectedConfigurationProvider">
<EncryptedData Type="http://www.w3.o0rg/2001/04/xmlenc#Element"
xmlns="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc" />
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<EncryptedKey xmlns="http://www.w3.0rg/2001/04/xmlenc#">
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5" />
<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<KeyName>Rsa Key</KeyName>
</KeyInfo>
<CipherData>
<Ciphervalue>
tnbdGPpmif2L.0hhzS/fmzCV798XkhdRnK0IrCUrC5q
AnK8NMgHHVEVYKJjIyXvlR/ns700fih6YzI+z
8f5Dh6HrekLS9yROAxuSeHda /VJA7bmHAL+18
30nDKO0fbrD22BvHTWpPYVYNSE6jhYeGEAUBQEL
oIKIMV3nQSjzqgr7GbkI=
</CipherValue>
</CipherData>
</EncryptedKey>
</KeyInfo>
<CipherData>
<CipherValue>
gnzaR6BRv]76nU00nsajgnrLwt72gGY6Sw9
PkM77vk4YT03816LWDbiVkUuwEpekwN/EPE
CcXGLUx0pKVOK97rCqCoLNOQY16jKpPBTTpS
bY3WGWwVhxxGhezdV+EkWaLN8jXpaBSnGYKH
mY914DoWaHI9mugrr2a5Y3JB42XPUKJIBtrFO0
VZj48Hwkb/z0D7ggWmJujiFH5xQ/FrIC761
16QKSInJgiz8dzU

Hello ASPNET 2.0!

</CiphervValue>
</CipherData>
</EncryptedData>
</connectionStrings>

Now if some malicious user illegally gets into your machine and gets his hands on your application’s
web. config file, you could prevent him from getting much of value —such as the connection string of
your database.

Performance and Scalability

One of the goals for ASP.NET 2.0 set by the Microsoft team was to provide the world’s fastest Web appli-
cation server. This book also addresses a number of performance enhancements available in ASP.NET 2.0.

One of the most exciting performance enhancements is the new caching capability aimed at exploiting
Microsoft’s SQL Server. ASP.NET 2.0 now includes a feature called SQL cache invalidation. Before
ASP.NET 2.0, it was possible to cache the results that came from SQL Server and to update the cache
based on a time interval — for example, every 15 seconds or so. This meant that the end user might see
stale data if the result set changed sometime during that 15-second period.

In some cases, this time interval result set is unacceptable. In an ideal situation, the result set stored in the
cache is destroyed if any underlying change occurs in the source from which the result set is retrieve —in
this case, SQL Server. With ASPNET 2.0, you can make this happen with the use of SQL cache invalidation.
This means that when the result set from SQL Server changes, the output cache is triggered to change, and
the end user always sees the latest result set. The data presented is never stale.

Another big area of change in ASPNET is in the area of performance and scalability. ASP.NET 2.0 now
provides 64-bit support. This means that you can now run your ASP.NET applications on 64-bit Intel or
AMD processors.

Because ASP.NET 2.0 is fully backward compatible with ASP.NET 1.0 and 1.1, you can now take any for-
mer ASPNET application, recompile the application on the NET Framework 2.0, and run it on a 64-bit
processor.

Additional New Features of ASP.NET 2.0

You just learned some of the main goals of the ASP.NET team that built ASPNET 2.0. To achieve these
goals, the team built a mountain of new features into ASPNET. A few of them are described in the fol-
lowing sections.

New Developer Infrastructures

An exciting advancement in ASP.NET 2.0 is that new infrastructures are in place for you to use in your
applications. The ASP.NET team selected some of the most common programming operations performed
with ASPNET 1.0 to be built directly into ASP.NET. This saves you considerable time and coding.

Chapter 1

Membership and Role Management

In earlier versions, if you were developing a portal that required users to log in to the application to gain
privileged access, invariably you had to create it yourself. It can be tricky to create applications with
areas that are accessible only to select individuals.

With ASP.NET 2.0, this capability is now built in. You can now validate users as shown in Listing 1-3.

Listing 1-3: Validating a user in code

VB

If (Membership.ValidateUser (Username.Text, Password.Text)) Then
' Allow access code here

End If

C#
if (Membership.ValidateUser (Username.Text, Password.Text)) {
// Allow access code here

}

A new series of APIs, controls, and providers in ASP.NET 2.0 enable you to control an application’s user
membership and role management. Using these APIs, you can easily manage users and their complex
roles — creating, deleting, and editing them. You get all this capability by using the APIs or a built-in
Web tool called the Web Site Administration Tool.

As far as storing users and their roles, ASP.NET 2.0 uses an .mdb file (the file type for the new SQL
Server Express Edition, not to be confused with Microsoft Access) for storing all users and roles. You are
in no way limited to just this data store, however. You can expand everything offered to you by ASPNET
and build your own providers using whatever you fancy as a data store. For example, if you want to
build your user store in LDAP or within an Oracle database, you can do so quite easily.

Personalization

10

One advanced feature that portals love to offer their membership base is the capability to personalize
their offerings so that end users can make the site look and function however they want. The capability
to personalize an application and store the personalization settings is now completely built into the
ASP.NET framework.

Because personalization usually revolves around a user and possibly a role that this user participates in,
the personalization architecture can be closely tied to the membership and role infrastructures. You have
a couple of options for storing the created personalization settings. The capability to store these settings
in either Microsoft Access or in SQL Server is built into ASP.NET 2.0. As with the capabilities of the
membership and role APIs, you can use the flexible provider model, and then either change how the
built-in provider uses the available data store or build your own custom data provider to work with a
completely new data store. The personalization API also supports a union of data stores, meaning that
you can use more than one data store if you want.

Because it is so easy to create a site for customization using these new APIs, this feature is quite a value-
add for any application you build.

Hello ASPNET 2.0!

The ASPNET Portal Framework

During the days of ASP.NET 1.0, developers could go to the ASPNET team’s site (found at http: //
www . asp .net) and download some Web application demos such as IBuySpy. These demos are known as
Developer Solution Kits and are used as the basis for many of the Web sites on the Internet today. Some
were even extended into Open Source frameworks such as DotNetNuke.

The nice thing about IBuySpy was that you could use the code it provided as a basis to build either a
Web store or a portal. You simply took the base code as a starting point and extended it. For example,
you could change the look and feel of the presentation part of the code or introduce advanced function-
ality into its modular architecture. Developer Solution Kits are quite popular because they make per-
forming these types of operations so easy. Figure 1-4 shows the INETA (International .NET Association)
Web site, which builds on the IBuySpy portal framework.

xplorer
File Edit View Favorites Tools Help r#

Qback ~ O - [4 (2] €& | P search rFavorites @ Meda € | (D~ & (5§
Address Lﬁé_j nttpe e, neta.org DesktopDefault, aspx v| B so

29,

?n eta

Irternational MET Association

Community Resources Events User Group Specials About INETA

New Resources

INETA is the next evolution in user group communities Teeld ory Items:
510 user groups, representing e = & non-profit, independent organization, chartered with -
175780 users worldwide! supporting all user groups interested in the Microsoft
NET platform. INETA is run by a board of user group
leaders, elected by their peers, and supported by
Microsoft Corporation and other sponsors.

Read More »

Newsletter Subscription

News and Features

DevDays 2004: 32 .S, Cities in March and elsewhere!
DevDays2004 Attend this full day of awesome Microsoft training for $35US (575 before 2/10) and
leave with code, swag and the Whidbey Alpha!

2004 Also, click HERE for U.5. User Group Registration Contest!

» Read Mare

Mool

inetayq”

INETA Membership more than Doubles in 2003 L Speakers o
278 User Groups }ulr‘ed in 2003, more than doubling the number of member groups and bringing in over Bureau
38,000 .MET developers as their members. INETA is now serving cver 135,000 developers arcund the world.

» Resd More

Newsletter Archive Available . .
An archive of past INETA newsletters is now available. Click Here

JANUARY 2004 NEWSLETTER CONTENTS
New Members

Membership by Country

Boston (NET Vender Night DevDays 2004
Ohio .NET Leader Meeting

NS Camedins Tasie

Figure 1-4

Because of the popularity of frameworks such as IBuySpy, ASPNET 2.0 offers built-in capability for
using Web Parts to easily build portals. The possibilities for what you can build using the new Portal
Framework is astounding. The power of building using Web Parts is that it easily enables end users to
completely customize the portal for their own preferences. Figure 1-5 shows an example application
built using Web Parts.

11

Chapter 1

Ej My Internet Site - Microsoft | Explorer Q@E
File Edit \iew Favorites Tools Help .',"
QBack - I [® [@ | P search FrFavorites @ Meda € (I 0 B [&

Address @j http:ffocalhost: 55556 /Website 1 fdefault.aspx vl Go ks *
'é M I t t S-t login | register ha
Home
O Home .
+ O Articles My Internet Site
+ O Picture Gallery
This project template enables you to quickly
jumpstart the development of Intermet web
applications using Visual Studio and
ASP.NET.)
It provides a pre-configured template that
includes an Internet security membership
system, a site navigation architecture for
 J optimized site layout/organization, 3 ad-
J Oe S banner system with impression/clickthrough
tracking and reporting, and a master page
Flowers template design that enables developers to
quickly modify the look and feel of a site
without recoding.
Articles Links
> =l
’ ” " \ Link 1
wilc flowers : First irti'lcrleirl Link 2
My Second Article :
aihae My Third Article _L!nk -
Link 4
Link 5
Link & L
1§ el T hd
ﬁDune %Lo:alhl:ra'\er

Figure 1-5

Site Navigation

The ASPNET team members realize that end users want to navigate through applications with ease. The
mechanics to make this work in a logical manner are sometimes hard to code. The team solved the prob-
lem in ASP.NET 2.0 with a series of navigation-based server controls.

First, you can build a site map for your application in an XML file that specific controls can inherently
work from. Listing 1-4 shows a sample site map file.

Listing 1-4: An example of a site map file
<?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
<siteMapNode title="Home" description="Home Page" url="default.aspx">
<siteMapNode title="News" description="The Latest News" url="News.aspx">
<siteMapNode title="U.S." description="U.S. News"
url="News.aspx?cat=us" />
<siteMapNode title="World" description="World News"

12

Hello ASPNET 2.0!

url="News.aspx?cat=world" />
<siteMapNode title="Technology" description="Technology News"
url="News.aspx?cat=tech" />
<siteMapNode title="Sports" description="Sports News"
url="News.aspx?cat=sport" />
</siteMapNode>
<siteMapNode title="Finance" description="The Latest Financial Information"
url="Finance.aspx">
<siteMapNode title="Quotes" description="Get the Latest Quotes"
url="Quotes.aspx" />
<siteMapNode title="Markets" description="The Latest Market Information"
url="Markets.aspx">
<siteMapNode title="U.S. Market Report"
description="Looking at the U.S. Market" url="MarketsUS.aspx" />
<siteMapNode title="NYSE"
description="The New York Stock Exchange" url="NYSE.aspx" />
</siteMapNode>
<siteMapNode title="Funds" description="Mutual Funds"
url="Funds.aspx" />
</siteMapNode>
<siteMapNode title="Weather" description="The Latest Weather"
url="Weather.aspx" />
</siteMapNode>
</siteMap>

After you have a site map in place, you can use this file as the data source behind a couple of new site
navigation server controls, such as the TreeView and the SiteMapPath server controls. The TreeView
server control enables you to place an expandable site navigation system in your application. Figure 1-6
shows you an example of one of the many looks you can give the TreeView server control.

= Home
= Mews
T3
TWorld
Technology
Spotts
= Fmance
Chuotes
= Mfarkets
7.3, Market Report
NTEE
Funds
TWeather

Figure 1-6

The SiteMapPath is a control that provides the capability to place what some call breadcrumb navigation in
your application so that the end user can see the path that he has taken in the application and can easily

navigate to higher levels in the tree. Figure 1-7 shows you an example of the SiteMapPath server control
at work.

13

Chapter 1

Home > Fmance > Matkets = .3 Market Report

Figure 1-7

These new site navigation capabilities provide a great way to get programmatic access to the site layout
and even to take into account things like end-user roles to determine which parts of the site to show.

New Compilation System

In ASP.NET 2.0, the code is constructed and compiled in a new way. Compilation in ASPNET 1.0 was
always a tricky scenario. With ASPNET 1.0, you could build an application’s code-behind files using
ASP.NET and Visual Studio, deploy it, and then watch as the . aspx files were compiled page by page as
each page was requested. If you made any changes to the code-behind file in ASPNET 1.0, it was not
reflected in your application until the entire application was rebuilt. That meant that the same page-by-
page request had to be done again before the entire application was recompiled.

Everything about how ASP.NET 1.0 worked with classes and compilation changed with the release of
ASP.NET 2.0. The mechanics of the new compilation system actually begin with how a page is struc-
tured in ASPNET 2.0. In ASPNET 1.0, you either constructed your pages using the code-behind model
or by placing all the server code inline between <script> tags on your .aspx page. Most pages were
constructed using the code-behind model because this was the default when using Visual Studio .NET
2002 or 2003. It was quite difficult to create your page using the inline style in these IDEs. If you did, you
were deprived of the use of IntelliSense, which can be quite the lifesaver when working with the tremen-
dously large collection of classes that the .NET Framework offers.

ASP.NET 2.0 offers a new code-behind model because the .NET Framework 2.0 offers the capability to
work with partial classes (also called partial types). Upon compilation, the separate files are combined
into a single offering. This gives you much cleaner code-behind pages. The code that was part of the Web
Form Designer Generated section of your classes is separated from the code-behind classes that you
create yourself. Contrast this with the ASPNET 1.0 . aspx file’s need to derive from its own code-behind
file to represent a single logical page.

ASP.NET 2.0 applications can include an \App_Code directory where you place your class’s source. Any
class placed here is dynamically compiled and reflected in the application. You do not use a separate
build process when you make changes as you did with ASP.NET 1.0. This is a just save and hit deploy-
ment model like the one in classic ASP 3.0. Visual Studio Web Developer also automatically provides
IntelliSense for any objects that are placed in the \App_Code directory, whether you are working with
the code-behind model or are coding inline.

ASPNET 2.0 also provides you with tools that enable you to precompile your ASPNET applications —both
.aspx pages and code behind —so that no page within your application has latency when it is retrieved for
the first time. Doing this is also a great way to discover any errors in the pages without invoking every page.
Precompiling your ASP.NET 2.0 applications is as simple as using aspnet_compiler . exe and employing
some of the available flags. As you precompile your entire application, you also receive error notifications
if any errors are found anywhere within it. Precompilation also enables you to deliver only the created
assembly to the deployment server, thereby protecting your code from snooping, unwanted changes, and
tampering after deployment. You see examples of both of these scenarios later in this book.

14

Hello ASPNET 2.0!

Health Monitoring for Your ASPNET Applications

The built-in health monitoring capabilities are new and rather significant features designed to make it eas-
ier to manage a deployed ASP.NET application. Health monitoring provides what the term implies —the
capability to monitor the health and performance of your deployed ASP.NET applications.

ASP.NET health monitoring is built around various health monitoring events (which are referred to as
Web events) occurring in your application. Using the new health monitoring system enables you to per-
form event logging for Web events such as failed logins, application starts and stops, or any unhandled
exceptions. The event logging can occur in more than one place; therefore, you can log to the event log
or even back to a database. In addition to performing this disk-based logging, you can also use the sys-
tem to e-mail health monitoring information.

Besides working with specific events in your application, you can also use the health monitoring system
to take health snapshots of a running application. As you can with most systems that are built into
ASP.NET 2.0, you are able to extend the health monitoring system and create your own events for
recording application information.

Health monitoring is already enabled by default in the system . config files. The default setup for health
monitoring logs all errors and failure audits to the event log. For instance, throwing an error in your appli-
cation results in an error notification in the Application log. An example of this is presented in Figure 1-8.

Event Properties 2

Evert

Date: 12/18/2008 Source: ASP.NET 2.0.50727.0 4+
Time: 11:34:46 AM Category: Web Event

Type: ‘Waming Event ID: 1309 +
User: N/A :
Computer: EVJEND1

i

Description:

Evert code: 3005 A~
Ewvent message: An unhandled exception has occumed. (]
Event time: 12/18/2005 11:34:46 AM

Event time (UTC): 12/18/2005 5:34:46 PM

Event |D: 9932882db30346138507467b 1celc S

Evert sequence: 4

Event occumence: 1

Evert detail code: 0

Application information : hdl

CK l [Cancel

Figure 1-8

You can change the default event logging behaviors simply by making some minor changes to your
application’s web. config file. For instance, suppose that you want to store this error event information
in a SQL Express file contained within the application. This change can be made by adding a
<healthMonitoring> node to your web.config file as presented in Listing 1-5.

15

Chapter 1

Listing 1-5: Defining health monitoring in the web.config file

<healthMonitoring enabled="true">
<providers>
<clear />
<add name="SqglWebEventProvider" connectionStringName="LocalSglServer"
maxEventDetailsLength="1073741823" buffer="false" bufferMode="Notification"
type="System.Web.Management . SglWebEventProvider,
System.Web,Version=2.0.0.0,Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />
</providers>
<rules>
<clear />
<add name="All Errors Default" eventName="All Errors"
provider="SqglWebEventProvider"
profile="Default" minInstances="1" maxLimit="Infinite"
minInterval="00:01:00" custom="" />
<add name="Failure Audits Default" eventName="Failure Audits"
provider="SglWebEventProvider" profile="Default" minInstances="1"
maxLimit="Infinite" minInterval="00:01:00" custom="" />
</rules>
</healthMonitoring>

After this change, events are logged in the ASPNETDB . MDF file which is automatically created for you on
your behalf if it doesn’t already exist in your project.

Opening up this SQL Express file, you find an aspnet_WebEvent_Events table. An example of this
table with a few entries is presented in Figure 1-9.

You will learn much more about the health monitoring capabilities provided with ASP.NET 2.0 in
Chapter 32.

Reading and Writing Configuration Settings

Using the WebConfigurationManager class, you have the capability to read and write to the server or
application configuration files. This means that you can write and read settings in the machine.config
or the web. config files that your application uses.

The capability to read and write to configuration files is not limited to working with the local machine in
which your application resides. You can also perform these operations on remote servers and applications.

Of course, a GUI-way exists in which you can perform these read or change operations on the configuration
files at your disposal. The exciting thing, however, is that the built-in GUI tools that provide this func-
tionality (such as the new ASPNET MMC snap-in) use the webConfigurationManager class that is also
available for building custom administration tools.

16

Hello ASPNET 2.0!

LipperViSaspnet - Microsoft Visual Studio B[]
Fle Edt View Project Build Debug Data QueryDesigner Tools Window Community Help
el 2 L B s e e B B Debug - MNET v|§ .[;@fﬁj{sﬂ.!
el i el =i | changeTypex | 1 s =)
|3 || - aspnet_WebEv...SPNETDB.MDF) | Web.Config | ~ x ||Server Exglorer v 3 x
g _ Eventld EventTimeltc EventTime EventType EventSequence | Ev|| [F] 4| | ¥4, S
§ 3 Obb4fEad11da5cT8T 12/18/2005 5:5... 12/18/2005 11:... System.\Web.Management.\WebRequestSrrorEvent 4 1 = [ASPNETDE.MDF |i
ab6ede7s365d%.., 12/18/2005 5:4... 12/18/2005 11:... System.Web,Management.WebRequestErrarEvent 4 1 i+ [Database Diagrams
= [Tables
p Lt A e Lo L - () J EP"Et_Appll:annns
1 aspnet_Membership
12 T aspnet_Paths =
®- 1 aspnet_PersonalizationAlUs
1= T aspnet_PersonalizationPerls
®- 1 aspnet_Profile
(& T aspret_Roles
- 1 aspnet_Schemalersions
=) j aspnet_lisers
-] aspnet_UsersInRoles
1z 7] 2spnet_WebEvent_Events
®- [J views]
£ | I | [
g sokution Explorer | 58 Server Expiorer |
Properties -1 x
aspnet_\WebEvent_Events -
m =
B (identity)
Bl Misc
(Tdentity)
(%] 1 2|
H 4|1 of2 | b M b
Ready
Figure 1-9

Listing 1-6 shows an example of reading a connection string from an application’s Web . config file.

Listing 1-6: Reading a connection string from the applicationOs Web.config file

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Try
Dim connectionString As String = _
ConfigurationManager.ConnectionStrings ("Northwind") .
ConnectionString.ToString ()
Labell.Text = connectionString
Catch ex As Exception
Labell.Text = "No connection string found."
End Try
End Sub

(continued)

17

Chapter 1

Listing 1-6: (continued)

C#
protected void Page_Load(object sender, EventArgs e)
{
try
{
string connectionString =
ConfigurationManager.ConnectionStrings["Northwind"].
ConnectionString.ToString() ;
Labell.Text = connectionString;
}
catch (Exception)

{

Labell.Text = "No connection string found.";
}
}

This little bit of code writes the Northwind connection string found in the web. config file to the screen
using a Label control. As you can see, it is rather simple to grab items from the configuration file.

Localization

ASP.NET 2.0 improves upon the previous versions of ASP.NET by making it easier to localize applica-
tions. In addition to using Visual Studio, you can create resource files (. resx) that allow you to dynami-
cally change the pages you create based upon the culture settings of the requestor.

ASP.NET 2.0 also provides the capability to provide resources application-wide or just to particular
pages in your application through the use of two new application folders — App_GlobalResources and
App_LocalResources.

The items defined in any . resx files you create are then accessible directly in the ASPNET server con-
trols or programmatically using expressions such as:

<%= Resources.Resource.Question %>

This new system is straightforward and simple to implement. This topic is covered in greater detail in
Chapter 30.

Additions to the Page Framework

The ASP.NET page framework has some dramatic new additions that you can include in your applica-
tions. One of the most striking ones is the capability to build ASPNET pages based upon visual inheri-
tance. This was possible in the Windows Forms world, but it was harder to achieve with ASP.NET. You
also gain the capability to easily apply a consistent look and feel to the pages of your application by
using themes. Many of the difficulties in working with ADO.NET in the past have now been removed
with the addition of a new series of data source controls that take care of accessing and retrieving data
from a large collection of data stores. Although these are not the only new controls, the many new server
controls create a larger ASPNET page framework.

18

Hello ASPNET 2.0!

Master Pages

With the introduction of master pages in ASPNET 2.0, you can now use visual inheritance within your
ASP.NET applications. Because many ASP.NET applications have a similar structure throughout their
pages, it is logical to build a page template once and use that same template throughout the application.

In ASP.NET 2.0, you do this by creating a .master page, as shown in Figure 1-10.

[Iﬂ WebSite1 - Visual Web Developer 2005 Express Edition Beta =&
Efe Edit View Webgite Buld Dsbug Data Format Layout Tools Window Community Help
=R N I ERRRR- =N WAL i
= Times New Roman » 12pt 'ln-ru..‘.\..ﬁlg'lisszl"ﬁ
Taalbox >4 x HasterPage.master| StartPage | ~ X || Solution Explarer -0 x
—ks:andard A= =NialEiEk=lly
2 C\.\Website1,
A Lo My Company Home Page = oo pata
bl TextSox 41 5| Default.aspn
Button - [7] MasterPage. master
LinkButton ContentPlaceHolder - ContentFlaceHolderl ContentPlaceHolder - ContentPlaceHolder2
(@) ImageButton
A HyperLink
=4 DropDownList
=3 Listsox
ChedkBox 4
- Ched@odist
(%) RadicButton
£~ RadioButtonList
Ll Image
i ImageMap i
', &) Solution Ex... 9w Datebase ... /
3 rable Copyright 2003]- My Company d 2
= BulletedList Properties ~ 1 %
HiddenFisid <TD> =
.@_'j Literal 22 4
7] calendar LA
= AdRotator = ;d‘:c -
) FileUpload Abbr
4 Wizard Accesséey
= aml Algn
D Multiview AtomicSelectio
71 Panel L] lud
4| PlaceHolder Abbr
0 v
__'g_g:utgnﬂac!Hnldu v] L4 Design | b Source <body> <table> | <tr>
Ready
Figure 1-10

An example master page might include a header, footer, and any other elements that all the pages can
share. Besides these core elements, which you might want on every page that inherits and uses this tem-
plate, you can place <asp:ContentPlaceHolder> server controls within the master page itself for the
subpages (or content pages) to use in order to change specific regions of the master page template. The
editing of the subpage is shown in Figure 1-11.

When an end user invokes one of the subpages, he is actually looking at a single page compiled from
both the subpage and the master page that the particular subpage inherited from. This also means that
the server and client code from both pages are enabled on the new single page.

The nice thing about master pages is that you now have a single place to make any changes that affect

the entire site. This eliminates making changes to each and every page within an application.

19

Chapter 1

[-_?.Q WebSite1 - Visual Web Developer 2005 Express Edition Beta (B[]
Fle Edt View Webgte Build Debug Data Format Lavout Tools Window Comeunity Help

R A A= N N A | M= NN} M|
A e slsclsol sl B
Toobox -1 x Default.aspx| MasterPage.master | StartPage ~ 3 | Solution Explorer ~1x

- Standard ~ = | 76 5 E | B e
P C\..\WebsSite1}
A Label [App_Data
abl| TextBox (5| Default.aspx
[ab) Button = =] MasterPage.master
LinkButton Content - Contentl (Custom) | | Content - Content2 (Custom)
(@) 1mageButton
A HyperLink
=% DropDownList
= ListBox
CheckBox

- CheckBowlist
(& RadioButton
i~ RadioButtorList
| 1mage
s ImageMap
(=] Table _g Sokstion Ex... /7 Database ...
i= BulletedList

HiddenField

1] Literal =N
= calendar ZSF A M
LS AdRotator ::";E £
el TraceMode
4 Wizard

Properties >0 x
DOCUMENT -

UICulture
o i B Body
120 Muitiview Alink
[} Panel ore <
[+) PlacetHolder ALink

View Color of all active links in the document.
w ||| & Design | b= Source

=1 substin
Ready

Figure 1-11

Themes

The introduction of themes in ASP.NET 2.0 has made it quite simple to provide a consistent look and feel
across your entire site. Themes are simple text files where you define the appearance of server controls
that can be applied across the site, to a single page, or to a specific server control. You can also easily
incorporate graphics and Cascading Style Sheets, in addition to server control definitions.

Themes are stored in the /App_Theme directory within the application root for use within that particular
application. One cool capability of themes is that you can dynamically apply them based on settings that
use the new personalization service provided by ASP.NET 2.0. Each unique user of your portal or appli-
cation can have her own personalized look and feel that she has chosen from your offerings.

New Objects for Accessing Data

20

One of the more code-intensive tasks in ASPNET 1.0 was the retrieval of data. In many cases, this meant
working with a number of objects. If you have been working with ASP.NET for a while, you know that it
was an involved process to display data from a Microsoft SQL Server table within a DataGrid server con-
trol. For instance, you first had to create a number of new objects. They included a SqglConnection object
followed by a SglCommand object. When those objects were in place, you then created a SglDataReader
to populate your DataGrid by binding the result to the DataGrid. In the end, a table appeared containing
the contents of the data you were retrieving (such as the Customers table from the Northwind database).

Hello ASPNET 2.0!

ASP.NET 2.0 eliminates this intensive procedure with the introduction of a new set of objects that work
specifically with data access and retrieval. These new data controls are so easy to use that you access and
retrieve data to populate your ASP.NET server controls without writing any code. You saw an example
of this in Listing 1-2, where an <asp: SglDataSource> server control retrieved rows of data from the
Customers table in the Northwind database from SQL Server. This SqlDataSource server control was
then bound to the new GridView server control via the use of simple attributes within the GridView con-
trol itself. It really couldn’t be any easier!

The great news about this new functionality is that it is not limited to just Microsoft’s SQL Server. In fact,
several data source server controls are at your disposal. You also have the capability to create your own.
In addition to the SqlDataSource server control, ASP.NET 2.0 introduces the AccessDataSource,
XmlDataSource, ObjectDataSource, and SiteMapDataSource server controls. You use all these new data
controls later in this book.

New Server Controls

So far, you have seen a number of new server controls that you can use when building your ASP.NET 2.0
pages. For example, the preceding section talked about all the new data source server controls that you
can use to access different kinds of data stores. You also saw the use of the new GridView server control,
which is an enhanced version of the previous DataGrid control that you used in ASP.NET 1.0.

Besides the controls presented thus far in this chapter, ASP.NET 2.0 provides more than 50 additional
new server controls! In fact, so many new server controls have been introduced that the next IDE for
building ASP.NET applications, Visual Studio 2005, had to reorganize the Toolbox where all the server
controls are stored. They are now separated into categories instead of being displayed in a straight list-
ing as they were in Visual Studio .NET or the ASP.NET Web Matrix. The new Visual Studio 2005 Toolbox
is shown in Figure 1-12.

Toolbox > 0 X
+ Standard

- Data

& Pointer
 Gridview

‘| Datalist

2l Detailsview

-_J FormView

2% Repeater

-L] SqglDataSource
,_ég AccessDataSource
h,g ObjectDataSource
.Ii ¥miDataSource
L34, SiteMapDataSource
+ Validation

=l Navigation

k Pointer

==r SiteMapPath

= Menu

ST TreeView

+ Login

+ WebParts

+ HTML

= General

Figure 1-12
21

Chapter 1

A

22

New IDE for Building ASP.NET 2.0 Pages

With ASP.NET 1.0/1.1, you can build your ASPNET application using Notepad, Visual Studio .NET
2002 and 2003, as well as the hobbyist-focused ASPNET Web Matrix. ASP.NET 2.0 comes with another
IDE to the Visual Studio family — Visual Studio 2005.

Visual Studio 2005 offers some dramatic enhancements that completely change the way in which you
build your ASP.NET applications. Figure 1-13 shows you a screen shot of the new Visual Studio 2005.

[Iﬂ WebSite1 - Visual Web Developer 2005 Express Edition Beta =[5 *]
Ffe Edit View ‘Webgite Suld Dsbug Tools Window Community Help
H=RARE A=A N NN RN < RN NN =8

A AL

| internet Explorer 6.0 = i)

Toalbox ~ a4 x HasterPage.master| StartPage | ~ X || Solution Explarer -~ 03 x
- Standard || server Objects & Events ||| o Events) vl EI[T_A‘] = | [@
1] =®E Master Language="VB" %> - — 1P C\.\WebSite1|
A Label __: o 1] App_Data
bl TextSox])3 . org/1999/XnLml” > 5| pefault.aspx
Button] MasterPage. master
LinkButton
(@) ImageButton
A HyperLink
% DropDownList
=3 ListBox
ChedkBox

- ChedBondist
(%) RadicButton
£~ RadioButtonList i
] 1mage 1 -U <td>
i ImageMap =]
T Table 18] I
i= Bulletedlist . | </as

HiddenFild '

) Literal
7 calendar 23 aur
= AdRotator i
T, FileUpload
44 Wizard

nat="server">
a»My Company Master Page</title>

f Company Home Page</hl>

PlaceHolder ID="ContentFlaceHolderl"™

- v ', 5] Solution Ex... M Database ... /

ContentPlaceHolder:

Properties >3 x
<td> -

B A
oA]

sexver"
</asp:ContentPFlaceHolder>
</td>
r </tr>
274 <tr>
3'-3 il _:g <td colspan="2">
EITOE 29 Copyright 2005 - My Company
{1 panel 3oft </tdy o
) PlaceHolder 211L sirrn [v] Abbr
&l m (3]
b4 Source <html=> || <body> |<form#forml> || <table> |<tr> @

B Misc [~
(1d)
Abbr
Accessey
Align left
AtomicSelectio false

53

IO View
-)

=1_ContentPlaceHoider | ¥ D=0
Ready Ln 29 Col 35 Ch 35 INS

Figure 1-13

One rather dramatic change to the IDE is that Visual Studio 2005 builds applications using a file-based
system, not the project-based system used by Visual Studio .NET. When using Visual Studio .NET in the
past, you had to create new projects (for example, an ASP.NET Web Application project). This process
created a number of project files in your application in addition to the Default.aspx page. Because
everything was based on a singular project, it became very difficult to develop applications in a team
environment.

Web projects in Visual Studio 2005, on the other hand, are based on a file system approach. No project
files are included in your project, and this makes it very easy for multiple developers to work on a single
application together without bumping into each other. Other changes are those to the compilation system

Hello ASPNET 2.0!

discussed earlier. You can now build your ASP.NET pages using the inline model or the new code-
behind model. Whether you build pages inline or with the new code-behind model, you have full
IntelliSense capabilities. This, in itself, is powerful and innovative. Figure 1-14 shows IntelliSense run-
ning from an ASP.NET page that is being built using the inline model.

MasterPage.master® | Start Page - X
;,__ﬂPage v +# Load v
<%@ Master Language="VB" %> 7“

3 «script runat="server">

Protected Sub Page_Load (ByVal sender Lz Object, ByVal e A= 5ystem

1 o o

Page.
End 34 - AddOrPreRenderCompletehsyne -

il </=cript> ﬁ: Application =

& # cache
10 <html Xmln ﬁ? ClientlD im1™ >
1115 <head id=" 5 ClientQueryString
12 <title P ClientScript ex
13]</head> 25 Controls
141 <body> 9 CreateStateFormatter
1599 <form - Databind]
164 < - Dispose e
1743 Common Al
18 T4 colopan—re
19 <hl>My Company Home Page</hlx

Figure 1-14

Another feature of Visual Studio 2005 that has come over from the ASPNET Web Matrix is that you
don’t need IIS on your development machine. Visual Studio 2005 has a built-in Web server that enables
you to launch pages from any folder in your system with relative ease. Chapter 2 discusses the new
Visual Studio 2005 in detail.

Summary

This whirlwind tour briefly introduced some of the new features in ASPNET 2.0. This release offers so
much that we can’t come close to covering it all in this chapter. The new ways of working with data and
presentation and the new infrastructure provide effective means to create powerful and secure applica-
tions. But this book also gets down and dirty in the underlying architecture and features that have been
included in ASP.NET since it was initially released.

ASP.NET 2.0 is so powerful and has so much capability built in that its tremendous benefits to produc-

tivity really shine through. Pull up your keyboard and have some fun as you take the journey through
this book and this powerful technology.

23

