
Overview of Windows
Presentation Foundation

For those of us who have been developing applications to run on the Windows platform, the topic
of this book presents a compelling and exciting wave of change to how such applications can be
built. In addition, for those of us who have been developing web-based applications, an even more
exciting shift is approaching.

Windows Presentation Foundation, also known as WPF, is the next-generation graphics platform
on which both Windows- and web-based applications can be built to run on Windows Vista, the
latest evolutionary release of the Windows operating system. WPF provides the foundation for
introducing an elegant and high fidelity User Experience (UX) by juxtaposition of user interface,
application logic, documents, and media content.

Although originally targeted solely for Windows Vista, WPF will be made available for Windows
XP and Windows Server 2003 as part of the .NET Framework 3.0 (formerly WinFX) developer
platform.

This coalescence of form and function is further empowered by tools such as XAML and the
Microsoft Expression Designers, which allow designers and developers to work in parallel on the
user interface and the application logic, coming together to provide a seamless UX.

This chapter provides an overview of WPF, including the following key topics:

❑ Evolution of the Windows API

❑ .NET Framework 3.0, the next-generation APIs for Windows-based development

❑ WPF architecture and development model

❑ XAML, the new declarative language backing WPF

❑ Tools to develop WPF applications

04_041802 ch01.qxp 4/2/07 5:18 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

A Brief History of the Windows API
The Windows API exposes the core set of functionality provided by the Windows operating system for
use in applications. Primarily designed for C/C++ development, the Windows API has been the most
direct mechanism with which an application can interact with Windows.

The Windows API comprises the following functional groups:

❑ Base Services — Provides access to the core resources of the computer, such as memory, filesys-
tems, devices, processes, and threads

❑ Common Control Library — A collection of common control windows used throughout the
Windows operating system, providing the distinctive Windows look and feel

❑ Common Dialog Box Library — A collection of dialog boxes used to execute common tasks,
including file opening, saving, and printing

❑ Graphics Device Interface (GDI) — Provides the facilities for an application to generate graphi-
cal output to displays, printers, and other devices

❑ Network Services — Provides access to various networking capabilities of the Windows operat-
ing system, including RPC and NetBIOS

❑ User Interface (UI) — Provides the mechanism for managing windows and controls in an appli-
cation and input from devices such as the mouse and keyboard

❑ Windows Shell — The container that organizes and presents the entire Windows UI, including
the desktop, taskbar, and Windows Explorer

Through these services, developers have had significant flexibility in creating powerful applications for
the Windows operating system. However, this flexibility also bore the responsibility of handling low-
level and often tedious operations.

With each new release of the Windows operating system, additions and updates to the Windows API
were almost always included. Yet with each release, Microsoft strived to support backwards compatibil-
ity. Thus, many functions included in the original Windows API still exist today in Windows XP and
Windows Server 2003.

The following list includes major versions of the Windows API:

❑ Win16 — The API for the first 16-bit versions of Windows

❑ Win32 — Introduced in Windows NT, the API for 32-bit versions of Windows

❑ Win32 for 64-bit Windows — Formerly known as Win64, the API for 64-bit versions of
Windows XP and Windows Server 2003

Platform Evolution
Since the release of Windows 1.0 more than 20 years ago, the GDI and the UI services of the Windows API
have provided a reliable graphics platform for Windows applications. Many applications we use on a
day-to-day basis, including the Microsoft Office suite and Internet Explorer, are built on this foundation.

2

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 2

Although this graphics platform has seen many successes, fundamental changes have occurred in tech-
nology since its initial appearance more than two decades ago. With the proliferation of the personal
computer and the increasing availability of broadband Internet access, the demand for rich visual expe-
riences has dramatically increased. Moreover, advancements in graphics hardware technology have
paved the way for astounding digital media and interactive entertainment products. Facing this new
demand for a rich visual experience, Microsoft has invested heavily in providing such an experience as
part of the next-generation Windows API — .NET Framework 3.0.

Introducing .NET Framework 3.0
.NET Framework 3.0 is a revolutionary milestone for developing applications on the Windows operating
system. Built atop the .NET Framework 2.0, .NET Framework 3.0 is a set of managed APIs that provide
enhanced functionality for messaging, workflow, and presentation.

Key components of .NET Framework 3.0 include:

❑ Windows Presentation Foundation (WPF) — The graphical subsystem for all things related to
the UI

❑ Windows Communication Foundation (WCF) — The messaging subsystem of .NET
Framework 3.0, securing program communication through a single API

❑ Windows Workflow Foundation (WF) — Provides workflow services for applications built to
run on Windows

As the new programming model for Windows Vista, .NET Framework 3.0 fuses the Windows platform
with applications developed using Visual Studio 2005. With direct access to low-level services of the
operating system and hardware surface, .NET Framework 3.0 provides a compelling solution for creat-
ing applications with a rich UX.

Although WCF and WF are equally important components of .NET Framework 3.0, they are beyond the
scope of this book. For more information on WCF and WF, visit the .NET Framework Developer Center
on MSDN (http://msdn2.microsoft.com/en-us/netframework).

Meet Windows Presentation Foundation
Formerly known as Avalon, Windows Presentation Foundation (WPF) is the new graphical subsystem in
Windows Vista that provides a holistic means for combining user interface, 2D and 3D graphics, docu-
ments, and digital media. Built on the .NET Framework, WPF provides a managed environment for
development with the Windows operating system. This takes advantage of the existing investment
made by Microsoft in the .NET Framework, and allows developers familiar with .NET technologies to
rapidly begin developing applications that leverage WPF.

Guiding Design Principles
To enhance UX and empower both designers and developers, WPF has been built under the following
design principles:

3

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 3

❑ Integration

❑ Vector graphics

❑ Declarative programming

❑ Simplified deployment

❑ Document portability

Integration
In today’s world, developing a Windows application may require the use of any number of different
technologies, ranging from GDI/GDI+ for 2D graphics, UI services (User32 or WinForms), or Direct3D
or OpenGL for 3D graphics. On the contrary, WPF was designed as a single model for application devel-
opment, providing seamless integration between such services within an application. Similar constructs
can be used for developing storyboard animation, data bound forms, and 3D models.

Vector Graphics
To take advantage of new powerful graphics hardware, WPF implements a vector-based composition
engine. This allows for graphics to scale based on screen-specific resolution without loss of quality,
something nearly impossible with fixed-size raster graphics. WPF leverages Direct3D for vector-based
rendering, and will utilize the graphics processing unit (GPU) on any video card implementing DirectX
7 or later in hardware. In anticipation of future technology, such as high-resolution displays and
unknown form factors, WPF implements a floating-point logical pixel system and supports 32-bit ARGB
colors.

Declarative Programming
WPF introduces a new XML-based language to represent UI and user interaction, known as XAML
(eXtensible Application Markup Language — pronounced “zammel”). Similar to Macromedia’s MXML
specification, within XAML elements from the UI are represented as XML tags. Thus, XAML allows
applications to dynamically parse and manipulate UI elements at either compile-time or runtime, pro-
viding a flexible model for UI composition.

Following the success of ASP.NET, XAML follows the code-behind model, allowing designers and devel-
opers to work in parallel and seamlessly combine their work to create a compelling UX. With the aid of
design-time tools such as the Visual Designer for Windows Presentation Foundation add-in for Visual
Studio 2005, the experience of developing XAML-based applications resembles that of WinForms devel-
opment. Moreover, designers accustomed to visual tools such as Macromedia Flash 8 Professional can
quickly ramp-up to building XAML-based solutions using visual design tools such as Microsoft
Expression Blend. These tools are covered later in this chapter and throughout this book.

Simplified Deployment
WPF applications can be deployed as standalone applications or as web-based applications hosted in
Internet Explorer. As with smart client applications, web-based WPF applications operate in a partial-
trust sandbox, which protects the client computer against applications with malicious purpose.

4

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 4

Furthermore, WPF applications hosted in Internet Explorer can exploit the capabilities of local client
hardware, providing a rich web experience with 3D, digital media, and more, which is the best argu-
ment for web-based applications available today.

Document Portability
Included in WPF is an exciting new set of document and printing technologies. In conjunction with the
release of Microsoft Office 12, WPF utilizes Open Packaging Conventions, which supports compression,
custom metadata, digital signatures, and rights management. Similar to the Portable Document Format
(PDF), the XML Paper Specification (XPS), which allows for documents to be shared across computers
without requiring that the originating application be installed, is included in WPF.

Architecture
The anatomy of WPF consists of unmanaged services, managed subsystems, and a managed API avail-
able for consumption by WPF applications, known as the presentation framework.

Figure 1-1 outlines the general underlying architecture of WPF, with each major component detailed in
the sections that follow.

Figure 1-1

Element System
The element system represents the surface of WPF with which developers will interact. Contained within
the element system are the core components making up the UI, such as styles, layout, controls, binding,
and text layout.

Almost all the components in the element system derive from the all-important System.Windows
.FrameworkElement class. This class provides the base functionality required to interact with WPF core
presentation service, and implements key members of its parent class, System.Windows.UIElement,

Element System

Visual System

Font System

Composition System

Input/Event System

Property System

Message Transport

5

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 5

which provides functionality for all visual elements within WPF for layout, eventing, and input. The
UIElement class can be compared to HWND in Win32, and is the starting point for input-specific function-
ality within the WPF inheritance hierarchy. The FrameworkElement and related classes are discussed
further in Chapter 2.

Most of the topics covered within this book related to WPF application development pertain to compo-
nents and features of the element system. However, the underlying subsystems are indeed used exten-
sively by WPF applications, and will be noted where appropriate.

Element Trees
An important concept to grasp in WPF is the notion of element trees, which represent the visual ele-
ments of which a WPF application is comprised. Two element trees exist within a WPF application: the
logical tree and the visual tree.

Logical Tree

The logical tree is the hierarchical structure containing the exact elements of your WPF application as
defined either declaratively within a XAML file, or imperatively in code. Consider the following XAML
code snippet:

<Window x:Class=”ElementTrees.Sample”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”ElementTrees” Height=”300” Width=”300”
>
<StackPanel Name=”drawingCanvas”>
<Label Name=”nameLabel”>Please Enter Your Name:</Label>
<TextBox Name=”nameTextBox” Margin=”2px”></TextBox>
<Button Name=”submitButton” Margin=”2px”

Click=”submitButton_Click”>Submit</Button>
</StackPanel>

</Window>

When compiled for or parsed under WPF, this code snippet would yield a logical tree like that depicted
in Figure 1-2.

6

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 6

Figure 1-2

The logical tree outlines the 1:1 mapping of the nested XAML elements declared in the code snippet to
their appropriate classes in the WPF API. The top-level element is ElementTrees.Sample, which
derives from System.Windows.Window, the top-most, non-navigable container for a WPF application.

The Window class itself derives from System.Windows.Controls.ContentControl, which is the base
class for all controls containing a single piece of content within WPF. To provide support for context-
aware layout, the System.Windows.Controls.Panel class is available and includes functionality to
arrange and lay out elements in WPF. The next element in the logical tree for the preceding code snippet
is System.Windows.Controls.StackPanel, which derives from Panel. StackPanel arranges all
client elements of the control in a single line, oriented either horizontally or vertically. This control
behaves similarly to an HTML table with a single column or row, depending on orientation.

Contained within the StackPanel instance are the controls visible to the user:
System.Windows.Controls.TextBox, System.Windows.Controls.Button, and
System.Windows.Controls.Label. Although ubiquitous, these controls are unique implementations
created from the ground up for WPF. Although they may behave in much the same way as their counter-
parts in WinForms from a user’s perspective, their composition and behavior within the programming
model and the visual tree are quite different.

Visual Tree

As its name implies, the logical tree makes sense — each element in the application is represented by a
corresponding instance created by WPF. Under the hood, however, much more is taking place.

For each element in the logical tree, additional elements may be created to represent visual aspects
required by the element. The combination of application elements and the elements created for visual-
ization support is known as the visual tree. Considering the previous code snippet, the visual tree shown
in Figure 1-3 would result.

ElementTrees.Sample

StackPanel

ButtonTextBoxLabel

7

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 7

Figure 1-3

ElementTrees.Sample

Border

Grid

AdornerDecorator

AdornerLayer ContentPresenter

Label

Border

ContentPresenter

TextBlock

ScrollContent/Presenter

TextBlock

AdornerLayer

TextBox

Border

ScrollViewer

Grid

ScrollBar

Button

ButtonChrome

ContentPresenter

TextBlock

ScrollBar

StackPanel

ResizeGrid

8

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 8

Okay, take a moment to catch your breath. WPF does a lot of work under the hood to support the flexi-
ble visual model implemented therein. In addition to the elements of the application included in the log-
ical tree, 20 additional elements are created to support visualization. The following are some of these
elements created for the ElementTrees.Sample element:

❑ System.Windows.Controls.Border— This control will draw a border and/or background
surrounding its nested elements. The Border control is commonly found in many default con-
trols, such as System.Windows.Controls.Canvas, System.Windows.Controls.Label, and
System.Windows.Controls.TextBox.

❑ System.Windows.Controls.Grid— Similar to an HTML table, the Grid control provides a
flexible area for content layout and positioning using rows and columns. Note, however, that
there is a distinct Table control, System.Windows.Documents.Table, which provides block-
level content flow also based on rows and columns and derives from a different class than Grid,
which derives from System.Windows.Controls.Panel.

❑ System.Windows.Documents.AdornerDecorator— This control is used for styling of the
control to which the element belongs. Adorners are discussed further in Chapter 10.

❑ System.Windows.Documents.AdornerLayer— The AdornerLayer control represents
the surface for rendering adorners.

❑ System.Windows.Controls.ContentPresenter— This control is used to specify the
location in the visual tree wherein content should be loaded for a specific control. In this
case, the ContentPresenter control will specify where the contents of
ElementTrees.Sample will be located.

❑ System.Windows.Controls.Primitives.ResizeGrip— This control enables the Window to
have a resize grip within the visual tree. Thus, interaction with the host window of the WPF
application will be captured by ResizeGrip such that the application can respond accordingly
(for example, layout changes with a new surface area caused by the expansion or contraction of
a host window).

Although many more elements have been created in the visual tree for this example, the preceding list
should provide a basic understanding of their purpose and importance.

Although you can access both the logical and visual trees from code, you will spend most of your time
developing WPF applications using the logical tree to interact with controls, their properties, methods,
and events.

Visual System
The visual system is the subsystem through which applications access the core presentation services
available through WPF. This subsystem examines the components within an application (labels, buttons,
text, 2D and 3D graphics, animations) and will communicate with the underlying composition system
(via the message transport) to generate the rendered result to the screen.

Although the concept of the visual system is key to the architecture of WPF, much of the heavy lifting is
done in the underlying composition system.

9

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 9

Font System
The font system was completely rewritten for WPF to provide a superior font and text engine over that
of the systems previously available in Windows. The two font engines available in Windows today, GDI
and Uniscribe, have significant drawbacks that do not make them suitable for WPF.

The new font system provides a unique mechanism for creating and caching information about fonts in
WPF, including TrueType and Adobe OpenType fonts. The metrics, glyphs, and paths that make up a
particular typeface are calculated by the font system, cached, and made available for use by WPF. This
process is expensive, and using this caching technique significantly improves the performance of text
layout and rendering in WPF.

Note that the font system is the only managed component outlined in Figure 1-1 that runs out-of-pro-
cess, and communicates directly with WPF through interprocess communication to share font data from
the cache.

As outlined in Figure 1-1, the font system interacts with two main subsystems — the element system and
the visual system — each for a different purpose:

❑ The font system interacts with the element system’s Page and Table Service (PTS). PTS is
responsible for the organization and layout of text within the UI. This includes paragraphs,
tables, and blocks of text.

❑ The visual system leverages the font system for text layout services within a single line of text,
such as kerning, leading, and spacing.

Input/Event System
The input/event system in WPF introduces significant advancements for input and user interaction over
that of previous systems available in Windows, such as Win32. Messages evoked by Win32 for device-
based user input, such as WM_* messages, provide a verbose mechanism for input and lack enhanced
support for modern devices, such as a stylus.

As such, WPF sports a succinct input/event system that provides streamlined integration of user input
with the visual tree. Through commands, WPF provides an advanced mechanism with which an appli-
cation can discover and respond to user input.

Consider the following chain of events:

1. The user clicks his or her mouse.

2. User32 receives the device input message.

3. WPF receives the raw message and converts it into an input report (a WPF wrapper surround-
ing device input).

4. The application distinguishes the type of input report received from WPF and performs struc-
tural and geometric hit tests to determine the click target.

5. After validating the click target, the input report is converted into one or more events. For each
event discovered, an event route is created, based on the composition of the hit area.

6. Each discovered event is raised by the input/event system.

10

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 10

As just outlined, WPF bears the responsibility of receiving the device input gesture and determining the
appropriate course of action based on the type of input received and events exposed by elements within
an application. Furthermore, WPF supports routed events, which allow for elements within the visual
tree to listen and respond to events of parent and nested elements through tunneling and bubbling.
Event routing is an important concept to understand when developing WPF applications. To learn more,
see Chapter 2.

When implementing a pure delegate model for user input and device interaction, consider a number of
issues. Given the complexity of the visual tree, implementing instance-based delegation through routed
events can incur serious performance and storage overhead. As such, WPF implements class handlers as
part of the input/event system. Class handlers provide static event listeners for any instance to respond
to user input, such as text being typed on a keyboard.

Property System
The property system is integral to core data-related functions within WPF. It comprises the following
three main components:

❑ Change notification

❑ Storage

❑ Expressions

Change Notification
The change notification system is the basis for many aspects of WPF. All data within WPF is exposed
through properties; as such, changes to these properties are integral to interaction with the elements
within a WPF application.

In .NET 2.0, change notification is achieved by implementing the System.ComponentModel
.INotifyPropertyChanged interface. This interface defines only one member, the PropertyChanged
event, which will notify listeners when a property of the implementing class is changed. Although this
mechanism works well, it leaves much to be desired. When implementing this interface, it is the respon-
sibility of the derived class to set up the necessary plumbing required to raise the PropertyChanged
event for each property to be monitored. The following code snippet depicts a typical implementation
of this interface:

public class MyTextBox : System.ComponentModel.INotifyPropertyChanged
{
//
// Private storage for Text property
//
private string _text;

//
// Change-aware property
//
public string Text
{
get { return _text; }
set
{

11

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 11

_text = value;
OnPropertyChanged(“Text”);

}
}

//
// INotifyPropertyChanged.PropertyChanged
//
public event System.ComponentModel.PropertyChangedEventHandler PropertyChanged;

//
// Method to raise PropertyChanged event
//
private void OnPropertyChanged(string propertyName)
{
if (PropertyChanged != null)
{
PropertyChanged(

this,
new System.ComponentModel.PropertyChangedEventArgs(propertyName));

}
}

}

As evident in this snippet, there are several common areas of plumbing to be inserted into any class
wanting to implement this change notification mechanism. Although this example may seem trivial,
consider the scale of change notification if this object implemented 40 change-aware methods. Moreover,
consider the situation in which a property’s value is set to the same value currently held. If your require-
ments distinguished this to be a non-change, then additional logic would need to be included in each
property to first test the equality of the property’s current and specified changed values and raise the
PropertyChanged event only when these values were different.

Enter the notion of dependency properties in WPF. Dependency properties represent properties registered
with the WPF property system that implement value expressions, styling, data binding, change notifica-
tion, and more. Considering the preceding code snippet, the following revised snippet depicts the same
functionality using a dependency property:

public class MyTextBox : DependencyObject
{
//
// Dependency property for Text
//
public static readonly DependencyProperty TextProperty =
DependencyProperty.Register(

“Text”,
typeof(string),
typeof(MyTextBox));

//
// Change-aware property
//
public string Text
{

12

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 12

get { return base.GetValue(TextProperty) as string; }
set { base.SetValue(TextProperty, value); }

}
}

Immediately apparent is the sheer reduction in code required to implement a dependency property. Let’s
dissect this to understand the difference between this snippet and the previous listing.

For the Text property of the MyTextBox class, we’ve removed the private _text variable used to store
the value for that instance, and we’ve replaced the get and set functions with calls to methods included
in the base class, DependencyObject. The GetValue and SetValue methods work within the depen-
dency property system to store and retrieve property values, and trigger notification when such proper-
ties change. In order for this class to participate in the dependency property system, it must define static
DependencyProperty members for each property to be included. In the case of the Text property, a
TextProperty member was created and registered to the Text property using the
DependencyProperty.Register method. This method creates an entry in the dependency property
system for the MyTextBox class and will be responsible for change notification.

Storage
As noted earlier, properties are the main data element of WPF. Properties provide the foundation upon
which a declarative model can be supported, and enable many of the key features included in WPF, such
as styling, data binding, animation, and more.

This extensive coupling to properties is not without drawbacks, however. Supporting extensive proper-
ties within WPF elements can create a massive storage overhead because each element can contain many
properties. Using instance-based property storage, WPF elements would be too bloated to support the
ambitious goals for runtime performance and visual appeal. Thus, the dependency property system, as
mentioned previously, provides support for streamlined property storage. Leveraging helper methods,
classes can easily access properties and partake in change notification, data binding, styling, and other
features available in this system.

Expressions
Expressions within WPF provide the extensibility required to successfully implement a declarative
model. Features of WPF, such as styling, inheritance, and data binding, rely on expressions to dynami-
cally evaluate and move data around the system.

Consider the following code snippet:

<Window x:Class=”XamlExpressions.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XamlExpressions” Height=”300” Width=”300”

<Window.Resources>
<Style TargetType=”{x:Type Button}”>
<Setter Property=”FontFamily” Value=”Segoe Black” />
<Setter Property=”FontSize” Value=”12pt” />
<Setter Property=”Foreground” Value=”#777777” />
<Setter Property=”HorizontalAlignment” Value=”Center” />

</Style>

13

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 13

</Window.Resources>
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height=”50px” />
<RowDefinition Height=”*” />

</Grid.RowDefinitions>
<Button Grid.Column=”0” Grid.Row=”0”>Click Me!</Button>

</Grid>
</Window>

In this example, we’ve created a rather simple WPF application containing a Grid and Button control.
This should not be new, as we’ve touched on these controls and seen their declaration earlier in this
chapter. However, points of interest are the elements under the Window.Resources element.

The Style element provides the mechanism for creating custom styles for controls within WPF. If you
use expressions, styles can be applied to elements within a WPF application in one of two ways: through
the TargetType attribute or through a unique style identified and stored in the x:Key attribute of the
Style element. The previous listing demonstrated the former method by assigning an expression distin-
guishing the type of element to which this style should apply.

Although we cover styling later in this book, it’s important to note here that you can apply styles to ele-
ments within a WPF application through the use of expressions.

Expressions are not limited to styling; they are used extensively throughout WPF. The concept of expres-
sions is embedded in almost every subsequent chapter of this book, and we’ll dive deeper as needed.

Message Transport System
The message transport service is a key component of the WPF architecture that ties the visual system to
the composition system. As mentioned previously, the visual system provides a managed interface
through which all other managed subsystems within WPF provide instructions on what elements need
to be represented on the screen. Although the visual system provides this hook, it doesn’t perform the
work itself; rather, it offloads such tasks to the composition system.

For such offloading to take place, the message transport system provides communication channels
between the visual system and the composition system. These channels implement a .NET Remoting
protocol that creates an efficient mechanism through which data structures can be passed. Moreover,
leveraging a Remoting protocol allows WPF to transfer data structures across boundaries, thus provid-
ing the possibility of offloading the rendering of UI elements to an entirely different machine. This con-
cept is very compelling for terminal client scenarios, such as Remote Desktop or Citrix MetaFrame,
where graphics processing of applications executing remotely can be offloaded from the server to the
terminal client.

Composition System
As we have alluded to throughout this section, the composition system really provides the internal com-
bustion of the WPF architecture. The composition system is an unmanaged subsystem that receives
instructions from the managed visual system and turns such instructions into graphics that appear on
the screen.

14

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 14

The composition system provides the functionality to visualize the seemingly nebulous elements within
a WPF application. This includes the functionality to calculate pixels for a particular element, and gener-
ates triangle geometries for visual elements, which, in turn, are sent directly to the GPU for output to the
display. This process of hardware-based rendering — through Direct3D — frees up the CPU to perform
other operations, improving the overall success of WPF applications. Moreover, the quality of onscreen
graphics is significantly higher through the use of hardware-based rendering.

Although WPF has been built to leverage the GPU for hardware-based rendering, software-based ren-
dering is available as a fallback.

XAML
Now that you have a good understanding of the underlying plumbing of WPF, let’s take a closer look at
XAML. As noted earlier in this chapter, XAML is the new declarative language for use in developing
WPF applications. As a declarative language, XAML introduces significant flexibility in the way WPF
applications can be developed. Such flexibility is examined in the following section.

Declarative vs. Imperative
The recent history of developing a UI for a typical Windows-based application encompasses the follow-
ing general tasks (in no particular):

❑ Layout UI — Define and set up controls on a form, typically with the aid of a visual designer
(for example, Visual Basic 6 or Visual Studio 2005).

❑ Create bindings — Hook data-bound controls to data sources, typically a database or related
data access objects.

❑ Wire up user interaction — Configure control events so that user interaction triggers applica-
tion logic to manipulate data and/or the UI.

Although overly simplistic, this covers most of the things that must occur to develop a UI. What’s
important to realize is that almost all of the plumbing required to achieve the tasks in the preceding list
is imperative — that is, the definition of controls, their binding, and user interaction is included as state-
ments within code. These imperative statements modify the state of the application, and are typically
compiled directly into an executable format. For example, the WinForms Visual Design in Visual Studio
2005 generates code for every control dragged onto the design surface, which in turn is compiled with
the rest of the application code into an executable .NET assembly.

So what’s wrong with this approach? In fact, nothing is wrong with this approach. Although XAML pro-
vides a declarative model for developing WPF applications, you can achieve any task possible in XAML
purely in code. However, there are benefits of the declarative model that make XAML such a compelling
solution.

15

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 15

To see one benefit of leveraging the declarative model of XAML, consider the following code snippet:

<Window x:Class=”XamlXample.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=” XamlXample” Height=”300” Width=”300”
>
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height=”50px” />
<RowDefinition Height=”*” />

</Grid.RowDefinitions>
<Label Grid.Column=”0” Grid.Row=”0”>Click This Button:</Label>
<Button Grid.Column=”0” Grid.Row=”1”

DockPanel.Dock=”Top” Name=”clickButton”>Click Me!</Button>
</Grid>

</Window>

Although this is yet another simple example, this code snippet depicts a very simple example of the
straightforward approach implemented by XAML. In this example, we’ve defined a Window element
containing a Grid control for content containment. The Grid defines some properties about itself and
contains two simple controls: a Label and TextBox. Seems simple enough, right?

Now, let’s examine the code necessary to generate the same elements as outlined in the preceding XAML
code snippet:

class ImperativeWindow : Window
{
public ImperativeWindow()
{
InitializeComponent();

}

private void InitializeComponent()
{
this.Title = “XamlXample”;
this.Height = 300;
this.Width = 300;

Grid grid = new Grid();

RowDefinition row1 = new RowDefinition();
row1.Height = new GridLength(50);
grid.RowDefinitions.Add(row1);

RowDefinition row2 = new RowDefinition();
row2.Height = GridLength.Auto;
grid.RowDefinitions.Add(row2);

Label label = new Label();
label.Content = “Click This Button:”;

grid.Children.Add(label);

16

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 16

Grid.SetColumn(label, 0);
Grid.SetRow(label, 0);

Button button = new Button();
button.Name = “clickButton”;
button.Content = “Click Me!”;

DockPanel.SetDock(button, Dock.Top);

grid.Children.Add(button);
Grid.SetColumn(button, 0);
Grid.SetRow(button, 1);

}
}

As you can see, creating the exact same application using code requires a significantly greater amount of
statements than its XAML counterpart. It is important to note that under the hood, WPF will actually
create a source file at compile time for each XAML file in your application. The code that’s generated
will be very similar to the preceding code; however, the source of your application remains as a XAML
file.

XAML Runtime Support
The benefit we’ve covered thus far pertains simply to preference and convenience. We have not yet
dived into some of the additional features of a declarative model. So far, we’ve discussed XAML as a lan-
guage that’s interpreted at compile time and, when combined with code-behind files and other
resources, is included in a distributable executable. In addition to this method, WPF provides runtime
support for dynamic parsing of XAML files. This exciting feature of WPF creates many new possibilities
for applications.

To further appreciate the power of a dynamic declarative model, consider the following scenario.

This scenario provides a not-so-extreme example of what many companies might seek within a con-
sumer-facing application. While many of the requirements make for a great case to use WPF (animation,
images, audio, and video integration), a few stand out.

Dynamic styling and layout for localized applications is a very non-trivial feat accomplished only by the
most skilled developers. To achieve this using current technology, developers have limited support out-
of-the-box, and have to rely on third-party and custom solutions to create dynamic interfaces. On the

You’ve been tasked with developing a kiosk-style application for your customer, a
global record store chain. This application will allow their customers to browse the
entire catalog of music available throughout all stores, listen to song previews, view
album artwork and artist photographs, and even watch video clips. The look and
feel for this application must be avant-garde, and the application must include ani-
mation and sync up with the visual identity of this edgy corporate brand. Moreover,
the style and layout of the application must be dynamic so that each store can pre-
sent a localized interface on a seasonal basis.

17

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 17

contrary, with WPF, developers are empowered with foundational support to create declarative UIs that
can be interpreted dynamically. Moreover, enhanced support for localization in WPF makes developing
global applications much easier to develop.

Designer and Developer Collaboration
In the example scenario, the customer desires a visually aesthetic application that will wow customers
and represent the avant-garde visual identity of their edgy corporate brand. Although some developers
might consider themselves astute graphic designers, odds are you’re more focused on function than
form.

With current technologies, developing such an application would require a large team of developers to
build out services available out-of-the-box with WPF, such as digital media integration and animation.
Moreover, the visual design of the application would be limited to such developed services and would
most likely be an adaptation of design compositions provided by a graphic designer. This doesn’t pro-
vide the customer with a best-of-breed solution and is not only quite limited to the services available,
but is also constrained by time to integrate the visual design and the translation of the designers’ vision
into the application by the development team.

Thankfully, this problem has, in fact, been solved with WPF. Through the use of XAML, designers and
developers have a unified platform on which visual design and application logic can be seamlessly inte-
grated. Visual designers available for XAML, including Microsoft Expression Blend, further support this
notion by providing designers with a familiar interface for design, typesetting, and illustration, all while
generating XAML under the hood. The resultant XAML can then be handed off to a developer for inte-
gration with business logic and other application-specific features. Never has the designer and devel-
oper experience been so tightly integrated.

Visual Design Tools
As mentioned throughout this chapter, several visual design tools are available for WPF. These tools can
provide a familiar interface for both designers and developers to create WPF applications. Moreover,
these tools support the notion of designer and developer collaboration.

XamlPad
Provided with the Windows SDK, XamlPad is a basic visual editor for XAML. Similar to the ubiquitous
Notepad, XamlPad will be used by almost all WPF developers for quick and easy editing of XAML files.
XamlPad provides real-time visualization of XAML code, allowing developers to author, test, and vali-
date XAML code on-the-fly. Furthermore, XamlPad features XAML syntax validation, making it easy to
troubleshoot errors in a XAML file.

Figure 1-4 illustrates the XamlPad user interface.

18

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 18

Figure 1-4

Microsoft Expression Blend
As illustrated in Figure 1-5, Microsoft Expression Blend (formerly “Expression Interactive Designer”) is
Microsoft’s flagship tool for designing WPF applications. A full-featured design tool, Expression Blend
provides a truly usable authoring environment for designers to create sophisticated designs for WPF
applications.

Some of the key features in Expression Blend include:

❑ Vector drawing tools

❑ Timeline-based animation support, media integration, and 3D authoring

❑ Robust integration with data sources and seamless integration with Visual Studio 2005

For a detailed discussion of Expression Blend, please see Chapters 4 and 5.

19

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 19

Figure 1-5

Visual Designer for Windows Presentation Foundation
Code-named Cider, the visual designer for WPF provides a visual authoring environment for WPF appli-
cations in Visual Studio 2005. As illustrated in Figure 1-6, Cider provides a design experience familiar to
those who have developed WinForms applications using Visual Studio 2005.

20

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 20

Figure 1-6

Electric Rain ZAM 3D
From Electric Rain (www.erain.com), the creators of the excellent Flash 3D plug-in Swift3D, comes
ZAM 3D, a 3D modeling and animation application based on WPF. Touted as a developer productivity
tool, ZAM 3D offers a robust environment for modeling and animating 3D graphics, while automatically
generating the XAML markup representing such models.

If have experience with Swift3D (or any other 3D authoring environment, such as 3D Studio Max), you’ll
find the UI very familiar. It features dual viewports, which provide instant gratification for animations,
as well as model and environment effects. Under the hood, ZAM 3D creates XAML files containing the
ViewPort3D element to draw and animate models and scenes created within the tool. One really nifty
feature is the Copy XAML command, which will generate the appropriate XAML for your current model
and place this text on the clipboard. This is extremely handy if you want to test your model in XamlPad.

Figure 1-7 depicts the ZAM 3D user interface.

21

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 21

Figure 1-7

Mobiform Aurora
At the forefront of WPF, Mobiform Software, Inc. (www.mobiform.com) has created a very compelling
visual designer: Aurora. Aurora is itself a WPF application that provides a design experience similar to
EID, generating XAML documents. Documents created in Aurora are pure XAML and can be used inter-
changeably with other designers, including Visual Studio 2005 and EID.

In addition to providing a design experience for functionality available in WPF, Aurora includes custom
controls developed by Mobiform for use your applications, such as Pie Chart and File Control.

Figure 1-8 illustrates Aurora’s clean WPF-based user interface.

22

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 22

Figure 1-8

Summary
In this chapter, we’ve merely peeked into the exciting new world of application development with WPF.
We started by reviewing the evolution of the Windows platform and how WPF empowers developers to
create Windows- and web-based applications with a superior User Experience. This chapter also out-
lined some key areas of the WPF architecture, including:

❑ Element system and element trees (visual and logical)

❑ Visual system

❑ Font system

❑ Input/event system

❑ Property system (change notification, storage, and expressions)

❑ Message transport system

❑ Composition system

23

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 23

You learned about the new declarative language of WPF and XAML, and how this language introduces
greater flexibility in application development and deployment. You also learned that the XAML pro-
vides a unified platform for design and development collaboration.

Finally, you caught a glimpse of the visual design tools with which WPF applications can be developed,
including XamlPad and Microsoft Expression Blend.

The following chapters expand on what you’ve learned and provide a detailed look at .NET program-
ming with WPF.

24

Chapter 1: Overview of Windows Presentation Foundation

04_041802 ch01.qxp 4/2/07 5:18 PM Page 24

