
CHAPTER 1

Generating All and Random Instances
of a Combinatorial Object

IVAN STOJMENOVIC

1.1 LISTING ALL INSTANCES OF A COMBINATORIAL OBJECT

The design of algorithms to generate combinatorial objects has long fascinated math-
ematicians and computer scientists. Some of the earliest papers on the interplay be-
tween mathematics and computer science are devoted to combinatorial algorithms.
Because of its many applications in science and engineering, the subject continues
to receive much attention. In general, a list of all combinatorial objects of a given
type might be used to search for a counterexample to some conjecture, or to test and
analyze an algorithm for its correctness or computational complexity.

This branch of computer science can be defined as follows: Given a combinatorial
object, design an efficient algorithm for generating all instances of that object. For
example, an algorithm may be sought to generate all n-permutations. Other combina-
torial objects include combinations, derangements, partitions, variations, trees, and
so on.

When analyzing the efficiency of an algorithm, we distinguish between the cost of
generating and cost of listing all instances of a combinatorial object. By generating we
mean producing all instances of a combinatorial object, without actually outputting
them. Some properties of objects can be tested dynamically, without the need to check
each element of a new instance. In case of listing, the output of each object is required.
The lower bound for producing all instances of a combinatorial object depends on
whether generating or listing is required. In the case of generating, the time required
to “create” the instances of an object, without actually producing the elements of each
instance as output, is counted. Thus, for example, an optimal sequential algorithm
in this sense would generate all n-permutations in θ(n!) time, that is, time linear in
the number of instances. In the case of listing, the time to actually “output” each
instance in full is counted. For instance, an optimal sequential algorithm generates
all n-permutations in θ(nn!) time, since it takes θ(n) time to produce a string.

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenović Copyright © 2008 John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L

2 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Let P be the number of all instances of a combinatorial object, and N be the average
size of an instance. The delay when generating these instances is the time needed to
produce the next instance from the current one. We list some desirable properties of
generating or listing all instances of a combinatorial object.

Property 1. The algorithm lists all instances in asymptotically optimal time, that is,
in time O(NP).

Property 2. The algorithm generates all instances with constant average delay. In
other words, the algorithm takes O(P) time to generate all instances. We say that a
generating algorithm has constant average delay if the time to generate all instances
is O(P); that is, the ratio T/P of the time T needed to generate all instances and the
number of generated instances P is bounded by a constant.

Property 3. The algorithm generates all instances with constant (worst case) delay.
That is, the time to generate the next instance from the current one is bounded by a
constant. Constant delay algorithms are also called loopless algorithms, as the code
for updating given instance contains no (repeat, while, or for) loops.

Obviously, an algorithm satisfying Property 3 also satisfies Property 2. However,
in some cases, an algorithm having constant delay property is considerably more so-
phisticated than the one satisfying merely constant average delay property. Moreover,
sometimes an algorithm having constant delay property may need more time to gen-
erate all instances of the same object than an algorithm having only constant average
delay property. Therefore, it makes sense to consider Property 3 independently of
Property 2.

Property 4. The algorithm does not use large integers in generating all instances of
an object. In some papers, the time needed to “deal” with large integers is not properly
counted in.

Property 5. The algorithm is the fastest known algorithm for generating all instances
of given combinatorial object. Several papers deal with comparing actual (not asymp-
totic) times needed to generate all instances of given combinatorial object, in order
to pronounce a “winner,” that is, to extract the one that needs the least time. Here,
the fastest algorithm may depend on the choice of computer. Some computers support
fast recursion giving the recursive algorithm advantage over iterative one. Therefore,
the ratio of the time needed for particular instructions over other instructions may
affect the choice of the fastest algorithm.

We introduce the lexicographic order among sequences. Let a = a1, a2, . . . ,ap

and b = b1, b2, . . . , bq be two sequences. Then a precedes b(a < b) in lexicographic
order if and only if there exists i such that aj = bj for j<i and either p = i+ 1<q

or ai < bi. The lexicographic order corresponds to dictionary order. For example,
112 < 221 (where i = 1 from the definition).

LISTING ALL INSTANCES OF A COMBINATORIAL OBJECT 3

For example, the lexicographic order of subsets of {1, 2, 3} in the set repre-
sentation is Ø, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}. In binary notation, the
order of subsets is somewhat different: 000, 001, 010, 011, 100, 101, 110, 111,

which correspond to subsets Ø, {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}, re-
spectively. Clearly the lexicographic order of instances depends on their rep-
resentation. Different notations may lead to different listing order of same
instances.

Algorithms can be classified into recursive or iterative, depending on whether or
not they use recursion. The iterative algorithms usually have advantage of giving
easy control over generating the next instance from the current one, which is often a
desirable characteristic. Also some programming languages do not support recursion.
In this chapter we consider only iterative algorithms, believing in their advantage over
recursive ones.

Almost all sequential generation algorithms rely on one of the following three
ideas:

1. Unranking, which defines a bijective function from consecutive integers to
instances of combinatorial objects. Most algorithms in this group do not satisfy
Property 4.

2. Lexicographic updating, which finds the rightmost element of an instance that
needs “updating” or moving to a new position.

3. Minimal change, which generates instances of a combinatorial object by making
as little as possible changes between two consecutive objects. This method can
be further specified as follows:

� Gray code generation, where changes made are theoretically minimal possi-
ble.

� Transpositions, where instances are generated by exchanging pairs of (not
necessarily adjacent) elements.

� Adjacent interchange, where instances are generated by exchanging pairs of
adjacent elements.

The algorithms for generating combinatorial objects can thus be classified
into those following lexicographic order and those following a minimal change
order. Both orders have advantages, and the choice depends on the applica-
tion. Unranking algorithms usually follow lexicographic order but they can fol-
low minimal change one (normally with more complex ranking and unranking
functions).

Many problems require an exhaustive search to be solved. For example, finding
all possible placements of queens on chessboard so that they do not attack each other,
finding a path in a maze, choosing packages to fill a knapsack with given capacity
optimally, satisfy a logic formula, and so on. There exist a number of such problems
for which polynomial time (or quick) solutions are not known, leaving only a kind of
exhaustive search as the method to solve them.

4 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Since the number of candidates for a solution is often exponential to input size,
systematic search strategies should be used to enhance the efficiency of exhaustive
search. One such strategy is the backtrack. Backtrack, in general, works on partial
solutions to a problem. The solution is extended to a larger partial solution if there is
a hope to reach a complete solution. This is called an extend phase. If an extension
of the current solution is not possible, or a complete solution is reached and another
one is sought, it backtracks to a shorter partial solution and tries again. This is called
a reduce phase. Backtrack strategy is normally related to the lexicographic order of
instances of a combinatorial object. A very general form of backtrack method is as
follows:

initialize;
repeat

if current partial solution is extendable then extend else reduce;
if current solution is acceptable then report it;

until search is over

This form may not cover all the ways by which the strategy is applied, and, in the
sequel, some modifications may appear. In all cases, the central place in the method
is finding an efficient test as to whether current solution is extendable. The backtrack
method will be applied in this chapter to generate all subsets, combinations, and other
combinatorial objects in lexicographic order.

Various algorithms for generating all instances of a combinatorial object can
be found in the journal Communications of ACM (between 1960 and 1975) and
later in ACM Transactions of Mathematical Software and Collected Algorithms
from ACM, in addition to hundreds of other journal publications. The generation
of ranking and unranking combinatorial objects has been surveyed in several books
[6,14,21,25,30,35,40].

1.2 LISTING SUBSETS AND INTEGER COMPOSITIONS

Without loss of generality, the combinatorial objects are assumed to be taken from the
set {1, 2, . . . , n}, which is also called n-set. We consider here the problem of generat-
ing subsets in their set representation. Every subset [or (n,n)-subset] is represented in
the set notation by a sequence x1, x2, . . . , xr, 1 ≤ r ≤ n, 1 ≤ x1<x2< . . . <xr ≤ n.
An (m,n)-subset is a subset with exactly m elements.

Ehrlich [11] described a loopless procedure for generating subsets of an n-set.
An algorithm for generating all (m,n)-subsets in the lexicographic order is given in
the work by Nijenhius and Wilf [25]. Semba [33] improved the efficiency of the
algorithm; the algorithm is modified in the work by Stojmenović and Miyakawa [37]
and presented in Pascal-like notation without goto statements. We present here the
algorithm from the work by Stojmenović and Miyakawa [37]. The generation goes
in the following manner (e.g., let n = 5):

LISTING SUBSETS AND INTEGER COMPOSITIONS 5

1 12 123 1234 12345

1235

124 1245

125

13 134 1345

135

14 145

15

2 23 234 2345

235

24 245

25

3 34 345

35

4 45

5.

The algorithm is in extend phase when it goes from left to right staying in the same
row. If the last element of a subset is n, the algorithm shifts to the next row. We call
this the reduce phase.

read(n); r← 0; xr ← 0;
repeat

if xr<n then extend else reduce;
print out x1, x2, . . . , xr

until x1 = n

extend ≡ {xr+1 ← xr + 1; r← r + 1}
reduce ≡ {r← r − 1; xr ← xr + 1}.

The algorithm is loopless, that is, has constant delay. To generate (m,n)-subsets,
the if instruction in the algorithm should be changed to

if xr<n and r<m then {xr+1 ← xr + 1; r← r + 1} (* extend *)
else if xr<n then xr ← xr + 1 (*cut *)

else {r← r − 1; xr ← xr + 1} (* reduce *).

The new cut phase will be used when the algorithm goes from one subset to a
subset in a lower row, skipping several subsets (having more than m elements). For
example, for m = 3 and n = 5 , the first three columns of the last table of subsets are

6 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

(3,5)-subsets. This illustrates the backtrack process applied on all subsets to extract
(m,n)-subsets.

We now present the algorithm for generating variations. A (m,n)-variation out of
{p1, p2, . . . , pn} can be represented as a sequence c1c2 . . . cm, where p1 ≤ ci ≤ pn.
Let z1z2 . . . zm be the corresponding array of indices, that is, ci = pzi , 1 ≤ i ≤ m.
The next variation can be determined by a backtrack search that finds an element ct

with the greatest possible index t such that zt<n, therefore increasable (the index t is
called the turning point). The value of zt is increased by 1 while the new value of zi

for i ≥ t is 1. The algorithm is as follows.

for i← 0 to m do zi← 1 ;
repeat

print out pzi , 1 ≤ i ≤ m ;
t← m ;
while zt = n do t← t − 1 ;
zt ← zt + 1;
for i← t + 1 to m do zi← 1

until t = 0.

We now prove that the algorithm has constant average delay property. Every step
will be assigned to the current value of t; in this way the time complexity T is sub-
divided into m portions T1, T2, . . . , Tm. In the process of a backtrack search and the
update of elements, every portion Ti for t ≤ i ≤ m increases by a constant amount.
After the update, ith element does not change (moreover, the backtrack search does
not reach it) during the next nm−i variations (i.e., Ti does not increase). Therefore,
on average, Ti increases by O(1/nm−i) . It follows that the average delay is, up to a
constant,

m∑
i=1

1

nm−1 =
1

nm

nm+1 − 1

n− 1
= O(1).

Subsets may be also represented in binary notation, where each “1” corresponds
to the element from the subset. For example, subset {1,3,4} for n = 5 is represented
as 11010. Thus, subsets correspond to integers written in the binary number system
(i.e., counters) and to bitstrings, giving all possible information contents in a com-
puter memory. A simple recursive algorithm for generating bitstrings is given in the
work by Parberry [28]. A call to bitstring (n) produces all bitstrings of length n as
follows:

procedure bitstring(m);
if m = 0 then print out ci;

else cm← 0; bitstring(m− 1);
cm← 1; bitstring(m− 1) .

LISTING COMBINATIONS 7

Given an integer n, it is possible to represent it as the sum of one or more positive
integers (called parts) ai that is, n = x1 + x2 + · · · + xm. This representation is called
an integer partition if the order of parts is of no consequence. Thus, two partitions of
an integer n are distinct if they differ with respect to the xi they contain. For example,
there are seven distinct partitions of the integer 5 : 5, 4+ 1, 3+ 2, 3+ 1+ 1, 2+
2+ 1, 2+ 1+ 1+ 1, 1+ 1+ 1+ 1+ 1. If the order of parts is important then the
representation of n as a sum of some positive integers is called integer composition.
For example, integer compositions of 5 are the following:

5, 4+ 1, 1+ 4, 3+ 2, 2+ 3, 3+ 1+ 1, 1+ 3+ 1, 1+ 1+ 3, 2+ 2+ 1,

2+ 1+ 2, 1+ 2+ 2, 2+ 1+ 1+ 1, 1+ 2+ 1+ 1, 1+ 1+ 2+ 1,

1+ 1+ 1+ 2, 1+ 1+ 1+ 1+ 1.

Compositions of an integer n into m parts are representations of n in the form
of the sum of exactly m positive integers. These compositions can be written in the
form x1 + · · · + xm = n, where x1 ≥ 0, . . . , xm ≥ 0. We will establish the correspon-
dence between integer compositions and either combinations or subsets, depending
on whether or not the number of parts is fixed.

Consider a composition of n = x1 + · · · + xm, where m is fixed or not fixed.
Let y1, . . . , ym be the following sequence: yi = x1 + · · · + xi, 1 ≤ i ≤ m. Clearly,
ym = n . The sequence y1, y2, . . . , ym−1 is a subset of {1, 2, . . . , n− 1}. If the
number of parts m is not fixed then compositions of n into any number of parts
correspond to subsets of {1, 2, . . . , n− 1}. The number of such compositions is
in this case CM(n) = 2n−1. If the number of parts m is fixed then the sequence
y1, . . . , ym−1 is a combinations of m− 1 out of n− 1 elements from {1, . . . , n− 1},
and the number of compositions in question is CO(m, n) = C(m− 1, n− 1). Each
sequence x1 . . . xm can easily be obtained from y1, . . . , ym since xi = yi − yi−1 (with
y0 = 0).

To design a loopless algorithm for generating integer compositions of n, one can
use this relation between compositions of n and subsets of {1, 2, . . . , n− 1}, and the
subset generation algorithm above.

1.3 LISTING COMBINATIONS

A (m,n)-combination out of {p1, p2, . . . , pn} can be represented as a se-
quence c1, c2, . . . , cm, where p1 ≤ c1<c2< · · ·<cm ≤ pn. Let z1, z2, . . . , zm be
the corresponding array of indices, that is, ci = pzi , 1 ≤ i ≤ m. Then 1 ≤
z1<z2< · · ·<zm≤ n, and therefore zi ≤ n−m+ i for 1 ≤ i ≤ m. The number of
(m,n)-combinations is binomial coefficient C(m, n) = n!/(m!(n−m)!). In this sec-
tion, we investigate generating the C(m,n) (m,n)-combinations, in lexicographically
ascending order. Various sequential algorithms have been given for this problem.

8 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Comparisons of combination generation techniques are given in the works by Ak1
[1] and Payne and Ives [29]. Akl [1] reports algorithm by Misfud [23] to be the fastest
while Semba [34] improved the speed of algorithm [23].

The sequential algorithm [23] for generating (m,n)-combinations determines the
next combination by a backtrack search that finds an element ct with the greatest
possible index t such that zt<n−m+ t, therefore increasable (the index t is called
the turning point). The new value of zi for i ≥ t is zt + i− t + 1 .

The average delay of the algorithm is O(n/(n−m)) [34]. The delay is constant
whenever m = o(n). On the contrary, the average delay may be nonconstant in some
cases (e.g., when n−m = O(

√
n)). Semba [34] modified the algorithm by noting that

there is no need to search for the turning point as it can be updated directly from one
combination to another, and that there is no need to update the elements with indices
between t and m if they do not change from one combination to another. If zt<n−
m+ t − 1 then all elements in the next combination will be less that their appropriate
maximal values and the turning point of the next combination will be index m. In this
case, a total of d = m− t + 1 elements change their value in the next combination.
Otherwise, that is, when zt = n−m+ t − 1, the new value for the turning point
element becomes its maximal possible value n−m+ t, elements between t and m
remain unchanged (with their maximal possible values), and the turning point for the
next combination is the element with index t − 1. Only one element is checked in
this case. The following table gives values of t and d for (4,6)-combinations.

1234 1235 1236 1245 1246 1256 1345 1346 1356 1456 2345 2346 2356 2456 3456

t = 4 4 3 4 3 2 4 3 2 1 4 3 2 1 0

d = 1 1 2 1 1 3 1 1 1 4 1 1 1 1

The algorithm [34] is coded in FORTRAN language using goto statements. Here
we code it in PASCAL-like style.

z0 ← 1; t← m;
for i← 1 to m do zi← i;
repeat

print out pzi , 1 ≤ i ≤ m;
zt ← zt + 1;
if zt = n−m+ t then t← t − 1

else for i = t + 1 to m do zi← zt + i− t; t← m

until t = 0.

The algorithm always does one examination to determine the turning point. We
now determine the average number d of changed elements. For a fixed t, the num-
ber of (m,n)-combinations that have t as the turning point with zt<n−m+ t − 1
is C(t, n−m+ t − 2). This follows because zi = n−m+ i when i>t for each of
these combinations while z1, z2, . . . , zt can be any (t, n−m+ t − 2) -combination.
The turning point element is always updated. In addition, m− t elements when-
ever zt<n−m+ t − 1, which happens C(t, n−m+ t − 2) times. Therefore, the

LISTING PERMUTATIONS 9

total number of updated elements (in addition to the turning point) to generate all
combinations is

m∑
t=1

(m− t)C(t, n−m+ t − 2) =
m−1∑
j=0

jC(n− j − 2, n−m− 2)

= m

n−m
C(n−m− 1, n− 1)−m

= m

n
C(m, n)−m.

Thus, the algorithms updates, on the average, less than m/n+ 1<2 elements and
therefore the average delay is constant for any m and n(m ≤ n).

1.4 LISTING PERMUTATIONS

A sequence p1, p2, . . . , pn of mutually distinct elements is a permutation of S =
{s1, s2, . . . , sn} if and only if {p1, p2, . . . , pn} = {s1, s2, . . . , sn} = S. In other words,
an n-permutation is an ordering, or arrangement, of n given elements. For example,
there are six permutations of the set {A, B, C}. These are ABC, ACB, BAC, BCA,
CAB, and CBA.

Many algorithms have been published for generating permutations. Surveys and
bibliographies on the generation of permutations can be found in the Ord-Smith [27]
and Sedgewick [31] [27,31]. Lexicographic generation presented below is credited to
L.L. Fisher and K.C. Krause in 1812 by Reingold et al. [30].

Following the backtrack method, permutations can be generated in lexicographic
order as follows. The next permutation of x1x2 . . . xn is determined by scanning
from right to left, looking for the rightmost place where xi<xi+1 (called again the
turning point). By another scan, the smallest element xj that is still greater than
xi is found and interchanged with xi. Finally, the elements xi+1, . . . , xn (which
are in decreasing order) are reversed. For example, for permutation 3, 9, 4, 8, 7,
6, 5, 2, 1, the turning point x3 = 4 is interchanged with x7 = 5 and 8, 7, 6, 4,
2, 1 is reversed to give the new permutation 3, 9, 5, 1, 2, 4, 6, 7, 8. The fol-
lowing algorithm is the implementation of the method for generating permutations
of {p1, p2, . . . , pn}. The algorithm updates the indices zi (such that xi = pzi ,),
1 ≤ i ≤ n.

for i← 0 to n do zi← i ;
i← 1;
while i �= 0 do {

print out pzi , 1 ≤ i ≤ n;
i← n− 1;
while zi ≥ zi+1 do i← i− 1;
j← n;
while zi ≥ zj do j← j − 1;

10 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

ch← zi; zi← zj; zj ← ch;
v← n; u← i+ 1;
while v>u do {ch← zv; zv ← zu; zu← ch; v ← v− 1;

u← u+ 1}}.
We prove that the algorithm has constant average delay property. The time

complexity of the algorithm is clearly proportional to the number of tests zi ≥ zi+1
in the first while inside loop. If ith element is the turning point, the array zi+1, . . . , zn

is decreasing and it takes (n− 1) tests to reach zi. The array z1z2 . . . zi is a
(m,n)-permutation. It can be uniquely completed to n-permutation z1z2 . . . zn

such that zi+1> · · ·>zn. Although only these permutations for which zi<zi+1
are valid for zi to be the turning point, we relax the condition and artificially
increase the number of tests in order to simplify the proof. Therefore for each
i, 1 ≤ i ≤ n− 1 there are at most P(i, n) = n(n− 1) · · · (n− i+ 1) arrays such
that zi is the turning point of n-permutation z1z2 . . . zn. Since each of them
requires n− i tests, the total number of tests is at most

∑n−1
i=1 P(i, n)(n− i) =∑n−1

i=1 (n(n− 1) · · · (n− i+ 1)(n− i)) =∑n−1
i=1 n!/(n− i− 1)! = n!

∑n−2
j=0 1/j!.

Since j! = 2 · 3 · · · j > 2× 2 · · · × 2 = 2j−1, the average number of tests is
<2+∑n−2

j=2 1/(2j−1) = 2+ 1/2+ 1/4+ . . . <3. Therefore the algorithm has
constant delay property. It is proved [27] that the algorithm performs about 1.5n!
interchanges.

The algorithm can be used to generate the permutations with repetitions. Let
n1, n2, . . . , nk be the multiplicities of elements p1, p2, . . . , pk, respectively, such
that the total number of elements is n1 + n2 + · · · + nk = n. The above algorithm
uses no arithmetic with indices zi and we can observe that the same algorithm gener-
ates permutations with repetitions if the initialization step (the first instruction, i.e.,
for loop) is replaced by the following instructions that find the first permutation with
repetitions.

n← 0; z0 ← 0;
for i← 1 to k do

for j← 1 to ni do {n← n+ 1; zn← j};

Permutations of combinations (or (m,n)-permutations) can be found by gener-
ating all (m,n)-combinations and finding all (m,m)-permutations for each (m,n)-
combination. The algorithm is then obtained by combining combination and permu-
tation generating algorithms. In the standard representation of (m,n)-permutations as
an array x1x2 . . . xm, the order of instances is not lexicographic. Let c1c2 . . . cm be the
corresponding combination for permutation x1x2, . . . , xm, that is, c1<c2< · · ·<cm

and {c1, c2, . . . , cm} = {x1, x2, . . . , xm}. Then we can observe that the obtained
order of generating (m,n)-permutations is lexicographic if they are represented
as an array of 2m elements c1c2 . . . cm x1x2 . . . xm, composed of corresponding
(m,n)-combination followed by the (m,n)-permutation. In other words, the order
is lexicographic if corresponding combinations are compared before comparing
permutations.

LISTING EQUIVALENCE RELATIONS OR SET PARTITIONS 11

1.5 LISTING EQUIVALENCE RELATIONS OR SET PARTITIONS

An equivalence relation of the set Z = {p1, . . . , pn} consists of classes π1, π2, . . . , πk

such that the intersection of every two classes is empty and their union is
equal to Z. Equivalence relations are often referred to as set partitions. For
example, let Z = {A, B, C}. Then there are four equivalence relations of Z :
{{A, B, C}}, {{A, B}{C}}, {{A, C}{B}}, {{A}, {B, C}}, and {{A}, {B}, {C}}.

Equivalence relations of Z can be conveniently represented by codewords
c1c2 . . . cn such that ci = j if and only if element pi is in class πj . Because equivalence
classes may be numbered in various ways (k! ways), such codeword representation is
not unique. For example, set partition {{A, B}{C}} is represented with codeword 112
while the same partition {{C}{A, B}} is coded as 221.

In order to obtain a unique codeword representation for given equivalence rela-
tion, we choose lexicographically minimal one among all possible codewords. Clearly
c1 = 1 since we can choose π1 to be the class containing p1. All elements that are in
π1 are also coded with 1. The class containing element that is not in π1 and has the
minimal possible index is π2 and so on. For example, let {{C, D, E}, {B}, {A, F }}
be a set partition of {A, B, C, D, E, F }. The first equivalence class is {A, F },
the second is {B}, and the third is {C, D, E}. The corresponding codeword is
123331.

A codeword c1 . . . cn represents an equivalence relation of the set Z if and
only if c1 = 1 and 1 ≤ cr ≤ gr−1 + 1 for 2 ≤ r ≤ n , where ci = j if i is in πj ,
and gr = max(c1, . . . , cr) for 1 ≤ r ≤ n . This follows from the definition of lex-
icographically minimal codeword. Element pt is either one of the equivalence
classes with some other element pi(i<t) in which case ct receives one of exist-
ing codes assigned to elements p1, p2, . . . , pt−1 or in none of previous classes,
in which case it starts a new class with index one higher than previously maximal
index.

Sequential algorithms [9,12,25,32] generate set partitions represented by code-
words in lexicographic order. The next equivalence relation is found from the current
one by a backtracking or recursive procedure in all known sequential generating tech-
niques that maintain the lexicographic order of elements; in both cases an increasable
element (one for which xj≤ gj − 1 is satisfied) with the largest possible index t is
found (t ≤ n− 2); we call this element the turning point. For example, the turning
point of the equivalence relation 1123 is the second element (t = 2).

A list of codewords and corresponding partitions for n = 4 and Z = {A, B, C, D}
is, in lexicographic order, as follows:

1111 = {{A, B, C, D}}, 1112 = {{A, B, C}, {D}}, 1121 = {{A, B, D}, {C}},
1122 = {{A, B}, {C, D}}, 1123 = {{A, B}, {C}, {D}},
1211 = {{A, C, D}, {B}}, 1212 = {{A, C}, {B, D}},

1213 = {{A, C}, {B}, {D}}, 1221 = {{A, D}, {B, C}},
1222 = {{A}, {B, C, D}}, 1223 = {{A}, {B, C}, {D}}, 1231 = {{A, D}, {B}, {C}},
1232 = {{A}, {B, D}, {C}}, 1233 = {{A}, {B}, {C, D}}, 1234 = {{A}, {B}, {C}, {D}}.

12 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

We present an iterative algorithm from the work by Djokić et al. [9] for generating
all set partitions in the codeword representation. The algorithm follows backtrack
method for finding the largest r having an increasable cr, that is, cr<gr−1 + 1 .

program setpart(n);
r← 1; c1 ← 1; j← 0; b0 ← 1; n1← n− 1;
repeat

while r<n1 do {r← r + 1; cr ← 1; j← j + 1; bj ← r};
for i← 1 to n− j do {cn← i; print out c1, c2, . . . , cn};
r← bj; cr ← cr + 1;
if cr>r − j then j← j − 1

until r = 1

In the presented iterative algorithm bj is the position where current position r
should backtrack after generating all codewords beginning with c1, c2, . . . , cn−1.
Thus the backtrack is applied on n− 1 elements of codeword while direct generation
of the last element in its range speeds the algorithm up significantly (in most set
partitions the last element in the codeword is increasable). An element of b is defined
whenever gr = gr−1, which is recognized by either cr = 1 or cr>r − j in the algo-
rithm. It is easy to see that the relation r = gr−1 + j holds whenever j is defined. For
example, for the codeword c = 111211342 we have g = 111222344 and b = 23569.
Array b has n− gn = 9− 4 = 5 elements.

In the algorithm, backtrack is done on array b and finds the increasable element in
constant time; however, updating array b for future backtrack calls is not a constant
time operation (while loop in the program). The number of backtrack calls is Bn−1
(recall that Bn is the number of set partitions over n elements).

The algorithm has been compared with other algorithms that perform the same
generation and it was shown to be the fastest known iterative algorithm. A recursive
algorithm is proposed in the work by Er [12]. The iterative algorithm is faster than
recursive one on some architectures and slower on other [9].

The constant average time property of the algorithm can be shown as in the work
by Semba [32]. The backtrack step returns to position r exactly Br − Br−1 times, and
each time it takes n− r + 1 for update (while loop), for 2 ≤ r ≤ n− 1 . Therefore,
up to a constant, the backtrack steps require (B2 − B1)(n− 1)+ (B3 − B2)(n− 2)+
· · · + (Bn−1 − Bn−2)2<B2 + B3 + · · · + Bn−2 + 2Bn−1. The update of nth element
is performed Bn − Bn−1 times. Since Bi+1>2Bi, the average delay, up to a constant,
is bounded by

Bn + Bn−1 + · · · + B2

Bn

< 1+ 1

2
+ 1

22 + · · · +
1

2n−2 < 2.

1.6 GENERATING INTEGER COMPOSITIONS AND PARTITIONS

Given an integer n, it is possible to represent it as the sum of one or more positive
integers (called parts)xi, that is,n = x1 + x2 + · · · + xm. This representation is called

GENERATING INTEGER COMPOSITIONS AND PARTITIONS 13

an integer partition if the order of parts is of no consequence. Thus, two partitions of
an integer n are distinct if they differ with respect to the xi they contain. For example,
there are seven distinct partitions of the integer 5:

5, 4+ 1, 3+ 2, 3+ 1+ 1, 2+ 2+ 1, 2+ 1+ 1+ 1, 1+ 1+ 1+ 1+ 1.

In the standard representation, a partition of n is given by a sequence x1, . . . , xm,
where x1 ≥ x2 ≥ · · · ≥ xm, and x1 + x2 + · · · + xm = n. In the sequel x will denote
an arbitrary partition and m will denote the number of parts of x (m is not fixed). It
is sometimes more convenient to use a multiplicity representation for partitions in
terms of a list of the distinct parts of the partition and their respective multiplicities.
Let y1> · · ·>yd be all distinct parts in a partitions, and c1, . . . , cd their respective
(positive) multiplicities. Clearly c1y1 + · · · + cdyd = n.

We first describe an algorithm for generating integer compositions of n into
any number of parts and in lexicographic order. For example, compositions of 4
in lexicographic order are the following: 1+ 1+ 1+ 1, 1+ 1+ 2, 1+ 2+ 1, 1+
3, 2+ 1+ 1, 2+ 2, 3+ 1, 4. Let x1 . . . xm, where x1 + x2 + · · · + xm = n be a
composition. The next composition, following lexicographic order, is x1, . . . , xm−1 +
1, 1, . . . , 1(xm − 1 1s). In other words, the next to last part is increased by one and
the xm − 1, 1s are added to complete the next composition. This can be coded as
follows:

program composition(n);
m← 1; x1 ← n;
repeat

for j← 1 to m do print out x1, x2, . . . , xm;
m← m− 1; xm← xm + 1;
for j← 1 to xm+1 − 1 do {m← m+ 1; xm← 1}

until m = n.

In antilexicographic order, a partition is derived from the previous one by subtract-
ing 1 from the rightmost part greater than 1, and distributing the remainder as quickly
as possible. For example, the partitions following 9+ 7+ 6+ 1+ 1+ 1+ 1+ 1+ 1
is 9+ 7+ 5+ 5+ 2. In standard representation and antilexicographic order, the next
partition is determined from current one x1x2 . . . xm in the following way. Let h be the
number of parts of x greater than 1, that is, xi>1 for 1 ≤ i ≤ h, and xi = 1 for h < i ≤
m. If xm>1 (or h = m) then the next partition is x1, x2, . . . , xm−1, xm − 1, 1.
Otherwise (i.e., h < m), the next partition is obtained by replacing xh, xh+1 =
1, . . . , xm = 1 with (xh − 1), (xh − 1), . . . , (xh − 1), d, containing c elements, where
0 < d ≤ xh − 1 and (xh − 1)(c − 1)+ d = xh +m− h.

We describe two algorithms from the work by Zoghbi and Stojmenovic [43] for
generating integer partitions in standard representation and prove that they have con-
stant average delay property. The first algorithm, named ZS1, generates partitions in
antilexicographic order while the second, named ZS2, uses lexicographic order.

Recall that h is the index of the last part of partition, which is greater than 1
while m is the number of parts. The major idea in algorithm ZS1 is coming from the

14 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

observation on the distribution of xh. An empirical and theoretical study shows that
xh = 2 has growing frequency; it appears in 66 percent of cases for n = 30 and in 78
percent of partitions for n = 90 and appears to be increasing with n. Each partition
of n containing a part of size 2 becomes, after deleting the part, a partition of n− 2
(and vice versa). Therefore the number of partitions of n containing at least one part
of size 2 is P(n− 2). The ratio P(n− 2)/P(n) approaches 1 with increasing n. Thus,
almost all partitions contain at least one part of size 2. This special case is treated
separately, and we will prove that it suffices to argue the constant average delay of
algorithm ZS1. Moreover, since more than 15 instructions in known algorithms that
were used for all cases are replaced by 4 instructions in cases of at least one part of size
2 (which happens almost always), the speed up of about four times is expected even
before experimental measurements. The case xh>2 is coded in a similar manner as
earlier algorithm, except that assignments of parts that are supposed to receive value
1 is avoided by an initialization step that assigns 1 to each part and observation that
inactive parts (these with index >m) are always left at value 1. The new algorithm
is obtained when the above observation is applied to known algorithms and can be
coded as follows.

Algorithm ZS1
for i← 1 to n do xi← 1;
x1 ← n; m← 1; h← 1; output x1;
while x1 �= 1 do {

if xh = 2 then {m← m+ 1; xh← 1; h← h− 1}
else {r← xh − 1; t← m− h+ 1; xh← r;

while t ≥ r do {h← h+ 1; xh← r; t← t − r}
if t = 0 then m← h

else m← h+ 1
if t>1 then {h← h+ 1; xh← t}}

output x1, x2, . . . , xm}}.

We now describe the method for generating partitions in lexicographic order and
standard representation of partitions. Each partition of n containing two parts of size
1 (i.e., m− h>1) becomes, after deleting these parts, a partition of n− 2 (and vice
versa). Therefore the number of integer partitions containing at least two parts of size
1 is P(n− 2), as in the case of previous algorithm. The coding in this case is made
simpler, in fact with constant delay, by replacing first two parts of size 1 by one part of
size 2. The position h of last part >1 is always maintained. Otherwise, to find the next
partition in the lexicographic order, an algorithm will do a backward search to find the
first part that can be increased. The last part xm cannot be increased. The next to last
part xm−1 can be increased only if xm−2>xm−1. The element that will be increased
is xj where xj−1>xj and xj = xj+1 = . . . = xm−1. The jth part becomes xj + 1, h
receives value j, and appropriate number of parts equal to 1 is added to complete the
sum to n. For example, in the partition 5+ 5+ 5+ 4+ 4+ 4+ 1 the leftmost 4 is
increased, and the next partition is 5+ 5+ 5+ 5+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1.
The following is a code of appropriate algorithm ZS2:

GENERATING INTEGER COMPOSITIONS AND PARTITIONS 15

Algorithm ZS2
for i← 1 to n do xi← 1 ; output xi, i = 1, 2, . . . , n;
x0 ← 1; x1 ← 2; h← 1; m← n− 1; output xi, i = 1, 2, . . . , m;
while x1 �= n do {

if m− h>1 then {h← h+ 1; xh← 2; m← m− 1}
else {j← m− 2;

while xj = xm−1 do {xj ← 1; j← j − 1};
h← j + 1; xh← xm−1 + 1;
r← xm + xm−1(m− h− 1); xm← 1;
if m− h>1 then xm−1 ← 1;
m← h+ r − 1;

output x1, x2, . . . , xm}.

We now prove the constant average delay property of algorithms ZS1 and ZS2.

Theorem 1 Algorithms ZS1 and ZS2 generate unrestricted integer partitions in
standard representation with constant average delay, exclusive of the output.

Proof. Consider part xi ≥ 3 in the current partition. It received its value after
a backtracking search (starting from last part) was performed to find an index
j ≤ i, called the turning point, that should change its value by 1 (increase/decrease
for lexicographic/antilexicographic order) and to update values xi for j ≤ i. The time
to perform both backtracking searches is O(rj), where rj = n− x1 − x2 − · · · − xj

is the remainder to distribute after first j parts are fixed. We decide to charge the
cost of the backtrack search evenly to all “swept” parts, such that each of them re-
ceives constant O(1) time. Part xi will be changed only after a similar backtracking
step “swept” over ith part or recognized ith part as the turning point (note that ith
part is the turning point in at least one of the two backtracking steps). There are
RP(ri, xi) such partitions that keep all xj intact. For xi ≥ 3 the number of such par-
titions, is ≥ r2

i /12. Therefore the average number of operations that are performed
by such part i during the “run” of RP(ri, xi), including the change of its value, is
O(1)/RP(ri, xi) ≤ O(1)/r2

i = O(1/r2
i) < qi/r2

i , whereqi is a constant. Thus the aver-
age number of operations for all parts of size≥ 3 is≤ q1/r2

1 + q2/r2
2 + · · · + qs/r2

s ≤
q(1/r2

1 + · · · + 1/r2
s) < q(1/n2 + 1/(n− 1)2 + · · · + 1/12) < 2q (the last inequality

can be obtained easily by applying integral operation on the last sum), which is a
constant. The case that was not counted in is when xi ≤ 2 . However, in this case both
algorithms ZS1 and ZS2 perform constant number of steps altogether on all such
parts. Therefore the algorithm has overall constant time average delay. �

The performance evaluation of known integer partition generation methods is per-
formed in the work by Zoghbi and Stojmenovic [43]. The results show clearly that
both algorithms ZS1 and ZS2 are superior to all other known algorithms that gener-
ate partitions in the standard representation. Moreover, both algorithms SZ1 and ZS2
were even faster than any algorithm for generating integer partitions in the multiplicity
representation.

16 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

1.7 LISTING t-ARY TREES

The t-ary trees are data structures consisting of a finite set of n nodes, which either
is empty (n = 0) or consists of a root and t disjoint children. Each child is a t-ary
subtree, recursively defined. A node is the parent of another node if the latter is a
child of the former. For t = 2, one gets the special case of rooted binary trees, where
each node has a left and a right child, where each child is either empty or is a binary
tree. A computer representation of t-ary trees with n nodes is achieved by an array
of n records, each record consisting of several data fields, t pointers to children and
a pointer to the parent. All pointers to empty trees are nil. The number of t-ary trees
with n nodes is B(n, t) = (tn)!/(n!(tn− n)!)/((t − 1)n+ 1) (cf. [19,42]).

If the data fields are disregarded, the combinatorial problem of generating binary
and, in general, t-ary trees is concerned with generating all different shapes of t-ary
trees with n nodes in some order. The lexicographic order of trees refers to the lex-
icographic order of the corresponding tree sequences. There are over 30 ingenious
generating algorithms for generating binary and t-ary trees. In most references, tree
sequences are generated in lexicographic order. Each of these generation algorithms
causes trees to be generated in a particular order. Almost all known sequential algo-
rithms generate tree sequences, and the inclusion of parent–child relations requires
adding a decoding procedure, usually at a cost of greatly complicating the algorithm
and/or invalidating the run time analysis. Exceptions are the works by Akl et al. [4]
and Lucas et al. [22].

Parent array notation [4] provides a simple sequential algorithm that extends triv-
ially to add parent–children relations. Consider a left-to-right breadth first search
(BFS) labeling of a given tree. All nodes are labeled by consecutive integers
1, 2, . . . , n such that nodes on a lower level are labeled before those on a higher
level, while nodes on the same level are labeled from left to right. Children are or-
dered as L = 1, . . . , t. Parent array p1, . . . , pn can be defined as follows: p1 = 1,

pi = t(j − 1)+ L+ 1 if i is the Lth child of node j, 2 ≤ i ≤ n , and it has property
pi−1 < pi ≤ ti− t + 1 for 2 ≤ i ≤ n . For example, the binary tree on Figure 1.1 has
parent array 1, 3, 4, 5, 7, 8; the 3-ary tree on Figure 1.1 has parent array 1, 2, 3, 4, 8,
10, 18.

The algorithm [4] for generating all parent arrays is extended from the work by
Zaks [42] to include parent–children relations (the same sequence in the works by
Zaks [42] and Akl et al. [4] refers to different trees). The Lth children of node i is
denoted by childi,L (it is 0 if no such child exist) while parenti denotes the parent

FIGURE 1.1 Binary tree 1, 3, 4, 5, 7, 8 and ternary tree 1, 2, 3, 4, 8, 10, 18.

LISTING t-ARY TREES 17

node of i. Integer division is used throughout the algorithm. The algorithm generates
tree sequences in lexicographic order.

for i← 1 to n do
for L← 1 to t do childi,L← 0;

for i← 1 to n do {pi← i; parenti← (i− 2)/t + 1;
L← pi − 1− t(parenti − 1); child(i−2)/t+1,L← i}

repeat
report t-ary tree;
j← n;
while pj < 2j − 1 and j>1 do {i← parentj;

L← pi − 1− t(i− 1); childi,L← 0; j← j − 1}
pj ← pj + 1;
for i← j + 1 to n do pi← pi−1 + 1;
for i← j to n do {k← (pi − 2)/t + 1; parenti← k;

L← pi − 1− t(k − 1); childk,L← i}
until p1 = 2 .

Consider now generating t-ary trees in the children array notation. A tree is repre-
sented using a children array c1c2, c3, . . . , ctn as follows:

� The jth children of node i is stored in c(i−1)t+j+1 for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤
t; missing children are denoted by 0. The array is, for convenience, completed
with c1 = 1 and c(n−1)t+2 = · · · = cnt = 0 (node n has no children).

For example, the children array notations for trees in FIGURE 1.1 are
102340560000 and 123400050600000007000. Here we give a simple algorithm to
generate children array tree sequences, for the case of t-ary trees (generalized from
the work by Akl et al. [4] that gives corresponding generation of binary trees).

The rightmost element of array c that can be occupied by an integer j>0, repre-
senting node j, is obtained when j is tth child of node j − 1 , that is, it is c(j−1)t+1.
We say that an integer j is mobile if it is not in c(j−1)t+1 and all (nonzero) integers
to its right occupy their rightmost positions. A simple sequential algorithm that uses
this notation to generate all t-ary trees with n nodes is given below. If numerical order
0 < 1 < · · · < n is assumed, the algorithm generates children array sequences in an-
tilexicographic order. Alternatively, the order may be interpreted as lexicographic if
0, 1, · · · , n are treated as symbols, ordered as “1” < “2” < . . . < “n” < “0”. Numeric
lexicographic order may be obtained if 0 is replaced by a number larger than n (the
algorithm should always report that number instead of 0).

for i← 1 to n do ci← i;
for i← n+ 1 to tn do ci← 0;
repeat

print out c1, . . . , ctn;
i← (n− 1)t;

18 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

while
(
ci = 0 or ci = k−1

t
+ 1

)
and (i > 1) do i← i− 1;

ci+1 ← ci;
ci← 0;
for k← 1 to n− ci+1 do ci+k+1 ← ci+k + 1;
for k← i+ n− ci+1 + 2 to (n− 1)t + 1 do ck ← 0

until i = 1 .

We leave as an exercise to design an algorithm to generate well-formed parenthesis
sequences. This can be done by using the relation between well-formed parenthesis
sequences and binary trees in the children representation, and applying the algorithm
given in this section.

An algorithm for generating B-trees is described in the work by Gupta et al.
[16]. It is based on backtrack search, and produces B-trees with worst case delay
proportional to the output size. The order of generating B-trees becomes lexicographic
if B-trees are coded as a B-tree sequence, defined in [5]. The algorithm [16] has
constant expected delay in producing next B-tree, exclusive of the output, which is
proven in the work by Belbaraka and Stojmenovic [5]. Using a decoding procedure, an
algorithm that generates the B-tree data structure (meaning that the parent–children
links are established) from given B-tree sequence can be designed, with constant
average delay.

1.8 LISTING SUBSETS AND BITSTRINGS IN A GRAY CODE ORDER

It is sometimes desirable to generate all instances of a combinatorial object in such
a way that successive instances differ as little as possible. An order of all instances
that minimizes the difference between any two neighboring instances is called mini-
mal change order. Often the generation of objects in minimal change order requires
complicated and/or computationally expensive procedures. When new instances are
generated with the least possible changes (by a single insertion of an element, single
deletion or single replacement of one element by another, interchange of two ele-
ments, updating two elements only, etc.), corresponding sequences of all instances of
a combinatorial objects are refereed to as Gray codes. In addition, the same property
must be preserved when going from the last to first sequence. In most cases, there is
no difference between minimal change and Gray code orders. They may differ when
for a given combinatorial object there is no known algorithm to list all instances in
Gray code order. The best existing algorithm (e.g., one in which two instances differ
at two positions whereas instances may differ in one position only) then is referred
to achieving minimal change order but not in Gray code order.

We describe a procedure for generating subsets in binary notation, which is
equivalent to generating all bitstrings of given length. It is based on a backtrack
method and sequence comparison rule. Let e1 = 0 and ei = x1 + x2 + · · · + xi−1 for
1 < i ≤ n. Then the sequence that follows x1x2 . . . xn is x1x2 . . . xi−1x

′
ixi+1 . . . xn,

where i is the largest index such that ei + xi is even and ′ is complement function

GENERATING PERMUTATIONS IN A MINIMAL CHANGE ORDER 19

(0′ = 1, 1′ = 0; also x′ = x+ 1 mod 2).

read(n);
for i← 0 to n do {xi← 0; ei← 0};
repeat

print out x1, x2, . . . , xn;
i← n;
while xi + ei is odd do i← i− 1;
xi← x′i;
for j← i+ 1 to n do ej ← e′j

until i = 0 .

The procedure has O(n) worst case delay and uses no large integers. We will prove
that it generates Gray code sequences with constant average delay. The element xi

changes 2i−1 times in the algorithm, and each time it makes n− i+ 1 steps back and
forth to update xi. Since the time for each step is bounded by a constant, the time
to generate all Gray code sequences is

∑n
i=1 c2i−1(n− i+ 1). The average delay is

obtained when the last number is divided by the number of generated sequences 2n,
and is therefore

c

n∑
i=1

2−n+i−1(n− i+ 1) = c

n∑
i=1

2−ii = c

(
2− n

2n
− 1

2n−1

)
< 2c.

An algorithm for generating subsets in the binary notation in the binary reflected
Gray code that has constant delay in the worst case is described in the work by
Reingold et al. [30]. Efficient loopless algorithms for generating k-ary trees are
described in the Xiang et al. [41].

1.9 GENERATING PERMUTATIONS IN A MINIMAL CHANGE ORDER

In this section we consider generating the permutations of {p1, p2, . . . , pn}
(p1 < · · · < pn) in a minimum change order. We present one that is based on the
idea of adjacent transpositions, and is independently proposed by Johnson [18] and
Trotter [39]. It is then simplified by Even [14]. In the work by Even [14], a method
by Ehrlich is presented, which has constant delay. The algorithm presented here is a
further modification of the technique, also having constant delay, and suitable as a
basis for a parallel algorithm [36].

The algorithm is based on the idea of generating the permutations of
{p1, p2, . . . , pn} from the permutations of {p1, p2, . . . , pn−1} by taking each such
permutation and inserting pn in all n possible positions of it. For example, tak-
ing the permutation p1 p2 . . . pn−1 of {p1, p2, . . . , pn−1} we get n permutations
of {p1, p2, . . . , pn} as follows:

20 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

p1 p2 . . . pn−2 pn−1 pn

p1 p2 . . . pn−2 pn pn−1

p1 p2 . . . pn pn−2 pn−1

·
·
·

pn p1 . . . pn−3 pn−2 pn−1.

The nth element sweeps from one end of the (n− 1) -permutation to the other by a
sequence of adjacent swaps, producing a new n-permutation each time. Each time the
nth element arrives at one end, a new (n− 1) -permutation is needed. The (n− 1)-
permutations are produced by placing the (n− 1)th element at each possible position
within an (n− 2) -permutation. That is, by applying the algorithm recursively to the
(n− 1) elements.

The first permutation of the set {p1, p2, . . . , pn} is p1, p2, . . . , pn. Assign a
direction to every element, denoted by an arrow above the element. Initially all arrows
point to the left. Thus if the permutations of {p1, p2, p3, p4} are to be generated, we
would have

←
p1
←
p2
←
p3
←
p4.

Now an element is said to be mobile if its direction points to a smaller adjacent
neighbor. In the above example, p2, p3 and p4 are mobile, while in

�p3
←
p2
←
p1 �p4

only p3 is mobile. The algorithm is as follows:

While there are mobile elements do
(i) find the largest mobile element; call it pm

(ii) reverse the direction of all elements larger than pm

(iii) switch pm with the adjacent neighbor to which its direction points
endwhile.

The straightforward implementation of the algorithm leads to an algorithm that
exhibits a linear time delay. The algorithm is modified to achieve a constant delay.
After initial permutation, the following steps are then repeated until termination:

1. Move element pn to the left, by repeatedly exchanging it with its left neighbor,
and do (i) and (ii) in the process.

2. Generate the next permutation of {p1, p2, . . . , pn−1} (i.e., do step (iii)).

3. Move element pn to the right, by repeatedly exchanging it with its right neigh-
bor, and do (i) and (ii) in the process.

GENERATING PERMUTATIONS IN A MINIMAL CHANGE ORDER 21

4. Generate the next permutation of {p1, p2, . . . , pn−1} (i.e., do step (iii)).

For example, permutations of {1, 2, 3, 4} are generated in the following order:

1234, 1243, 1423, 4123 move element 4 to the left

4132 132 is the next permutation of 123, with

3 moving to the left

1432, 1342, 1324 move 4 to the right

3124 312 is the next permutation following 132, with

3 moving to the left

3142, 3412, 4312 4 moves to the left

4321 321 is the next permutation following 312;

2 in 12 moves to the left

3421, 3241, 3214 4 moves to the right

2314 231 follows 321, where 3 moves to the right

2341, 2431, 4231 4 moves to the left

4213 213 follows 231, 3 moved to the right

2413, 2143, 2134 4 moves to the right.

The constant delay is achieved by observing that the mobility of pn has a regular
pattern (moves n− 1 times and then some other element moves once). It takes n− 1
steps to move pn to the left or right while (i), (ii), and (iii) together take O(n) time.
Therefore, if steps (i), (ii), and (iii) are performed after pn has already finished moving
in a given direction, the algorithm will have constant average delay. If the work in steps
(i) and (ii) [step (iii) requires constant time] is evenly distributed between consecutive
permutations, the algorithm will achieve constant worst case delay. More precisely,
finding largest mobile element takes n− 1 steps, updating directions takes also n− 1
steps. Thus it suffices to perform two such steps per move of element pn to achieve
constant delay per permutation.

The current permutation is denoted d1, d2, . . . , dn. The direction is stored in a vari-
able a, where ai = −1 for left and ai = 1 for right direction. When two elements are
interchanged, their directions are also interchanged implicitly. The algorithm termi-
nates when no mobile element is found. For algorithm conciseness, we assume that
two more elements p0 and pn+1 are added such that p0 < p1 < . . . < pn < pn+1.
Variable i is used to move pn from right to left (i = n, n− 1, . . . , 2) or from left
to right (i = 1, 2, . . . , n− 1). The work in steps (i) and (ii) is done by two “sweep-
ing” variables l (from left to right) and r (from right to left). They update the largest
mobile elements dlm and drm, respectively, and their indices lm and rm, respec-
tively, that they detect in the sweep. When they “meet” (l = r or l = r − 1) the largest
mobile element dlm and its index lm is decided, and the information is broadcast
(when l>r) to all other elements who use it to update their directions. Obviously the

22 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

sweep of variable i coincides with either the sweep of l or sweep of r. For clarity, the
code below considers these three sweeps separately. The algorithm works correctly
for n>2.

procedure output;
{ for s← 1 to n do write(d[s]); writeln}

procedure exchange (c, b: integer);
{ ch← d[c + b]; d[c + b]← d[c]; d[c]← ch; ch← a[c + b];

a[c + b]← a[c]; a[c]← ch };

procedure updatelm; {
l← l+ 1; if (d[l] = pn) or (d[l+ dir] = pn) then l← l+ 1;
if l > r then {

if d[l− 1] �= pn then l1← l− 1 else l1← l− 2;
if d[l+ 1] �= pn then l2← l+ 1 else l2← l+ 2;
if (((a[l] = −1) and (d[l1] < d[l])) or ((a[l] = 1) and

(d[l2] < d[l]))) and (d[l]>dlm)
then {lm← l; dlm← d[l]};};

if ((l = r) or (l = r − 1)) and (drm>dlm) then {lm← rm;
dlm← drm};

if (l>r) and (d[r]>dlm) then a[r]←−a[r];
r← r − 1; if (d[r] = pn) or (d[r + dir] = pn) then r← r − 1;
if l < r then {

if d[r − 1] �= pn then l1← r − 1 else l1← r − 2;
if d[r − 1] �= pn then l2← r + 1 else l2← r + 2;
if (((a[r] = −1) and (d[l1] < d[r])) or

((a[r] = 1) and (d[l2] < d[r]))) and (d[r]>drm)
then { rm← r; drm← d[r] }; };

if ((l = r) or (l = r − 1)) and (drm>dlm) then
{ lm← rm; dlm← drm };

if (lεr) and (d[r]>dlm) then a[r]− a[r];
exchange(i, dir);
if i+ dir = lm then lm← i;
if i+ dir = rm then rm← i;
output; };

read(n); for i← 0 to n+ 1 do read pi;
d[0]← pn+1; d[n+ 1]← pn+1; d[n+ 2]← p0;
for i← 1 to n do { d[i]← pi; a[i]←−1};
repeat

output;
l← 1; r← n+ 1; lm← n+ 2; dlm← p0; rm← n+ 2;

drm← p0; dir←−1;
for i← n downto 2 do updatelm;
exchange (lm, a[lm]);

RANKING AND UNRANKING OF COMBINATORIAL OBJECTS 23

output;
l← 1; r← n + 1; lm← n+ 2; dlm← p0;

drm← p0; rm← n+ 2; dir← 1;
for i← 1 to n− 1 do updatelm;

exchange (lm, a[lm]);
until lm = n+ 2.

1.10 RANKING AND UNRANKING OF COMBINATORIAL OBJECTS

Once the objects are ordered, it is possible to establish the relations between in-
tegers 1, 2, . . . , N and all instances of a combinatorial object, where N is the
total number of instances under consideration. The mapping of all instances
of a combinatorial object into integers is called ranking. For example, let f(X)
be ranking procedure for subsets of the set {1, 2, 3}. Then, in lexicographic
order, f () = 1, f ({1}) = 2, f ({1, 2}) = 3, f ({1, 2, 3}) = 4, f ({1, 3}) = 5, f ({2}) =
6, f ({2, 3}) = 7 and f ({3}) = 8. The inverse of ranking, called unranking, is mapping
of integers 1, 2, . . . , N to corresponding instances. For instance, f−1(4) = {1, 2, 3}
in the last example.

The objects can be enumerated in a systematic manner, for some combinatorial
classes, so that one can easily construct the sth element in the enumeration. In such
cases, an unbiased generator could be obtained by generating a random number s
in the appropriate range (1,N) and constructing the sth object. In practice, random
number procedures generate a number r in interval [0,1); then s = 	rN
 is required
integer.

Ranking and unranking functions exist for almost every kind of combinatorial ob-
jects, which has been studied in literature. They also exist for some objects listed in
minimal change order. The minimal change order has more use when all instances
are to be generated since in this case either the time needed to generate is less or the
minimal change order of generating is important characteristics of some applications.
In case of generating an instance at random, the unranking functions for minimal
change order is usually more sophisticated than the corresponding one following lex-
icographic order. We use only lexicographic order in ranking and unranking functions
presented in this chapter.

In most cases combinatorial objects of given kind are represented as integer
sequences. Let a1a2 . . . am be such a sequence. Typically each element ai has
its range that depends on the choice of elements a1, a2, . . . , ai−1. For example,
if a1a2 . . . am represents a (m,n)-combination out of {1, 2, . . . , n} then 1 ≤ a1 ≤
n−m+ 1, a1 < a2 ≤ n−m+ 2, . . . , am−1 < am ≤ n. Therefore element ai has
n−m+ 1− ai−1 different choices.

Let N(a1, a2, . . . , ai) be the number of combinatorial objects of given kind whose
representation starts with a1a2 . . . ai. For instance, in the set of (4,6)-combinations
we have N(2, 3) = 3 since 23 can be completed to (4,6)-combination in three ways:
2345, 2346, and 2356.

24 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

To find the rank of an object a1a2 . . . am, one should find the number of objects
preceding it. It can be found by the following function:

function rank(a1, a2, . . . , am)
rank← 1 ;

for i← 1 to m do
for each x < ai

rank← rank +N(a1, a2, . . . , ai−1, x).

Obviously in the last for loop only such values x for which a1a2 . . . ai−1x can be
completed to represent an instance of a combinatorial object should be considered
(otherwise adding 0 to the rank does not change its value). We now consider a general
procedure for unranking. It is the inverse of ranking function and can be calculated
as follows.

procedure unrank (rank, n, a1, a2, . . . , am)
i← 0 ;
repeat

i← i+ 1;
x← first possible value;
while N(a1, a2, . . . , ai−1, x) ≤ rank do

{rank← rank − N(a1, a2, . . . , ai−1, x);
x← next possible value};

ai← x

until rank = 0;
a1a2 . . . am← lexicographically first object starting by a1a2 . . . ai.

We now present ranking and unranking functions for several combinatorial objects.
In case of ranking combinations out of {1, 2, . . . , n}, x is ranged between ai−1 + 1
and ai − 1. Any (m, n)-combination that starts with a1a2 . . . ai−1x is in fact a (m−
i, n− x)- combination. The number of such combinations is C(m− i, n− x). Thus
the ranking algorithm for combinations out of {1, 2, . . . , n} can be written as follows
(a0 = 0 in the algorithm):

function rankcomb (a1, a2, . . . , am)
rank← 1 ;
for i← 1 to m do

for x← ai−1 + 1 to ai − 1 do
rank← rank + C(m− i, n− x).

In lexicographic order, C(4, 6) = 15 (4,6)-combinations are listed as 1234, 1235,
1236, 1245, 1246, 1256, 1345, 1346, 1356, 1456, 2345, 2346, 2356, 2456, 3456.
The rank of 2346 is determined as 1+ C(4− 1, 6− 1)+ C(4− 4, 6− 5) = 1+
10+ 1 = 12 where last two summands correspond to combinations that start with
1 and 2345, respectively. Let us consider a larger example. The rank of 3578 in

RANKING AND UNRANKING OF COMBINATORIAL OBJECTS 25

(4,9)-combinations is 1+ C(4− 1, 9− 1)+ C(4− 1, 9− 2)+ C(4− 2, 9− 4)+
C(4− 3, 9− 6) = 104 where four summands correspond to combinations starting
with 1, 2, 34, and 356, respectively.

A simpler formula is given in the work by Lehmer [21]: the rank of combination
a1a2 . . . am is C(m, n)−∑

m
j=1C(j, n− 1− am−j+1). It comes from the count of

the number of combinations that follow a1a2 . . . am in lexicographic order. These
are all combinations of j out of elements {am−j+1 + 1, am−j+1 + 2, . . . , an}, for all
j, 1 ≤ j ≤ m. In the last example, combinations that follow 3578 are all combinations
of 4 out of {4, 5, 6, 7, 8, 9}, combinations with first element 3 and three others taken
from {6, 7, 8, 9}, combinations which start with 35 and having two more elements
out of set {8, 9} and combination 3579.

The function calculates the rank in two nested for loops while the formula would
require one for loop. Therefore general solutions are not necessarily best in the partic-
ular case. The following unranking procedure for combinations follows from general
method.

procedure unrankcomb (rank, n, a1, a2, . . . , am)
i← 0; a0 ← 0;
repeat

i← i+ 1;
x← ai−1 + 1;
while C(m− i, n− x) ≤ rank do

{rank← rank − C(m− i, n− x); x← x+ 1};
ai← x

until rank = 0;
for j = i+ 1 to m do aj ← n−m+ j.

What is 104th (4,9)-combination? There areC(3, 8) = 56 (4,9)-combinations start-
ing with a 1 followed by C(3, 7) = 35 starting with 2 and C(3, 6) = 20 starting with 3.
Since 56+ 35 ≤ 104 but 56+ 35+ 20 > 104 the requested combination begins with
a 3, and the problem is reduced to finding 104− 56− 35 = 13th (3,6)-combination.
There are C(2, 5) = 10 combinations starting with 34 and C(2, 4) = 6 starting with a
5. Since 13 > 10 but 13 < 10+ 6 the second element in combination is 5, and we need
to find 13− 10 = 3rd (2,4)-combination out of {6, 7, 8, 9}, which is 78, resulting in
combination 3578 as the 104th (4,9)-combination.

We also consider the ranking of subsets. The subsets in the set and in the binary
representation are listed in different lexicographic orders. In binary representation,
the ranking corresponds to finding decimal equivalent of an integer in binary system.
Therefore the rank of a subset b1, b2, . . . , bn is bn + 2bn−1 + 4bn−2 + · · · + 2n−1b1.
For example, the rank of 100101 is 1+ 4+ 32 = 37 . The ranks are here between
0 and 2n − 1 since in many applications empty subset (here with rank 0) is not
taken into consideration. The ranking functions can be generalized to variations out
of {0, 1, . . . , m− 1} by simply replacing all “2” by “m” in the rank expression. It
corresponds to decimal equivalent of a corresponding number in number system
with base m.

26 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Similarly, the unranking of subsets in binary representation is equivalent to
converting a decimal number to binary one, and can be achieved by the following
procedure that uses the mod or remainder function. The value rank mod 2 is 0 or
1, depending whether rank is even or odd, respectively. It can be generalized for
m-variations if all “2” are replaced by “m”.

function unranksetb(n, a1a2 . . . am)
rank← m; a0 ← 0;
for i← m downto 1 do

{bi← rank mod 2; rank← rank − bi2n−i}.
In the set representation, the rank of n-subset a1a2 . . . am is found by the following

function from the work by Djokić et al. [10].

function rankset(n, a1a2 . . . am)
rank← m; a0 ← 0;
for i← 1 to m− 1 do

for j← ai + 1 to ai+1 − 1 do
rank← rank + 2n−j .

The unranking function [10] gives n-subset with given rank in both representations
but the resulting binary string b1b2 . . . bn is assigned its rank in the lexicographic order
of the set representation of subsets.

function unranksets(rank, n, a1a2 . . . am)
m← 0; k← 1; for i← 1 to n do bi← 0 ;
repeat

if rank ≤ 2n−k then {bk ← 1; m← m+ 1; am← k};
rank← rank − (1− bk)2n−k − bk;
k← k + 1

until k>n or rank = 0.

As noted in the work by Djokić [10], the rank of a subset a1a2 . . . am among all
(m, n)-subsets is given by

ranks(a1a2 . . . am) = rankcomb(a1a2 . . . am)+ rankcomb(a1a2 . . . am−1)+ · · ·
+ rankcomb(a1a2)+ rankcomb(a1).

Let L(m, n) = C(1, n)+ C(2, n)+ · · · + C(n, m) be the number of (m, n)-
subsets. The following unranking algorithm [10] returns the subset a1a2 . . . am with
given rank.

function unranklim (rank, n, m, a1a2 . . . ar)
r← 0; i← 1;
repeat

s← t − 1− L(m− r − 1, n− i);

RANKING AND UNRANKING OF SUBSETS AND VARIATIONS IN GRAY CODES 27

if s>0 then t← s else {r← r + 1; ar ← i; rank← rank − 1};
i← i+ 1

until i = n+ 1 or rank = 0.

Note that the (m, n)-subsets in lexicographic order also coincide with a minimal
change order of them. This is a rare case. Usually it is trivial to show that lexicographic
order of instances of an object is not a minimal change order.

Ranking and unranking functions for integer compositions can be described by
using the relation between compositions and either subsets or combinations (discussed
above).

A ranking algorithm for n-permutations is as follows [21]:

function rankperm(a1a2 . . . an)
rank← 1 ;
for i← 1 to n do

rank← rank + k(n− i)! where k = |{1, 2, . . . , ai − 1}\
{a1, a2, . . . , ai−1}|.

For example, the rank of permutation 35142 is 1+ 2× 4!+ 3× 3!+ 1× 1! = 68
where permutations starting with 1, 2, 31, 32, 34, and 3512 should be taken into
account. The unranking algorithm for permutations is as follows [21]. Integer division
is used (i.e., 13/5 = 2).

procedure unrankperm(rank, n, a1a2 . . . an)
for i← 1 to n do {⌊

k← rank − 1

(n− i)!

⌋
;

ai← kth element of {1, 2, . . . , n}\{a1, a2, . . . , ai−1};
rank← rank − (k − 1)(n− i)!}.

The number of instances of a combinatorial object is usually exponential in size of
objects. The ranks, being large integers, may need O(n) or similar number of memory
location to be stored and also O(n) time for the manipulation with them. Avoiding large
integers is a desirable property in random generation in some cases. The following
two sections offer two such approaches.

1.11 RANKING AND UNRANKING OF SUBSETS AND VARIATIONS
IN GRAY CODES

In a Gray code (or minimal change) order, instances of a combinatorial object are listed
such that successive instances differ as little as possible. In this section we study Gray
codes of subsets in binary representation. Gray code order of subsets is an ordered
cyclic sequence of 2n n-bit strings (or codewords) such that successive codewords
differ by the complementation of a single bit. If the codewords are considered to be

28 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

vertices of an n-dimensional binary cube, it is easy to conclude that Gray code order
of subsets corresponds to a Hamiltonian path in the binary cube. We will occasionally
refer in the sequel to nodes of binary cubes instead of subsets. Although a binary cube
may have various Hamiltonian paths, we will define only one such path, called the
binary-reflected Gray code [17] that has a number of advantages, for example, easy
generation and traversing a subcube in full before going to other subcube. The (binary
reflected) Gray code order of nodes of n-dimensional binary cube can be defined in
the following way:

� For n = 1 the nodes are numbered g(0) = 0 and g(1) = 1, in this order,
� If g(0), g(1), . . . , g(2n − 1) is the Gray code order of nodes of an n-dimensional

binary cube, then g(0) = 0g(0), g(1) = 0g(1), . . . , g(2n − 1) = 0g(2n −
1), g(2n) = 1g(2n − 1), g(2n + 1) = 1g(2n − 2), . . . , g(2n+1 − 2) = 1g(1),
g(2n+1 − 1) = 1g(0) is a Gray code order of nodes of a (n+ 1)-dimensional
binary cube.

As an example, for n = 3 the order is g(0) = 000, g(1) = 001, g(2) =
011, g(3) = 010, g(4) = 110, g(5) = 111, g(6) = 101, g(7) = 100. First, let us see
how two nodes u and v can be compared in Gray code order. We assume that a node
x is represented by a bitstring x1 ≥ x2 . . . xn. This corresponds to decimal node ad-
dress x = 2n−1x1 + 2n−2x2 + · · · + 2xn−1 + xn where 0 ≤ x ≤ 2n − 1. Let i be the
most significant (or leftmost) bit where u and v differ, that is, u[l] = v[l] for l < i and
u[i] �= v[i]. Then u < v if and only if u[1]+ u[2]+ · · · + u[i] is an even number. For
instance, 11100 < 10100 < 10110.

The above comparison method gives a way to find Gray code address t of a node
u (satisfying g(t) = u), using the following simple procedure; it ranks the Gray code
sequences.

procedure rank GC(n, u, t);
sum← 0; t← 0;
for l← 1 to n do {

sum← sum+ u[l];
if sum is odd then t← t + 2n−l }.

The inverse operation, finding the binary address u of node having Gray code
address t (0 ≤ t ≤ 2n − 1), can be performed by the following procedure; it unranks
the Gray code sequences.

procedure unrank GC(n,u,t);
sum← 0; q← t; size← 2n;
for l← 1 to n do {

size← size/2;
if q ≥ size then {q← q− size; s← 1} else s← 0 ;
if sum+ s is even then u[l]← 0 else u[l]← 1;
sum← sum+ u[l]}.

RANKING AND UNRANKING OF SUBSETS AND VARIATIONS IN GRAY CODES 29

The important property of the Gray code order is that corresponding nodes of a
binary cube define an edge of the binary cube whenever they are neighbors in the Gray
code order (this property is not valid for the lexicographic order 0, 1, 2, . . . , 2n − 1
of binary addresses).

The reflected Gray code order for subsets has been generalized for variations
[7,15]. Gray codes of variations have application in analog to digital conversion of
data.

We establish a n-ary reflected Gray code order of variations as follows. Let
x = x1 ≥ x2 . . . xm and y = y1y2 . . . ym be two variations. Then x < y iff there exist
i, 0 ≤ i ≤ m, such that xj = yj for j < i and either x1 + x2 + . . .+ xi−1 is even
and xi < yi or x1 + x2 + · · · + xi−1 is odd and xi>yi. We now prove that the order
is a minimal change order. Let x and y be two consecutive variations in given order,
x < y, and let xj = yj for j < i and xi �= yi. There are two cases. If xi < yi then
Xi = x1 + x2 + · · · + xi−1 is even and yi = xi + 1. Thus Xi+1 and Yi+1 have dif-
ferent parity, since Yi+1 = Xi+1 + 1. It means that either xi+1 = yi+1 = 0 or xi+1 =
yi+1 = n− 1 (the (i+ 1)th element in x is the maximum at that position while the
(i+ 1) –the element in y is the minimum at given position, and they are the same
because of different parity checks). Similarly we conclude Yj = Xj + 1 and xj = yj

for all j>i+ 1. The case xi>yi can be analyzed in analogous way, leading to the same
conclusion.

As an example, 3-ary reflected Gray code order of variations out of {0, 1, 2} is as
follows (the variations are ordered columnwise):

000 122 200

001 121 201

002 120 202

012 110 212

011 111 211

010 112 210

020 102 220

021 101 221

022 100 222.

It is easy to check that, at position i(1 ≤ i ≤ m), each element repeats nm−i times.
The repetition goes as follows, in a cyclic manner: 0 repeats nm−i times, 1 repeats
nm−i times, . . . , n− 1 repeats nm−i times, and then these repetitions occur in reverse
order, that is n− 1 repeats nm−i times, . . . , 0 repeats nm−i times.

Ranking and unranking procedures for variations in the n-ary reflected Gray code
are described in the work by Flores [15].

30 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

1.12 GENERATING COMBINATORIAL OBJECTS AT RANDOM

In many cases (e.g., in probabilistic algorithms), it is useful to have means of gen-
erating elements from a class of combinatorial objects uniformly at random (an un-
biased generator). Instead of testing new hypothesis on all objects of given kind,
which may be time consuming, several objects chosen at random can be used for
testing, and likelihood of hypothesis can be established with some certainty. There
are several ways of choosing a random object of given kind. All known ways are
based on the correspondence between integer or real number(s) and combinatorial
objects. This means that objects should be ordered in a certain fashion. We already
described two general ways for choosing a combinatorial object at random. We now
describe one more way, by using random number series. This method uses a series
of random numbers in order to avoid large integers in generating a random instance
of an object. Most known techniques in fact generate a series of random numbers.
This section will present methods for generating random permutations and integer
partitions. A random subset can easily be generated by flipping coin for each of its
elements.

1.12.1 Random Permutation and Combination

There exist a very simple idea of generating a random permutation of
A = {a1, . . . , an}. One can generate an array x1, x2, . . . , xn of random num-
bers, sort them, and obtain the destination indices for each element of A in a
random permutation. The first m elements of the array can be used to determine
a random (m, n)-combination (the problem of generating combinations at random
is sometimes called random sampling). Although very simple, the algorithm has
O(n log n) time complexity [if random number generation is allowed at most O(log
n) time]. We therefore describe an alternative solution that leads to a linear time
performance. Such techniques for generating permutations of A = {a1, . . . , an}
at random first appeared in the works by the Durstenfeld [8] and Hoses [24], and
repeated in the works by Nijeshius [25] and Reingold [30]. The algorithm uses a
function random (x) that generates a random number x from interval (0,1), and is as
follows.

for i← 1 to n− 1 do {
random(xi);
ci �xi(n− i+ 1)� + 1;
j← i− 1+ ci;
exchange ai with aj }.

As an example, we consider generating a permutation of {a, b, c, d, e, f } at ran-
dom. Random number x1 = 0.7 will choose �6× 0.7� + 1 = 5th element e as the first
element in a random permutation, and decides the other elements considering the set
{b, c, d, a, f } (e exchanged with a). The process is repeated: another random number,
say x2 = 0.45, chooses �5× 0.45� + 1 = 3rd element d from {b, c, d, a, f } to be the

GENERATING COMBINATORIAL OBJECTS AT RANDOM 31

second element in a random permutation, and b and d are exchanged. Thus, random
permutation begins with e, d, and the other elements are decided by continuing same
process on the set {c, b, a, f }.

Assuming that random number generator takes constant time, the algorithm runs in
linear time. The same algorithm can be used to generate combinations at random. The
first m iterations of the for loop determine (after sorting, if such output is preferable)
a combination of m out of n elements.

Uniformly distributed permutations cannot be generated by sampling a finite por-
tion of a random sequence and the standard method [8] does not preserve randomness
of the x-values due to computer truncations. Truncation problems appear with other
methods as well.

1.12.2 Random Integer Partition

We now present an algorithm from the work by Nijenhius and Wilf [26] that generates
a random integer partition. It uses the distribution of the number of partitions RP(n,m)
of n into parts not greater than m.

First, we determine the first part. An example of generating random partition
of 12 will be easier to follow than to show formulas. Suppose a random number
generator gives us r1 = 0.58. There are 77 partitions of 12. In lexicographic or-
der, the random number should point to 0.58× 77 = 44.66th integer partition. We
want to avoid rounding and unranking here. Thus, we merely determine the largest
part such. Looking at the distribution RP(12,m) of partitions of 12 (Section 1.2),
we see that all integer partitions with ranks between 35 and 47 have the largest
part equal to 5. What else we need in a random partition of 12? We need a ran-
dom partition of 12− 5 = 7 such that its largest part is 5 (the second part cannot
be larger than the first part). There are RP(7, 5) = 13 such partitions. Let the sec-
ond random number be r2 = 0.78. The corresponding partition of 7 has the rank
0.78× 13 = 10.14. Partitions of 7 ranked between 9 and 11 have the largest part
equal to 4. It remains to find a random partition of 7− 4 = 3 with largest part 4
(which in this case is not a real restriction). There are RP(3, 3) = 3 partitions as
candidates let r3 = 0.20. Then 0.20× 3 = 0.6 points to the third (and remaining)
parts of size 1. However, since the random number is taken from open interval (0,1),
in our scheme the partition n = n will never be chosen unless some modification
to our scheme is made. Among few possibilities, we choose that the value < 1 as
the rank actually points to the available partition with the maximal rank. Thus, we
decide to choose partition 3 = 3, and the random partition of 12 that we obtained is
12 = 5+ 4+ 3.

An algorithm for generating random rooted trees with prescribed degrees (where
the number of nodes of each down degree is specified in advance) is described in
the work by Atkinson [3]. A linear time algorithm to generate binary trees uniformly
at random, without dealing with large integers is given in the work by Korsch [20].
An algorithm for generating valid parenthesis strings (each open parenthesis has its
matching closed one and vice versa) uniformly at random is described in the work

32 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

by Arnold and Sleep [2]. It can be modified to generate binary trees in the bitstring
notation at random.

1.13 UNRANKING WITHOUT LARGE INTEGERS

Following the work by Stojmenovic [38], this section describes functions mapping
the interval [0 . . . 1) into the set of combinatorial objects of certain kind, for example,
permutations, combinations, binary and t-ary trees, subsets, variations, combinations
with repetitions, permutations of combinations, and compositions of integers. These
mappings can be used for generating these objects at random, with equal probability of
each object to be chosen. The novelty of the technique is that it avoids the use of very
large integers and applies the random number generator only once. The advantage of
the method is that it can be applied for both random object generation and dividing
all objects into desirable sized groups.

We restrict ourselves to generating only one random number to obtain a random
instance of a combinatorial object but request no manipulation with large integers.
Once a random number g in [0,1) is taken, it is mapped into the set of instances
of given combinatorial object by a function f(g) in the following way. Let N be the
number of all instances of a combinatorial object. The algorithm finds the instance
x such that the ratio of the number of instances that precede x and the total number
of instances is ≤ g . In other words, it finds the instance f(g) with the ordinal number
�gN� + 1. In all cases that will be considered in this section, each instance of given
combinatorial object may be represented as a sequence x1 . . . xm, where xi may have
integer values between 0 and n (m and n are two fixed numbers), subject to constraints
that depend on particular case.

Suppose that the first k − 1 elements in given instance are fixed, that is, xi =
ai, 1 ≤ i < k. We call them (k − 1) -fixed instances. Let a′1 < · · · < a′h be all possible
values of xk of a given (k − 1) -fixed instance. By S(k, u), S(k,≤ u), and S(k,≥ u),
we denote the ratio of the number of (k − 1) -fixed instances for which xk = a′u(xk ≤
a′u, and xk ≥ a′u respectively) and the number of (k − 1) -fixed instances. In other
words, these are the probabilities (under uniform distribution) that an instance for
which xi = ai, 1 ≤ i < k, has the value in variable xk which is= a′u,≤ a′u, and≥ a′u,
respectively.

Clearly, S(k, u) = S(k,≤ u)− S(k,≤ u− 1) and S(k,≥ u) = 1− S(k,≤ u− 1).
Thus

S(k, u)

S(k,≥ u)
= S(k,≤ u)− S(k,≤ u− 1)

1− S(k,≤ u− 1)
.

Therefore

S(k,≤ u) = S(k,≤ u− 1)+ (1− S(k,≤ u− 1))
S(k, u)

S(k,≥ u)
.

Our method is based on the last equation. The large numbers can be avoided in
cases when S(k, u)/S(k,≥ u) is explicitly found and is not a very large integer. This

UNRANKING WITHOUT LARGE INTEGERS 33

condition is satisfied for combinations, permutations, t-ary trees, variations, subsets,
and other combinatorial objects.

Given g from [0, . . . , 1), let l be chosen such that S(1,≤ u− 1) < g ≤ S(1,≤ u).
Then x1 = a′u and the first element of combinatorial object ranked g is decided. To
decide the second element, the interval [S(1,≤ u− 1) . . . S(1,≤ u)) containing g can
be linearly mapped to interval [0 . . . 1) to give the new value of g as follows:

g← g− S(1,≤ u− 1)

S(1,≤ u)− S(1,≤ u− 1)
.

The search for the second element proceeds with the new value of g. Similarly the
third, . . . , mth elements are found. The algorithm can be written formally as follows,
where p′ and p stand for S(k,≤ u− 1) and S(k,≤ u) , respectively.

procedure object(m, n, g);
p′ ← 0;

for k← 1 to m do
{

u← 1;
p← S(k, 1);

while p ≤ g do
{

p′ ← p;
u← u+ 1;

p← p′ + (1− p′) S(k, u)

S(k,≥ u)

}

xk ← a′u;

g← g− p′
p− p′

}
.

Therefore the technique does not involve large integers iff S(k, u)/S(k,≥ u) is not
a large integer for any k and u in the appropriate ranges (note that S(k,≥ 1) = 1).

The method gives theoretically correct result. However, in practice the random
number g and intermediate values of p are all truncated. This may result in com-
putational imprecision for larger values of m or n. The instance of a combinatorial
object obtained by a computer implementation of above procedure may differ from the
theoretically expected one. However, the same problem is present with other known
methods (as noted in the previous section) and thus this method is comparable with
others in that sense. Next, in applications, randomness is practically preserved despite
computational errors.

1.13.1 Mapping [0 . . . 1) Into the Set of Combinations

Each (m, n)-combination is specified as an integer sequence x1, . . . , xm such that
1 ≤ x1 < · · · < xm ≤ n. The mapping f(g) is based on the following lemma. Recall
that (k-1)-fixed combinations are specified by xi = ai, 1 ≤ i < k. Clearly, possible
values for xk are a′1 = ak−1 + 1, a′2 = ak−1 + 2, . . . , a′h = n (thus h = n− ak−1).

34 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

Lemma 1. The ratio of the number of (k − 1)-fixed (m,n)-combinations for which
xk = j and the number of (k − 1)-fixed combinations for which xk ≥ j is (m− k +
1)/(n− j + 1) whenever j>ak−1.

Proof. Let yk−i = xi − j, k < i ≤ n. The (k − 1)-fixed (m,n)-combinations for which
xk = j correspond to (m− k, n− j) -combinations y1, . . . , ym−k, and their num-
ber is C(m− k, n− j). Now let yk−i+1 = xi − j + 1, k ≤ i ≤ n. The (k − 1)-fixed
combinations for which xk ≥ j correspond to (m− k + 1, n− j + 1) -combinations
y1 . . . ym−k+1, and their number is C(m− k + 1, n− j + 1). The ratio in question is

C(m− k, n− j)

C(m− k + 1, n− j + 1)
= m− k + 1

n− j + 1
. �

Using the notation introduced in former section for any combinatorial objects, let
u = j − ak−1. Then, from Lemma 1 it follows that

S(k, u)

S(k,≥ u)
= m− k + 1

n− u− ak−1 + 1

for the case of (m,n)-combinations, and we arrive at the following procedure that
finds the (m,n)-combination with ordinal number �gC(m, n)� + 1. The procedure
uses variable j instead of u, for simplicity.

procedure combination(m,n,g);
j← 0; p′ ← 0;

for k← 1 to m do
{

j← j + 1;

p← m− k + 1

n− j + 1
;

while p ≤ g do
{

p′ ← p;
j← j + 1;

p← p′ + (1− p′)m− k + 1

n− j + 1

}

xk ← j;

g← g− p′
p− p′

}
.

A random sample of size m out of the set of n objects, that is, a random (m,n)-
combination can be found by choosing a real number g in [0, . . . , 1) and applying the
map f (g) = combination(m,n,g).

Each time the procedure combination (m,n,g) enters for or while loop, the index
j increases by 1; since j has n as upper limit, the time complexity of the algorithm
is O(n), that is, linear in n. Using the correspondences established in Chapter 1, the
same procedure may be applied to the case of combinations with repetitions and
compositions of n into m parts.

UNRANKING WITHOUT LARGE INTEGERS 35

1.13.2 Random Permutation

Using the definitions and obvious properties of permutations, we conclude that, after
choosing k − 1 beginning elements in a permutation, each of the remaining n− k + 1
elements has equal chance to be selected next. The list of unselected elements is kept in
an array remlist. This greatly simplifies the procedure that determines the permutation
x1 . . . xn with index �gP(n)� + 1.

procedure permutation(n,g);
for i← 1 to n do remlisti← i;
for k← 1 to n do {

u← �g(n− k + 1)� + 1;
xk ← remlistu;
for i← u to n− k do remlisti← remlisti+1;
g← g(n− k + 1)− u+ 1}.

The procedure is based on the same choose and exchange idea as the one used in
the previous section but requires one random number generator instead of a series
of n generators. Because the lexicographic order of permutations and the ordering of
real numbers in [0 . . . 1) coincide, the list of remaining elements is kept sorted, which
causes higher time complexity O(n2) of the algorithm.

Consider an example. Let n = 8 and g = 0.1818. Then �0.1818 ∗ 8!�+1 = 7331
and the first element of 7331st 8-permutation is u = �0.1818× 8� + 1 = 2; the re-
maining list is 1,3,4,5,6,7,8 (7331− 1× 5040 = 2291; this step is for verification
only, and is not part of the procedure). The new value of g is g = 0.1818× 8−
2+ 1 = 0.4544, and new u is u = �0.4544× 7� + 1 = 4; the second element is 4th
one in the remaining list, which is 5; the remaining list is 1,3,4,6,7,8. Next update
is g = 0.4544× 7− 3 = 0.1808 and u = �0.1808× 6� + 1 = 2; the 3rd element is
the 2nd in the remaining list, that is, 3; the remaining list is 1,4,6,7,8. The new
iteration is g = 0.1808× 6− 1 = 0.0848 and u = �0.0848× 5� + 1 = 1; the 4th
element is 1st in the remaining list, that is, 1; the remaining list is 4,6,7,8. Fur-
ther, g = 0.0848× 5 = 0.424 and u = �0.424× 4� + 1 = 2; the 5th element is 2nd
in the remaining list, that is, 6; the new remaining list is 4,7,8. The next values
of g and u are g = 0.424× 4− 1 = 0.696 and u = �0.696× 3� + 1 = 3; the 6th
element is 3rd in the remaining list, that is, 8; the remaining list is 4,7. Finally,
g = 0.696× 3− 2 = 0.088 and u = �0.088× 2� + 1 = 1; the 7th element is 1st in
the remaining list, that is, 4; now 7 is left, which is the last, 8th element. Therefore,
the required permutation is 2,5,3,1,6,8,4,7.

All (m,n)-permutations can be obtained by taking all combinations and listing
permutations for each combination. Such an order that is not lexicographic one,
and (m,n)-permutations are in this case refereed to as the permutations of combina-
tions. Permutation of combinations with given ordinal number can be obtained by
running the procedure combination first, and continuing the procedure permutation
afterwards, with the new value of g that is determined at the end of the procedure
combination.

36 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

1.13.3 Random t-Ary Tree

The method requires to determine S(k, 1), S(k, u), and S(k,≥ u). Each element bk

has two possible values, that is, bk = a′1 = 0 or bk = a′2 = 1; thus it is sufficient to
find S(k,1) and S(k,≥ 1). S(k,≥ 1) is clearly equal to 1. Let the sequence bk . . . btn

contains q ones, the number of such sequences is D(k − 1, q). Furthermore, D(k,q)
of these sequences satisfy bk = 0. Then

S(k, 1) = D(k, q)

D(k − 1, q)
= (t(n− q)− k + 1)(tn− k − q+ 2)

(t(n− q)− k + 2)(tn− k + 1)
.

This leads to the following simple algorithm that finds the t-ary tree f(g) with
the ordinal number �gB(t, n)� + 1.

procedure tree(t, n, g);
p′ ← 0; q← n;

for k← 1 to tn do

{

bk ← 0;

p← (t(n− q)− k + 1)(tn− k − q+ 2)

(t(n− q)− k + 2)(tn− k + 1)
;

if p ≤ g then {
p′ ← p;
bk ← 1;
q← q− 1;
p← 1 }

g← g− p

p− p′
}

The time complexity of the above procedure is clearly linear, that is, O(tn).

1.13.4 Random Subset and Variation

There is a fairly simple mapping procedure for subsets in binary representation. Let
g = 0. a1 . . . anan+1 . . . be number g written in the binary numbering system. Then
the subset with ordinal number �gS(n)� + 1 is coded as a1 . . . an. Using a relation
between subsets and compositions of n into any number of parts, described procedure
can be also used to find the composition with ordinal number �gCM(n)� + 1 .

A mapping procedure for variations is a generalization of the one used for sub-
sets. Suppose that the variations are taken out of the set {0, 1, . . . , n− 1}. Let
g=0. a1a2 . . . amam+1 . . . be the number g written in the number system with the base
n, that is, 0 ≤ ai ≤ n− 1 for 1 ≤ i ≤ m. Then the variation indexed �gV (m, n)� + 1
is coded as a1a2 . . . am.

If variations are ordered in the n-ary reflected Gray code then the variation indexed
�gV (m, n)� + 1 is coded as b1b2 . . . bm, where b1 = a1, bi = ai if a1 + a2 + · · · +
ai−1 is even and bi = n− 1− ai otherwise (2 ≤ i ≤ m).

REFERENCES 37

REFERENCES

1. Akl SG. A comparison of combination generation methods. ACM Trans Math Software
1981;7(1):42–45.

2. Arnold DB. Sleep MR. Uniform random generation of balanced parenthesis strings. ACM
Trans Prog Lang Syst 1980;2(1):122–128.

3. Atkinson M. Uniform generation of rooted ordered trees with prescribed degrees. Comput
J 1993;36(6):593–594.

4. Akl SG, Olariu S, Stojmenovic I. A new BFS parent array encoding of t-ary trees, Comput
Artif Intell 2000;19:445–455.

5. Belbaraka M, Stojmenovic I. On generating B-trees with constant average delay and in
lexicographic order. Inform Process Lett 1994;49(1):27–32.

6. Brualdi RA. Introductory Combinatorics. North Holland; 1977.

7. Cohn M. Affine m-ary gray codes, Inform Control 1963;6:70–78.

8. Durstenfeld R. Random permutation (algorithm 235). Commun ACM 1964;7:420.

9. Djokić B, Miyakawa M, Sekiguchi S, Semba I, Stojmenović I. A fast iterative algorithm
for generating set partitions. Comput J 1989;32(3):281–282.

10. Djokić B, Miyakawa M, Sekiguchi S, Semba I, Stojmenović I. Parallel algorithms for
generating subsets and set partitions. In: Asano T, Ibaraki T, Imai H, Nishizeki T, editors.
Proceedings of the SIGAL International Symposium on Algorithms; August 1990; Tokyo,
Japan. Lecture Notes in Computer Science. Volume 450. p 76–85.

11. Ehrlich G. Loopless algorithms for generating permutations, combinations and other com-
binatorial configurations. J ACM 1973;20(3):500–513.

12. Er MC. Fast algorithm for generating set partitions. Comput J 1988;31(3):283–284.

13. Er MC. Lexicographic listing and ranking t-ary trees. Comp J 1987;30(6):569–572.

14. Even S. Algorithmic Combinatorics. New York: Macmillan; 1973.

15. Flores I. Reflected number systems. IRE Trans Electron Comput 1956;EC-5:79–82.

16. Gupta UI, Lee DT, Wong CK. Ranking and unranking of B-trees. J Algor 1983;4:
51–60.

17. Heath FG. Origins of the binary code. Sci Am 1972;227(2):76–83.

18. Johnson SM. Generation of permutations by adjacent transposition, Math Comput
1963;282–285.

19. Knuth DE. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Read-
ing, MA: Addison-Wesley; 1968.

20. Korsch JF. Counting and randomly generating binary trees. Inform Process Lett
1993;45:291–294.

21. Lehmer DH. The machine tools of combinatorics. In: Beckenbach E, editor. Applied Com-
binatorial Mathematics. Chapter 1. New York: Wiley; 1964. p 5–31.

22. Lucas J, Roelants van Baronaigien D, Ruskey F. On rotations and the generation of binary
trees. J Algor 1993;15:343–366.

23. Misfud CJ, Combination in lexicographic order (Algorithm 154). Commun ACM
1963;6(3):103.

24. Moses LE, Oakford RV. Tables of Random Permutations. Stanford: Stanford University
Press; 1963.

38 GENERATING ALL AND RANDOM INSTANCES OF A COMBINATORIAL OBJECT

25. Nijenhius A, Wilf H. Combinatorial Algorithms. Academic Press; 1978.

26. Nijenhius A, Wilf HS. A method and two algorithms on the theory of partitions. J Comb
Theor A 1975;18:219–222.

27. Ord-Smith RJ. Generation of permutation sequences. Comput J 1970;13:152–155 and
1971;14:136–139.

28. Parberry I. Problems on Algorithms. Prentice Hall; 1995.

29. Payne WH, Ives FM. Combination generators. ACM Transac Math Software
1979;5(2):163–172.

30. Reingold EM, Nievergelt J, Deo N. Combinatorial Algorithms. Englewood Cliffs, NJ:
Prentice Hall; 1977.

31. Sedgewick R. Permutation generation methods. Comput Survey 1977;9(2):137–164.

32. Semba I. An efficient algorithm for generating all partitions of the set {1, . . . , n}. J Inform
Process 1984;7:41–42.

33. Semba I. An efficient algorithm for generating all k-subsets (1 ≤ k ≤ m ≤ n) of the set
{1, 2, . . . , n} in lexicographic order. J Algor 1984;5:281–283.

34. Semba I. A note on enumerating combinations in lexicographic order. J Inform Process
1981;4(1):35–37.

35. Skiena S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with
Mathematica. Addison-Wesley; 1990.

36. Stojmenovic I. Listing combinatorial objects in parallel. Int J Parallel Emergent Distrib
Syst 2006;21(2):127–146.

37. Stojmenović I, Miyakawa M. Applications of a subset generating algorithm to base enu-
meration, knapsack and minimal covering problems. Comput J 1988;31(1):65–70.

38. Stojmenović I. On random and adaptive parallel generation of combinatorial objects. Int J
Comput Math 1992;42:125–135.

39. Trotter HF, Algorithm 115. Commun ACM 1962;5:434–435.

40. Wells MB, Elements of Combinatorial Computing. Pergamon Press; 1971.

41. Xiang L, Ushijima K, Tang C. Efficient loopless generation of Gray codes for k-ary trees.
Inform Process Lett 2000;76:169–174.

42. Zaks S. Lexicographic generation of ordered trees. Theor Comput Sci 1980;10:63–82.

43. Zoghbi A, Stojmenović I. Fast algorithms for generating integer partitions. Int J Comput
Math 1998;70:319–332.

