Introduction to Bayesian
Statistics

In the last few years the use of Bayesiun methods in the praclice of applied statistics has
greatly increased. In this book we will show how the development of computational
Baycsian statistics is the key to this major change in statistics.  For most of the
twentieth century, frequentist statistical methods dominated the practice of applicd
statistics. This is despite the fact that statisticians have leng known that the Bayesian
approach to statistics offered clear cut advantages over the frequentist approach. We
will sce that Bayesian solutions are easy in theory, but were difficult in practice. It is
casy to find a formula giving the shape of the posterior. Tt is often more difficull te lind
the formula of the exact posterior density. Computational Bayesian statistics changed
all this. These methods use algorithms o draw samples irom the incompletely known
posterior and use these random samples as the basis for inference. In Section 1.1
we will look briefly al the the ideas of the frequentist approach to statistics. 1n
Section 1.2 we will introduce the ideas ol Bayesian statistics. In Section 1.3 we show
the similaritics and differences between the likelihood approach to inference and
Bayesian inference. We will see that the different interpretations of the parameters
and probabilitics lead to the advantages of Bayesian statistics.

1.1 THE FREQUENTIST APPROACH TO STATISTICS

In frequentist statistics, the parameter is considered a fixed but unknown value. The
sample space is the sct of all possible observation values. Probability is interpreted
as long-run relative frequency over all values in the sample space given the vnknown
parameter. The performance of any statistical procedure is determined by averaging
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2 INTRODUCTION TO BAYESIAN STATISTICS

over the sample space. This can be done prior to the experiment and docs not depend
on the data.

There were two main sources of frequentist ideas. R. A. Fisher developed a theory
of statistical inference based on the likelibood function. 1thas the same formula as the
juint density of the sample, however, the observations are held fixed at the values that
occurred and the parameter(s) are allowed to vary over all possible values. He reduced
the complexity of the data through the vse of sufticient statistics which contain all the
rcievant information about the parameter(s). He developed the theory of maximum
likelihood estimators (MLE) and found their asymptotic distributions. He measured
the efficicncy of an estimator using the Fisher information, which gives the amount
of information availuble in a single observation. His theory deall with nuisance
parameters by condilioning on an ancillary stalistic when one is available. Other
topics associated with him include analysis of variance, randomization, significance
tests, permulation tests, and fiducial intervals, Fisher himself was a scientist as well
as a slatislician, making great contributions to genetics as well as to the design of
experiments and statistical inference. As a scientist, his views on inference are in
tune with science. Occam’s razor requires that the simplest explanalion (chance)
must be ruled out before an altemative explanation is sought. Signilicance testing
where implauvsibility of the chance model is required belore accepling the alternative
closely matches this view.

Jerzy Neyman and Egon Pearson developed decision theory, and embedded sta-
tistical inference in it. Their theory was essentially deductive, unlike Fisher’s. They
would determine cnteria, and try (¢ find the optimum solution 1n the allowed class. If
necessary, they would resirict the class until they could find a solution. For instance,
in estimation. they would decide on a criterion such as minimizing squared error.
Finding that no unilormly minimum squared crror estimator exists, they would then
restrict the allowed class ol estimators 10 unbiased ones. and (ind unilormly minimum
variance unbiased estimators (UMVUE). Wald extended these ideas by defining a
loss function, and then defining the risk as the expected value of the loss function
averaged over the sampte space. He then defined as inadmissible any decision rule
that is dominated by another for all values of the parameter. Any rulc that is nol
inadmissible is admissible. Unexpectedly, since be was using frequentist criteria, he
found that the class of admissible rules is the class of Bayesian rules. Other topics in
this school include confidence intervals, uniformly most powerful tests of hypothesis,
uniformly most powertul unbiased tests, and James-Stein estimation.

The disputes Fisher had with the Neyman are legendary (Savage, 1976). Fisher
strongly opposed the submerging of inference into decision theory and Neyman’s
denial that inferenee uses inductive logic, His specific criticisms about the Neyman-
Pearson methods include:

o Unbiased estimators are not invariant vnder one-to-one reparameterizations.
» Unbiased estimators are not compatible with the likelihood principle.

¢ Unbiased estimates are not efficient. He scathingly criticized this wastc of
information as equivalent to throwing away observations.
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Nevertheless, what currently passes for frequentist parametric statistics includes a
collection of techniques, concepts, and methods from each of these two schools,
despite the disagreements between the founders. Perhaps this is because, [or the
very important cases ol the normal distribution and the binomial distribution, the
MLE and the UMVUE coincided. Efron (1986) suggested that the emaotionally
loaded terms (unbiascd, most powertul, admissible, etc.) contributed by Neyman,
Pearson, and Wald reinforced the view that inference should be based on likelihood
and this reinforced the frequentist dominance. Frequentist methods work well in the
situations for which they were developed, namely for exponential families where there
are minimal sufficient statistics. Nevertheless, they have fundamental drawbacks
including:

¢ Prequentist statistics have problems dealing with nuisance parameters, unless
an ancillary statistic exists.

o Frequentist statistics gives prior measures of precision, calculated by sample
space averaging. These may have no relevance in the post-data setting.

Inferenee based on the likelihood function using Fisher's ideas is essentially
constructive. That means algorithms can be [ound (o construct the solutions, Efron
(1986) refers to the MLE as the "original jackknite" because it is a tool that can casily
be adapted to many sitwations. The maximum likelihood estimator is invariant under
a one-to-one reparameterization. Maximum likelihood estimators are compatible
with the likelihood principle. Frequentist inference based on the likelihood function
has some similaritics with Bayesian inference as well as some difterences. Thesc
similaritics and differences will be explored in Section 3.3.

1.2 THE BAYESIAN APPROACH TO STATISTICS

Bayesian statistics is based on the theorem first discovered by Reverend Thomas
Baycs and published after his death in the paper An Essay Towards Solving a Problem
in the Doctrine of Chances by his friend Richard Price in Philosophical Transactions
of the Royval Society. Bayes’ theorem is a very clever restatement ol the conditional
probabitity formula. It gives a method for updating the probabilitics ol unobserved
events, given that another related event has occurred. This means that we have a
prior probability for the unobserved event, and we update this to get its poslerior
probability, given the occurrence of the related event. In Bayesian statistics, Bayes’
theorem is used as the basis for inference about the unknown parameters of a statistical
distribution. Key idcas forming the basis of this approach include:

s Since we are uncertain about the true values of the parameters, in Bayesian
statistics we will consider them to be random variables. This contrasis with the
frequentist idea that the parameters are fixed but unknown constants. Bayes’
theorem is an updating algorithm, so we must have a prior probability distri-
bution that measures how plavsible we consider each possible paramcter value
before looking at the data. Our prior distribution must be subjective, because
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somebody else can have his/her own prior beliet about the vnknown values of
the parameters,

+ Ay probability statement aboul the parameters must be interpreted as "degree
of beliet.”

e We will use the rules of probability directly to make interences about the
parameters, given the observed data. Baves’ theorem gives our posterior
distribution, which measures how plausible we consider each possible value
after observing the data,

» Buaycs’ thcorem combines the two sources of information about the unknown
parameter value: the prior density and the observed data, The prior density
gives our relative belief weights of every possible parameter value before
we observe the data. The likelihood funciion gives the relative weights to
cvery possible parameter value that comes from the observed data. Bayes’
theorem combines these into the posterior density, which gives our relative
belief weights of the parameter value after observing the data.

Bayes’ thcorem is the only consistent way to modify our belief about the parameters
given the data that actually occurred. A Bayesian inference depends only on the data
that occurred, nol on the data that could have oceurred but did not. Thus, Bayesian
inference is consistent with the fikelihaod principle, which states that if two outcomes
have proportional likelihoods, then the inferences based on the two outcomes should
be identical. For a discussion of the likelihood principle see Bernarde and Smith
(1994) or Pawilan (200!}, In the next section we compare Bayesian inference with
likelihood inference, a frequentist method of inference that is based solely on the
likelihood function, As its name implies, it also satisfies the likelihood principle.

A huge advantage of Bayesian statistics is that the posterior is always found by a
single method: Bayces™ theorem, Bayes® theorem combines the information about the
parameters from our prior density with the information about the parameters from
the observed data contained in the likelibood function i the posterior density. 1t
summarizes our knowledge about the purameter given the data we observed.

Finding the posterior: easy in theory, hard in practice

Bayes’ thcorem is usually expressed very simply ia the vnscaled form, posterior
proprotional to prior times likelihood:

Q(Ol - ':911|y.|1 t syﬂ) e 9(91: . '9;0) * f['yle T 3'yi'l|91:‘ Tt 79;”) M (1”

This formula does not give the posterior density g(fh, ..., 0plan, . . -, ¥ ) cxactly, bul
it does give its shape. In other words, we can find where the modes are, and relative
heights at any two locations. However, it cannot be used Lo {ind probabilities or to
find moments since it is not a density. We can’( use it [or inferences. The actual
posterior density is found by scaling it so it integrates Lo 1:

gl 0 < flon . yalbh 6
K

g(gl:"‘39p|ylr‘"::U-n.): (12)
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where the divisor needed (o make this a density is

Kz[‘,./y(ﬂl,...,ﬁp) X flh, oyl B doy LB, (1.3)

A closed form [or the p-dimensional integral only exists for some particular cases.!

For other cases the integration has to be done numerically. This may be very difficult,
particularly when p, the number of paramelers, is large. When this s true, we say
there is a high dimensional parameter space.

Finding the posterior using Bayes’ theorem is easy in theory. That is, we can
casily find the unscaled posterior by Equation 1.1. This gives us all the information
aboul the shape of the posterior. The exact posterior is found by scaling this to make
il & density and is geven in Equation 1.2. However, in practice, the integral given in
Equation 1.3 can be very difficuli to evalvate, even numerically. This is particularly
difficult when the parameter space is high dimensional. Thus we cannot always find
the divisor needed to get the exact posterior densily. In general, the incompletely
known posterior given by Equation 1.1 is all we have.

In Bayesian stafistics we do not have to assume that the observations come from
an easily analyzed distribution such as the normal, Alse, we can use any shape prior
density. The posterior would be found the same way. Only the details of evaluating
the integral would be different.

Example 1 A random sample i, ...y is drawn from a distribution having an
unknown mean and known standard deviation.  Usually, it is assumed the draws
come from a normal (u, o) distribution. However, the statistician may think that for
this data, the observation distribution is not normal, but from another distribution
that is also symmetric and has heavier tails. For example, the statistician migit
decide to use the Laplace{u, b) distribution with the same mean it and variance o>,
The mean and variance of the Laplace{a,b) distribution are given by a and 27,
respectively, The observation density is given by

1 | =]

J'(yhucr) = Eg i

The posterior distribution is found by the same formula

9(1{"') * f(yh B y'n.|1”-)
gl) X fln, - yali)dp

glalyis - oun) = i

The only difference would be the details of the integration. In most cases, it would
have to be done numericaliv,

IWhere the ebscrvation distribution comes from an exponential Tamily, and (he prior comes from (he
family that 1s conjugate to the obscrvation distribution.
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1.3 COMPARING LIKELIHOOD AND BAYESIAN APPROACHES TO
STATISTICS

In this section we graphically illustrate the similarities and differences between the
likelihood and Bayesian approaches to inference; specifically, how a parameter is
estimated using each of the approaches. We will see that:

1. The likelihood and the posterior density arc found in a similar manner, by
cutling a surface with the same vertical hyperplane. However, the surfaces
used in (he (wo approaches have different interpretations and in most cascs
they will have ditterent shapes.

2. Even when the surfaces arc the same (when Aat priors are used) the estimators
are chosen to satisfy different criteria.

3. The two approaches have different ways of dealing with nuisance parameters.

The observation(s) come tfrom the observation density f{y|#) where f is the fixed
parameter value. It gives the probability density over all possible observation values
for the given value of the parameter. The parameter space, ©, is the scl of all
possible paramcter values. The parameter space ordinarily has the same dimension
as the total number of parameters, p. The sample space, S, is the set of all possible
values of the obscrvalion(s). The dimension of the sample space is the number
of observations . Many of the commonly used observation distributions come
from the ene-dimensional expenential family of distributions. 'When we are in the
one-dimensional exponential family, the sample space may be reduced to a single
dimension due to the single sufficient statistic.

The Inference Universe

We define the inference universe of the problem to be the Cartesian preduct of the
parameter space and the sample space. It is the p 4+ n dimensional spacce where
the first p dimensions are the parameter space, and the remaining » dimensions are
the sample space. We do not ever ohserve the parameter, so the position in those
coordinates is always unknown. However, we do observe the sample, so we know
the last 2 coordinates.

We will let the dimensions be p = 1 and v. = 1 for illustrative purposes. This is the
case when we have a single parameter and a single observation (or we have a random
sample of observations from a one-dimensional expenential family). The inlerence
universe has two dimensions. The vertical dimension is the purameter space and is
unobservable. The horizontal dimension is the sample space and is observable. We
wish to make infercace about where we are in the vertical dimension given that we
know where we arc in the horizontal dimension.

Let f{y|#) be the observation density, For cach value of the parameler 8, it gives
the probability density of the observation ¥ for that parameter valuc. Actually, this
(ormula is a function of hoth the value of the observation and the parameter value. It
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Figure 1.1 The observation density surface in 3D perspective.

is defined for all points in the inference universe, thus it forms a surtace defined on
the inference universe. It forms a probability density in the observation dimension
for each particular value in the parameter dimension. However in general, it is not a
prabability distribution in the parameter dimension. Figure 1.1 shows the observation
density surface in 3D perspective.

The likclihood function, first defined by R. A. Fisher (1922), has the same [unc-
tional form as the observation density, only ¥ s held at the observed value, and € is
allowed to vary over all possible values. Thus, it is a function of the purameter £, i is
found by cutting the observation density surface with a vertical planc paralle] to the
fl axis through the observed value. This is shown in Figure 1.2, Likelihood inlerence
is bascd cntirely on the likelihood function.

Maximum Likelihood Estimation

We are trying to choose an eslimalor (lunction ol the observations) to represent the
unknown value of the parameter. In likelihood inference, the likelihood function
cannot be considered to be a probability density in general. Because of this, Fisher
(1922) decided that the best way to estimate the parameter is to choose the parameter
value that has the highest value of the likelihood Tunction, i.e., its mode. This is
the parameler value that gives the observed data the highest probability. He named
this the maxinmum likelihood estimator (MLE). The mode will be invariant under any
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Figure 1.2 Observation density surface with the likelihood function shown in 3D perspec-
live.

one-to-one transformation of the parameter space. Henee. the MLE will be invariant
under any reparameterization of the problem.?

Bayesian Estimation

Bayesian estimation requires that we have a probability distribution defined on the
parameler space before we look al the data. Tt is called the prior density because
it gives our beliel weights Tor each of the possible parameter values before we see
the data. This requires that we allow a different interpretation of probability on
the parameter space than on the sample space. It is measuring our belief, and thus
is subjective. The probability on the sample space has the usual long-run relative
(requency interpretation.  The prior density of the parameter is shown with the
obscrvation density surface in Figure 1.3, The joint density of the parameter and the
observation is found by multiplying ecach value of the observation density surtace by
the corresponding height ol the prior density. This is shown in Figure 1.4. Bayesians
call joint density of the parameters and the cbservation "the full Bayesian model.” It is
¢lear that the full Bayesian model surface will not be the same shape as the sampling
surface unless we use a flat prior that gives all possible parameter values equal weight.
To find the posterior density of the parameter given the ohserved value we cul the

IFisher was well aware of Bayes® theorem, and wanted his method to work on the same type of problems.
He viewed Bayes” use of flat prior 1o be very arbitrary, and realized that the Bayesian estimator would not
be invariant under the reparamelen:zation.
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Figure 1.3 Prior density and observation density surface in 31 perspective.

joint density of the parameter and the obscrvation with a vertical plane parallel to
the paramcter axis through the observed value of y. Thus, the likelihood and the
posterior density are found by cutting different surfaces with the same hyperplane.
The posterior density is shown in 3D perspective in Figure 1.5. The posterior density
is the complete inference in the Bayesian approach. It summarizes the belief we can
have about all possibie parameter values, given the observed data. The posterior will
always be a probability density, conditional on the observed data. Because of this,
we can use the mean ol the posterior distribution as the cstimale ol the parameter.
The mean of a distribution is the vajue thal minimizes the mean-squared deviation.
Hence, the Bayesian posterior mean i the estimator that minimizes the mean-squared
deviation of the posierior distribution.’

The Likelihood Function Can Be a Posterior

Il we decide to use a flat prior density that gives equal weight to all valucs of
the parameter, the joinl density on the inference universe will be the sume as the
observation density surlace. This is shown in Figure 1.6, Note that this prior
density will be improper (the integral over the whole range will be infinite) unless the
parameter values have finite lower and upper bounds. When the prior is improper,
we do not have a joint probability density for the full Bayesian model. However,

¥ decision theory. this neans the posterior mean is the optimal estimator when we are using a squared
error loss function. We can find the optinal Bavesian cstimator for any pacticular loss function. Fer
example. the posterior median is the optinial estiniator when we are using an absolute vale loss Tunction.
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Figure 1.4 'T'he joint densily of parameter and observation in 3D perspective. The prior
density of the parameter is shown on Lthe margin.

the normed likelihood (likelihood function divided by its integral over the whole
range of parameter values) will usually be a probability density. Thus, the likelihood
tunction will have the same shape as the posterior density in this case. The Bayesian
posterior mean estimator would be the mean value (balance point) of the likelihood
function. This would not generally be the same value as (he maximum likelihood
estimator, unless the Jikelihood function is symmetric and vnimodal such as in the
normal likelihood. Figure 1.7 illustrates the ditterence between these estimators on a
nonsymmetric likelihood tunction that could also be considered a Bayesian posterior
density with a flat prior density. The maximum likelihood estimator is the mode
ol this curve, while the Bayesian posterior estimate is its mean, the balance point.
This shows the two estimators are based on different ideas. even when the likelihood
function and the posterior density have the same shape.*

Note; we are not advocating always using flat priors. We only want to illustrate
that when we do, the posterior will be the same shape as the likelihood. Hence,
the likelihood can be thought of as an unscaled posterior when we have used flat
priors. When the integral of the flat prior over its whole range is infinite, the flat prior
will be improper. Despite this, the resulting posterior which is the sume shape as
the likelihood will usually be proper. For many models, such as the regression-type
models that we will discuss in Chapters 8 and 9, it is ok to use improper fal priors.

HJaynes and Bretthorst (2000) show that the maximumn Tkelihood estimator inplies that we are using a
0:1 loss function, 0 at the truc value of £, and | at every other value. This means getting it exactly right is
everylhing, and getting it close is of 0o value.
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Figure 1.5 Posterior density of the parameter in the inference universe. The prior density
15 shown in the margin.

Figure 1.6 Posterior density in the inference universe using a flat prior. It has the same
shape as the Likelihood lunction.
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Maximum Likelihood Estimatar
Bayes Posterior Mean

Figure 1.7  Maximum likclihood cstimator and Baycesian postcrior cstimator for a non-
symmetric likelihoud (posterior with flat prior).

However, there are situations such as when we have a hierarchical normal model
where improper priors should not be vsed for variance components. This will be
discussed more fully in Chapter 10.

Multiple Parameters

When we have p = 2 the same ideas hold. However, we cannot project the surface
defined on the infercnce universe down to a two-dimensional graph. With muftiple
parameters, Figures 1.1, 1.2, 1.3, 1.4, 1.5, and §.6 can be considered to be schematic
diagrams that represent the ideas rather than exact representations.

We will use the two-parameter case to show what happens when there are multiple
parameters, The inference universe has at least lour dimensions, so we cannot graph
the surface on it, The likelihood tunction is still found by cutting through the surtace
with a hyperplane parallel to the parameter space passing through the observed values.
The likelihood function will be defined on the the two parameter dimensions as the
observations are fixed al the observed values and do not vary. We show the bivariale
liketihood functien in 3D perspective in Figure 1.8. In this example, we have the
liketihood function where #; is the mean and &, is the variance for a random sample
from a normal distribution. We will also usc this sume curve to illustrate the Bayesian
posterior since it would be the joint posterior if we use independent flat priors for the
two parameters.
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Figure 1.8  Joint Likelihood Function. Nole: this can also be considered the joint posterior
density when independent flat priors are used for &7 and &..

Inference in the Presence of Nuisance Parameters

Sometimes, only one ol the parameters is ol interest 1o us. We don’t want to estimate
the other parameters and call them "nuisance" parameters. All we want to do is make
sure the nuisance parameters don’t interfere with our inference on the parameter
of interest,  Because using the Bayesian approach the joint posterior densily is a
probability density, and using the likelthood approach the joint likelihood function is
not a probability density, the two approaches have different ways of dealing with the
nuisance parameters. This is true even if we use independent flat priors so that the
posterior density and likelihood function have the same shape.

Likelihood Inference in the Presence of Nuisance Parameters

Suppose that f; is the parameter of interest, and &> is a nuisance parameter. If
there is an ancillary® sufficient statistic, conditioning on it will give a likelihood that
only depends on #,, the parameter of interest, and inference can be based on that
conditional likelihood, This can only be true in certain exponential familics, so is
ol limited general use when nuisance parameters are present. Instead, likclithood

"Function of the data that is independent of the paramcter of interest. Fisher developed ancillary statistics
a% a way to make infercnces when nuisance paramicters arc present.  Llowever, it only works in the
cxponential family of densities so it cannot be used in the genera) case. See Cox and Hinkley (1974).
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Figure 1.9 Profile likelihood of ¢, in 3D.

inference on #, s often based on the profile likelihood function given by

L.{0;data) = sup L0, 82: data)
206

where L(#,@,; data) is the joint likelihood function. Essentially, the nuisance pa-
rameler has been eliminated by plugging #,|6;, the conditional maximum likelihood
value of ¢, given f#,, into the joint likelihood. Hence

Lp(01;data) = L{#, é2|9];dam.) .

The profile likelihood funclion of #; is shown in three-dimensional space in Figure
1.9. The two-dimensional profile likelihood tunction is found by projecting it back
Lo the § > ¢ plane and is shown in Figure £.10. (It is like the “shadow” the curve
L(By,0,]0, data) would project on the f X §, plane from a light source infinitely far
away in the 0y direction.) The profile likelihood function may lose some information
ahout #; compared 1o the joint likelihood function. Note that the maximum profile
likelihood value of &; will be the same as its maximum likelihood value. However,
confidence intervals based on profile likelihood may not be the same as those based
on the joint likelihood.
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Figure 1.10  Protile likelihood of §, projected onto f x @ plane.

Bayesian Inference in the Presence of Nuisance Parameters

Bayesian statistics has a single way of dealing with nuisance parameters. Because
the joint posterior is a probability density in all dimensions, we can find the marginal
densitics by integration, Inference about the parameter of interest # is based on the
marginal posterior g{é |data), which is found by integrating the nuisance parameter
t out of the joinl posterior, a process referred to as marginalization:

gl |data) = [5;(01,92111«511‘.&.) d .

Note: we are using independent flat priors for both 8, and #5, so the joint posterior is
the same shape as the joint likelihood in this example. The marginal posterior density
ol h is shown on the f x @ plane in Figure £.11. 1t is found by integrating #s out of
the joint posterior density. (This is like sweeping the probability in the joint posterior
in a direction parailel to the #4 axis into a vertical pile on the f x & plane.) The
marginal posterior has all the inlermation aboul 7 thal was in (he joint posterior.
The Bayesian posterior estimator tor & found from the marginal posterior will be
the same as that found from the joint posterior when we are using the posterior mean
as our estimator. For this example, the Bayesian posterior density ol #4 lound by
marginalizing s out of the joint posterior density, and the profile likelihood (unction
of 81 turn out to have the same shape. This will not always be the case. Tor instance,
suppose we wanled (o do inference on ., and regarded ) as the nuisance parameler.
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01

Figure 1.11  Marginal posterior of 8.

We have used independent flat priors [or both parameters, so the joint posterior has
the same shape as the joint likelihood. The profile likclihood of ¢, is shown in 3D
perspective in Figure 1.12 and projected onto the f » &, planc in Figure 1.13. The
marginal posterior ol #; is shown in Figure 1.14.

Figure 1.15 shows both the profile likelihood function and the marginal posterior
density in 2D for 8- for this case. Clearly they have different shapes despite coming
from the same two-dimensional function.

Conclusion

We have shown that both the likelihood and Bayesian approach arise [rom surlaces
defined on the infercnce universe, the obscrvation density surface and the jeint
probability density respeclively. The sampling surface is a probability density only
in the observation dimensions, while the joinl probability density is a probability
density in the parameter dimensions as welt (when proper priors are used). Cutting
these two surfaces with a vertical hyperplane that goes through the observed valuc
of the data yiclds the likelihood function and the posterior density that are used for
likelihood inference and Bayesian inference, respectively.

In likelihood inference, the likelihood function is not considered a probability
density, while in Bayesian inference the posterior always is. The main ditferences
between these two approaches stem from this interpretaiion difference: certain ideas
arise naturally when dealing with a probability densily. There is no reason to use the
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Figure 1.12 Profile likelihood function of &, in 3D.
f
01

Figure 1.13 Profile likelihood of 3 projected onto § x 6 plane.
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01

Figure 1.14 Marginal posterior ol 8.

tirst moment of the likelihood funclion withoult the probability interpretation. Instead,
the maximum likelihood cstimator is the vaiue that gives the highest value on the
likelihood function. When a [tal prior is used, the posterior density has the same
shape as the likelihood function. Under the Bayesian approach it has a probability
intcrpretation, so the posterior mean will be the estimator since it minimizes the mean
squared deviation,

When there are nuisance parameters, there is no rcason why they could not be
intcgrated out of the joint likelihood function, and the inference be based on the
marginal likelihood. However, without the probability interpretation on the joing
likelihood, there is no compelling reason to do so. lnstead, likelihood inference is
commonly based on the profile likelihood function, where the maximum conditional
likelihood values of the nuisance parameters given the parameters of intcrest are
plugged into the joint likelihood. This plug-in approach docs not allow for all the
uncertainly about the nuisance paramcters. It treats them as it it were known to
have their conditional maximum likelihood values, rather than treating them like
unkiown parameters. This may lead 1o conlidence intervals that are too short to have
the claimed coverage probability. Under the Bayesian approach the joint posterior
density is clearly a probability density. Hence Bayesian inference about the parameter
of interest will be based on the marginal posterior where the nuisance parameters
have been integrated out. The Bayesian approach has allowed for al} the uncertainty
aboul the nuisance parameters.
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Figure 1.15 Profile likelihood and marginal posterior density of ..

1.4 COMPUTATIONAL BAYESIAN STATISTICS

In this section we introduce the main ideas of computational Bayesian statistics. We
show how basing our inferences on a random sample from the posterior distribution
has overcome the main impediments to using Bayesian methods. The first impedi-
menl is that the exactl posterior cannot be found analytically except for a few special
cases. The second 15 that finding the numernical posterior requires a dillicult numerical
integration, particularly when there is a large number of parameters.

Finding the posterior using Bayes® theorem is easy in theory. That is, we can
casily find the unscaled posterior by Equation 1.1. This gives us all the information
about the shape of the posterior. The exact posterior is found by scaling this to make
it a density and is given in Equation 1.2. However, in praclice, the integral given in
Equation 1.3 can be very difficult 1o evaluate, even numerically. This is particularly
difficult when the parameter spuce is high dimensional. Thus we cannol always find
the divisor needed 1o get the exact posterior densily. In general, the incompletely
known posterior given by Equation 1.1 is all we have.

Computational Bayesian statistics is based on developing algorithms that we can
use to draw samples from the true posterior, even when we only know the unscaled
version. There are two types of algorithms we can use to draw a sample from the
true posterior, even when we only know it in the unscaled form. The first type arc
direct methods, where we draw a randoro sample from an easily sampled density,
and reshape this sample by only accepting some of the values into the final sample,
in such a way that the accepted values constitute a random sample from the posterior.
These methods quickly become inefficient as the number of parameters increase.
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The second type is where we set up a Markov chain that has the posterior as its
long-run distribution, and letting the chain run long enough so a random draw from
the Markov chain is a random draw from the posterior, These arc known as Markov
chain Monte Carlo (MCMC) methods. The Metropolis-Hastings algorithm and the
Gibbs sampling algorithm are the two main Markov chain Monte Carlo methods.
The Markov chain Monte Carlo samples will not be independent. There will be serial
dependence due te the Markov property. Different chains have different mixing
properties. That means they move around the parameter space at different rates. We
show how to determine how much we must thin the sample to obtain a sample that
well approximates a random sample from the posterior to be used lor inference.

Inference from the Posterior Sample

The overall goal of Bayesian inlerence is knowing the posterior. The fundamental
idea behind nearly all statistical methods is that as the sample size increases, the
distribution of a random sample from a population approaches the distribution of
the population. Thus, the distribution of the random sample trom the posterior
will approach the true posterior distribution. Other inferences such as point and
interval estimates of the parameters can be constructed from the posterior sample.
TFor example, if we had a random sample from the posterior, any parameter could
bc estimated hy the corresponding statistic calculated from that random sample.
We could achieve any required level of accuracy for our estimates by making sure
our random sample {rom the posterior is large enovgh. Existing exploratory data
analysis (EDA) techniques cun be used on the sample from the posterior to exploge
the relationships between parameters in the posterior.

1.5 PURPOSE AND ORGANIZATION OF THIS BOOK

The development and implementation of computational methods for drawing random
samples from the incompletely known posterior has revolutionized Bayesian statis-
tics. Computational Bayesian statistics breaks free from the limited class of models
where the posterior can be found analytically. Statisticians can usc observation mod-
els. and choose prior distributions that are more realistic, and caleulale estimates of
the parameters from the Monte Carlo samples from the posterior.  Computational
Bayesian methods can easily deal with complicated models that have many param-
eters. This makes the advantages that the Bayesian approach offers accessible to a
much wider ¢lass of models,

This book aims to introduce the ideas of computational Bayesian statistics (o
advanced undergraduate and first-year graduate students. Students should enter the
course with some knowledge in Bayesian statistics at the level of Bolstad (2007). This
book builds on that background. It aims to give the reader a big-picture overview of
the methods of computational Bayesian statistics, and to demonstrate them for some
common statistical applications.
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In Chapter 2, we look at methods which aliow us to draw a random sample directly
from an incompletely known posterior distribution. We do this by drawing a random
sample from an easily sampled distribution, and only accepting some draws into the
final sample. This reshapes the accepted sample so it becomes a random sample
from the incompletely known posterior. These methods work very well for a single
parameter. However, they can be scen e become very inelficient as the number of
parameters increases. The main use of these methods is as a small step that samples
a single parameter as part of a Gibbs sampler.

Chapter 3 compares Bayesian inferences drawn from a numerical posterior with
Baycsian inferences from the posterior random sample.

Chapter 4 reviews Bayesian statistics using conjugate priors. These are the clas-
sical models that have analytic solutions to the posterior. In computational Bayesian
statics, these are useful tools for drawing an individual parameter as steps of the
Markov chain Monte Carlo algorithms.

In Chapter 5, we introduce Markov chains, a type of process that evolves as time
passes. They move through a set of possible values called states according to a
probabilistic law. The set of all possible values is called the siafe space of the chain.
Markov chains are a particular type of stochastic process where the probability of
the next state given the past history of the process up to and including the current
state only depends on the current state, that is. il is memoryless. The future state
depends only on the current state and the past stales can be forgotten. We study the
relationship between the probabilistic law of the process and the long-run distribution
of the chain, Then we see how to solve the inverse problem. Tn other words. we lind
a probabilistic law that will give a desired long-run distribution.

In Chapter 6, we introduce the Metropolis-Hastings algorithm as the fundamental
methaod for finding a Markov chain that has the long-run distribution that is the same
shape as the posterior. This achieves the fundamental goal in computational Bayesian
stalistics. We can casily find the shape of the posterior by the proportional form of
Bayes’ theorem. The Mctropolis-Hastings algorithm gives us a way (o [ind a Markov
chain that has that shape long-run distribution. Then by starting the chain, and letting
it run long enough, a draw [rom Lhe chain is equivalent w a draw from the posterior.
Drawing samples [rom the posterior distribution this way is known as Markov chain
Monte Carlo sampling. We have lots of choices in setting up the algorithm. Tt can be
implemenited using cither random-walk or independent candidate densitics. We can
either draw a multivariate candidate for all parameters at once, or draw the candidates
blockwisc. cach conditional on the parameters in the other blocks. We will sce that
the Gibbs sampling algorithm is a special case of the Melropolis-Hastings algorithm.
These algorithms replace very difficult numerical calculations with the easier process
of drawing randorn variables using the computer. Sometimes, particularly for high-
dimensional cases, they are the only feasible method.

In Chapter 7 we develop a method for finding a Markov chain that has good
mixing properties. We will use the Metropolis-Hastings algorithm with heavy-tailed
independent candidate density. We then discuss the problem of statistical inference
on the sample from the Markov chain. We wanl 10 base our inferences on an
approximately random sample [rom the posterior. This requires that we determine
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the burn-in time and the amount of thinning we need to do so the thinned sample will
be approximately random.

In Chapter 8 we show how to do computational Baycsian inlerence on the lo-
gistic regression model. Here we have independent observations from the binomial
distribution where each observation has its own probability of success, We want Lo
relate the probability of success for an observation to known values of the predictor
variables taken for that observation, Probability is always between 0 and 1, and a
lincar function of predictor variables will take on all possible values from —co o oc.
Thus we need a link function of the probability of success so that it covers the same
range as the linear {unclion of the predictors. The logarithin of the odds ratio

lo il
'gl". J. —

gives values between —oa to oc soitis a satislactory link function. Ttis called the logit

link function. The logistic regression model is a generalized lincar model, so we can
find the vector of maximum likelihood estimates, along with their matched curvatore
covariance matrix. by using iteratively rewceighted least sguares. We approximate
the likelihood by a muliivariale normal having the maximum likelihood vector as its
mean vector, and the matched curvature covariance. We can find the approximatc
normal posterior by the simple normal updating rules for normal linear regression. We
develop a heavy-tailed candidate density from the approximate normal posterior that
we use in the Metropolis-Hastings algorithm to find a sample from the exact posterior.
The computational Bayesian approach has a signilicant advantage over the likelihood
approach. The computational Bayesian approach gets a random sample from the
true posterior, so credible intervals will have the correet coverage probabilities. The
covariance matrix [ound by the likelihood approach does not actually relate to the
spread of the likelihood, but rather 1o s curvature so coverage probabilities of
confidence intervals may not be correct.

In Chapter 9 we develop the Poisson regression model, and the proportional
hazards model. We follow the same approach we used for the logistic regression
model. We find the maximum likelihood vector and matched curvature covariance
malrix. Then we find the nermal approximation to the posterior, and modify it o
have heavy tails so it can be used as the candidate density. The Metropolis-Hastings
algorithin is vsed 1o draw a sample from the exact posterior. We find that when
we have censored survival data, and we relate the linear predictor, the censoring
variable has the same shape as the Poisson, so we can use the same algorithm for
the proportienal hazards model. Again we will find that the computational Bayesian
approach has the same advantages over the likelihood approach since the sample is
from the true posterior.

In Chapter 10, we show how the Gibbs sumpling algorithm cycles through each
block of parameters, drawing Irom the conditional distribution of that block given
all the paramelers in other blocks at their most recent value. In general these con-
ditional distributions arc complicated. However, they will be quile simple when the
parameters have a hierarchical structure. That means we can draw a graph where
each node stands for a block of parameters or block of data. We connect the nodes
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with arrows showing the direction of dependence. When we look at the resulting
graph, we will {ind there are no connected loops. All nodes that lead into a specitic
node are called its parent nodes. All nodes that lead oul of a specific node are called
its child nodes. The other parent nades of & child node are called coparent nodes.
For this model, the conditional distribution of a specificd node, given all the other
nodes, will be proportional to its distribution given ity parent nodes (the prior) imes
the joint distribution of all its child nodes given it and the coparent nodes of the child
nodes (the likelihood). They will be particularly simple il the likelihood distribotions
are from the exponential family and the priors are from the conjugate family.

The biggest advantage of Markov chain Monte Carlo methods is that they allow the
applicd statistician t use more realistic models because he/she is not constrained by
analytic or numerical tractability. Models that are based on the underlying situation
can be used instead of models based on mathematical convenience. This allows the
statistician to focus on the statistical aspects of the model without worrying about
calculability.

Main Points

« Bayesian statistics does inference using the rules of probability directly.

* Bayesian statistics is based on a single tool, Bayes' theorem, which finds
the posterior density of the parameters, given the data. 1t combines both the
prior information we have given in the prior ¢(#1, ..., #,} and the information
about the parameters contained in the observed dala given in the fikefihood

f('yia e ay-r'¢|91! s Bp)-
s Iiis easy to find the unscaled posterior by posterior proportional to prior times
tikelihood
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The unscaled posterior has all the shape information. However, it is not the
exact posterior density. 1t must be divided by its integral 10 make it exact.

e Evaluating the integral may be very difficult, particularly it there are lots of
parameters. It is hard to find the exact posterior except in a few special cases,

o The Likelihood principle states that il lwo experiments have proportional like-
lihoods, then they should lead to the same inference.

® The Likelthood approach to statistics does inference solely using the likeli-
hood function, which is found hy cutting the sampling surfuce with a vertical
hyperplanc through the observed value of the data. It is not considered to be a
probability density.

& The maximum likelihood estimate is the mode of the likelihood function.
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The complete inference in Bayesian statistics is the posterior density. It is
found by cutting the joint density of parumeters and obscrvations with the
same vertical hyperplane through the observed valucs of the data.

The usual Bayesian estimate is the mean of the posterior. as this minimizes
mean-squared error of the posterior. Note: this will be dilferent trom the
MLE cven when flat priors are used and the posterior is proportional to the
fikelihood!

The two approaches have different ways of dealing with nuisance parameters.
The likelihood approach often uses the profile likelihood where the maximum
conditional likelihood value of the nuisance parameter is plugged into the joint
likelihood. The Bayesian approach is to integrate the nuisance parameter ouw
of the joint posterior.

Computational Bayesian statistics is based on drawing a Monle Carlo random
sample from the unscaled posterior. This replaces very dillicult numerical
calculations with the easier process of drawing random variables. Sometimes,
particularly for high dimensionat cascs, this is the only feasible way to find the
posterior.

The distribution of a random sample from the posterior approaches the exact
posterior distribution. Estimates of parameters can be calculated from statistics
calculated from the random sample.



