
Chapter 1

Getting to Know VBA
In This Chapter
� Finding uses for Visual Basic for Applications (VBA) programs

� Discovering where VBA appears other than in Microsoft Office

� Using the VBA Integrated Development Environment (IDE)

� Writing a one-line program

Have you ever talked with someone about an application that you’re
using and said that you thought the vendor who created the applica-

tion was clueless? The application is just too hard or too time consuming to
use because the features are difficult to access. In a few cases, I’ll bet you saw
a feature that almost does what you want it to do . . . but not quite. Something
that almost works is frustrating to use, and many of us have wished for a
solution to the problem.

At some point, someone at Microsoft made something that fixes all these
problems and more: Visual Basic for Applications (VBA). VBA is a simple pro-
gramming language. By using VBA, you can have things your way — you can
customize your applications to meet your needs and expectations. No longer
are you a slave to what the vendors want. If you use an application that sup-
ports VBA, you can add new features — such as automated letter writing and
special equation handling — to change things around to the way that you
want. In short, it becomes your custom application and not something that
the vendor thinks that you want.

VBA works with many applications, including the Microsoft Office applica-
tions. You use VBA to write programs to accomplish tasks automatically or
change the application environment. Many people think that they can’t write
even simple programs. This book helps you understand that anyone can
write a program. In fact, you write your first program in this chapter. Of
course, first you find out the secret handshake for starting the VBA Editor.
Using the VBA editor is just a little different from the word processors you’ve
used in the past. Along the way, you see some interesting uses for VBA and
just how many applications you can modify by using it.

05_046500 ch01.qxp 12/5/06 5:33 PM Page 9

CO
PYRIG

HTED
 M

ATERIA
L

Batteries Included — VBA Comes
with Office

A good many people have written to ask me whether VBA really does come
with Office. The answer is yes. All Office products support VBA, and you can
use VBA to perform a wealth of tasks, many of which will seem impossible
now. Older versions of Office provide a convenient method for accessing the
VBA editor. Simply use the Tools➪Macro➪Visual Basic Editor command to
display the VBA editor where you type your VBA commands and store them
for later use.

One of the reasons for this section is that Microsoft no longer feels that the
average user is smart enough to work with VBA. I find it amazing that the
company keeps dumbing down its products and making them more difficult
to use in the process, but it does. Newer versions of Office hide VBA from
view. If you’re using a product such as Word 2007, you actually need to look
for VBA before you can use it. Don’t bother to scour the new Ribbon interface
because you won’t find it there. The following steps help you reveal the VBA
hidden in your copies of Word, Excel, and PowerPoint.

1. Choose the Word, Excel, or PowerPoint button and click Word
Options, Excel Options, or PowerPoint Options.

You see the Word Options (see Figure 1-1), Excel Options, or PowerPoint
Options dialog box. All three dialog boxes are similar and have the VBA
option in the same place.

2. Check Show Developer Tab in the Ribbon.

3. Click OK.

Word, Excel, or PowerPoint displays the Developer tab, shown in
Figure 1-2, which contains VBA options described in this book.

Depending on which Office 2007 product you use, you’ll find the VBA options
in different places. You already know that Word, Excel, and PowerPoint place
these buttons on the Developer tab of the Ribbon. When working with
Access, you’ll find the VBA buttons located on the Database Tools tab of the
Ribbon. The actual buttons look the same as those shown in Figure 1-2. Even
though Outlook does use the new Ribbon interface, you’ll find VBA on the
Tools➪Macro menu, just as you always have.

Another way in which the Ribbon changes things is that you can no longer
right-click a toolbar (because the toolbars don’t exist) and choose Customize
to add new menu entries. The Ribbon doesn’t allow any changes without some
programming on your part. Chapter 12 describes the process you use to add
new buttons to the Ribbon. Any toolbars you created programmatically with
VBA in the past now appear on the Add-Ins tab of the Ribbon, so even program-
matically created toolbars have lost some of their effectiveness in Office 2007.

10 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 10

Interestingly enough, Microsoft didn’t upgrade OneNote, Publisher, Visio, and
Project to use the new Ribbon interface. Consequently, you access VBA using
the same method you always have on the Tools➪Macro menu. In addition,
you’ll find that these products lack many of the new features that Microsoft is
touting for its core Office products.

Figure 1-2:
The

Developer
tab of the

Ribbon
contains the
features you
used to find
in the Tools

menu.

Figure 1-1:
The Word

Options
dialog box
helps you
configure
Word for
specific

needs.

11Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 11

VBA: It’s Not Just for Programmers
One of the things that you should think about is why you want to use VBA. I
know that some of you are probably just interested in using VBA, but most of
you need a good reason for taking time out of your busy schedules. It’s impor-
tant to think about what tasks you can use VBA to do. It won’t take out the
garbage or fold your laundry, but you can use it to write some types of letters
automatically. With this in mind, you find out about a few things in this section
that I’ve done with VBA. Knowing you, I’m sure you’ll come up with more.

Automating documents
I hate writing letters, especially if the letter contains most of the same infor-
mation that I wrote for the last letter. Sometimes you can automate letters by
using mail merge, but that generally doesn’t work too well for individualized
letters. In these situations, I set up a form that contains the common informa-
tion that I include in some letters but not in others. I check off the items that I
need for the current letter, and VBA automatically writes it for me. You can
see my automated letter secrets in Chapter 13.

Document automation isn’t limited to word processing. You can also auto-
mate a spreadsheet. I have several programs that I’ve created for Excel. For
example, whenever I get a new client for my business, I click a button, and
VBA creates all the required client entries in Excel for me. Because Excel per-
forms the task the same way every time, I can’t forget anything and each
client receives the same level of high-quality service. You can see techniques
for creating automated Excel worksheets in Chapter 14.

If you have to move the data that you create in your word processor or
spreadsheet to the Internet, VBA can help make the process nearly auto-
matic. Chapter 16 contains everything that you need to know to move infor-
mation from one Microsoft Office product to another without the usual
modification and reformatting. In Bonus Chapter 1 on the Web site (at
http://www.dummies.com/go/vbafd5e), you see how to create auto-
mated documents in FrontPage. Bonus Chapter 2 shows how to work with
Visio. The Visio applications focus on automating drawing tasks, but you’ll
see other examples as well.

Customizing an application’s interface
Sometimes an application feature just bugs you. You could turn it off if it bugs
you that much, but that might not be an option if you need that function in

12 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 12

your work. Use VBA to create a new version of the feature with everything
that you need and nothing that you don’t. For example, I never liked how
Word performs a word count, so I created my own program to perform the
task. Chapter 12 shows you some of my secrets for taming unruly interfaces.

Changing an application interface to your liking is easy. You can create a cus-
tomized menu system or toolbars. You can move some interface elements out
to a form or get rid of them completely. In addition, any interface change that
you want to make is probably doable by using VBA. In addition, you don’t
necessarily have to use just one interface. You can create programs to change
the interface as needed for the task that you’re performing. For example, I
have a program to switch between book, article, and client document-writing
modes. Chapter 7 shows a number of interesting ways to use forms.

Performing calculations
One of the most common uses of special applications is to perform complex
calculations. You can create many types of equations by using any of the
Microsoft Office products. Sometimes, however, you need to change the data
before you can use it or perform the calculation differently depending on the
value of one or more inputs. Whenever a calculation becomes too compli-
cated for a simple equation, use VBA to simplify things by solving the calcula-
tion problem using small steps rather than one big step. Chapters 4 and 14
show a number of ways to work with calculations.

Sometimes the number that you create using a calculation doesn’t mean
much — it’s just a number until someone makes a decision. Some decisions
are easy to make yet repetitive. Chapter 5 shows the methods that your appli-
cation can use to make decisions automatically with VBA. Smart applications
save you more time for playing that game of Solitaire.

Getting stuff from a database
I use Access to store a variety of information — everything from my movie
collection to a list of clients that I work with regularly. You use databases to
store information, although that doesn’t help much if you can’t get it out. Use
VBA to get the information from your database in the form that you need it.
For example, you can display that information on a form so that you can
review it, or use that same data to create a report.

I love databases because they provide the most flexible method for storing
repetitive information, such as a client list or any other kind of list that you
can imagine. Don’t assume that databases are so complicated that you’ll

13Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 13

never understand how they work. Most productivity databases are actually
quite simple to use. All you need is a little easily understood VBA code to
gain access to them. Chapter 15 shows you everything you need to know to
work with productivity databases.

VBA even includes ways of creating temporary databases for those lists that
you need only today. This can save you a lot of time and still force the com-
puter to do the work for you. You can see these alternatives in Chapter 9.

Adding new application features
With all the features that vendors have stuffed into applications, you’d think
that every possible need would be satisfied. However, I’m convinced that ven-
dors never actually use the applications that they build. (A nifty new screen
saver for Windows is not my idea of a necessary feature.) However, the window-
sizing program that I really needed came from a third-party vendor.

Most of this book covers adding new application features. Discover how to
add specific features by reading specific chapters. (See the preceding sec-
tions to find where.) If you read this book from cover to cover, you’ll be able
to use VBA to add just about any feature to any product that supports VBA.
Your friends will be impressed and think that you’re a genius. Maybe your
boss will become convinced that you’re the most valuable employee in the
world and give you a large bonus. Reading this book could make you famous,
but more importantly, it will make you less frustrated.

Making special tools
If you have to send information to other people who might not have Microsoft
Office and they need the information formatted, you might have to work a
long time to find a solution. Chapters 10 and 11 contain two methods for stor-
ing information in alternative formats. Chapter 10 uses the trusty text file,
and Chapter 11 relies on eXtensible Markup Language (XML) files.

Having things your way
Sometimes I’d just like to scream. Microsoft seems to think that it knows pre-
cisely what I want — based on what people tell it. Who these other people
are remains a mystery, but I wouldn’t trust the person in the dark suit sitting
next to you.

Fortunately, you can use VBA to help customize Microsoft’s well-intentioned
application features. If Word decides that it absolutely must display the infor-
mation you don’t want on startup, store your settings to disk and restore

14 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 14

them every time you launch Word. The use of automatically executing pro-
grams (see Chapter 2) can help you have things your own way. Chapter 10
shows you how to store your settings in text format, and Chapter 11 shows
you how to store them in XML format.

Other Products Use VBA, Too
Don’t assume that VBA is good only if you’re using Microsoft Office or a few
other Microsoft products. With VBA at your command, you can control a lot
of different applications. Go to the Microsoft site http://msdn.microsoft.
com/vba/companies/company.asp to see a list of companies that have
licensed VBA. You’ll be amazed at the number of applications that you can
work with using VBA. Here are a few of my favorites:

� Corel products (http://www.corel.com/): Corel makes WordPerfect
and Draw. WordPerfect is a word processing program that many legal
offices still use. One of my first professional writing jobs required the
use of WordPerfect. CorelDRAW, a drawing program that many profes-
sionals enjoy using, supports a wealth of features. All the line art in this
book was originally drawn using CorelDRAW, and all my drawing setups
are performed automatically by using VBA programs.

� Micrografx iGrafx series (http://www.micrografx.com/): This prod-
uct can help you create flowcharts or organizational charts. Unlike a lot
of drawing tasks, both flowcharts and organizational charts are
extremely repetitive, making them a perfect place to use VBA.

� IMSI TurboCad (http://www.turbocad.com/): I love to work with
wood, which means that I have to draw plans for new projects from time
to time. TurboCad is the drawing program that I prefer to use. It’s rela-
tively inexpensive, and the VBA programs I’ve created for it automate
many of the drawing tasks, such as creating 3⁄4" boards.

VBA hasn’t been around forever. If you drag out that old, dusty copy of
WordPerfect for DOS, you’ll be disappointed because it doesn’t support VBA.
The Microsoft vendor participant list doesn’t tell you which version of a
product supports VBA for the most part, so you either have to check the
product packaging or ask the vendor.

A Room with a View
Many people approach VBA with the same enthusiasm and clarity of thought
with which the condemned person faces the gallows. When you work with an
application, you see what the developer wants you to see and not much more.
You’re in the user room — the one without a view. Approach using VBA like

15Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 15

entering a new room: You now have a room with a view — you’re the one who
sees what will happen and when.

Looking at the Integrated Development
Environment (IDE)
VBA is a visual programming environment. That is, you see how your pro-
gram will look before you run it. Its editor is very visual, using various win-
dows to make your programming experience easy and manageable. You’ll
notice slight differences in the appearance of the editor when you use it with
Vista as compared to older versions of Windows. In addition, you might notice
slight differences when using the editor with a core Office application — one
that uses the new Ribbon interface. Figure 1-3 shows what this Integrated
Development Environment (IDE) looks like when it’s opened using Excel in
Vista. No matter which Office product and version of Windows you use, the
editor has essentially the same appearance (and some small differences), the
same menu items, and the same functionality.

Standard toolbar Code window

Project Explorer window

Properties window

Figure 1-3:
The VBA
IDE is an
editor for

writing VBA
applications.

16 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 16

An IDE is an editor, just like your word processor, spreadsheet, or database
form. Just as application editors have special features that make them espe-
cially useful for working with data, an IDE is a programming editor with spe-
cial features that make it useful for writing instructions that the application
should follow. These instructions are procedural code — a set of steps.

As you can see from Figure 1-3, the VBA IDE consists of a menu system, tool-
bars, a Project Explorer window, a Properties window, and a Code window, to
start with. The IDE can show other windows when it needs to, but these are
the three windows that you see when you start VBA. Here’s a brief summary
of what each of the windows does. (The upcoming “Starting the Visual Basic
Editor” section shows how to use them.)

� Project Explorer: This window contains a list of the items in your pro-
ject, which contains all the document elements in a single file. Your appli-
cation exists within a file that appears in the Project Explorer window.

� Properties: Whenever you select an object, the Properties window tells
you about it. For example, this window tells you whether the object is
blue or whether it has words on it.

� Code: Eventually, you have to write some code to make your application
work. This window contains the special words that tell your application
what to do. Think of it as a place to write a specialized to-do list.

Looking at the VBA Toolbox
You won’t have to write code for every task in VBA. The IDE also supports
forms, just like the forms that you use to perform other tasks. In this case,
you decide what appears on the form and how the form acts when the user
works with it. To make it easier to create forms, VBA provides the Toolbox,
like the one shown in Figure 1-4, which contains controls used to create forms.

Each Toolbox button performs a unique task. For example, clicking one button
displays a text box, but clicking another displays a command button. The
form features that these buttons create are controls. Chapter 7 shows you

Figure 1-4:
Use the

VBA
Toolbox to

add controls
to forms you

create.

17Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 17

how to use all these controls, as well as how to add other controls when the
controls that the Toolbox provides don’t meet a particular need.

Looking at objects
You see the term object quite a bit while you read this book and use VBA to
create your own applications. An object used in a program is very much like
an object in real life. Programmers came up with this term to make programs
easier to understand. Read on while I use the real-world example of an apple
to explain what an object is in VBA — and to understand why objects are
such an important part of VBA and how they make things easier.

Property values are up
When you look at an apple, you can see some of its properties: The apple is
red, green, or yellow. VBA objects also have properties — for example, a
button can have a caption (the text that users see when they look at the
button). Some of the apple’s properties are hidden. You don’t know what the
apple will taste like until you bite into it. Likewise, some VBA objects have
hidden properties.

There’s a method to my madness
You can do a number of things with an apple. For example, picking an apple
from a tree is a method of interacting with the apple. Likewise, VBA objects
have methods. You can move a button from one place to another with the
Move method. Methods let the developer do something to the object.

And now, for a special event!
An apple usually changes color when it ripens. No one did anything to the
apple; it turned ripe because it reached maturity. This is an event. Likewise,
VBA objects can experience events. A user clicks a command button, and the
command button generates a Click event. As a developer, you didn’t do any-
thing to the command button. The command button decides when to gener-
ate the event. In short, events let the developer react to changing object
conditions.

Starting the Visual Basic Editor
How you start the Visual Basic Editor depends on the application that you’re
using. Newer versions of Office use a different approach than older versions.

18 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 18

In all cases, you see a Visual Basic Editor window, similar to the one shown in
Figure 1-3. This section describes each of these variations.

Word 2007, Excel 2007,
and PowerPoint 2007
Make sure that you enable the use of VBA by using the procedure in the
“Batteries Included — VBA Comes with Office” section, earlier in this chapter.
After you have the Developer tab displayed on the Ribbon, select it. Click
Visual Basic on the left side of the Developer tab (refer to Figure 1-2). You’ll
see the Visual Basic Editor.

Access 2007
Access 2007 displays the Database Tools tab of the Ribbon whenever it’s pos-
sible to use the Visual Basic Editor. Because you must have a database open
and meet certain other conditions, you won’t always see the Database Tools
tab. When you do see this tab, select it and click Visual Basic. You’ll see the
Visual Basic Editor.

OneNote 2007, Publisher 2007,
Visio 2007, Project 2007, and
all older versions of Office
If you’re using any of the products listed in the heading to this section, start
the Visual Basic Editor by choosing Tools➪Macro➪Visual Basic Editor. When
you execute this command, you’ll see the Visual Basic Editor.

Security under Vista
Vista places extra security constraints on Office products. The User Access
Control (UAC) makes it impossible to run some macros that would ordinarily
work under previous versions of Windows. Even setting the macro security
won’t help, in some cases, depending on the security policies set by the
administrator, your personal security settings, and the task the macro

19Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 19

performs. In general, you want to sign your macros before you use them
under Vista. See the “Adding a Digital Signature to Your Creation” section of
Chapter 8 for details.

Setting macro security for Word 2007,
Excel 2007, PowerPoint 2007,
and Access 2007
Office 2007 sets the security bar very high. It’s unlikely that you’ll be able to
run most of the macros in this book without changing your security settings.
The following steps help you make the required changes:

1. Select the Developer or Database Tools tab on the Ribbon.

2. Click Macro Security.

You see the Trust Center dialog box, shown in Figure 1-5.

Figure 1-5:
Use the

Trust Center
to adjust the

security
settings for
your Office

product.

20 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 20

3. Select Enable All Macros unless you plan to sign each of the macros in
this book before running them.

4. Check Trust Access to the VBA Project Object Model.

5. Click OK.

You can now run macros, but with greatly reduced security. Make sure
you change the settings back as soon as possible.

Setting macro security for OneNote 2007,
Publisher 2007, Visio 2007, Project
2007, and all older versions of Office
Depending on which version of Microsoft Office you use and how you set it
up at the beginning, the macro security feature might be set too high to allow
you to use the examples in this book. To change the macro security level, use
the following procedure.

1. Choose the Tools➪Options command.

The Microsoft Office application displays the Options dialog box.

2. Select the Security tab.

3. Click Macro Security.

The Microsoft Office application displays the Security dialog box.

4. Select the Security Level tab and choose the Low option.

5. Click OK twice to close the Security and Options dialog boxes.

Using Project Explorer
Project Explorer appears in the Project Explorer window. You use it to inter-
act with the objects that make up a project. A project is an individual file used
to hold your program, or at least pieces of it. The project resides within the
Office document that you’re using, so when you open the Office document,
you also open the project. See Chapter 3 for a description of how projects
and programs interact. Project Explorer works much like how the left pane of
Windows Explorer does. Normally, you see just the top-level objects, like the
Excel objects shown in Figure 1-6.

21Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 21

The objects listed in Project Explorer depend on the kind of application that
you’re working with. For example, if you’re working with Word, you see docu-
ments and document templates. Likewise, if you’re working with Excel, you
see worksheets and workbooks. However, no matter what kind of application
you work with, the way that you use Project Explorer is the same.

Figure 1-6 also shows some special objects. A project can contain forms,
modules, and class modules. Here’s a description of these special objects:

� Forms: Contain user interface elements and help you interact with the
user. Chapter 7 shows how to work with forms.

� Modules: Contain the nonvisual code for your application. For example,
you can use a module to store a special calculation. Most of this book
contains modules.

� Class modules: Contain new objects that you want to build. You can use
a class module to create a new data type. Chapter 8 shows how to work
with objects.

To select an object so that you can see and change its properties, highlight it
in Project Explorer. To open the object so that you can modify it, double-click
the object.

Right-clicking everything
Project Explorer has a number of hidden talents, which you can find by right-
clicking objects to see what you can do with them. For example, right-click
the VBAProject (Book1) entry at the top of Figure 1-6 to see the context
menu shown in Figure 1-7.

Figure 1-6:
Use Project
Explorer to
work with

project
objects.

22 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 22

It’s amazing to see what’s hidden on this menu. Don’t worry about using all of
the menu entries now. Each of the menu entries appears at least once and
probably more often in the book. For example, Chapter 3 shows how to use
the VBAProject Properties entry. The important thing to remember now is
that most objects have context menus that you can access by right-clicking
or using the Context Menu button on your keyboard.

Working with special entries
Sometimes you see a special entry in Project Explorer. For example, when
you work with a Word document, you might see a References folder, which
contains any references that the Word document makes. Normally, it contains
a list of templates that the document relies upon for formatting.

In many cases, you can’t modify the objects in the special folders. This is the
case with the References folder used by Word document objects. The Refer-
ences folder is there for information only. To modify the referenced template,
you need to find its object in Project Explorer. In this book, I don’t discuss
special objects because you normally don’t need to work with them.

Using the Properties window
Most of the objects that you click in the VBA IDE have properties that
describe the object in some way. The earlier “Property values are up” section
of this chapter tells about properties if you haven’t worked with them before.
The following sections provide details about the Properties window (refer to
Figure 1-3).

Understanding property types
A property needs to describe the object. When you look at an object, you
naturally assume something about the information provided by a particular

Figure 1-7:
Right-click

VBA objects
to display

context
menus.

23Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 23

property. For example, when describing the color of an apple, you expect to
use red, yellow, or green. Likewise, VBA object properties have specific types.

One of the most common property types is text. The Caption property of a
form is text. The text appears at the top of the form when the user opens it.

Another common property type is a logic, or Boolean, value. For example, if a
control has a Visible property and this property is set to True, the control
appears onscreen. Set this property to False, and the control won’t appear
onscreen even though it still exists as part of the application.

Object properties can also have numeric values. For example, to describe
where to place a control onscreen, set the Top and Left properties to spe-
cific numeric values. These values tell how many pixels are between the top
and left corner of the screen and the top-left corner of the control.

In some cases, a property can display a drop-down list box from which you
can choose the correct value. Other properties display a dialog box like the
one for color, shown in Figure 1-8.

Getting help with properties
Don’t expect to memorize every property for every object that VBA applica-
tions can create. Not even the gurus can do that. To determine what a partic-
ular property will do for your application, just highlight the property and
press F1, and, in most cases, VBA displays a Help window similar to the one
shown in Figure 1-9.

The older versions of Office Help don’t include quite as many features as shown
in Figure 1-9. For example, you won’t find an option to tell Microsoft whether the
information is helpful. Notice also that the bottom of the Help window now con-
tains a status bar that tells you whether the information you’re seeing is static
or taken directly from Microsoft’s Web site. Finally, the Standard toolbar now
includes a button that looks like a thumbtack. When placed in one position, the
Help window always remains on top so that you can see it no matter what you
might be doing. When placed in the second position, the Help window hides
(like any other window) when you cover it with another window.

Figure 1-8:
Some

properties
display a

dialog box
to select the

correct
value.

24 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 24

Such help screens tell you about the property and how it’s used as well as
provide you with links for additional information. The additional information
is especially important when you start changing the property values in your
application code. For example, click the Example link, and the help system
shows how to write code that uses that property. (You don’t have to click the
Example link when working with newer versions of Office — the example
appears at the bottom of the help screen.)

Click the See Also link on help screens for more information about a topic,
such as info about objects, properties, methods, and events associated with
the topic. In some cases, you also get recommended ways to work with an
object, property, method, or event. (You don’t have to click the See Also link
when working with newer versions of Office — the additional information
links appear in the middle or bottom of the help screen.)

Using the Code window
The Code window is where you write your application code. It works like any
other editor that you’ve used, except that you type in a special language:
VBA. Figure 1-10 shows a typical example of a Code window with some code
loaded. Notice that the Project Explorer window and the Properties window
are gone — you can display them again by using the View➪Project Explorer

Figure 1-9:
Help

documents
the

properties
that VBA
supports.

25Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 25

and View➪Properties Window commands. As an alternative, press Ctrl+R to
display Project Explorer or F4 to display the Properties window.

Opening an existing Code window
Sometimes you won’t be able to complete an application and need to work on
it later. To open an existing Code window, find the module that you want to
open in Project Explorer. Double-click the module entry, and the IDE displays
the code within it with your code loaded.

The Code window also appears when you perform other tasks. For example,
if you double-click one of the controls on a form, the Code window appears
so that you can add code to the default event handler. VBA calls the event
handler (special code that responds to the event) every time that the speci-
fied event occurs.

Creating a new Code window
When you start a new module within an existing document or template, open
a new Code window by using either the Insert➪Module or Insert➪Class
Module command. After you save this module or class module, it appears in
Project Explorer (refer to Figure 1-3) with the other modules and class mod-
ules in your project.

Figure 1-10:
Use the

Code
window to

modify your
program.

26 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 26

Typing text in the Code window
When you type code, VBA checks what you type. If you make a major error,
such as typing a word that VBA doesn’t understand, you see an error mes-
sage explaining what you did wrong (see Figure 1-11). If you don’t understand
the error, click the Help button for additional information.

While you type the code for your application, VBA also formats it. For exam-
ple, if you type a keyword in lowercase letters, VBA changes it so it appears
as shown in the help file. Hint: Keywords also appear in a different color so
that you can easily identify them. This book contains examples of the
common VBA keywords.

Finding more Code window features
The Code window has a context menu, just like other objects in VBA. When
you right-click the Code window, you see a list of optional actions that you
can perform. For example, you can obtain a list of properties and methods
that apply to the object that you’re currently using in the window. Chapter 3
shows how to use many of the special Code window features.

Getting help with code
Because it’s hard to remember precisely how to use every function and
method that VBA supports, use the VBA help feature. For any keyword that
you type in the Code window, highlight the keyword and press F1, and VBA
will look for help on the keyword that you selected.

Make sure that you select the entire keyword, or VBA might not find the infor-
mation that you need. Double-click the keyword to ensure that you highlight
the entire word.

Using the Immediate window
Although you can use the Immediate window for debugging applications, this
window can actually help you learn about VBA and save you from having to

Figure 1-11:
VBA

displays an
error

message
when you

make a
mistake.

27Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 27

write reams of code. You can execute statements one at a time. Use the
View➪Immediate Window command to display the Immediate window. This
window normally appears at the bottom of the IDE, and it won’t contain any
information until you type something in it.

Creating a variable in the Immediate window
Most developers spend their days using the Immediate window to check their
applications for errors. You can use the Immediate window to ask VBA about
the value of a variable, for example. (A variable acts as a storage container
for a value, such as Hello World.) This feature is always available in the
VBA IDE, even if you aren’t using VBA for anything at the moment. To try this
feature, type MyVal = “Hello World” (don’t forget the double quotes) in the
Immediate window and then press Enter. Now type ? MyVal and then press
Enter. Figure 1-12 shows the output of this little experiment.

You asked VBA to create a variable named MyVal and assign it a value of
Hello World. The next step is to ask VBA what MyVal contains by using the
? operator. Figure 1-12 shows that MyVal actually does contain Hello World.

Creating a one-line program
Experimenting with the Immediate window is one of the fastest ways to learn
how to use VBA because you get instant results. You can also copy successful
experiments from the Immediate window and paste them into the Code
window. Using this method ensures that your code contains fewer errors
than if you type it directly into the Code window.

If you’ve read the earlier section “Creating a variable in the Immediate window,”
you created a variable named MyVal. The variable still exists in memory
unless you closed VBA. You can use this variable for a little experiment —
your first program. Type MsgBox MyVal into the Immediate window and then
press Enter. You see a message box like the one shown in Figure 1-13.

Congratulations! You just completed your first VBA application! The code
that you typed asked VBA to use the MsgBox function to display the text in
the MyVal variable. Click OK to clear the message box.

Figure 1-12:
Use the

Immediate
window to
check the
value of a
variable.

28 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 28

Using Object Browser
VBA provides access to a lot of objects, more than you’ll use for any one pro-
gram. With all the objects that you have at your disposal, you might forget
the name of one or more of them at some time. Object Browser helps you find
the objects that you need. In fact, you can use it to find new objects that
could be useful for your next project. Use the View➪Object Browser com-
mand to display Object Browser, as shown in Figure 1-14. Normally, you need
to filter the information in some way.

Figure 1-14:
View the

objects that
VBA makes

available
via Object
Browser.

Figure 1-13:
The

MsgBox
function

produces a
message

box like this.

29Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 29

Browsing objects
Object Browser contains a list of the contents of all projects and libraries
loaded for the VBA IDE. You can view the list of projects and libraries by
using the Project/Library drop-down list box. When you start Object Browser,
this list box reads <All Libraries>, which means that you’re viewing
everything that VBA has to offer — usually too much for someone to make
sense of it all.

Projects and libraries are different, but you won’t normally need to worry
about them to use the objects that they contain. A project is the VBA code
contained in one of the files that you load into the application. In most cases,
you use a project to store the code that you create. A library is external code
contained in a Dynamic Link Library (DLL) file. The DLL contains support
routines used by the application or VBA. This code is normally written by a
developer using a language such as Visual Basic or Visual C++. You can’t
easily edit the code in a DLL.

The list of projects and libraries might look complicated at first, but you can
narrow it to a few types of entries. Of course, you always see your project
templates. In addition to project templates, you find these libraries in the list:

� Application: This library has the name of the application, such as Excel
or Word. It also includes the features that the application provides for
VBA users. For example, the Excel library has a Chart object, which
contains a list of chart-related methods, properties, and events that
Excel supports.

� Office: This library contains a list of objects that Microsoft Office sup-
ports. For example, this is where you find the objects used to support
Office Assistant. Of course, if you’re using an application other than
Microsoft Office, you won’t see this library. Your application might pro-
vide an alternative.

� StdOLE: This library contains some of the Object Linking and
Embedding (OLE) features that you use in the application. For example,
when you embed a picture into a Word document, this library provides
the required support. You can use this library in your VBA applications,
too, but the Office or application-related library usually provides access
to objects that are easier and faster to use.

� VBA: This library contains special utility objects that VBA developers
need. For example, it contains the MsgBox function, which I demonstrate
in the earlier “Using the Immediate window” section of this chapter.

Whenever you want to browse the libraries for a specific object, limit the
amount of material that you have to search by using the options in the
Project/Library drop-down list box (filtering the content). This is a helpful
technique when you perform searches as well.

30 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 30

Looking for names and features in Object Browser
When you remember . . . almost, but not quite . . . the name of a method or
other programming feature that you want to use, using the search feature of
Object Browser can make your life easier. Simply type the text that you want
to look for in the Search Text field (the empty box beneath All Libraries), and
then click the Search button (the one with a symbol that looks like binocu-
lars) in Object Browser. The Search Results field shown in Figure 1-15 shows
what happens when you look for MsgBox.

Whenever you choose (highlight) one of the entries in the Search Results
field, the bottom two panes change to show that entry. This feature helps you
locate specific information about the search result and see it in context with
other methods, properties, and events. Notice that the bottom pane tells you
more about the selection item. In this case, it tells you how to use the
MsgBox function.

Search text

Project/
Library

View definition

HelpGo back

Go forward

Copy to Clipboard

Hide search resultsSearch

Figure 1-15:
Search for

the method
that you

want to use.

31Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 31

Cutting and pasting in Object Browser
Whenever you find a method, property, or event that you want to use in
Object Browser, you can copy the information to the Clipboard by clicking
the Copy to Clipboard button (the one with a symbol that looks like two doc-
uments) and then pasting that information directly into your application
code. Using this feature means not only that you type less code, but also that
you have fewer errors to consider.

Getting help in Object Browser
Sometimes the information at the bottom of the Object Browser display isn’t
enough to tell you about the element that you’re viewing. When this happens,
highlight the element that you want to know more about and press F1, and
VBA displays the help screen for that element.

32 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 32

