
1
Introducing SQL Server 2005

To help you become familiar with SQL Server 2005, this chapter focuses on the key ingredients of
the software. This chapter also outlines differences between different editions of the software
before diving into particulars on the topics of architecture, database objects, databases, database
storage, and server security. The chapter concludes with a brief look at the historical evolution of
SQL Server.

What Is SQL Server 2005?
As you most likely know, SQL Server 2005 is primarily thought of as a Relational Database
Management System (RDBMS). It is certainly that, but it is also much more.

SQL Server 2005 can be more accurately described as an Enterprise Data Platform. It offers many
new features, and even more enhanced or improved features from previous editions of the prod-
uct. In addition to traditional RDBMS duty, SQL Server 2005 also provides rich reporting capabili-
ties, powerful data analysis, and data mining, as well as features that support asynchronous data
applications, data-driven event notification, and more.

This book is primarily focused on the administration of the Database Engine. However, as men-
tioned, SQL Server 2005 includes many more features than just the relational engine. In light of
that, it is important to start with some point of common reference. This section introduces the fea-
tures of SQL Server 2005. It is not meant to be all-inclusive, but it will provide the context for the
remainder of the book.

Later chapters go into greater detail and delve into the technologies behind each feature and how
they affect you, the database administrator. SQL Server 2005 is such an enormous product that no
one book could possibly cover every feature in detail, so some features will only be covered briefly
as an introduction, while the core administrative features will be described in greater detail.

04_047046 ch01.qxp 10/18/06 12:18 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

Database Engine
The Database Engine is the primary component of SQL Server 2005. It is the Online Transaction
Processing (OLTP) engine for SQL Server, and has been improved and enhanced tremendously in this
version. The Database Engine is a high-performance component responsible for the efficient storage,
retrieval, and manipulation of relational and Extensible Markup Language (XML) formatted data.

SQL Server 2005’s Database Engine is highly optimized for transaction processing, but offers exceptional
performance in complex data retrieval operations. The Database Engine is also responsible for the con-
trolled access and modification of data through its security subsystem. SQL Server 2005’s Database
Engine has many major improvements to support scalability, availability, and advanced (and secure)
programming objects:

❑ Physical partitioning of tables and indexes — Tables and indexes can now be physically partitioned
across multiple file groups consisting of multiple physical files. This dramatically improves the
performance of data retrieval operations and maintenance tasks that are executed against very
large tables. (See Chapter 5 for more information.)

❑ Data Definition Language (DDL) triggers — DDL triggers can be used to execute commands and
procedures when DDL type statements are executed. In the past, modifications to the database
could go undetected until they caused an application to fail. With DDL triggers, a history of all
actions can be easily recorded or even prevented. DDL triggers can be placed at the server or
database level.

❑ Enhanced variable-length data types — A new MAX keyword has been added to varchar,
nvarchar, and varbinary data types that allow the allocation of up to 2GB of space for large
object variables. One of the chief advantages of this addition is the ability to use large value
types in the declaration and use of variables.

❑ XML data type — The new XML data type enables the storage of well-formed and schema-
validated XML data. It also brings rich support in the form of XML data type methods,
along with enhancements to OPENXML and FOR XML T-SQL commands.

❑ Multiple Active Result Sets (MARS) — MARS allows for clients to maintain more than one data
request per connection. For example, in the past, if a connection was opened in an application,
only one data reader could be opened to retrieve data from the database. To open another data
reader, the first one had to be closed. With MARS, this limitation is removed.

❑ Structured error handling — T-SQL now includes the ability to perform structured error handling
in the form of TRY and CATCH commands that remove the necessity of repeated checks for errors
in scripts, and the ability to elegantly handle any errors that do occur.

❑ Common Table Expressions (CTE) — Microsoft has extended the American National Standards
Institute (ANSI) compliance of T-SQL by including the ability to use the CTE object. CTEs are
extraordinarily useful in the creation of efficient queries that return hierarchical information
without the need for using lengthy and complicated recursive sub-queries.

❑ Security enhancements — SQL Server’s security architecture has been enhanced considerably with
the ability to enforce account policies on SQL Server logins. Other additions to SQL Server’s
security architecture include the control of execution context and the ability to create encryption
keys and certificates to control access and guarantee the integrity of database objects through
the use of digital signatures. See Chapter 6 for more information.

2

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 2

❑ Common Language Run-Time (CLR) integration — One of the most exciting additions to SQL
Server is the integration of the CLR. It is also possibly the most misunderstood. The CLR pro-
vides a hosted environment for managed code. No longer is it necessary to make calls to exter-
nal Application Programming Interfaces (API) via hard-to-manage extended stored procedures
written and compiled utilizing unmanaged code to perform advanced and programmatic func-
tions. Because the CLR is integrated in the Database Engine, database developers can now cre-
ate secure and reliable stored procedures, functions, triggers, aggregates, and data types
utilizing advanced C# and/or VB.NET features in the .NET Framework. The CLR in no way
makes T-SQL obsolete, because T-SQL still out-performs managed code in the traditional manip-
ulation of relational data. Where the CLR shines is in instances that require complex mathemati-
cal functions or that involve complex string logic. For an introductory look at the CLR see
Chapter 12.

For complete coverage of the CLR check out the book, Professional SQL Server 2005 CLR Stored
Procedures, Functions, and Triggers by Derek Comingore (due for release by Wrox Press in the Fall
of 2006).

Analysis Services
Analysis Services delivers Online Analytical Processing (OLAP) and Data Mining functionality for busi-
ness intelligence applications. As its name suggests, Analysis Services provides a very robust environ-
ment for the detailed analysis of data. It does this through user-created, multidimensional data
structures that contain de-normalized and aggregated data from diverse data sources (such as relational
databases, spreadsheets, flat files, and even other multidimensional sources).

The Data Mining component of Analysis Services allows the analysis of large quantities of data. This
data can be “mined” for hidden relationships and patterns that may be of interest to an organization’s
data analyst. An example of this could be the online book store that analyzes your searches and pur-
chases, comparing them to previous customers’ search and purchase patterns to offer you suggestions or
targeted advertisements. It could also be the cancer research group comparing health records and demo-
graphic data of patients to find some common pattern to the emergence of a particular form of cancer.

For a very detailed look at SQL Server 2005 Analysis Servers, check out the book, Professional SQL
Server Analysis Services 2005 with MDX, by Sivakumar Harinath and Stephen R. Quinn
(Indianapolis: Wrox Press, 2006).

Reporting Services
Reporting Services is a Web service–based solution for designing, deploying, and managing flexible,
dynamic Web-based reports, as well as traditional paper reports. These reports can contain information
from virtually any data source. Because Reporting Services is implemented as a Web service, it must be
installed on a server with Internet Information Services (IIS). However, IIS does not have to be installed
on a SQL Server. The Reporting Services databases are hosted on SQL Server 2005, but the Web service
itself can be configured on a separate server.

For a detailed description of SQL Server 2005 Reporting Services and information about how to imple-
ment and extend SQL Server 2005 reports, check out an excellent book written by four very talented
developers and personal friends, Professional SQL Server 2005 Reporting Services (Indianapolis:
Wrox Press, 2006). Paul Turley, Todd Bryant, James Counihan, and Dave DuVarney are amazing guys
who I have had the great pleasure of working with over the past few years. You will not be disappointed.

3

Introducing SQL Server 2005

04_047046 ch01.qxp 10/18/06 12:18 AM Page 3

Integration Services
SQL Server Integration Services (SSIS) is Microsoft’s new enterprise class data Extract, Transform, and
Load (ETL) tool. SSIS is a completely new product built from the ashes of SQL Server 2000’s Data
Transformation Services (DTS). SSIS offers a much richer feature set and the ability to create much more
powerful and flexible data transformations than its predecessor. This huge improvement, however, is
not without a cost. SSIS is a fairly complex tool and offers a completely different design paradigm than
DTS. Database administrators adept at the former tool are very often intimidated and frustrated by the
new SSIS. Their biggest mistake is in thinking that Integration Services would just be an upgrade of Data
Transformation Services. As stated previously, this simply isn’t the case. More research, preparation, and
training will be crucial to effectively utilizing SSIS. For an introductory look at SSIS, see Chapter 13.

For a very thorough discussion of this new feature of SQL Server 2005, read the excellent book,
Professional SQL Server 2005 Integration Services (Indianapolis: Wiley, 2006).

Notification Services
Notification Services is used to build and deploy applications that support the generation and sending
of data-driven notifications. Notification Services’ applications provide the mechanism for subscribers to
create a subscription for a specific event, which could be a database, file system, or some other program-
matic event. The notification can take the form of an email or other custom delivery methods. For more
information on Notification Services, see Chapter 14.

Service Broker
Service Broker provides the framework and services to enable the creation of asynchronous, loosely cou-
pled applications. Service Broker implements a Service Orientated Architecture (SOA) in the data tier. It
provides more controlled transaction-based communications than traditionally available in other SOA
implementations such as Microsoft Message Queuing (MSMQ). Service Broker allows the developer to cre-
ate database applications that focus on a particular task and allows the asynchronous communication with
other applications that perform related (yet disconnected) tasks. For more information, see Chapter 15.

Data Tier Web Services
SQL Server 2005 provides support for creating and publishing data tier objects via HTTP without the use
of an Internet Information Services (IIS) server. SQL Server 2005 can listen and respond to an HTTP port
allowing developers to create applications that interact with a database across the Internet or through a
firewall by using a Web service. For more information, see Chapter 7.

Replication Services
SQL Server 2005 Replication Services provides the ability to automate and schedule the copying and dis-
tribution of data and database objects from one database or server to another, while ensuring data
integrity and consistency. Replication has been enhanced in SQL Server 2005 to include true Peer-to-Peer
replication, replication over HTTP, the ability to replicate schema changes, and, very interestingly, the
ability to configure an Oracle server as a replication publisher.

4

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 4

Multiple Instances
SQL Server 2005 provides the capability of installing multiple instances of the database application on a
single computer. Depending on the edition of SQL Server being installed, up to 50 instances can be
installed. This feature allows for one high-performance server to host multiple instances of the SQL
Server services, each with its own configuration and databases. Each instance can be managed and con-
trolled separately with no dependency on each other.

Database Mail
In the past SQL Server relied on a Messaging Application Programming Interface (MAPI) mail client
configured on the server to facilitate email and pager notification for administrative and programmatic
purposes. What this essentially meant was that to fully utilize administrative notifications, the adminis-
trator needed to install Outlook or some other MAPI-compliant client on the server, and then create a
mail profile for the service account to use.

Many organizations wanted to take advantage of the SQL Server Agent’s ability to send job and event
notification via email but were unwilling to install unnecessary and potentially risky software on pro-
duction server assets. The SQL Server 2005 Database Mail feature removes this requirement by support-
ing Simple Mail Transfer Protocol (SMTP) for all mail traffic. In addition, multiple mail profiles can be
created in the database to support different database applications. For more information about Database
Mail, see Chapter 8.

SQL Server 2005 Editions
SQL Server 2005 comes in six different flavors, and each has its specific place in the data management
infrastructure with the probable exception of the Enterprise Evaluation Edition, which is only useful for
short-term evaluation of the product (180 days). At the top of the list is the Enterprise Edition that sup-
ports absolutely everything that SQL Server 2005 has to offer. On the other end of the spectrum is the
Express Edition, which offers very limited (but still exciting) features.

The following table contrasts the major differences between all but the Developer and Evaluation
Editions. As discussed later in this section, the Developer Edition supports the same functionality as the
Enterprise Edition, and the Evaluation Edition is the Enterprise Edition with a time-limited and
restricted license.

Feature Enterprise Edition Standard Edition Workgroup Edition

Failover Clustering Yes 2-node No

Multi-Instance Support 50 16 16

Database Mirroring Yes Limited No

Enhanced Availability Features Yes No No

Table and Index Physical
Partitioning Yes No No

Table continued on following page

5

Introducing SQL Server 2005

04_047046 ch01.qxp 10/18/06 12:18 AM Page 5

Feature Enterprise Edition Standard Edition Workgroup Edition

Analysis Services Support Yes Yes No

Data Mining Yes Limited No

Reporting Services Yes Limited Very Limited

Notification Services Yes Limited No

Integration Services Yes Limited Very Limited

Replication Services Yes Limited Limited

For a complete list of supported features consult SQL Server 2005 Books Online under the topic
“Features Supported by the Editions of SQL Server 2005.”

SQL Server 2005 Mobile Edition
SQL Server Mobile is the replacement for SQL Server CE first offered in SQL Server 2000. The Mobile
Edition enables the installation of a small SQL Server database on a mobile device to support a CE or
Windows mobile application. SQL Server Mobile also enables the support of a database that is replicated
from a database hosted on a Windows Server.

This ability creates a world of opportunity for collecting data in a remote scenario and synchronizing
that data with a land-based database. For example, consider an overnight delivery service that must
maintain a record of a delivery truck’s inventory, including packages delivered and picked up. The truck
inventory could be uploaded via replication to a mobile device, where a mobile application kept track of
the deliveries and new packages picked up at delivery locations. Once the truck came back to the deliv-
ery center, the mobile device could be synchronized with the central database via replication or data
upload.

SQL Server 2005 Express Edition
SQL Express is at the lowest end of functionality and scalability, but I am very excited about this particu-
lar edition. SQL Express replaces the Microsoft Desktop Edition (MSDE) and has a similar price index —
it’s free. For its very low price (you can’t beat free), it still contains a great deal of functionality.

The reason this edition excites me is that it is perfect for many of my customers who are starting or run-
ning small businesses. They have a genuine need for a centralized managed database, but aren’t ready to
pay for a more scalable and robust solution. At the risk of offending my friends in the Open Source com-
munity, most of my customers are not very technically savvy, and so very flexible and viable solutions
like MySQL running on Linux or Windows is just not appropriate when a Database Engine with an intu-
itive and free graphical management tool exists.

One of the most exciting improvements to Microsoft’s free version of its database system is that it comes
with a graphical management environment. It also supports databases up to 4GB in size and contains
much of the same functionality as the other editions.

6

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 6

SQL Express is a big step up from MSDE, its predecessor and is a very viable solution for standalone
applications that require a managed data-store or even distributed applications with a minimal number
of connections.

SQL Express can be installed on any Microsoft desktop or server operating system from Windows 2000
and beyond, so a very small company can still leverage the database technology without making a large
investment. Once the company starts to grow, it will inevitably need to make the move to one of the
more robust editions, but the upgrade process from SQL Express to its bigger siblings is a piece of cake
because the data structures are nearly identical.

SQL Server 2005 Workgroup Edition
The Workgroup Edition replaces the SQL Server Personal Edition. It contains all the functionality of SQL
Server 2005 Express Edition and then some. This edition is targeted to those small companies that have
either outgrown the Express Edition or needed a more flexible solution to begin with, and yet do not
need all the features of the Standard or Enterprise Edition.

The Workgroup Edition is very flexible and contains many of the features of the more expensive edi-
tions. What the Workgroup Edition doesn’t provide is support for more advanced business intelligence
applications, because SQL Server Integration Services and Analysis Services are not included in this edi-
tion. The Workgroup Edition also has a reduced feature set in regard to Reporting Services, but the
Reporting Services features supported should satisfy most small organizations.

Like the Express Edition, the Workgroup Edition can be installed on both desktop and server operating
systems, with the exception of Windows XP Home (which is not supported).

SQL Server 2005 Standard Edition
Most of the capabilities of SQL Server 2005 are supported in the Standard Edition, which makes it the
ideal data platform for many organizations. What the Standard Edition does not provide are many of the
features designed for the support of large enterprise databases. These features include many of the high-
availability and scalability enhancements, such as Partitioned Tables and Parallel index operations. It
also lacks some of the more advanced business intelligence features and Integration Services.

SQL Server 2005 Enterprise Edition
The Enterprise Edition is the full-meal deal. Nothing is held back. Parallel operations, physical table
partitioning, complete business intelligence, and data mining support — you name it, the Enterprise
Edition has it.

If you require an easy-to-implement-and-maintain platform that can support millions of transactions a
second, 64 terabytes (TB) of RAM, and 64-bit processors, this release is for you. It is also an appropriate
solution if you just require advanced business analytics, and not necessarily the millions of transactions
a second that this edition offers.

Enterprise Edition is performance. Although the feature set between the Enterprise Edition and the
Standard Edition is not huge, the differences in performance between the two editions can be. The
Enterprise Edition fully optimizes read-ahead execution and table scans, which results in marked
improvement in read and scan performance.

7

Introducing SQL Server 2005

04_047046 ch01.qxp 10/18/06 12:18 AM Page 7

SQL Server 2005 Architecture
It is the job of SQL Server to efficiently store and manage related data in a transaction-intensive environ-
ment. The actual theories and principles of a relational database are beyond the scope of this book, and
hopefully you already have some of that knowledge. What is pertinent to this book is the way SQL
Server manages the data, and how it communicates with clients to expose the data. The following dis-
cussion describes the communication architecture utilized by SQL Server 2005, the services SQL Server
2005 utilizes, and the types of databases SQL Server uses. This section also discusses how those
databases are stored and accessed, but you can find a detailed description of SQL Server 2005 storage
architecture in Chapter 4.

SQL Server 2005 Communication
To adequately plan for a SQL Server database application, it is important to understand how SQL Server
2005 communicates with clients. As mentioned previously, SQL Server 2005 is more of a data platform
than just a relational database server. Because the SQL Server 2005 platform offers several different data
services, it also must provide different ways of accessing that data.

SQL Server 2005 ships with the ability to communicate over different protocols. By default, SQL Server
will accept network connections via TCP/IP. The local Shared Memory protocol is also enabled by
default to enable local connections without having to incur the overhead of a network protocol.

In addition to the TCP/IP, Named Pipes, and Shared Memory protocols, the Virtual Interface Adapter
(VIA) protocol is available for VIA Storage Area Network (SAN) implementations.

With the exception of HTTP endpoints (described in Chapter 7), SQL Server utilizes a communication
format called Tabular Data Stream (TDS). The TDS packets utilized by SQL Server are encapsulated in the
appropriate protocol packets for network communication.

The task of wrapping the TDS packets is the responsibility of the SQL Server Network Interface (SNI)
protocol layer. The SNI replaces the Server Net-Libraries and the Microsoft Data Access Components
(MDAC) that were utilized in SQL Server 2000. SQL Server creates separate TDS endpoints for each net-
work protocol.

Although TDS is the primary method for connecting to and manipulating data on a SQL Server, it is not
the only method available. In addition to TDS communication, SQL Server 2005 supports native Data
Tier Web services (see Chapter 7). By utilizing SQL Server Web services, connections can be made to SQL
Server via any client application that supports HTTP and Simple Object Access Protocol (SOAP).

Supported Languages
SQL Server 2005 supports the following five different languages to enable data manipulation, data
retrieval, administrative functions and database configuration operations:

❑ Transact-Structured Query Language (T-SQL) — This is Microsoft’s procedural language extension
to the Structured Query Language (SQL) standard established by the American National
Standards Institute (ANSI). T-SQL is entry-level compliant with the ANSI-99 standard. T-SQL is
the primary and most common method for manipulating data. For more information about T-
SQL, consult Beginning Transact-SQL with SQL Server 2000 and 2005 (Indianapolis: Wiley, 2005).

8

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 8

❑ Extensible Markup Language (XML) — This is fully supported in SQL Server 2005, as well as lan-
guage extensions to XML that enable the retrieval and modification of data by utilizing XQuery
syntax or native XML methods.

❑ The Multidimensional Expressions (MDX) — This language is used to query against multidimen-
sional objects in SQL Server 2005 Analysis Services.

❑ Data Mining Expressions (DMX) — This is a an extension of Transact-SQL that enables the cre-
ation of queries against a data mining model implemented in SQL Server 2005 Analysis
Services.

❑ Extensible Markup Language for Analysis (XMLA) — This can be used to both discover metadata
from an instance of SQL Server 2005 Analysis Services and to execute commands against an
instance of SSAS. XMLA commands are generally limited to the creation or modification of
SSAS objects. Actual retrieval of SSAS data is done with MDX queries.

SQL Server Programming Object Models
Most of the administrative activity that must be done on SQL Server 2005 can be done using the pro-
vided tools, but sometimes it may be necessary to build custom administrative tools, or to be able to pro-
grammatically build and manipulate database objects. Three new object models have been created to
support this need:

❑ SQL Management Objects (SMOs) — SMOs enable developers to create custom applications to man-
age and configure SQL Server 2005, SQL Server 2000, or SQL Server 7.0 Database Engines. It is an
extensive library that provides full support for virtually all aspects of the relational store. The SMO
library makes it possible to automate administrative tasks that an administrator must perform
through custom applications, or with command-line scripts using the SMO scripter class.

❑ Replication Management Objects (RMOs) — RMOs can be used along with SMOs to implement
and automate all replication activity, or to build custom replication applications.

❑ Analysis Management Objects (AMOs) — AMOs, like SMOs and RMOs, represent a complete
library of programming objects. AMOs enable the creation of custom applications or automation
of Analysis Server management.

SQL Server 2005 Services
SQL Server runs as a service. In fact, it runs as several services if all the different features of the product
are installed. It is important to know what service is responsible for what part of the application so that
each service can be configured correctly, and so that unneeded services can be disabled to reduce the
overhead on the server and reduce the surface area of SQL Server.

MSSQLServer (SQL Server)
The MSSQLServer service is the database engine. To connect and transact against a SQL Server 2005
database, the MSSQLServer service must be running. Most of the functionality and storage features of
the database engine are controlled by this service.

The MSSQLServer service can be configured to run as the local system or as a domain user. If installed
on Windows Server 2003, it can also be configured to run under the Network System account.

9

Introducing SQL Server 2005

04_047046 ch01.qxp 10/18/06 12:18 AM Page 9

SQLServerAgent (SQL Server Agent)
This service is responsible for the execution of scheduled jobs such as scheduled backups, import/export
jobs, and Integration Services packages. If any scheduled tasks require network or file system access, the
SQLServerAgent service’s credentials are typically used.

The SQLServerAgent service is dependent on the MSSQLServer service. During installation, the option
is given to configure both services with the same credentials. Although this is by no means required, it is
common practice. A frequent problem encountered by database administrators is that jobs that work
perfectly when run manually fail when run by the agent. The reason for the failure is because the
account that is used when testing the job manually is the logged-in administrator, but when the job is
executed by the agent, the account the agent is running under does not have adequate permissions.

MSSQLServerADHelper (SQL Server Active Director Helper)
Very often, the MSSQLServer service and the SQLServerAgent service are configured to run with a
domain account that has local administrative rights on the server SQL Server is installed on. Although
this configuration offers a great deal of flexibility to what the two services can do locally, it doesn’t give
them any permission to Active Directory.

In order for the MSSQLServer service to register its respective instance of SQL Server, it must be either
running as the local system account (which significantly reduces the flexibility of the service), or be a
member of the domain admin group (which grants it way too much access, violating the principle of
least privilege).

To enable SQL Server to register itself in the domain, but not limit its functionality, the
MSSQLServerADHelper service was created. The MSSQLServerADHelper service runs under the local
system account of the domain computer SQL Server is installed on, and is automatically granted the
right to add and remove objects from Active Directory. The MSSQLServerADHelper service only runs
when needed to access Active Directory and is started by the MSSQLServer service when required.
Regardless of the number of installed instances there is only one MSSQLServerADHelper service per
computer.

MSSQLServerOLAPService (SQL Server Analysis Services)
MSSQLServerOLAPService is the service that Analysis Services runs under. Analysis Services provides
the services and functionality to support all of SQL Server 2005’s OLAP needs, as well as the new data
mining engine included with SQL Server 2005.

SQLBrowser (SQL Server Browser)
The SQLBrowser service is used by SQL Server for named instance name resolution and server name
enumeration over TCP/IP and VIA networks.

The default instance of SQL Server is assigned the TCP port 1433 by default to support client communi-
cation. However, because more than one application cannot share a port assignment, any named
instances are given a random port number when the service is started. This random port assignment
makes it difficult for clients to connect to it, because the client applications don’t know what port the
server is listening on. To meet this need, the SQLBrowser service was created.

10

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 10

On startup, the SQLBrowser service queries the registry to discover all the names and port numbers of
installed servers and reserves UDP port 1434. It then listens on UDP port 1434 for SQL Server Resolution
Protocol (SSRP) requests and responds to the requests with the list of instances and their respective port
assignments so that clients can connect without knowing the port number assignment. There are definite
security considerations to this arrangement, so it is very important that no unauthenticated traffic on
UDP port 1434 be allowed on the network, because the service will respond to any request on that port.
This creates the potential of exposing more information about the server instances than some organiza-
tions find acceptable.

If the SQLBrowser service is disabled, it will be necessary to specify a static port number for all named
instances of SQL Service and to configure all client applications that connect to those instances with the
appropriate connection information. For a full list of what features are affected by disabling the
SQLBrowser, consult SQL Server 2005 Books Online.

MSFTESQL (SQL Server Full-Text Search)
The Microsoft Full-Text Engine for SQL Server (MSFTESQL) is used to support full-text indexing and
full-text queries against text data stored in the database. The text data can be of several different data
types including char, nchar, varchar, nvarchar, text, and ntext. In addition, full-text indexes can
be created on binary formatted text such as Microsoft Word documents.

The chief advantage of the MSFTESQL service and associated engine is that it allows much more flexible
and powerful searches against text data than the Transact-SQL LIKE command, which is limited to exact
match searches. The MSFTESQL engine can perform exact match, proximity, linguistic, and inflectional
searches. It will also exponentially outperform comparative Transact-SQL LIKE searches against large
(millions of rows) tables. For a more complete discussion on both the Transact-SQL LIKE command and
Full-Text search see Beginning Transact-SQL with SQL Server 2000 and 2005 (Indianapolis: Wiley, 2005).

MSDTSServer (SQL Server Integration Services)
The MSDTSServer service provides management and storage support for SSIS. Although this service is
not required to create, store, and execute SSIS packages, it does allow for the monitoring of SSIS package
execution and displaying of a hierarchical view of SSIS packages and folders that are stored in different
physical locations.

ReportServer (SQL Server Reporting Services)
The ReportServer service is the process in which Reporting Services runs. The service is accessible as a
Web service and provides for report rendering, creation, management, and deploying. For more informa-
tion on Reporting Services, see Professional SQL Server 2005 Reporting Services (Indianapolis: Wiley, 2004).

SQLWriter (SQL Server VSS Writer)
The SQLWriter service allows for the volume backup of SQL Server data and log files while the SQL
Server service is still running. It does this through the Volume Shadow Copy Service (VSS). SQL Server
database backups are typically performed through SQL Server’s backup program or through third-party
applications that communicate with SQL Server’s backup program.

Normal system backups of volumes containing SQL Server log or data files will normally fail, because as
long as SQL Server is running, the files are open. The SQLWriter service overcomes this limitation by
allowing you to perform the backups with the VSS service. It is still recommended, however, to perform
regular backups through SQL Server’s backup program.

11

Introducing SQL Server 2005

04_047046 ch01.qxp 10/18/06 12:18 AM Page 11

MSDTC (Distributed Transaction Coordinator)
The MSDTC service is used to manage transactions that span more than one instance of SQL Server or an
instance of SQL Server and another transaction-based system. It utilizes a protocol known as Two-
Phased Commit (2PC) to ensure that all transactions that span systems are committed on all participat-
ing systems.

SQL Server 2005 Database Objects
SQL Server 2005 database objects are defined and exist within a defined scope and hierarchy. This hierar-
chy enables more control over security permissions and organization of objects by similar function. SQL
Server 2005 objects are defined at the Server, Database, and Schema levels.

Server
The server scope encompasses all the objects that exist on the instance of SQL Server, regardless of their
respective database or namespace. The database object resides within the server scope.

One of the more confusing terms when working with SQL Server 2005 is the term server. When you hear
the term “server,” you often think of that piece of hardware taking up space on a server rack in the server
room. Where the confusion arises is that you can install multiple instances of SQL Server on a single
server (huh?).

What would probably be clearer is to say that the capability exists to install multiple instances of the
SQL Server 2005 Data Platform application on a single computer running a Windows operating system.
Though this might be more descriptive, it doesn’t make for very interesting marketing material.

What is left is the fact that, when it comes to SQL Server 2005 and you read “server,” it is important to
check the context to make sure that it means an instance of SQL Server 2005 or the physical computer
that SQL Server is installed on.

When it comes to the server scope and SQL Server 2005 database objects, the term “server” actually refers
to the SQL Server 2005 instance name. In the majority of the examples in this book, the instance name is
AUGHTFIVE, which is also the name of the server used in the writing of this book. So, the instance name
AUGHTFIVE is the default instance installed on the Windows Server 2003 named AUGHTFIVE.

Database
The database scope defines all the objects within a defined database catalog. Schemas exist in the
database scope.

The ANSI synonym for “database” is “catalog.” When connecting to an instance of SQL Server 2005, it is
generally desired to specify an Initial Catalog, or Initial Database. An instance of SQL Server 2005 can
contain many databases. A typical database application is constrained within one database that contains
all the data objects required to provide the functionality the application requires. This is not always the
case, but it is the most common.

12

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 12

Schema
Each database can contain one or more schemas. A schema is a namespace for database objects. All data
objects in a SQL Server 2005 database reside in a specific schema.

SQL Server 2005 implements the ANSI schema object. A database schema is a defined namespace in
which database objects exist. It is also a fully configurable security scope. In previous releases of SQL
Server, the namespace was defined by the owner of an object. In SQL Server 2005, the ownership of an
object is separated from an object’s namespace. An individual user may be granted ownership of a
schema, but the underlying objects belong to the schema. This adds greater flexibility and control to the
management and securing of database objects. Permissions can be granted to a schema, and those per-
missions will be inherited by all the objects defined in the schema.

Object Names
Every object in a SQL Server 2005 database is identified by a four-part, fully qualified name. This fully
qualified name takes the form of server.database.schema.object. However, when referring to
objects, the fully qualified name can be abbreviated. By omitting the server name SQL Server will
assume the instance the connection is currently connected to. Likewise, omitting the database name will
cause SQL Server to assume the existing connection’s database context.

Omitting the schema name will cause SQL Server to assume the namespace of the logged-in user. This is
where some confusion can be created. Unless explicitly assigned, new users are assigned the default
schema of dbo. (See Chapter 6 for user and login management information.) As a result, all references to
database objects not explicitly qualified will be resolved to the dbo schema.

For example, the user Fred logs in to the server AUGHTFIVE and his database context is set to
AdventureWorks. Because Fred was not assigned a user-defined schema, he exists in the default dbo
schema. Fred wants to retrieve the contents of the Contact table, so he executes the following query:

SELECT * FROM Contact;

Fred’s query will resolve to AUGHTFIVE.AdventureWorks.dbo.Contact. Unfortunately, that table
does not exist. The fully qualified name for the contact table is AUGHT5.AdventureWorks.Person
.Contact. In order for Fred’s query to work, one of two things will have to happen. The query will have
to be rewritten to reference the appropriate schema scope, like the following example:

SELECT * FROM Person.Contact

Or, Fred’s default schema can be changed to the Person schema so that his query will be properly
resolved with the following command:

USE AdventureWorks;
GO
ALTER USER Fred WITH DEFAULT_SCHEMA=Person;
GO

13

Introducing SQL Server 2005

04_047046 ch01.qxp 10/18/06 12:18 AM Page 13

Now, take a look at a different scenario. The user Fred is created and assigned the default schema of
Production. Fred wants to retrieve the contents of a table called dbo.HourlyWage so he executes the
following:

SELECT * FROM HourlyWage

SQL Server first resolves this query as AUGHTFIVE.AdventureWorks.Production.HourlyWage
because Fred’s default schema is Production and he did not explicitly tell SQL Server what schema to
work with. Because the HourlyWage table does not exist in the Production schema, the initial resolu-
tion fails, but SQL Server then falls back to the dbo schema and resolves the name as AUGHTFIVE
.AdventureWorks.dbo.HourlyWage. The resolution succeeds and Fred is returned the data he wanted.

SQL Server will always search the assigned schema first, then the dbo schema if the initial resolution fails.
Care must be taken when creating objects so that the proper namespace is referenced. It is completely pos-
sible to create a table with the same name in two different schemas (for example, a dbo.HourlyWage and
a HumanResources.HourlyWage). When this happens and an application is created to expose the con-
tents of the HourlyWage table, the possibilities for inconsistencies and confusion are endless. If the
schema is not referenced in the applications query, some users will invariably get their results from the
table in the dbo schema, whereas others will end up getting results from the HumanResources version of
the table. As a best practice, all objects should be referenced by a two-part name to avoid this confusion.

SQL Server 2005 Databases
There are two types of databases in SQL Server: system databases and user databases. The system
databases are used to store system-wide data and metadata. User databases are created by users who have
the appropriate level of permissions to store application data.

System Databases
The system databases are comprised of Master, Model, MSDB, TempDB, and the hidden Resource
database. If the server is configured to be a replication distributor, there will also be at least one system
distribution database that is named during the replication configuration process.

The Master Database
The Master database is used to record all server-level objects in SQL Server 2005. This includes Server
Logon accounts, Linked Server definitions, and EndPoints. The Master database also records informa-
tion about all the other databases on the server (such as their file locations and names). Unlike its prede-
cessors, SQL Server 2005 does not store system information in the Master database, but rather in the
Resource database. However, system information is logically presented as the SYS schema in the
Master database.

The Model Database
The Model database is a template database. Whenever a new database is created (including the system
database TempDB), a copy of the Model database is created and renamed with the name of the database
being created. The advantage of this behavior is that objects can be placed in the Model database prior to
the creation of any new database and, when the database is created, the objects will appear in the new

14

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 14

database. For example, it has always bugged me that Transact-SQL does not contain a Trim function to
truncate both leading and trailing spaces from a string of characters. Transact-SQL offers an RTRIM func-
tion that truncates trailing spaces and an LTRIM function that removes leading spaces. The code to suc-
cessfully implement a traditional trim operation thus becomes the following:

LTRIM(RTRIM(‘character string’))

To reduce my irritation level and the number of characters I needed to type to successfully trim a charac-
ter string, I created my own TRIM function in the Model database with the following code:

USE Model
GO
CREATE FUNCTION dbo.Trim (@String varchar(MAX))
RETURNS varchar(MAX)
AS
BEGIN
SELECT @String = LTRIM(RTRIM(@String))
RETURN @String

END

After creating this function in the Model database, it will be propagated to all databases created after
adding it to the Model database and can be utilized with the following simplified code:

dbo.TRIM(‘character string’)

I know it’s only a saving of two characters, but those two characters are open and close parenthesis char-
acters, which are often the source of annoying syntax errors. By reducing the nested functions, the over-
all complexity of the function call is also reduced.

Almost any database object can be added to the Model database so that they are available in subse-
quently created databases. This includes database users, roles, tables, stored procedures, functions, and
assemblies.

The MSDB Database
I mostly think of the MSDB database as the SQL Server Agent’s database. That’s because the SQL Server
Agent uses the MSDB database extensively for the storage of automated job definitions, job schedules,
operator definitions, and alert definitions. The SQL Server Agent is described in greater detail in Chapter 8,
but for now, just know that the Agent is responsible for almost all automated and scheduled operations.

The SQL Server Agent is not the only service that makes extensive use of the MSDB database. Service
Broker, Database Mail, and Reporting Services also use the MSDB database for the storage of scheduling
information. In addition to automation and scheduling information, SQL Server Integration Services
(SSIS) can also utilize the MSDB database for the storage of SSIS packages.

The TempDB Database
The TempDB database is used by SQL Server to store data — yes, you guessed it, temporarily. The TempDB
database is used extensively during SQL Server operations, so careful planning and evaluation of its size
and placement are critical to ensure efficient SQL Server database operations.

15

Introducing SQL Server 2005

04_047046 ch01.qxp 10/18/06 12:18 AM Page 15

The TempDB database is used by the Database Engine to store temporary objects (such as temporary
tables, views, cursors, and table-valued variables) that are explicitly created by database programmers.
In addition, the TempDB database is used by the SQL Server database engine to store work tables contain-
ing intermediate results of a query prior to a sort operation or other data manipulation. For example, if
you wrote a query that returned 100,000 rows and you wanted the results sorted by a date value in the
results, SQL Server could send the unsorted results to a temporary work table where it would perform
the sorting operation and then return the sorted results to you. The TempDB database is also used exten-
sively to support new connection options such as SNAPSHOT ISOLATION or Multiple Active Result Sets
(MARS). If online index operations are performed, the TempDB database will hold the index during the
build or rebuild process.

Another important aspect to keep in mind about the TempDB database is that all database users have
access to it and have the ability to create and populate temporary objects. This access can potentially cre-
ate locking and size limitation issues on SQL Server, so it is important to monitor the TempDB database
just like any other database on SQL Server.

The Resource Database
The last system database is the Resource database. The Resource database is a read-only database that
contains all the system objects used by an instance of SQL Server. The Resource database is not accessi-
ble during normal database operations. It is logically presented as the SYS schema in every database. It
contains no user data or metadata. Instead, it contains the structure and description of all system objects.
This design enables the fast application of service packs by just replacing the existing Resource
database with a new one. As an added bonus, to roll back a service pack installation, all you have to do
is replace the new Resource database with the old one. This very elegant design replaces the older
method of running many scripts that progressively dropped and added new system objects.

User Databases
User databases are simply that: databases created by users. They are created to store data used by data
applications and are the primary purpose of having a database server. During installation, you have the
option of installing two sample user databases: AdventureWorks and AdventureWorksDW.

The AdventureWorks database is an OLTP database used by the fictitious Adventure-Works Cycles
Company, which sells mountain bikes and mountain-biking-related merchandise.

The AdventureWorksDW database is an OLAP database used for data analysis of historical Adventure-
Works Cycles data. Most of the sample code and examples provided in Books Online use these two sam-
ple databases.

Distribution Databases
One or more distribution databases can be configured to support replication. Some SQL Server profes-
sionals describe the distribution databases as system databases, and yet others describe them as user
databases. I don’t think it makes much difference. What is important is what the database or databases do.

The distribution database stores metadata and transactional history to support all types of replication on
a SQL Server. Typically, one distribution database is created when configuring a SQL Server as a replica-
tion Distributor. However, if needed, multiple distribution databases can be configured.

16

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 16

A model distribution database is installed by default and is used in the creation of a distribution
database used in replication. It is installed in the same location as the rest of the system databases and is
named distmdl.mdf.

SQL Server 2005 Database Storage
All system and user databases (including the Resource database) are stored in files. There is always a
minimum of two files: one data file and one transaction log file. The default extension for data files is
.mdf, and the default for transaction log files is .ldf.

The default location for the system database files is <drive>:\Program Files\Microsoft SQL
Server\MSSQL.X\MSSQL\Data\, where <drive> is the installation drive and X is the instance number
(MSSQL.1 for the first instance of the database engine). The following table lists the names and default
locations for system database files associated with the first instance of SQL Server.

System Database Physical Location

Master <install path>\MSSQL.1\MSSQL\Data\master.mdf

<install path>\MSSQL.1\MSSQL\Data\mastlog.ldf

Model <install path>\MSSQL.1\MSSQL\Data\model.mdf

<install path>\MSSQL.1\MSSQL\Data\modellog.ldf

MSDB <install path>\MSSQL.1\MSSQL\Data\msdbdata.mdf

<install path>\MSSQL.1\MSSQL\Data\msdblog.ldf

TempDB <install path>\MSSQL.1\MSSQL\Data\tempdb.mdf

<install path>\MSSQL.1\MSSQL\Data\templog.ldf

Resource <install path>\MSSQL.1\MSSQL\Data\Mssqlsystemresource.mdf

<install path>\MSSQL.1\MSSQL\Data\Mssqlsystemresource.ldf

When it comes to the system databases, the following guidance is given: Don’t mess with them. Your abil-
ity to manipulate the system databases in SQL Server 2005 has been extremely limited by the developers
at Microsoft. Overall, this is a good thing. Generally speaking, the only thing you are permitted to do
with system databases is back them up or move them to faster, more reliable disk arrays if they prove to
be a performance bottleneck. The ability to modify the data contained in system tables through ad hoc
updates that existed in prior releases has been almost completely removed from SQL Server 2005. To
modify the system catalog, the server must be started in Single-User mode and even then, activity is
restricted and is not supported by Microsoft.

Data Files and Filegroups
When a user database is created, it must contain at least one data file. This first data file is known as the
primary data file. The primary data file is a member of the default Primary filegroup. Every database has
one Primary filegroup when created and is made up of at least the primary data file. Additional data

17

Introducing SQL Server 2005

04_047046 ch01.qxp 10/18/06 12:18 AM Page 17

files can also be added to the Primary filegroup. More filegroups can also be defined upon initial cre-
ation of the database, or added after the database is created. Chapter 4 describes the storage architecture
of files in greater detail, and Chapter 5 explains the advantage of filegroups. For now, it is sufficient to
know that all of the data objects in a database (such as tables, views, indexes, and stored procedures) are
stored within the data files. Data files can be logically grouped to improve performance and allow for
more flexible maintenance (see Figure 1-1).

Figure 1-1: Data files and filegroups

Log Files
Upon initial creation of a database, one transaction log must be defined. The transaction log is used to
record all modifications to the database to guarantee transactional consistency and recoverability.

Although it is often advantageous to create multiple data files and multiple filegroups, it is very rarely
necessary to create more than one log file. This is because of how SQL Server accesses the files. Data files
can be accessed in parallel, enabling SQL Server to read and write to multiple files and filegroups simul-
taneously. Log files, on the other hand, are not accessed in this manner. Log files are serialized to main-
tain transactional consistency. Each transaction is recorded serially in the log in the sequence it was
executed. A second log file will not be accessed until the first log file is completely filled. You can find a
complete description of the transaction log and how it is accessed in Chapter 4.

SQL Server Security
Chapter 6 provides a thorough discussion of SQL Server 2005 security features. However, to select the
proper authentication model during installation, it is important to have a basic understanding of how
SQL Server controls user access.

SQL Server 2005 can be configured to work in either the Windows Authentication Mode or the SQL
Server and Windows Authentication Mode, which is also frequently called Mixed Mode.

Windows Authentication Mode
In Windows Authentication Mode only logins for valid Windows users are allowed to connect to SQL
Server. In this authentication mode, SQL Server “trusts” the Windows, Windows Domain, or Active
Directory security subsystem to have validated the account credentials. No SQL Server accounts are
allowed to connect. They can be created, but they cannot be used for login access.

MyDB

MyDB_Log.ldf

MyDB_Data2.ndf

MyDB_Data.mdf

Primary FileGroup

MyDB_Data4.ndf

MyDB_Data3.ndf

UserData FileGroup

18

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 18

SQL Server and Windows Authentication Mode
(Mixed Mode)

In SQL Server Mode and Windows Authentication Mode or Mixed Mode, valid Windows accounts and
standard SQL Server logins are permitted to connect to the server. SQL Server logins are validated by
supplying a username and password. Windows accounts are still trusted by SQL Server. The chief
advantage of Mixed Mode is the ability of non-Windows accounts (such as UNIX) or Internet clients to
connect to SQL Server.

A (Very) Brief History of SQL Server
How did we get here? Where did SQL Server 2005 come from? Without spending a great deal of time
discussing the complete history of SQL Server, I thought it would be of some interest to give a very brief
overview of SQL Server’s roots. I often joke with colleagues and customers that some day I’m going to
write a “Trivial Pursuit, Geek Edition.” This short description may help you get the yellow history
wedge, so pay close attention!

In the Beginning
Microsoft’s foray into the enterprise database space came in 1987 when it formed a partnership with Sybase
to market Sybase’s DataServer product on the Microsoft/IBM OS/2 platform. From that partnership, SQL
Server 1.0 emerged, which was essentially the UNIX version of Sybase’s DataServer ported to OS2.

The Evolution of a Database
After a number of years, the developers at Microsoft were allowed more and more access to the Sybase
source code for test and debugging purposes, but the core SQL Server application continued to be a
product of Sybase until SQL Server 4.2 was released for Windows NT in March of 1992.

SQL Server 4.2 was the first true joint product developed by both Sybase and Microsoft. However, the
database engine was still pure Sybase. Only the tools and database libraries were developed by
Microsoft. Up to that point, SQL Server had been developed to run primarily on the OS/2 platform, but
with the release of Windows NT, the developers at Microsoft essentially abandoned any OS/2 develop-
ment and focused on bringing a version of SQL Server to Windows NT.

Microsoft Goes It Alone
With the growing success of Sybase in the UNIX market and Microsoft in Windows, the two companies
found themselves competing for market share on a product essentially developed by Sybase. As a result,
in 1994, the two companies terminated their joint development agreement, and Sybase granted Microsoft
a limited license to use and modify Sybase technology exclusively for systems running on Windows.

A year later, in June 1995, Microsoft released the first version of SQL Server developed exclusively by
Microsoft developers — SQL Server 6.0 — but the core technology was still largely Sybase code-base.
Less than a year later, more changes were made and Microsoft released SQL Server 6.5 in April of 1996.

19

Introducing SQL Server 2005

04_047046 ch01.qxp 10/18/06 12:18 AM Page 19

Meanwhile, the developers on the SQL Server team were beginning work on a new database system
code-named “Sphinx.” The Sybase code-base was rewritten almost from scratch for Sphinx, and only a
handful of code remained to indicate SQL Server’s humble beginnings in OS/2.

In December of 1998, Sphinx was officially released as SQL Server 7.0. The changes from SQL Server 6.5
were readily apparent from the first second a database administrator launched the new Enterprise
Manager. Finally, there was a robust and reliable database system that was easy to manage, easy to learn,
and still powerful enough for many businesses.

As SQL Server 7.0 was being released, the next version was already in development. It was code-named
“Shiloh.” Shiloh became SQL Server 2000 and was released in August of 2000. The changes to the under-
lying data engine were minimal, but many exciting changes that affected SQL Server’s scalability issues
were added (such as indexed views and federated database servers), along with improvements like cas-
cading referential integrity. Microsoft’s enterprise database server was finally a true contender in the
marketplace.

Back at Microsoft, the SQL team was working on an even more powerful and exciting release code-
named “Yukon,” which is now SQL Server 2005. After more than five years in development, a product
that some were calling “Yukon the giant (Oracle) killer” was finally released. It is indeed a very signifi-
cant release, and only time will tell how successful Microsoft is with it.

So, now, without further delay, the remainder of this book will be dedicated to introducing you to this
very exciting and capable database management system.

Summary
This chapter introduced the basic structure and purpose of SQL Server 2005, along with a brief explana-
tion of the various features available in this release of Microsoft’s database application. Subsequent
chapters delve into the technologies and features exposed in this chapter so that the database adminis-
trator can better understand and implement each feature introduced.

In Chapter 2, you learn how to plan and perform a SQL Server 2005 installation. Included in the discus-
sions are prerequisite hardware and software configurations, as well as service and security considera-
tions. A thorough installation plan will always reap enormous benefits when it comes to post-installation
modifications. Understanding what to install (and how to install it) is invaluable.

20

Chapter 1

04_047046 ch01.qxp 10/18/06 12:18 AM Page 20

