
CHAPTER ONE

Oscillator Dynamics

1.1 INTRODUCTION

A well-designed free-running oscillator provides a periodic signal of constant
amplitude and frequency fo from the energy delivered by direct-current (dc)
sources. This has an immediate application for the realization of local oscillators
used in the frequency-conversion stages of communication systems [1]. In
receivers, the modulated signal at radio-frequency (RF) fRF is mixed with the
output of a local oscillator at fo, selecting the intermodulation product that corre-
sponds to the frequency difference fIF = fRF − fo, This allows down-conversion
of the carrier frequency from fRF to fIF. An analogous procedure is followed
in transmitters. The intermediate frequency fIF is mixed with the output of the
local oscillator, selecting the intermodulation product fRF = fIF + fo. This allows
up-conversion of the carrier frequency. The free-running oscillator is usually
inserted into a phase-locked loop for this application [2].

A single oscillator having dc sources only is said to operate in free-running
mode. However, other forms of behavior are possible. In injection-locked opera-
tion [3], the oscillation is synchronized with an independent periodic source, which
means that the oscillation frequency, influenced by the input source, becomes equal
to the input frequency fo = fin, with a constant phase shift between the oscillation
and the input signal. The injection-locked mode is used for phase noise reduction,
frequency division, or phase shifting. In coupled operation, several oscillators are
interconnected by means of linear coupling networks [4] and oscillate in a syn-
chronous manner. Coupled-oscillator systems can be used for power combination
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2 OSCILLATOR DYNAMICS

or beam steering. In this chapter only the free-running mode of an oscillator cir-
cuit is considered. Familiarity with the behavior and properties of free-running
oscillation is essential for an understanding of any other form of operation (e.g.,
injection-locked, coupled) treated in subsequent chapters.

Free-running oscillators have essential differences from other RF circuits, such
as amplifiers, mixers, and frequency multipliers [5,6]. The operation frequency or
frequencies (in the case of a mixer) of these circuits are determined by the input
sources. In contrast, the fundamental frequency of an oscillator is self-generated
or autonomous and depends on the values of the circuit elements. Thus, the circuit
must be designed accurately to obtain the value desired for the oscillation frequency
fo. Due to the absence of time-varying sources, any free-running oscillator can be
solved for a mathematical dc solution. The oscillation starts up from any small
perturbation of this dc solution and must grow from noise level to a steady-state
oscillatory solution with constant amplitude and period. As will be shown, the
self-sustained oscillation is only possible in nonlinear, nonconservative systems.
Stability concepts are also essential to the understanding of the oscillator behav-
ior. The oscillation startup and the physical observation of the periodic solution are
explained from the different stability properties of dc and the steady-state oscillation
[7]. Because of the absence of an input periodic source establishing a time reference,
arbitrary translations of the periodic waveform along the time axis give other solu-
tions. There is an “irrelevance” with respect to time translations, or in the frequency
domain, with respect to the phase origin. Thus, any phase-shifted solution consti-
tutes a valid solution of the oscillator circuit. The absence of a restoring mechanism
in the phase value gives rise to the phase noise problem in oscillator circuits [8,9].

In this chapter we deal with the main aspects of oscillator behavior. Oscillat-
ors are studied in the time domain and in the frequency domain, using impedance–
admittance descriptions, which are very helpful for oscillator design, and the
describing function approach, which allows nonlinear analysis at the fundamental
frequency only. This one-harmonic approach will set the conceptual basis for
harmonic balance analysis, covered in detail in Chapter 5. We relate various
analysis techniques and unify concepts and properties, derived in the literature from
very different viewpoints. Chapter 1 provides a general background for Chapter
2, which is devoted to phase noise analysis; Chapter 3, devoted to global stability
analysis; and Chapter 4, devoted to an analysis of injection-locked oscillators and
frequency dividers. The chapter is organized as follows. Section 1.2 provides intu-
itive explanations for oscillation startup and for the mechanism of self-sustained
oscillation. In Section 1.3 we present the frequency-domain formulation based on
the use of impedance or admittance functions, covering steady-state analysis and
the stability of dc and periodic solutions. In Section 1.4 we extend the previous
formulation to multiple harmonic components, for conceptual purposes, as this will
be necessary for accurate stability analysis of oscillator circuit without limiting
assumptions. In Section 1.5 we deal with oscillator circuits from the viewpoint
of nonlinear dynamics, with the circuit described by a system of nonlinear
differential equations. The main types of steady-state solutions and their properties
are presented. In Section 1.6 we introduce formal mathematical procedures for the
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stability analysis of dc and periodic regimes and provide the necessary background
for global stability analysis (i.e., versus variation in a circuit parameter), which
is covered in Chapter 3. Finally, in Section 1.7 we emphasize the irrelevance of
the oscillator solution versus time translations and show examples of phase shift
response versus impulse perturbations. We establish the necessary background
for Chapter 2, dealing with stochastic characterization of the spectrum of a noisy
oscillator. Two different circuits are considered in this chapter: a parallel resonance
oscillator with a two-terminal active element, and a FET-based oscillator at
fo = 4.36 GHz. The simplicity of the first circuit makes possible the derivation
of meaningful analytical expressions. Comparison with a FET-based oscillator
clarifies our understanding of deviations from ideal behavior in practical circuits.

1.2 OPERATIONAL PRINCIPLE OF FREE-RUNNING OSCILLATORS

An ideal circuit given by the parallel connection of an inductor L and a capacitor
C, without resistance, will under any initial condition exhibit oscillation at the
frequency ωo = 1/

√
LC, at which the average energies stored in the magnetic and

electric fields are equal, so the sum of the inductor and capacitor susceptances is
equal to zero [5]. The total energy in the circuit remains constant during the entire
oscillation period, so it is a conservative system [10]. When the electrical energy
stored in the capacitor is maximal, the magnetic energy stored in the inductor
is zero, and vice versa. The energy displacement from one element to another
gives rise to the oscillation observed in the node voltage and branch currents. By
Kirchhoff’s laws, the sum of the inductor plus capacitor current must be equal
to zero, iC + iL = 0, which after some simple manipulations provides the linear
differential equation

d2v(t)

dt2
+ 1

LC
v(t) = 0 (1.1)

with v(t) the node voltage. Equation (1.1) is a second-order differential equation
with constant coefficients which can be transformed into two first-order equations
by performing the variable change x1(t) = v(t), x2(t) = dv(t)/dt . Then, equation
(1.1) becomes [

ẋ1(t)

ẋ2(t)

]
=

[
0 1
−1
LC

0

] [
x1(t)

x2(t)

]
(1.2)

System (1.2) belongs to the general class of linear differential equations with
constant coefficients, which can be written in the general manner ẋ(t) = Ax(t),
where x(t) is a vector of system unknowns and A is a constant matrix. For
M variables in x(t), the general solution of ẋ(t) = Ax(t) has the form x(t) =
c1v1e

λ1t + c2v2e
λ2t + · · · + cMvMeλMt , where the exponents λk are the eigenval-

ues of the matrix A, assumed different, and the vectors vk are the eigenvectors
of A. Because any physical variable x(t) is real valued in the time domain, the
constants ck, vk, and λk will be either real or complex conjugate. The constants ck

depend on the initial value to, x(to).
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In the particular case of system (1.2), the eigenvalues of the 2 × 2 matrix A

are λ1,2 = ±jωo = ±j1/
√

LC and the eigenvectors are given by [1, jωo] and
[1, −jωo]. Then the solution of (1.1) has, for x1(t) = v(t), the general form

v(t) = cejωot + c∗e−jωot = 2(cr cos ωot − ci sin ωot) (1.3)

with c = cr + jci being a complex constant, depending on the initial conditions
v(to) and dv(to)/dt . For a given initial value v(to) and dv(to)/dt , this complex
constant is calculated by means of the following system of boundary conditions:

v(to) = 2(cr cos ωoto − ci sin ωoto)

dv(to)

dt
= −2(crωo sin ωoto + ciωo cos ωoto) (1.4)

Thus, for each pair of possible initial conditions v(to) and dv(to)/dt , an oscil-
latory solution with different amplitude would be obtained. This dependence of
the oscillation amplitude on the initial conditions is unphysical and, of course, is
never observed in the free-running oscillators measurements. An analogous sit-
uation would be found in an ideal pendulum with no friction in which the ball
keeps oscillating at the amplitude of the initial elongation. In the case of the cir-
cuit described by (1.1), the unphysical situation is due to the absence of resistive
elements in the ideal LC circuit. In practice it is not possible to have inductors or
capacitors without resistive losses. Note that one of the solutions of (1.3) obtained
from v(to) = 0 and dv(to)/dt = 0 is given by v(t) = 0 and y(t) = 0 ∀t . This
solution, just one of the family v(t) = cejωt + c∗e−jωt , provides no oscillation at
all.

The eigenvalues λk of the matrix A in the general system ẋ(t) = Ax(t) can
also be obtained from an application of the Laplace transform to this system,
which provides [sId − A]X(s) = 0, where Id is the identity matrix and X(s) is the
vector of the Laplace transforms of the different variables. (Note that the obtained
system assumes a zero initial value x(0) = 0, which otherwise should be taken
into account in the transformation of the time-derivative to the Laplace domain.)
The system [sId − A]X(s) = 0 is a homogeneous linear system in X(s). Therefore,
to obtain a solution X(s) different from zero, the matrix affecting X(s) must be
singular. Thus, the condition det[sId − A] = 0 must be fulfilled. The determinant
introduced, known as the characteristic determinant of the linear system, provides
a characteristic polynomial P (s) = det[sId − A] = 0 of the same degree as the
number of unknowns in X(s). In particular, application of the Laplace transform
to (1.1) provides the characteristic polynomial P (s) = s2 + 1/LC = 0. As can
easily be seen, the roots of the characteristic polynomial agree with the eigenvalues
λ1,2 = ±jωo = ±j1/

√
LC of matrix A of (1.2).

Now assume that a small-signal input u(t) is introduced in the general linear
system ẋ(t) = Ax(t). In the Laplace domain this will give rise to the equation
[sId − A]X(s) = [G(s)]U(s), where [G(s)] is a column matrix [11,12]. This matrix
is necessary because we have not specified the nature of the input, so it may undergo
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time derivations when introduced in the system. Any possible output Y(s) will be
linearly related to the variable vector X(s), which in a general manner can be
expressed as Y(s) = [B][sId − A]+, where [B][sId − A]+ is a row matrix. Thus,
any possible single-input single-output transfer function will be written

H(s) = Y(s)

U(s)
= [B][sId − A]+[G(s)]

P (s)
(1.5)

with “+” being the transpose of the cofactor matrix. The roots of P (s) will agree
with the poles of the single-input single-output transfer function H(s). Intuitively,
the poles are associated with the zero-input solutions of the analyzed system, so they
cannot depend on the particular input or output. However, pole–zero cancellations
are possible due to the matrix product in the numerator, which will be different
for different choices of the closed-loop transfer function. Pole–zero cancellations
can be avoided through a suitable choice of H(s). Provided that no pole–zero
cancellations occur, it will be possible to calculate the roots λk of P (s) indirectly
from the pole analysis of a transfer function H(s).

As an example, consider the connection of a small-signal current source Iin(s)

to the middle node of the LC resonator in Fig. 1.1. The input signal U(s) = Iin(s)

is the current introduced, and the output selected is the node voltage Y(s) = V (s).
Applying (1.5), the closed-loop transfer function is

Z(s) = V (s)

Iin
=

[1 0]

[
s −1/(LC)

0 s

] [
0

s/C

]

P (s)
= Ls

CLs2 + 1
(1.6)

L C R i(v)

Iin(S)

V(s)

(a)

(b)

(c)

FIGURE 1.1 Parallel resonance oscillator. The element values are L = 1 nH, C = 10 pF,
R = 100�, and i(v) = −0.03v + 0.01v3. Three different situations are considered in the
text: (a) the connection of the two reactive elements LC only, without a resistor; (b) the
inclusion of a positive resistor R; (c) the addition of the nonlinear element i(v) = av + bv3.
The current source Iin(s) is introduced for the calculation of a closed-loop transfer function,
defined as Z(s) = V (s)/Iin(s).
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with s the Laplace frequency. Clearly, the denominator agrees with the charac-
teristic polynomial associated with (1.1), and the transfer function poles p1,2 =
±jω = ±j

√
1/LC agree with the polynomial roots λ1 and λ2. The term poles

is used often in the book to refer to the roots of the characteristic polynomial of
a linear system, due to their equivalence. In the case of the second-order system
(1.1), complex-conjugate poles are located on the imaginary axis. Therefore, the
solution originating from given initial values v(to) and dv(to)/dt neither grows
(which would correspond to poles on the right-hand side of the complex plane) nor
vanishes (which would correspond to poles on the left-hand side of the plane), but
remains with its initial amplitude. This is never observed in physical systems.

If a resistor is now introduced in the circuit of Fig. 1.1, the situation becomes
totally different. The energy contained in the system no longer remains constant
in time. The resistor dissipates energy as heat, at the rate R

∫ tmax
0 i2

R(t) dt , where
tmax is the duration of the time interval considered and iR is the current through
the resistor. So the longer the time, the less energy is available for storage at the
inductor and capacitor and the smaller is the oscillation amplitude. Thus, in an RLC
circuit with R > 0, the oscillation amplitude decays to zero. When the resistor R

is introduced in parallel, the circuit equations become

d2v(t)

dt2
+ 1

RC

dv(t)

dt
+ 1

LC
v(t) = 0 (1.7)

Because of introduction of the resistor R, a new term has appeared in dv/dt , called
the damping term [10]. The name damping indicates that the rate of extinction of
the oscillation depends on the coefficient associated with dv/dt . The smaller the
resistance value R, the higher its influence over the parallel resonator and the faster
the oscillation extinction. As in the former case, equation (1.7) is a second-order
linear system with constant coefficients. The associated characteristic polynomial
P (s) is obtained through application of the Laplace transform to (1.7). The two
roots of this polynomial are given by

λ1,2 = − 1

2RC
±

√
1

(2RC)2
− 1

LC
(1.8)

Provided that 1/LC > 1/(2RC)2, an exponentially decaying oscillation of
the form v(t) = e−(1/2CR)t2(cr cos ωt − ci sin ωt) is obtained, with ω =√

1/LC − 1/(2RC)2 and cr and ci constants that depend on the initial
conditions. Note that the transient decay is ruled by the amplitude envelope
e(−1/2CR)t . The quality factor of the parallel resonance is given by Q = RCωo,
with ωo = 1/

√
LC. Therefore, the exponential transient can be described as

v(t) = e(−ωo/2Q)t2(cr cos ωt − ci sin ωt), so the smaller the quality factor of
the parallel circuit, the faster the oscillation extinction. Because the oscillation
amplitude decays to zero for any initial value, the only steady-state solution of
equation (1.7) is a dc regime with v = 0 and dv/dt = 0. This will be the only
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solution observed physically. The small noise perturbations will give rise to
oscillatory transients, seen simply as noise about this dc regime.

As in the previous case, it is possible to define a closed-loop transfer function
associated with the RLC circuit. This transfer function can be obtained by connect-
ing a small-signal current source Iin in parallel and obtaining the ratio between the
node voltage V and the current introduced, Iin. The poles of this transfer function,
which agree with the roots of the characteristic polynomial P (s), are located on
the left-hand side of the complex plane. This indicates that whatever the initial
condition, the linear system evolves to the steady state v = 0 and dv/dt = 0. The
solution v = 0 and dv/dt = 0 also existed in the conservative system, but was just
one of the infinite solutions in the family v(t) = cejωt + c∗e−jωt . In contrast, the
solution v = 0 and dv/dt = 0 is the only steady state of (1.7). Once this solu-
tion is reached, any instantaneous perturbation applied at a particular time value to
only, and setting the initial values v(to) and dv(to)/dt , will start a transient leading
back to the dc solution v = 0 and dv/dt = 0. This dc solution is robust versus
perturbations, or stable.

Clearly, to observe a steady-state oscillation, the effect of the resistor R > 0
must be compensated. Introduction of a negative-resistance element will provide
an energy source to compensate for the energy loss in the resistor. This element
can be a negative-resistance diode or a transistor under suitable configuration and
bias conditions. The energy delivered will be taken from dc sources. Assum-
ing a constant negative resistance RN connected in parallel, the total resistance
will be RT = 1/(GN + G), with GN = 1/RN and G = 1/R. The general circuit
solution will be v(t) = e[−(G+GN)/2C]t · 2(cr cos ωt − ci sin ωt). For G + GN > 0,
which implies dominant positive resistance, the negative resistance introduced is
not sufficient. The damping term will be positive and the oscillation amplitude will
decay exponentially to zero from any initial condition. Thus, the dc solution will
be the only one observable. For G + GN = 0, a conservative LC circuit, with no
effective resistance, is obtained again, which as discussed earlier, corresponds to
a nonphysical situation. For G + GN < 0, which implies dominant negative resis-
tance, the damping term will be negative and the oscillation amplitude will increase
exponentially ad infinitum. This is also nonphysical. The negative resistance cannot
be insensitive to the growth of the node voltage. It has to depend on this voltage, or
equivalently, it has to be nonlinear to enable saturation of the oscillation amplitude.

To illustrate the mechanism of self-sustained oscillation, a nonlinear element
with the instantaneous characteristic i(v) is introduced in the resonant circuit (see
Figure 1.1). This provides the nonlinear differential equation

d2v(t)

dt2
+

[
1

RC
+ 1

C

di

dv
(v)

]
dv(t)

dt
+ 1

LC
v(t) = 0 (1.9)

To obtain sustained oscillation, the damping term affecting dv/dt must be nonlinear
and thus sensitive to v(t). A common example of nonlinearity in oscillator theory is
i(v) = av + bv3, with a < 0 and b > 0. This is an ideal element providing negative
conductance at small signal GN = di(v = 0)/dv = a + 3bv2|v=0 = a about v = 0.
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In physical systems, bias sources delivering energy to the circuit will, of course,
be required. Placing the derivative di/dv into (1.9) yields the following equation:

d2v(t)

dt2
+ 1

C
(a + G + 3bv2)

dv(t)

dt
+ 1

LC
v(t) = 0 (1.10)

where G = 1/R. Thus, the nonlinear damping term is given by µ(v) = (a + G +
3bv2)/C. Equation (1.10) constitutes a good behavioral model of the oscillator
circuit, with reduced analytical complexity. Clearly, equation (1.10) admits the
steady-state solution v(t) = 0, dv/dt = 0, which corresponds to the constant or dc
solution of the ideal circuit of Fig. 1.1. Note that any oscillator circuit can always
be solved for a constant solution, even when it exhibits self-sustained oscillation.
This can easily be verified by the reader and is due to the absence of time-varying
generators. When the dc generators are first powered on, oscillation has not yet
builtup and the circuit is at this dc solution, due to the existence of dc sources only.
The reaction of the dc solution to small perturbations can be predicted by linearizing
the nonlinear element i(v) = av + bv3 about the dc solution v = 0. Thus, the non-
linear element is replaced by the constant conductance GN = di(v = 0)/dv = a.
This allows us to apply linear analysis techniques to the circuit constituted by
the parallel connection of G, GN, L, and C. The resulting poles [or roots of the
characteristic determinant P (s)] are given by

p1,2 = −GT

2C
±

√
G2

T L2 − 4LC

2LC
(1.11)

with GT = GN + G. The two poles in (1.11) are associated with nonlinear circuit
linearization about the dc solution, thus are often called poles of the dc solution.
They determine the response of the dc solution of an oscillator circuit to a small
instantaneous perturbation.

From an inspection of (1.11), to obtain an oscillatory transient with exponen-
tially growing amplitude, the poles must be complex conjugate p1,2 = σ ± jω,
with σ > 0. The oscillatory transient requires a negative value of the term under
the square root. Assuming that 4LC � G2

T L2, the pole frequency will corre-
spond approximately to the resonance frequency ωo = 1/

√
LC. For the oscillation

amplitude to grow exponentially in time, the condition σ = −GT /2C > 0 must
be fulfilled, which in the circuit of Fig. 1.1 implies that GT = a + G < 0. At
small signal, we can consider the circuit of Fig. 1.1 (including the nonlinear ele-
ment) as a feedback system with a direct-trajectory transfer function YN = a and
a feedback transfer function Z(s) = (Cs + 1/(Ls) + G)−1. The combination of
gain and feedback with a resonant network leads to a characteristic system with
two complex-conjugate poles responsible for the oscillation startup. As in the case
of a linear RLC circuit, the positive real part σ = −GT /2C can be expressed
in terms of the quality factor Q = Cωo/G of the linear part of the circuit as
σ = −ωoGT /2GQ. Thus, the duration of the startup transient depends on the qual-
ity factor and on the ratio between the total conductance GT (with negative sign)
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and the load conductance G. The startup transient will be shorter for larger ratio
GT /G and smaller quality factor Q of the resonant circuit, which implies larger
σ > 0. As the oscillation amplitude increases, the actual nonlinearity of the total
conductance will give rise to continuous variation of σ, which must take a zero
value at steady state.

The initial exponential growth of the oscillation amplitude is in agreement with
the fact that for v ∼= 0, the damping term µ(v) = (a + G + 3bv2)/C is nearly
constant and given by µ = (a + G)/C < 0 and delivers energy continuously to
the incipient oscillatory solution. Note, however, that this linearized analysis is
valid as long as |v(t)| is small enough for the linearization of i(v) about the dc
solution to be accurate. For not so small |v(t)|, the damping term µ(v) will no
longer be constant and the oscillation amplitude will start to grow more slowly
than the exponential prediction, until it reaches a constant value at the steady-state
regime. None of this can be predicted with the linearization about the dc solution
and the pole analysis. Evolution of the oscillatory solution to its steady-state regime
has to be determined through numerical integration.

The results of the numerical integration of (1.10) are shown in Fig. 1.2, where
the node voltage amplitude |v(t)| and the associated evolution of the damping term
µ(v) = [a + G + 3bv2(t)]/C are represented. For small-signal |v(t)|, the damp-
ing term is nearly constant and negative, with the value µ(0) = (a + G)/C. This
negative damping term is responsible for the initial exponential growth of the oscil-
lation amplitude as e−[µ(0)]/2t . As this amplitude increases, the nonlinearity of µ(v)

starts to be noticeable. The nonlinear component of µ(v), given by 3bv2(t)/C, is
always positive since b > 0, and constitutes a positive contribution to the damping
term. For smaller amplitude |v(t)|, the damping term will be more negative than
for larger amplitude |v(t)|, so more energy will be delivered to the oscillatory solu-
tion by the active element. Note that the damping term has oscillatory variation,
as it is a function of the periodic v(t). This can be seen in Fig. 1.2. The local

FIGURE 1.2 Analysis of the second-order oscillator of Fig. 1.1. Nonlinear equation (1.10)
has been integrated for initial conditions different from v = 0 and dv/dt = 0. Both |v(t)|
and the normalized nonlinear term (a + G + 3bv2)/C have been represented.
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maxima of µ(v) correspond to the local maxima of |v(t)|, and the local minima
(most negative values) to the local minima of |v(t)|. The local maxima of µ(v)

increase with |v(t)| until steady state is reached. In steady state, both v(t) and the
damping term µ(v) = [a + G + 3bv2(t)]/C exhibit periodic oscillation. As can be
seen, the cubic nonlinearity provides a good model of the physical reduction of
the device negative conductance when increasing the voltage amplitude across its
terminals. This is why it is often chosen for a simple mathematical description of
the oscillator behavior.

The circuit capability to self-sustain a steady-state oscillation is explained as
follows. For small |v(t)| during the oscillation period, the damping term µ(v) is
negative (Fig. 1.2), so the energy delivered by the active element exceeds the resis-
tor dissipation and makes |v(t)| grow again. For large |v(t)|, a positive damping
term is obtained and the dissipation exceeds the energy delivery, which makes
|v(t)| decrease. This mechanism allows sustaining the periodic oscillation with
perfect balance between energy pumped in and energy dissipated over one cycle.
Unlike the situation for a conservative system, with no energy dissipation at any
time during the oscillation period, there is energy dissipation in the fraction of the
oscillation period with µ(v) > 0. Except in the case of coexistence of stable solu-
tions (which has not yet been considered), the oscillation amplitude and frequency
are independent of initial conditions. They are determined solely by the nonlinear
characteristic of the damping term and the circuit topology and component val-
ues. Thus, for a system to exhibit sustained oscillation, it must be nonlinear and
nonconservative.

Due to the nonexplicit time dependence of the differential equations describing
an autonomous circuit, the time integration from different values at the same initial
time to gives rise to time-shifted steady-state waveforms. This is illustrated in
Fig. 1.3a, where different initial conditions have been considered in the time-domain
integration of equation (1.10). The initial conditions are not known by the designers,
as they come from noise or fluctuations at the experimental stage. Assuming that
the voltage waveform v(t) is a solution of (1.10), any time-delayed version of this
voltage waveform v(t − τ) will be also a solution of (1.10). This is easily verified by
defining the new time variable t ′ = t − τ and introducing v(t ′) in (1.10). Note that
the shape and period of the waveform are independent of these initial conditions.
They satisfy the mathematical conditions for the self-sustained oscillation with zero
net energy consumption. Nonautonomous circuits such as amplifiers and frequency
multipliers are ruled by differential equations having coefficients with explicit time
dependence. As an example, consider the parallel connection of an independent
current generator ig(t) to a parallel RLC resonator. This circuit is governed by
the linear equation v̈(t) + Gv̇(t)/C + 1/(LC)v(t) − (dig(t)/dt)/C = 0, with the
independent term dig(t)/dt . This independent term establishes a time reference,
so all the solutions obtained integrating the equations from different values vo at
the same initial time to converge to the same steady-state waveform. An example
is shown in Fig. 1.3b, where the equations of a nonautonomous circuit have been
integrated from totally different initial conditions t = 0, vo = −1V , and t = 0, vo =
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FIGURE 1.3 Time-domain integration of differential equations describing an autonomous
and a forced circuit. (a) Integration of the nonlinear differential equation (1.10) describing
the oscillator of Fig. 1.1, from different initial values at to = 0. This gives rise to time-shifted
steady-state waveforms. (b) Integration of a forced circuit from different voltage values vo

at to = 0. The same waveform, without a time shift, is obtained for all the initial values.

4 V, obtaining the same steady-state waveform without a time shift. Compare with
the situation shown in Fig. 1.3a.

Although the explanation above was based on a simple second-order nonlin-
ear circuit, all the major conclusions are applicable to practical oscillators of much
higher complexity. In a free-running oscillator, the oscillatory solution always coex-
ists with a dc solution. When the dc generators are first powered on, the oscillation
has not built yet up and the circuit is at the dc solution. In a well-designed oscilla-
tor, the dc solution is unstable and contains a pair of complex-conjugate poles on
the right-hand side of the complex plane. This is due to the imbalance between the
energy delivered by the active element and the energy dissipated by the resistors at
the frequency of the poles. The unstable poles will give rise to oscillation startup
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under any small perturbation. For the circuit to be able to exhibit a self-sustained
oscillation, the negative-resistance device must be nonlinear and thus sensitive to
the oscillation amplitude. In the steady-stage regime, energy is alternately consumed
and delivered during the oscillation period, so the system must be nonconservative
(i.e., it must contain resistive elements).

1.3 IMPEDANCE–ADMITTANCE ANALYSIS OF AN OSCILLATOR

As noted in Section 1.2, an oscillator is ruled by a set of nonlinear differential
equations that can only be accurately solved using numerical techniques.
Time-domain analysis makes it possible to obtain the entire time evolution of
the circuit variables, including transient and steady state. In frequency-domain
analysis, each variable is represented by a Fourier series v(t) = ∑

k Vke
jkωt , with

constant complex coefficients Vk and constant ω, so only the steady-state regime
can be determined. Note that due to the circuit nonlinearity, the saturation of
the waveform amplitude gives rise inherently to some harmonic content. Due
to the orthogonally of the Fourier basis, the circuit will be described by a set
of equations, one at each harmonic frequency, relating the harmonic coefficients
of the circuit variables. When limiting the analysis to one harmonic term (i.e.,
when assuming a sinusoidal oscillation), it will be possible to obtain meaningful
analytical expressions for the oscillation frequency and amplitude. In what follows,
an admittance–impedance analysis of the oscillator circuit is presented, assuming a
sinusoidal waveform. This frequency-domain analysis offers a different viewpoint
of the oscillator circuit and allows the derivation of useful design criteria. Note
that the accuracy of the sinusoidal approach will be higher for a larger quality
factor Q of the resonant circuit, due to the high attenuation of the harmonic
frequencies.

As shown in Section 1.2, in a free-running oscillator, a negative-resistance
element delivering energy to a resonator and a load or utilization resistance are
necessary for oscillation buildup from the noise level. This negative resistance can
be obtained from negative-resistance diodes, such as tunnel, Gunn, or Impatt [5], or
by using transistors, which generally requires the introduction of suitable feedback
between the two transistor ports [13,14]. Figure 1.4 shows a simple representation
of an oscillator circuit. There are no periodic generators and the circuit is divided
into a nonlinear block, providing the negative resistance, and a linear block, con-
taining the output load. This block division is straightforward for a diode-based
oscillator such as the one depicted in Fig. 1.1. For a transistor-based oscillator, the
block division is more involved. In single-ended oscillators, the sketch shown in
Fig. 1.5 is often used. Since there are no external RF sources, one of the transistor
ports is ended by a given impedance (the termination), used only to obtain negative
resistance at the other port. To avoid power loss, a reactive termination is often
preferred. In addition to a proper choice of this termination and suitable biasing,
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V

I

ZN(I,f) ZL(f)

YL(f)YN(V,f)

FIGURE 1.4 One-port representation of a free-running oscillator.

FIGURE 1.5 Schematic representation of a transistor-based oscillator. A one-port descrip-
tion is used for the block, consisting of the transistor, its termination at port 1, and the
feedback elements.

the transistor often requires an additional parallel or series feedback network to
exhibit negative resistance about the oscillation frequency that is desired [15]. The
transistor is loaded with an impedance ZL containing the resistive load from which
the oscillation output power is extracted.

A one-port definition of the subcircuit, consisting of the transistor, together with
its termination at the other port and the series or parallel feedback network (the
nonlinear block), is often assumed at the design stage. This allows modeling the
transistor-based oscillator as in Fig. 1.4. Note that although this block contains
nonlinear and linear elements, it is globally nonlinear. By taking into account the
boundary condition imposed by the transistor termination, the admittance of the
nonlinear block can be expressed as a function of the voltage V at the output port.
This admittance will also depend on the frequency ω, due to the existence of reac-
tive elements inside the nonlinear block. Thus, it is possible to define the function
YN(V, ω). In turn, the load circuit exhibits the linear admittance YL(ω). This type
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of representation is not sufficient for an accurate analysis of transistor-based oscil-
lators, which actually depend on the two state variables of the nonlinear model of
the transistor (e.g., the gate-to-source voltage and the drain-to-source voltage of
FET transistors). However, it will be very helpful for a general understanding of
the oscillator behavior and for oscillator design.

Next, we analyze an oscillator in terms of general admittance–impedance func-
tions from a single observation port, following Fig. 1.4.

1.3.1 Steady-State Analysis

When applying Kirchhoff’s laws to the circuit of Fig. 1.4, either a series or a parallel
connection may be considered between the linear and nonlinear blocks. For a series
connection, an impedance analysis is carried out, in terms of the branch current, as
this provides simpler equations. For a parallel connection, an admittance analysis is
carried out in terms of the node voltage. Depending on the actual circuit topology,
one or another analysis may be more convenient. Here, only the admittance analysis
is considered. One based on an impedance description, in terms of the loop current,
is totally analogous.

A steady-state oscillation with a sinusoidal node voltage v(t) = Vo cos(ωot + φ)

will be assumed initially. In contrast to forced circuits, the fundamental frequency
ωo of the solution depends on the values of the circuit elements, bias sources,
and other parameters, since it is not delivered to the circuit by an external source.
Due to this fact, the oscillation frequency will be an unknown to be determined.
Application of Kirchhoff’s laws at the frequency ωo provides the following complex
equation, which relates the total branch current at ωo to the node voltage at the
same frequency:

YT (V, ωo)V ejφ = [YN(V, ωo) + YL(ωo)]V ejφ = 0 (1.12)

where YL is the linear block admittance and YN the nonlinear block admittance,
which, in general, will be frequency dependent, as it may contain reactive elements.
Note that the nonlinear admittance function YN(V, ωo) does not depend on the
phase value of the periodic exciting signal V ejφ. This is understood by comparison
with the behavior of any circuit forced with a sinusoidal generator. A change �φ

in the phase of the periodic exciting source simply gives rise to the same phase
increment in all the circuit variables. Thus, the solution phase shift with respect to
this exciting source remains the same as before the application of �φ.

By inspecting (1.12), it is clear that at least two solutions coexist in the oscillator
circuit. One is given by V = 0. This solution, with zero oscillation amplitude, is
in fact the dc solution discussed in Section 1.2, for which any circuit with no
time-varying external sources can be solved. The other solution is obtained from
the nonlinear equation YT (Vo, ωo) = 0 and corresponds to a sinusoidal voltage
v(t) = Re{Voe

j (ωot+φ)}, as assumed when writing the admittance equation (1.12).
Thus, the steady-state oscillation equation is written

YT (Vo, ωo) = [YN(Vo, ωo) + YL(ωo)] = 0 (1.13)
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The complex equation (1.13) can be split into two real equations in two real
unknowns Vo and ωo by considering the real and imaginary parts of YT : Re[YT ] = 0
and Im[YT ] = 0. It is actually the voltage dependence of YN(V, ω) (i.e., the circuit
nonlinearity) which makes it possible to solve YT = 0 for the constant oscillation
amplitude Vo. Note that any phase value φ provides a valid solution, as YT does
not depend on φ. This is due to the absence of an independent periodic generator
at the same frequency ωo, establishing a phase reference. When this is the case,
the coefficients of the differential equations ruling circuit behavior have no explicit
time dependence, so any arbitrary time shift of the periodic waveform provides
another solution. In the frequency domain, the different time shifts correspond to
different phase origins, as �φ = ωo(τ

′ − τ).
The complex equation YT (Vo, ωo) = 0 is in total agreement with the conclusions

of Section 1.2. The first real equation, Re[YT ] = 0, implies balance between average
power delivered and consumed, as resulting from 1

T

∫ T

0 v(λ)i(λ)dλ = 1
2 Re[YT ]V 2

o ,
with T being the oscillation period T = 2π/ωo. The second equation, Im[YT ] = 0,
implies the existence of a resonance at the oscillation frequency.

The next objective is to obtain the nonlinear admittance function YN(V, ω),
which constitutes the model of the active element in the approximate oscillator
analysis. The model is based on use of the describing function. For a sinusoidal
describing function [16], the input signal is represented by a sinusoid. Considering
the nonlinearity i(t) = i(v(t)), the describing function will provide an admittance
model YN(V ), depending on the voltage amplitude V . To obtain a sinusoidal
describing function, the voltage v(t) = V cos(2πfot + φ) is introduced into the
nonlinearity i(v), obtaining the ratio between the first harmonic of the resulting
current and the voltage phasor V

2 ejφ:

YN(V ) = i(v)|f
V ejφ

= 2

T

∫ T

0 i(v(t))e−jωot dt

V ejφ
(1.14)

where T = 2π/ωo. Clearly, YN depends on the amplitude V of the voltage intro-
duced but not on its phase φ, in agreement with previous discussions. To see this
more clearly, a phase shift �φ will be considered. This phase shift can be repre-
sented as �φ = −ωoτ. Next, the variable change t ′ = t − τ is performed in (1.14),
which provides

YN(V ) = 2

T

∫ T

0 i(v(t ′))e−jωot ′e−jωoτ dt ′

V ejφe−jωoτ
(1.15)

So the same nonlinear admittance YN(V ) is obtained. In polynomial nonlinearities,
another way to obtain the same result would be to place v(t) = V/2ej (ωot+φ) +
V/2e−j (ωot+φ) into the nonlinear function i(v), expand the function, and divide the
resulting harmonic term at jωo by V/2ej (ωot+φ).

To illustrate the admittance analysis will be applied to the parallel resonance
oscillator of Fig. 1.1. Using (1.14), the sinusoidal describing function associated
with the constitutive relationship i(v) = av + bv3 (with a < 0 and b > 0) is given
by YN(V ) = a + 3/4bV 2. From an inspection of this expression, the small-signal
conductance is YN(0) = a, with a negative value. Because b > 0, the nonlinear
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conductance decreases with the voltage amplitude across the nonlinear element.
Note that this physical behavior of the active element leads to an increase in the
damping ratio µ(v) with the amplitude |v(t)|, discussed in Section 2.2, which allows
us to reach a constant steady-state oscillation amplitude. Replacing the describing
function obtained in (1.13) yields the following equations:

a + 3bV 2

4
+ GL = 0

Cωo − 1

Lωo
= 0

(1.16)

Resolving equation (1.16), the oscillation amplitude is Vo = √
(−a − GL)/(3b/4)

= 1.64 V and the oscillation frequency is fo = 1/(2π
√

LC) = 1.59 GHz. From
the expression of the oscillation amplitude, it is clear that the small-signal conduc-
tance YN(V ∼= 0) = a must have a larger absolute value than the positive linear
conductance GL to obtain a steady-state oscillation. Otherwise, the root of a neg-
ative value is obtained in Vo = √

(−a − GL)/(3/4b). This agrees with the results
of Section 1.2. The total circuit conductance GT is negative in small-signal mode
but equal to zero in the steady state, as Re[YT (Vo)] = 0. To understand this, note
that the negative conductance exhibited by the active element decreases with the
voltage amplitude, as gathered from YN(V ) = a + 3/4bV 2. The oscillation reaches
steady state at the voltage amplitude for which |YN(Vo)| = GL.

It must be emphasized that the steady-state analysis (1.16) is very simplified, as
it is limited to a single harmonic component. From (1.16), the oscillation frequency
is given by the resonance frequency of the LC resonator. A time-domain simulation
would show that depending on the quality factor, the oscillation frequency can differ
noticeably from the resonance frequency. The one-harmonic limitation of (1.16)
prevents prediction of this effect. To discuss the influence of the harmonic content,
a voltage expression v(t) = V1 cos ωt + V3 cos(3ωt + φ) will be considered. In
this expression it has been taken into account that in the circuit being analyzed
with no dc sources, no dc or even harmonic components are generated by the
cubic nonlinearity i(v). To obtain the first- and third-harmonic admittance functions
YN1(V1, V3, φ) and YN3(V1, V3, φ), the waveform v(t) is introduced into the transfer
characteristic i(v). The admittance functions are calculated as

YN1 = I1(V1, V3, φ)

V1

YN3 = I3(V1, V3, φ)

V3ejφ
(1.17)

Kirchhoff’s laws are written at the first- and third-harmonic components, which pro-
vides a two-complex-equation system YT 1 = 0 and YT 3 = 0 in the four unknowns
V1, V3, φ and, ω. Solving this system, the oscillation frequency does not exactly
agree with the resonance frequency 1/

√
LC. This is because unlike the case of the

nonlinear admittance function YN(V, ω), in one-harmonic analysis, the imaginary
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part of YN1 is different from zero. As an example, for L = 4 nH and C = 2.5
pF, YN1 = −0.01 + j0.002�−1 and YN3 = −0.02 − j0.063�−1, the oscillation
frequency is fo = 1.52 GHz instead of 1/(2π

√
LC) = 1.59 GHz. The high dis-

crepancy is due to the extremely low quality factor Q of the RLC resonator for
these element values. This discrepancy is higher for a smaller quality factor Q, due
to the lower filtering of the harmonic components nωo with n > 1.

1.3.2 Stability of Steady-State Oscillation

As already pointed out, for a given mathematical solution to be observable physi-
cally, it must be stable or robust versus small perturbations. Earlier we considered
only the stability of the dc solution that coexists with steady-state oscillation. For
the steady-state oscillation of (1.13), given by vo(t) = Re[Voe

jωot ], to be stable,
the circuit must return to it exponentially under any small perturbation. To ver-
ify mathematically if this is the case, a small perturbation is applied at a given
time instant to. This takes the circuit out of the steady state. However, because
the perturbation is small at the beginning of the transient being generated, the cir-
cuit variables cannot differ much from their values in a steady-state regime. In
the stability analysis proposed by Kurokawa [17], small variations are assumed in
both the oscillation amplitude and frequency. The perturbation applied gives rise
to time-varying amplitude, which can be expressed as Vo + �V (t). In turn, the
frequency takes the time-varying value ωo + �ω(t). Before continuing, the reader
should be warned that the assumption of a small frequency variation �ω(t) lim-
its the validity of this analysis technique. This is because the small perturbation
can actually have any frequency, not necessarily one fulfilling �ω � ωo. As an
example, a common instability phenomenon is the onset of a subharmonic com-
ponent at ωo/2, generated from a low-amplitude perturbation that clearly does
not fulfill the assumption �ω � ωo. The stability analysis under the assumption
�ω � ωo is also called quasistatic. Despite of this limitation, the stability condi-
tions obtained are extremely helpful use at the oscillator design stage.

Due to the use of instantaneous perturbation, the oscillator is no longer in steady
state. The perturbed frequency is written as jωo + s, where s is a complex fre-
quency increment. Because the perturbation is small, the perturbed oscillation can
be analyzed by performing a first-order Taylor series expansion of the total admit-
tance function about the free-running solution (Vo, ωo), fulfilling YT o = 0. This
provides the equation

YT [Vo + �V (t)]ejφ(t) = ∂YT o

∂V
�V (t)[Vo + �V (t)]ejφ(t)

+∂YT o

∂jω

d[(Vo + �V (t))ejφ(t)]

dt
= 0 (1.18)

with the increment s giving rise to a time derivation in the slow time scale of the
perturbed voltage. After performing this derivation, equation (1.18) is written

∂YT o

∂V
�V (t)Voejφ(t) + ∂YT o

∂ω
[φ̇(t)Voejφ(t) − j�V̇ (t)ejφ(t)] = 0 (1.19)
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where higher-order terms have been neglected. Dividing by Voe
jφ(t), equation (1.19)

can be simplified to

∂YT o

∂V
�V (t) + ∂YT o

∂ω

[
−j

�V̇ (t)

Vo
+ �ωo(t)

]
= 0 (1.20)

where φ̇(t) has been renamed φ̇(t) = �ωo(t). The complex nature of the frequency
increment in (1.20) is due to the fact that the oscillator solution has been kicked
out of the steady-state solution Voe

jωot , so the amplitude must have an exponential
variation associated with the imaginary term −j [�V̇ (t)/Vo]. Splitting (1.20) into
real and imaginary parts, the following linear system is obtained:

∂Y i
T o

∂ω

1

Vo
�V̇ (t) + ∂Y r

T o

∂ω
�ωo(t) = −∂Y r

T o

∂V
�V (t)

−∂Y r
T o

∂ω

1

Vo
�V̇ (t) + ∂Y i

T o

∂ω
�ωo(t) = −∂Y i

T o

∂V
�V (t)

(1.21)

where the superscripts r and i indicate real and imaginary parts, respectively. Note
that all the coefficients of (1.21) are constant and constitute the derivatives of the
nonlinear function YT (V, ω), calculated at the free-running oscillation point, given
by Vo and ωo. By solving for �V̇ (t) in terms of �V (t), the following relationship
is obtained:

d�V (t)

dt
= − [

(∂Y r
T o/∂V )(∂Y i

T o/∂ω) − (∂Y i
T o/∂V )(∂Y r

T o/∂ω)
]
Vo

|∂YT o/∂ω|2 �V (t)

= σo�V (t) (1.22)

where the constant coefficient has been called σo. The amplitude increment �V (t)

evolves according to �V (t) = �Voe
σot , where �Vo depends on the value of the

initial instantaneous perturbation. The exponential reaction to small perturbations
was also shown in Section 1.2 in the case of perturbed dc solutions. For the
oscillation to be stable, the perturbation must vanish exponentially in time. Thus,
the coefficient in (1.22) must fulfill σo < 0. Because the denominator of σo, given
by |∂YT o/∂ω|2, is necessarily positive, the stability condition is given by [17]

S = ∂Y r
T o

∂V

∂Y i
T o

∂ω
− ∂Y i

T o

∂V

∂Y r
T o

∂ω
> 0 (1.23)

Expression (1.23) is very useful for oscillator design. Due to the physical reduc-
tion in negative resistance with signal amplitude, the factor ∂Y r

T o/∂V will generally
have a positive sign. Then a sufficiently high value of ∂Y i

T o/∂ω facilitates the oscil-
lation stability. Actually, the second term, (∂Y i

T o/∂V )(∂Y r
T o/∂ω), is often small

compared to the first term, which is explained as follows. The real part of YT usu-
ally has a small frequency dependence, because the dependence comes from the
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reactive elements. On the other hand, the imaginary part of YT usually has a small
amplitude dependence, because the nonlinearities responsible for the free-running
oscillation are usually voltage-controlled current sources.

The duration of the transient response to perturbation is considered next.
Assuming that ∂Y i

T o/∂ω � ∂Y r
T o/∂ω, the denominator in (1.22) can be approached

|∂YT o/∂ω|2 ∼= (∂Y i
T o/∂ω)2. A commonly used definition for the oscillator quality

factor is Q = (ωo/2GL)(∂Y i
T o/∂ω), with the derivative being evaluated at the

oscillation frequency and GL being the passive conductance. Thus, the coefficient
σo is inversely proportional to the quality factor, meaning that the transient
reaction to the perturbation will be slower for larger Q. A similar conclusion
had been obtained in Section 1.2 for the oscillation startup transient. In the case
of a stable steady-state oscillation, the system will return more slowly to this
steady-state regime.

The nonlinear circuit of Fig. 1.1 fulfills the stability criterion. The real part of the
total admittance is Re[YT (V )] = a + 3/4bV 2 + GL, so the amplitude derivative in
the first term is given by Re[∂YT o/∂V ] = 3/2bVo. Note that Vo is the oscilla-
tion amplitude, defined as positive, so the term 3/2bVo necessarily takes a positive
value. On the other hand, the derivative of the imaginary part of the total admittance
function, evaluated at the free-running oscillation, is given by Im[∂YT o/∂ω] = 2C.
In turn, the derivatives in the second term of (1.23) are equal to zero. Thus, the
condition S > 0 is satisfied and the oscillation is stable. Under any small pertur-
bation, the amplitude increment of the perturbed oscillation evolves according to
�V (t) = �Voe

σot , with σo = −(3bV 2
o /4)(ωo/GLQ) and Q = Cωo/GL.

Note that condition (1.23) was derived under a quasistatic approximation, assum-
ing a very small value of the perturbation frequency �ω � ωo and using a single
observation port. As already stated, this analysis is helpful for oscillation design, as
it provides criteria for likely stable behavior from admittance functions accessible to
the designer. However, the design procedure should be complemented by a rigorous
verification of oscillator stability without the limiting assumption �ω � ωo and
taking into account the actual multidimensional nature of the circuit equations. Note
that some unstable resonances may be hidden when inspecting the total impedance
or admittance from a single observation port. At the end of the section, some hints
about the basis for a more general stability analysis in the frequency domain are
provided.

1.3.3 Oscillation Startup

As already known, stable oscillation, with steady-state amplitude Vo and frequency
ωo, must grow from the noise level. This growth is due to the instability of the dc
solution, which under any small perturbation gives rise to an oscillatory transient.
As shown in Section 1.2, the envelope of the initial transient follows an exponential
law. From a certain oscillation amplitude, linearization is no longer valid and the
device nonlinearity gives rise to saturation of the oscillation amplitude. When using
admittance analysis, the instability of the dc solution is generally associated with



20 OSCILLATOR DYNAMICS

fulfillment of the following conditions:

Y r
T (V ∼= 0, ω′

o) < 0

Y i
T (V ∼= 0, ω′

o) = 0 (1.24)

∂(Y i
T (V ∼= 0, ω′

o))

∂ω
> 0

where V ∼= 0 refers to the admittance function evaluated in small-signal mode.
Note that an analysis of conditions (1.24) constitutes a stability analysis of this
dc solution. Actually, the small-signal admittance YT (V ∼= 0, ω) depends on the
dc solution about which the active element is linearized. That is, for different
bias points, different YT (V ∼= 0, ω) functions are obtained, fulfilling conditions
(1.24) or not fulfilling them. The main point of conditions (1.24) is that they help
in synthesizing a pair of complex-conjugate poles with positive σ at the desired
oscillation frequency ω′

o. As shown in Section 1.2, this pair of complex-conjugate
poles should give rise to an oscillatory transient of growing amplitude. To under-
stand the relationship between (1.24) and the poles of the dc solution, consider
the introduction of a small-signal current source Iin(s) in parallel at the obser-
vation port. The ratio between the node voltage V (s) and the current delivered,
Iin(s), provides the closed-loop transfer function Z(s). Assuming that no pole–zero
cancellations occur, the poles of Z(s) will agree with the roots of the charac-
teristic function P (s) associated with circuit linearization about the dc solution.
A pair of complex-conjugate poles σ ± jωo provides a contribution of the form
Zp(s) = Aω2

o/(s
2 + σ2 − 2sσ + ω2

o), with A a constant value. We will assume
that this is the dominant contribution of the pole-residue expansion of Zp(s)

[16] from the observation port. Replacing s with jω, the impedance function
becomes Zp(ω) = Aω2

o/(σ
2 + ω2

o − ω2 − 2σjω). The property sign (dφ/dx) =
sign(d tan(φ)/dx) is fulfilled for any angle φ and independent variable x. In
the case of the impedance function tan(ang(Zp(ω)) = 2σω/(σ2 + ω2

o − ω2) for
positive σ, the phase associated with Zp(ω) has positive slope at the resonance
frequency ωo. The function Z(ω) agrees with the inverse of the total admit-
tance analyzed, YT (ω) = Y r

T (ω) + jY i
T (ω). In terms of YT (ω), it is possible to

write tan(ang(Zp(ω))) = −Y i
T (ω)/Y r

T (ω). Assuming a small frequency variation
of Y r

T (ω), a resonance of the form Y r
T (ωo) < 0, Y i

T (ωo) = 0, ∂(Y i
T (ωo))/∂ω > 0

will give rise to a positive slope of the phase associated with Z(ω), corresponding
to a pair of unstable complex-conjugate poles. For a rigorous determination of the
dc solution poles, pole–zero identification techniques [11] should be applied to the
closed-loop transfer function Z(ω).

The result on the positive slope ∂(Y i
T (ωo))/∂ω > 0 is in agreement with the

preceding discussion on the stability conditions of steady-state oscillation. As
already stated, the second term of (1.23) usually has little influence on the S
value. The imaginary part, Y i

T (ω), contributed primarily by the linear elements,
is not typically very dependent on the oscillation amplitude. Thus, achieving the
resonance condition at the oscillation frequency desired Y i

T (V ∼= 0, ω′
o) = 0, with
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positive slope ∂(Y i
T (V ∼= 0, ω′

o)/∂ω > 0, will facilitate stable oscillation at about
ω′

o. Although small, there is usually a dependence of the susceptance Y i
T on the

signal amplitude. Therefore, the resonance frequency ω′
o under small-signal con-

ditions will be similar to the oscillation frequency ωo but generally not equal. In
addition, the inherent nonlinearity of the oscillator circuit will generate a certain
harmonic content that, as explained earlier, may give rise to a shift in the oscillation
frequency.

The initial stage of oscillation startup will be ruled by the pair of unstable
complex-conjugate poles σ ± jω of the dc solution, so the amplitude will grow
according to eσt from any small perturbation of this solution. The σ value is related
linearly to Y r

T (ωo), fulfilling Y r
T (ωo) < 0, and in general, σ will be more positive

for larger absolute value |Y r
T (ωo)| [18]. This will imply a shorter initial transient.

Actually, two different stages can be distinguished in the oscillation startup. In the
initial stage, the oscillation amplitude is small and its variation can be predicted
with circuit linearization about the dc solution. However, from a certain transient
amplitude, the circuit will no longer be under small-signal conditions, and the
real exponent σ will be different from the real part of the poles. In a simplified
model it will exhibit an amplitude dependence σ(V ) coming from the amplitude
dependence of the nonlinear conductance GN(V ). The transient evolution depends
on the function σ(V ). Usually, the positive exponent σ(V ) decreases monotonically
to the value σ = 0, corresponding to steady state. However, in some cases, before
reaching steady state, the positive σ increases, which is due to GN(V ) becoming
more negative versus V . After passing through a minimum, the conductance will
increase (i.e., it will become less negative) until the steady-state condition GN(V ) +
GL = 0 is fulfilled. This type of behavior gives rise to an apparent delay in the
startup transient as the amplitude growth becomes more noticeable for larger σ.
It can be obtained in transistor-based oscillators that have power expansions of
the nonlinear conductance of the form GN(V ) = a1 + a2V

2 + a3V
3 + · · ·, with

a1 < 0, a2 < 0, a3 > 0 [18].

1.3.4 Formulation of Perturbed Oscillator Equations
as an Eigenvalue Problem

For a better understanding of oscillator behavior, it will be convenient to formulate
the perturbed oscillator equations as an eigenvalue problem. This will be done in
terms of the amplitude and phase V and φ of the oscillator solution. The objective
is to obtain a perturbed oscillator system of the form

[
�V̇
�φ̇

]
= [M]

[
�V

�φ

]
(1.25)

The matrix [M] is derived directly from (1.21), taking into account that �φ̇(t) =
�ω(t) and that ∂YT /∂φ = 0 due to the irrelevance with respect to the phase origin.
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Thus, system (1.21) becomes

[
�V̇ (t)

�φ̇(t)

]
=




1

Vo

∂Y i
T o

∂ω

∂Y r
T o

∂ω

− 1

Vo

∂Y r
T o

∂ω

∂Y i
T o

∂ω




−1 


−∂Y r
T o

∂V

∂Y r
T o

∂φ

−∂Y i
T o

∂V

∂Y i
T o

∂φ




[
�V (t)

�φ(t)

]

=

[ −S 0
B 0

]

|∂YT o/∂ω|2
[

�V (t)

�φ(t)

]
(1.26)

where the coefficient B is deduced directly from the matrix product. One of the
eigenvalues of the matrix on the right-hand side is λ1 = σo. The second eigenvalue,
λ2 = 0, is due to the irrelevance of the oscillator solution versus any phase shift.
From basic linear algebra [19,20], the general solution of linear differential equation
system (1.26) with constant coefficients is

[
�V (t)

�φ(t)

]
= c1e

σot


 1

− B

SVo


 + c2

[
0
1

]
(1.27)

Expression (1.27) evidences the irrelevance of the oscillator solution versus transla-
tions in the phase shift. Even if the oscillation is stable, which implies that σo < 0,
the phase perturbation �φ(t) = c2, with c2 determined by the initial value, will
remain in the steady-state solution. Equation (1.27) has a great conceptual inter-
est. It enables the stability analysis of the steady-state oscillation, limited to two
poles. Because one of the poles is necessarily zero, due to the autonomy of the
free-running oscillator solution, the other pole must be real. In the case of an oscil-
lator circuit with a single-resonant circuit, such as in Fig. 1.1, the system dimension
(agreeing with the number of reactive elements) is N = 2. Thus, we only have two
poles. The poles of the dc solution are complex-conjugate. The two poles of the
steady-state oscillation are zero and real, respectively. The stability analysis derived
by Kurokawa is limited to this real pole. In a “perfect” single-resonator oscillator,
this should be sufficient. (A different problem is the limited accuracy of the analysis,
considering only the fundamental frequency.) However, real-life oscillators, com-
posed of several lumped reactive elements and distributed elements, will contain
more poles. Therefore, the analysis from (1.27) will be unable to predict instabil-
ities of the periodic solution coming from complex-conjugate poles or instabilities
coming from two real poles on the right-hand side of the complex plane.

Clearly, for a free-running oscillator analyzed with one harmonic component
and from a single observation port, the formulation above provides no advantage
with respect to (1.23). However, when there is more than one state variable—two
voltages, for instance, and/or several harmonic terms—phase variables will neces-
sarily appear in the oscillator equations, as there is irrelevance with respect to the
phase origin only. Then, use of a formulation of the type (1.26) will avoid a mixed
system that includes the common frequency �ω(t) in the set of circuit variables,
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together with the amplitudes and phases �Vn(t), n = 1 to N , and �φn(t), n = 2
to N . An example of this type of formulation is the multiport stability analysis of
a transistor-based oscillator, presented in the following. Other examples are shown
throughout the book.

1.3.5 Generalization of Oscillation Conditions to Multiport Networks

As has been shown, in transistor-based oscillator design two of the transistor ter-
minals are ended by particular immitance values, so it is possible to define the
function YN(V, ω) depending only on the voltage amplitude at the reference plane.
In turn, the load circuit exhibits the linear admittance YL(ω). Thus, fulfilment of the
derived conditions (1.24) and (1.23) at the single-observation port considered will
facilitate the stable oscillation. The same would be true for an impedance analysis
in terms of the loop current. This is very helpful for circuit design, but does not
fully guarantee stable operation of the oscillator circuit.

Alternatively, it is possible to use a generalization of the oscillation condi-
tion (1.13) in circuits containing multiport devices, which provides more accuracy
and design flexibility. A brief explanation follows. The circuit is divided into
two connected N -port networks, defined by their admittance matrixes [YN(V , ω)]
and [YL(ω)], with V the vector comprising voltage phasors at all N ports V

T

with variables [V1, . . . , VN, φ1, . . . , φN ]. Note that the irrelevance with respect
to the phase origin allows us to set any of the phase values to zero arbitrarily.
Because there are no RF generators, the port voltages will be the same for the
two connected multiport networks. The currents will have the same magnitude and
opposite direction (or sign). Applying Kirchhoff’s laws, it will be possible to write
([YN(V , ω)] + [YL(ω)])V = 0. For V to differ from zero, the following oscillation
condition must be fulfilled: det([YN(V , ω)] + [YL(ω)]) = 0. This condition gener-
alizes (1.13) to multiport networks. Similar equations can be derived in terms of
impedance or scattering matrixes.

The total admittance matrix of the circuit being considered can be defined
as [YT ] = [YN(V , ω)] + [YL(ω)]. The circuit equations are written in matrix
form as H = [YT ]V = 0, the vector V comprising [V1, . . . , VN, φ1, . . . , φN ].
To balance the equation system, which must also be solved for ω, one of the
phase variables is set arbitrarily to zero φk = 0, which can be done due to the
solution autonomy. For the quasistatic stability analysis of a given solution
V

T

o = [V1, . . . , VN, φ1, . . . , φN ], the amplitudes and phases (except φk), as well

as the frequency ω, must be perturbed about the steady-state values V
T

o and
ωo. Use of the frequency perturbation �ω(t) leads to a mixed system, difficult
to formulate in a compact manner. This can be avoided by considering the
entire set of phase variables (including φk). Thus, the perturbations will be
�V1(t), . . . , �VN(t), �φ1(t), . . . , �φN(t). The perturbed system will be derived
by expanding the vector function H in a first-order Taylor series about the
steady-state oscillation (V o, ωo). Each Hk can be expressed as the product

Hk = [YT (V , ω)]Tk V (1.28)
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where [YT ]Tk is a row matrix agreeing with the kth row of [YT ]. The perturbed
frequency will be given by jωo + s. When performing the Taylor series expansion,
it is taken into account that the multiplication by s acts like a time derivation of
the perturbed variables, as shown in (1.18)–(1.20). Thus, the derivation of [YT ]Tk
with respect to frequency will give rise to terms of the form

∂Ykm

∂ω

(
−j

�V̇m(t)

Vm

+ �φ̇m(t)

)
Vmejφm,

where k and m refer to the particular component of the kth row of the [YT ] matrix.
Using a development similar to the one in (1.18)–(1.20), each perturbed com-

ponent Hk , with k = 1, . . . , N , of the vector function H is given by

∂Hk

∂V1
�V1(t) + · · · + ∂Hk

∂VN

�VN(t) + ∂Hk

∂φ1
�φ1(t)

+ · · · + ∂Hk

∂φN

�φN(t) + ∂Yk1

∂ωo

(
−j

�V̇1(t)

V1
+ �φ̇1(t)

)
V1e

jφ1

+ · · · ∂YkN

∂ωo

(
−j

�V̇N(t)

VN

+ �φ̇N(t)

)
VNejφN = 0 (1.29)

with all the derivatives calculated at the steady-state oscillation. In expression (1.29)
In matrix form it is possible to write

[
∂H

∂V o

]
�V +

[
∂H

∂φo

]
�φ +

[
∂H

∂ωo

] (
−j

�V̇ (t)

V
+ �φ̇(t)

)
= 0 (1.30)

where �V is the vector of amplitude increments, �φ the vector of phase incre-
ments, and �V /V the vector of normalized amplitude increments. This nota-
tion indicates that each voltage increment is normalized by the corresponding
steady-state value. On the other hand,

[
∂H/∂ωo

]
is a square matrix with k and m

elements of the form (∂Ykm/∂ω)Vmejφm . Rearranging equation (1.30) it is possible
to obtain a system of the form

[
�V̇

�φ̇

]
= [JH ]

[
�V

�φ

]
(1.31)

Due to the irrelevance with respect to variations in the phase origin, the Jacobian
matrix [JH] above must be singular. This is due to the fact that the solution remains
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the same if the phases of all the state variables are incremented by the same amount,
�α. This means that for any H component,

∂Hx
k

∂φ1
�α + ∂Hx

k

∂φ2
�α + · · · + ∂Hx

k

∂φN

�α =
(

∂Hx
k

∂φ1
+ ∂Hx

k

∂φ2
+ · · · + ∂Hx

k

∂φN

)
�α = 0

(1.32)
where the superscript x refers to either a real or an imaginary part. From (1.32) it
is clear that all the columns in (1.31) are related linearly, so the matrix [JH ] must
be singular, with one eigenvalue, λ1 = 0. This is in agreement with the fact that
we are using one unnecessary phase variable that could have been set arbitrarily
to any value. For the perturbation to vanish in time, all the rest of the eigenvalues
of the matrix [JH ] must have a negative real part. As can be seen, this analysis
generalizes the one-port analysis of (1.26) to multiple ports.

Analysis using (1.31) allows more insight into circuit behavior than does
one-port analysis (1.26), as more observation ports are being considered. Actually,
the analysis reflected in (1.26) is limited to one real eigenvalue, whereas (1.31)
can provide a total of N eigenvalues, which can be real or complex conjugate.
However, the analysis remains quasistatic, as a small frequency perturbation
�ω � ωo is still considered. Despite this, the formulation presented is helpful
for understanding purposes and will be applied to some oscillator systems later
in the book. It is particularly useful in the case of oscillator circuits composed
of two or more suboscillator elements, as N -push oscillators [13] used for
multiplication of the oscillation frequency, or in coupled-oscillator systems [4]
used for beamsteering in phased arrays. However, for ordinary oscillator design,
use of the total admittance function derived from a single sensitive port is more
practical and intuitive.

1.3.6 Design of Transistor-Based Oscillators from a Single Observation Port

One-port analysis of transistor-based oscillators from a single observation port
yields a simple oscillator design. It requires only the choice of a sensitive obser-
vation port and identification of a nonlinear active block and linear load net-
work. As stated earlier, the steady-state oscillation condition YT = 0 is fulfilled
at any possible observation node. However, the results of startup evaluation using
YT (V ∼= 0, ω) will depend on this observation node and may also be different for
admittance analysis in terms of the node voltage, or impedance analysis in terms
of the loop current. To show this more clearly, assume a parallel connection of
the two blocks in Fig. 1.4. The total admittance is YT = (GN(ω) + GL(ω)) +
j (BN(ω) + BL(ω)). Now, assume a series connection. The total impedance is
ZT = (GN(ω) + jBN(ω))−1 + (GL(ω) + jBL(ω))−1. Developing this impedance
function, it is easily seen that if the startup conditions (1.24) are fulfilled in terms
of parallel admittance at ω′

o, the equivalent conditions in terms of series impedance
might be fulfilled at a different frequency, ω′

o, or might never be fulfilled. Similar
problems occur when changing the analysis port. A pure LC parallel (series) res-
onance will give a positive slope for admittance (impedance) analysis. Therefore,
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attention should be paid to the actual form of resonance of the circuit being ana-
lyzed. However, the nonlinear block of a practical circuit will generally contain
several reactive and resistive elements, so the function YN cannot be modeled in a
simple manner. In agreement with the discussion in Section 1.3.3, negative conduc-
tance Y r

T < 0 at the resonance frequency ω′
o with negative slope of the susceptance

∂(Y i
T (V ∼= 0, ω′

o)/∂ω < 0 does not generally represent instability in the dc solu-
tion. It is advisable to perform an impedance analysis or to change the observation
port until a positive slope is obtained. As a rule, the one-port conditions are helpful
at the design stage. Then, a rigorous stability analysis of the steady-state solution
obtained should be carried out. The use of numerical pole–zero identification [11]
or other techniques, such as Nyquist criterion [16,21,22], will be necessary.

The topology of the FET-based oscillator of Fig. 1.6 matches the schematic
representation of Fig. 1.5. The capacitor CT , connected between the gate termi-
nal and ground, constitutes a reactive “termination” at port 1. The capacitor Cf b,
connected between the source terminal and ground, provides series feedback to
the transistor in use. CT and Cf b are both calculated to obtain negative resistance
at the analysis port (port 2), defined between the drain terminal and ground, at
the oscillation frequency desired, fo = 5.0 GHz. The load circuit, with equivalent
admittance YL (or impedance ZL), is calculated to ensure the fulfilment of oscilla-
tion startup conditions at this specified oscillation frequency. The introduction of a
parallel inductance provides a negative slope versus frequency of the small-signal
susceptance ∂Y i

T (V ∼= 0, ωo)/∂ω < 0. A series inductance L = 0.2 nH, fulfilling
Zi

N(ωo) + Lωo = 0, is introduced instead, which also reduces the harmonic con-
tent due to lowpass filtering. An equivalent load resistance seen from the drain
terminal is chosen: RL = 20 �. This value provides an excess negative resistance
Zr

N(ωo) + 20 = −45�, which should allow oscillation startup. Note that in the
design discussed, the resonator is formed by the capacitive output of the nonlinear
block containing the transistor and the series inductance introduced. It is possible to
reduce the influence of the nonlinear block on the resonance frequency by adding a
series capacitance Cs (not represented in the circuit schematic), such that the reso-
nance frequency is determined primarily by the linear load circuit. Provided that Cs

is small enough, the total capacitance (including the one at the output of the non-
linear block Cout) will be CT = CsCout/(Cs + Cout) ∼= Cs , much smaller than the
original value Cout. Because Ls = 1/(Csω

2
o) to maintain the same resonance fre-

quency, the quality factor Q of the series load resonator must increase significantly,
giving a high value for the derivative ∂Y i

T (ωo)/∂ω. For example, in the design
discussed, the introduction of a series capacitance Cs = 0.1 pF requires an induc-
tance of L = 10.1 nH to maintain the oscillation frequency at fo = 5 GHz, which
are quite extreme values. Thus, a high-Q resonator should be used. The deriva-
tive increases from 9.10 × 10−9�−1· S in the original design to 2.9 × 10−8�−1S,
which is more than three times the original value. As will be shown, this increase
in the frequency selectivity is very convenient for a low phase noise design, as
well as the lower sensitivity (for CT

∼= Cs) to active device elements, subject to
noise fluctuations.
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FIGURE 1.6 FET-based oscillator. The transistor is a NEC3210 biased at VGS = −0.25V

and VDS = 2.25 V. The capacitive termination CT , together with the feedback capacitance
Cf b, provide negative resistance at the drain port. The circuit topology matches the schematic
representation of Fig. 1.5. The voltage auxiliary generator, connected in parallel at the
transistor output node, is used for various analysis techniques presented in this chapter.

In the following, the load inductance L = 0.2 nH calculated originally will be
considered instead of the high-Q load. This will allow a more general analysis
of the oscillator dynamics, without the simplifications allowed by high-frequency
selectivity. The circuit fulfills the oscillation startup conditions Zr

T (I ∼= 0, ω′
o)) <

0, Zi
T (I ∼= 0, ω′

o) = 0, and ∂(Zi
T (I ∼= 0, ω′

o)/∂ω > 0 at the frequency fo = 5 GHz.
Evaluation of the admittance function YT (V ∼= 0, ω) = 1/[Zr

N(ω) + jZi
N(ω)] +

1/(RL + jLω) shows a shift in the resonance frequency to the value fo = 5.2 GHz
(see Fig. 1.7). The total small-signal conductance has the negative value Y r

T (V ∼=
0, ωo) < 0, and there is a positive slope versus frequency of the susceptance
∂Y i

T (V ∼= 0, ωo)/∂ω > 0, with an excess of negative conductance in small-signal
mode. Thus, the startup conditions are fulfilled. The pole analysis of this circuit,
with a numerical technique, provides the unstable pair of complex-conjugate poles
2π(0.48 ± j5.012) × 109s−1.

When using a commercial harmonic balance simulator, the nonlinear admit-
tance function YT (V, ω) can be obtained with an auxiliary generator. The auxiliary
generator is an artificial generator used for simulation purposes only. The voltage
auxiliary generator at the frequency ωAG is introduced in parallel at a circuit node
(Fig. 1.6). Note that any voltage generator is a short circuit at any frequency differ-
ent from the one that it delivers (ωAG). To prevent the short circuiting of frequency
components ω �= ωAG, the voltage generator is connected in series with an ideal
bandpass filter, fulfilling Zf (ω = ωAG) = 0 and Zf (ω �= ωAG) = ∞. The ratio
between the current auxiliary generator current IAG flowing into the circuit, and
the voltage delivered, VAG, provides the function YAG(VAG, ωAG). This admittance
function agrees with the total admittance YT (V, ω), depending on both the node
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FIGURE 1.7 Small-signal admittance analysis of the FET-based oscillator of Fig. 1.6.
There is excess negative conductance at the resonance frequency fo = 5.2 GHz, so the
startup of an oscillation at about this frequency can be expected for this particular design.

voltage amplitude V = VAG and the frequency ω = ωAG considered in all the pre-
ceding analyses. Thus, YAG = YT . An analogous procedure can be carried out to
determine variations of the total impedance versus the branch current ZT (I, ω). For
this analysis, a current generator IAG = I , at the frequency ω = ωAG, is introduced
in series at the circuit branch selected. To prevent open circuiting of frequency
components ω �= ωAG, the current generator is connected in parallel with an ideal
bandpass filter, fulfilling Zf (ω = ωAG) = ∞ and Zf (ω �= ωAG) = 0. The input
impedance function ZAG = ZT (I, ω) is given by the ratio between the voltage
drop at the auxiliary generator VAG and the current delivered, IAG.

In the FET-based circuit considered here, the voltage auxiliary generator at the
resonance frequency fo = 5.2 GHz is connected in parallel at port 2 (see Figs. 1.5
and 1.6). By sweeping the auxiliary-generator amplitude VAG from the small-signal
conditions, it is possible to analyze the variation of the total admittance function YT

versus the voltage amplitude at fAG = fo. The function YAG(VAG, fo) is represented
in Fig. 1.8. After a small-signal interval of nearly constant value, the conductance
Re[YAG] increases with the voltage amplitude, as expected in physical devices. On
the other hand, the susceptance Im[YAG] also varies with the voltage amplitude, due
to the nonlinear behavior of the block containing the transistor. The susceptance
Im[YAG] increases with the amplitude. Thus, a smaller oscillation frequency than
the one corresponding to the small-signal resonance of Fig. 1.7 should be expected.
Optimization of the auxiliary generator voltage VAG and frequency ωAG to fulfill the
goal YAG(VAG, ωAG) = 0 allows us to obtain the steady-state oscillation amplitude
Vo = 4.4 V and frequency fo = 4.4 GHz. A multiharmonic analysis has actually
been carried out for this calculation. More details are given in Chapter 5. The signif-
icant variation of the oscillation frequency is due to the low-frequency selectivity of
the resonant consisting of the nonlinear block capacitance and the load inductance
L = 0.2 nH. A high-quality factor load such as the one discussed at the beginning
of the subsection would reduce the amplitude dependence of the imaginary part
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FIGURE 1.8 Variation of the admittance at port 2 versus the amplitude of a voltage
auxiliary generator at the frequency fo = 5.2 GHz introduced in parallel at the same port.

of the total admittance function Y i
T (V, ω). Then the resonance frequency under

small-signal conditions would be much closer to the actual oscillation frequency.
For validation, a time-domain simulation of the free-running oscillator has been

carried out, with the results presented in Fig. 1.9. This shows that as predicted by the
analysis of Fig. 1.7, the oscillation actually starts up. Steady state is reached after a
transient. The envelope of the transient is initially exponential eσt and then evolves
gradually to the constant steady-state value. According to previous discussions, the
exponent σ depends on the net negative conductance GT and the quality factor of
the resonant circuit. It is given by σ = −ωoGT /2GLQ. The steady-state oscillation
obtained has the frequency fo = 4.4 GHz and first-harmonic voltage amplitude
V = 4.4 V at port 2. In agreement with the admittance function variation versus
the voltage amplitude YT (V, ωo), shown in Fig. 1.8, the steady-state oscillation
frequency is smaller than the one predicted by small-signal analysis.

Note that the integration from a different initial condition provides a time-shifted
steady-state solution with an identical waveform. In (1.12) it was shown that for
a one-harmonic analysis of the oscillator, in terms of the node voltage v(t) =
Re[V ejωot ], any phase shift v(t) = Re[V ej (ωot+φ)] provides an equally valid solu-
tion. When considering several harmonic components, the solution will be invariant
with respect to the phase of only one of these harmonic components. Otherwise,
aside from the time shift, there would be a change in the waveform itself, which
is not the case in periodic oscillation. In general frequency-domain analysis, con-
sidering two or more state variables, the solution will be invariant with respect to
the phase of only one harmonic component of one of these state variables.

To illustrate we apply the stability condition (1.23), derived for a one-port and
one-harmonic analysis, to our FET-based oscillator. The termination and feedback
elements of the transistor were calculated to obtain negative resistance at the drain
node, so this will be the reference node selected for stability analysis. Condition
(1.23) is evaluated with the aid of the same auxiliary generator as that used to
determine YT (Vo, ωo) (Fig. 1.8). The derivatives about the free-running oscillation
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FIGURE 1.9 Time-domain analysis of the oscillator of Fig. 1.6. The envelope of the
transient is initially exponential, evolving gradually to a constant steady-state value. The
oscillation frequency is fo = 4.4 GHz. Integration from different initial conditions gives
rise to time-shifted steady-state waveforms which are equally valid oscillator solutions.

(Vo, ωo) are obtained through finite differences. Initially, the generator amplitude
is kept constant at the oscillation value Vo = 4.4 V, performing a frequency sweep
about fo = 4.4 GHz. The result is presented in Fig. 1.10. Note that the steady-state
oscillation fulfills Re[YT ] = 0 and Im[YT ] = 0. Compared with the small-signal
analysis of Fig. 1.7, the resonance frequency has decreased from 5.2 GHz to 4.4
GHz. On the other hand, the slope of Im[YT ] (the dashed line) remains positive at
the resonance frequency, as in the small-signal analysis of Fig. 1.7. Next, the gen-
erator frequency is kept constant at fo and the generator amplitude is swept about
Vo = 4.4 V. When representing YT (V, fo) and YT (Vo, f ) in the plane defined by
Re[YT ] and Im[YT ], Fig. 1.11 is obtained. The solid-line curve corresponds to the
function YT (V, fo). The dashed-line curve corresponds to the function YT (Vo, f ).
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FIGURE 1.10 FET-based oscillator. Determination of the derivatives Re[∂YT /∂fo] and
Im[∂YT /∂fo] about the free-running oscillation point Vo, fo using a voltage auxiliary
generator.
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FIGURE 1.11 Representation of the curves YT (V, fo) and YT (Vo, f ) on the plane defined
by Re[YT ] and Im[YT ]. The origin, with Re[YT ] = 0 and Im[YT ] = 0, corresponds to the
free-running oscillation fo = 4.4 GHz and Vo = 4.4 V. The derivatives ∂YT o/∂V and
∂YT o/∂f , agree, respectively, with the tangents to the origin of the curves YT (V, fo) and
YT (Vo, f ).

The origin, with Re[YT ] = 0 and Im[YT ] = 0, corresponds to the free-running oscil-
lation fo = 4.4 GHz and Vo = 4.4 V. The derivatives ∂YT o/∂V and ∂YT o/∂f agree,
respectively, with the tangents to the origin of the curves YT (V, fo) and YT (Vo, f ).

The derivative with respect to the voltage amplitude takes the value ∂YT /∂Vo =
5.529 × 10−4 + j0.0012�−1/V. In turn, the derivative with respect to the frequency
is ∂YT /∂ωo = −3.177 × 10−14 + j6.929 × 10−13. Thus, the term in (1.23) has
the value S = 4.2268 × 10−16. Its positive sign indicates a stable solution. Note
that the product in (1.23) will be positive for an angle αvω, defined as αvω =
ang(∂YT o/∂ω) − ang(∂YT o/∂V ), between 0 and π. Thus, the sign of σo can be
determined graphically by tracing ∂YT o/∂V and ∂YT o/∂f in a polar plot (Fig. 1.11).
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FIGURE 1.12 Oscillatory solution: reaction of the voltage amplitude at the drain node to
an instantaneous perturbation applied at tp = 30 ns. The oscillatory solution is stable, so the
amplitude recovers its initial value after an exponential transient.
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Figure 1.12 shows the effect of a perturbation on voltage amplitude at observa-
tion port 2. Instantaneous perturbation is applied at the time tp = 30 ns. In agree-
ment with the formulation (1.22), the amplitude perturbation follows an exponential
transient �V (t) = �Voe

σot . Because the oscillatory solution is stable (S > 0), the
exponent σo has a negative sign: σo = −3.87 × 109S−1. Therefore, the transient
leads back to the original value of the oscillation amplitude, Vo = 4.4 V.

1.4 FREQUENCY-DOMAIN FORMULATION OF AN OSCILLATOR
CIRCUIT

The oscillator admittance–impedance analysis presented so far assumes a sinusoidal
oscillation v(t) = Vo cos ωot . However, the inherent nonlinearity of the oscillator
circuit will generate some harmonic content. As already stated, the relevance of the
harmonic components will be higher for a smaller quality factor of the load circuit.
The objective here is to derive the circuit equations when considering harmonic
components up to a certain order N . This will show how the previous analysis at
the fundamental frequency generalizes to N harmonic terms. The objective of intro-
ducing this formulation here is to provide the necessary background for the phase
noise analysis in Chapter 2 and the analysis of frequency dividers in Chapter 4.

1.4.1 Steady-State Formulation

For the frequency-domain analysis of a given nonlinear circuit, the circuit variables
are represented in a Fourier series. For simplicity, a single state variable v(t) and
a single nonlinearity of current type i(v) are considered. The voltage variable
is expressed as v(t) = ∑N

k=−N Vke
jkωot , with Vk complex coefficients. Note that

because v(t) is a real variable, the Fourier series contains both negative and positive
harmonic frequencies kωo, fulfilling V−k = V ∗

k . Due to the orthogonality of the
Fourier frequency basis, a circuit of the form of Fig. 1.4 can be formulated by
applying Kirchhoff’s laws independently at the various harmonic frequencies kωo.
This provides a system of the form

H−N = V−N + ZL(−Nωo)I−N(V−N, . . . , Vo, . . . , VN) = 0

...

Ho = Vo + ZL(0)Io(V−N, . . . , Vo, . . . , VN) + Edc = 0

... (1.33)

Hk = Vk + ZL(kωo)Ik(V−N, . . . , Vo, . . . , VN) = 0

...

HN = VN + ZL(Nωo)IN(V−N, . . . , Vo, . . . , VN) = 0
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where Hk are complex error functions. Note that the bias sources should be included
in the dc term. As an example, a series voltage source Edc has been considered
in (1.33). The total number of equations is 2N + 1, as each harmonic function
Hk has real and imaginary parts, except the one corresponding to dc, given by
Ho, which is real valued. The equation system (1.33) constitutes the harmonic
balance formulation of the oscillator circuit, containing a single nonlinearity of
current type only. As written in (1.33), it is valid only for current-type nonlin-
earities. It cannot be applied in the case of capacitive nonlinearities. As shown in
Chapters 3 and 5, the capacitive nonlinearities are described in terms of the har-
monic components of the corresponding nonlinear charge q(v). Once the harmonic
components Q−N, . . . , Qk, . . . , QN are determined, the harmonics of the current
through the capacitance are easily obtained from −jNωoQ−N, . . . , jkωoQk, . . . ,

jNωoQN .
As shown in (1.33), Kirchhoff’s laws are fulfilled independently at each

harmonic component. The key point is that each harmonic component of
the nonlinear current depends on all the harmonic components of the node
voltage, as they are linked through the constitutive relationship i(t) = i(v(t)).
Analytically, the various harmonic terms of i(t) would be obtained by calculating

i(t) = i
(∑N

k=−N Vke
jkωot

)
. Note that use of the Fourier expansion from k = −N

to k = N allows as to introduce v(t) directly in the constitutive relationship
i(t) = i(v(t)). This is why the harmonic balance system is generally expressed
by considering positive and negative frequencies, even if we know that the
harmonic terms at kωo and −kωo fulfill the Hermitian symmetry relationship
V−k = V ∗

k . To understand the dependence Ik(V−N, . . . , Vo, . . . , VN) of each
harmonic component of i(t) on all the harmonic components of v(t), consider
the particular case of a polynomial characteristic i(t) = i(v(t)). The expansion

i(t) = i
(∑N

k=−N Vke
jkωot

)
clearly gives rise to a mixed dependence of each Ik on

different harmonic coefficients V−N, . . . , Vo, . . . , VN . In practice, the components
Ik(V−N, . . . , Vo, . . . , VN) are obtained numerically using inverse and forward
Fourier transfers. Under any variation of (V−N, . . . , Vo, . . . , VN), the waveform
v(t) is calculated with an inverse Fourier transform, then the waveform i(t) is
obtained from the relationship i(v(t)), and finally, the harmonic components Ik

are calculated with a forward Fourier transform. Details of this calculation are
given in Chapter 5.

System (1.33) is a nonlinear algebraic system which is usually resolved by
employing the well-known Newton–Raphson algorithm. Note that in an oscillator
circuit, the frequency ωo is an unknown to be determined, so the system, in the
form (1.33), is unbalanced, as it contains 2N + 1 equations in 2N + 2 unknowns,
given by the real and imaginary parts of all the harmonic components of v(t), plus
the oscillation frequency ωo. To solve this problem, either the real or imaginary
part of one of the harmonic components of v(t) will be set arbitrarily to zero,
which is allowed by the autonomy of the steady-state oscillation.

As an example of the formulation (1.33), consider a case in which both the
dc and first-harmonic component are taken into account in the oscillator solution,
so the unknown voltage is expressed as v(t) = Vo + V1e

jωot + V−1e
−jωot , with
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V1 = V ∗
−1. The steady-state system is given by

Ho ≡ Vo + RL(0)Io(Vo, V1, V−1) = 0

H1 ≡ V1 + ZL(ωo)I1(Vo, V1, V−1) = 0 (1.34)

H−1 ≡ V−1 + ZL(−ωo)I−1(Vo, V1, V−1) = 0

where, for simplicity, no bias sources are considered. This one-harmonic example
is considered again later in the section.

The general system (1.33) can be written in matrix form as

Hs = V s + [ZL(kωo)]I s(V s) = 0 (1.35)

where the vector V s is made up of the steady-state terms V s = [Vo V1

V−1 · · · VN V−N ], the vector I s is given by I s = [Io I1 I−1 · · · IN

I−N ], and the linear matrix [ZL(kωo)] is the diagonal matrix:

[ZL(kωo)] =




RL(0) 0 0 0

0
. . .

ZL(kωo)

. . . 0
0 0 0 ZL(−Nωo)




(1.36)

where k indicates the varying integer order of the harmonic coefficient, that is,
0, . . . , k, −k, . . . , N, −N .

For conceptual purposes it is interesting to obtain the Jacobian matrix associated
with system (1.33), which has the form

[JH ] = [Id ] + [ZL(kωo)]

[
∂I

∂V

]
s

(1.37)

with [Id ] being the identity matrix and
[
∂I/∂V

]
o the Jacobian matrix of the nonlin-

ear function, consisting of the derivatives of the various harmonic components of
the current with respect to the harmonic components of the independent voltage. As
an example, in the case of the system (1.34), comprising the dc and first-harmonic
component, the Jacobian matrix

[
∂I/∂V

]
s

is given by

[
∂I

∂V

]
s

=




∂Io

∂Vo

∂Io

∂V1

∂Io

∂V−1
∂I1

∂Vo

∂I1

∂V1

∂I1

∂V−1
∂I−1

∂Vo

∂I−1

∂V1

∂I−1

∂V−1




s

(1.38)
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Determination of this matrix is much simpler than it seems. It is sufficient to take
into account the fact that the derivative of the kth harmonic of the nonlinear current
with respect to the mth harmonic of the voltage can be obtained as

∂Ik

∂Vm

= 1

T

∂
(∫ T

0 i(t)e−jkωotdt
)

∂Vm

= 1

T

∫ T

0

∂i(t)

∂v(t)

∂v(t)

∂Vm

e−jkωot dt

= 1

T

∫ T

0
g(t)ejmωot e−jkωot dt

= Gk−m (1.39)

with g(t) being the time-domain derivative g(t) = ∂i(t)/∂v(t) and Gk−m being the
(k − m)th harmonic component of g(t). Taking the property above into account,
the Jacobian matrix

[
∂I/∂V

]
s

can be rewritten

[
∂I

∂V

]
s

=

 G0 G−1 G1

G1 G0 G2

G−1 G−2 G0




s

(1.40)

The matrix (1.40), with equal diagonal elements G0, is the conversion matrix
associated with g(t). Therefore, the matrix [∂I/∂V ]s can be obtained from the
Fourier series expansion of g(t). Note that it is necessary to double the number
of harmonic components considered in the Fourier series expansion of g(t), which
now goes from −2ωo to 2ωo. These results are easily extended to any number N

of harmonic terms.
It has been shown in previous sections that an arbitrary variation of the phase

origin of the oscillator solution provides another solution. Because of this, the
Jacobian matrix associated with system (1.35), used in the Newton–Raphson algo-
rithm, is singular at steady-state oscillation. To understand this singularity of [JH ],
consider a time shift τ of the steady-state waveform. This will give rise to the
phase shift −kωoτ = kα of the various harmonic terms, where α = −ωoτ has been
introduced. The phase-shifted solution must also be a solution of (1.35). Therefore,
it is possible to write

∂Hs

∂α
=

[
∂Hs

∂V s

]
∂V s

∂α
= 0 (1.41)

Because the second factor of equation (1.41) is different from zero, the
Jacobian matrix must be singular. In the numerical resolution of (1.35) with
the Newton–Raphson algorithm, the singularity problem of the Jacobian matrix
can be circumvented by arbitrarily setting to zero the imaginary part of one of
the harmonic components (e.g., V i

1 = 0). As stated earlier, this also leads to a
well-balanced system, with 2N + 1 equations in 2N + 1, given by the real and
imaginary parts of all the harmonic components of v(t) except V i

1 = 0 and the
oscillation frequency ωo.
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1.4.2 Stability Analysis

The stability analysis presented in Section 1.3.2 assumed a small frequency pertur-
bation �ω � ωo. However, the perturbation frequency is not necessarily small, as
in the case of instabilities leading to a division by 2 of the oscillation frequency.
For a more general stability analysis, the limitation �ω � ωo must be eliminated.
In the following, a small-amplitude perturbation of complex frequency s = σ + jω

is considered, with ω ∈ (0, ωo). Stability analysis is used once the steady-state
oscillation has been determined by applying the Newton–Raphson algorithm to
the system (1.33). The small perturbation at the initial time to will give rise to
small amplitude increments in the voltage and current vectors, given by �V and
�I , respectively. Thus, it will be possible to consider a first-order Taylor series
expansion of the nonlinearity I (V ) about the steady-state solution V s , so I (V ) is
replaced by [∂I/∂V ]s�V . The perturbed oscillator equations are written

[JH (jkωo + s)]�V (s) =
{

[Id ] + [
ZL(jkωo + s)

] [
∂I

∂V

]
s

}
�V (s) = 0 (1.42)

Note that the system (1.42) contains two different frequency variables, the
steady-state frequency ωo and the complex frequency s, generated as a result
of perturbation at to. The formulation is similar to that used in the conversion
matrix approach [23], although the small-signal frequency is complex in this case.
The perturbation gives rise to a transient variation of the harmonic components
that is taken into account by means of dependence on the complex frequency s.
Note that unlike the analysis of Section 1.3, the imaginary part of the sideband
frequency s is not limited to small values. It can take any value in the interval
(0, ωo). Note that particularizing s to the case of small frequency variations, the
impedance matrix [ZL(jkωo + s)] can be expanded in a Taylor series, so it is
possible to write [ZL(jkωo + s)] ∼= ZL(jkωo) + (∂ZL/∂(jkωo))s. It is easily
seen that placing this in (1.42) and limiting analysis to the fundamental frequency
ωo, an equation equivalent to (1.26) is obtained. Therefore, the analysis technique
(1.18 and 1.26) is a particularization of the more general stability analysis (1.42)
to the case of a small perturbation frequency�ω.

System (1.42) is a homogeneous linear system, so for the perturbed solution
�V to differ from zero, the associated characteristic determinant must be zero
det{[Id ] + [ZL(jkωo + s)][∂I/∂V ]s} = 0, with [Id ] the identity matrix. Note that
the increment �V (s) necessarily differs from zero since an instantaneous per-
turbation was actually applied at to. Because s is the complex frequency of the
perturbation, evolution of this perturbation will depend on the roots s of the char-
acteristic determinant det[JH (kωo + s)]. For s = 0, the characteristic determinant
agrees with the determinant of the Jacobian matrix det[JH ] = 0 of the harmonic
balance system [see (1.37)]. In (1.41) it was shown that this Jacobian matrix is
singular, det[JH ] = 0. Therefore, one of the roots of the characteristic determinant
will be s = 0. This zero root is due to the system autonomy. For this perturbation
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to vanish exponentially in time, all the rest of the roots must have a negative real
part.

To transform the analysis of the characteristic system (1.42) into a pole analysis,
a small-signal current source Iin(s) is introduced in parallel with the nonlinear
element. The current source at the frequency s will generate the sidebands kωo + s.
The original system (1.42), with the input Iin(s), will be ruled by

{[Id ] + [ZL(jkωo + s)]

[
∂I

∂V

]
s

}�V (s) = [
ZL(jkωo + s)

]



Iin(s)
...

0


 (1.43)

Any output Y(s) selected will be linearly related to the increment �V (s), in the
form Y(s) = B�V (s), with B a row matrix. Unless pole–zero cancellations occur,
all possible transfer functions will have the same denominator, due to the division
by the characteristic determinant det{[Id ] + [ZL(jkωo + s)][∂I/∂V ]s}. The sys-
tem poles will agree with the roots of this determinant. In particular, it is possible
to define the transfer function Zin(s) = �V1(s)/Iin(s), where �V1(s) is the low-
est sideband (k = 0) of node voltage perturbation. Clearly, this frequency-domain
analysis is totally equivalent to the one presented for a dc solution in Section 1.2.
However, unlike in dc analysis, two frequencies are involved in the linearization
(1.43), one coming from the perturbation s and the other from ωo, associated with
the steady-state regime.

In the circuit shown in Fig. 1.1, with the cubic nonlinearity i(v) = av + bv3,
the terms in the Jacobian matrix (1.40) are given by Go = a + 3/2bV 2

o , G1 =
0.0, and G2 = 3/4bV 2

o . The matrix [ZL(jkωo + s)] is obtained directly from the
inverse of the linear admittance ZL(ω) = [G + j (Cω − 1/(Lω))]−1, with ω a
generic frequency. The characteristic determinant is second order in s, so it has two
different roots. Due to fulfilment of the oscillation condition (1.35), one root is s =
0, associated with the solution autonomy. The second real root is −0.32 × 109s−1,
so the oscillation is stable.

1.5 OSCILLATOR DYNAMICS

In this section the oscillator circuit is studied as a dynamic system [10,24] which
will provide a geometric viewpoint of oscillator behavior and valuable background
for an understanding of stability and phase noise. This study will be a general
one, with no limiting assumptions in terms of state variables, harmonic content, or
frequency of perturbations.

1.5.1 Equations and Steady-State Solutions

The nonlinear differential equations ruling circuit behavior are generally expressed
in terms of a vector of state variables x. This vector consists of the minimum
number of variables such that its knowledge at time to together with that of the



38 OSCILLATOR DYNAMICS

system input for t > to determine the circuit response for t > to. Different choices
are possible. As an example, the second-order nonlinear equation (1.9) can be split
into two first-order equations by using the two state variables x1(t) = v(t) and
x2(t) = dv/dt . In lumped circuits, a common choice for the state variables in x

is the set consisting of all inductor currents iL1, iL2, . . . and all capacitor voltages
vC1, vC2, . . . . The system order agrees with the number of reactive elements in
the circuit. For circuits containing ideal transmission lines, the system order is
ideally infinite, as the transmission lines are described with exponential terms of
the form exp(A + sB), with s the Laplace frequency and A, B constant 2 × 2
matrixes (see Section 5.2, Chapter 5). A Taylor series expansion of this exponential
would give rise to time derivatives of increasingly high order. If the time delay
associated with each transmission line is not too high, it is possible to transform
the differential equation system into a system of differential difference equations,
due to the presence of the delayed variables xT1(t + τ1) · · · xTM

(t + τM), with M

the number of transmission lines and τ1, . . . , τM their corresponding time delays
[25]. Other ways to tackle the simulation of distributed elements are presented in
Chapter 5.

Because the main purpose of this section is to provide a general explanation
of the oscillator dynamics, only the case of lumped-element circuits is considered.
The vector containing the circuit state variables will be x ∈ RN . The time-domain
equations will be written using Kirchhoff’s laws together with the constitutive
relationships of the nonlinear elements. This will provide a system of differential
algebraic equations. In some cases, these time-domain equations can be expressed
in state form [24]:

ẋ = f (x)

x(to) = xo

(1.44)

Here f is a vector of nonlinear smooth functions (i.e., having continuous deriva-
tives with respect to x up to infinite order). It must be noted that in free-running
oscillators the function f does not depend explicitly on time. This is because it
does not contain any time-varying external generators. As an example, in the par-
allel resonance oscillator of Fig. 1.1 the state variables are the voltage across the
capacitor vc(t) and the current through the inductance iL(t). Thus, the state variable
vector is defined as x = (vc, iL)T . Applying Kirchhoff’s laws, it is possible to write

dvc

dt
= − iL

C
− vc

RC
− inl(vc) = − iL

C
− vc

RC
− (avc + bv3

c )

C
(a)

(1.45)
diL

dt
= vc

L
(b)

Clearly, equation system (1.45) is formally similar to the general equation (1.44),
with a two-dimensional nonlinear function f that does not depend explicitly on
time. A dc solution can generally be found for any circuit described by (1.44)
by setting ẋ = 0 and solving f (xDC). This is the dc solution that always coexists
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with the oscillatory solution, as shown in previous sections. However, in a
well-designed oscillator, this dc solution must be unstable. Thus, integration of
the circuit differential equations from any initial condition x0 �= xdc must provide
a transient leading to a periodic steady-state oscillation xs(t).

Another property of autonomous systems already discussed is that any arbitrary
time translation of the steady-state solution xs(t) provides another valid solution
xs(t − τ). Actually, the initial conditions xo considered for the integration of (1.44)
may be associated with any time value to, because the function f does not depend
explicitly on time. When integrating the circuit equations (1.44) from different
initial values xo, the same steady-state waveform, with different time shifts, is
obtained (see Fig. 1.9).

The situation is different for circuits that have a time-varying independent source
such as a sinusoidal generator. When employing Kirchhoff’s laws, this source
will give rise to an explicit time dependence of the nonlinear differential equation
system, which in state form will be written ẋ = f (x, t). Note that in the common
case of a periodic source with period T , the nonlinear function f will also be
periodic, with the same period T .

For compactness of the formulation, the same formal equation (1.44) is often
used for both autonomous and nonautonomous periodic systems. Actually, a nonau-
tonomous system can be expressed as an autonomous system if the time t is
included in the state variable vector, which becomes x ′. The new variable t is
unbounded, as time tends to infinity. A different variable related to time can be cho-
sen instead. For a periodic nonlinear function f , the angle variable θ = (2π/T )t

is used, with T being the independent source period [24]. The variation of this
new variable can be limited to the range [0,2π). Defining the new state vector as
x ′ = (x, θ), the equations of the nonautonomous periodic system are expressed as

ẋ = f (x, θ)

θ̇ = 2π

T

(1.46)

As gathered from (1.46), the dimension of the nonautonomous periodic system
increases in one respect to that of an autonomous system containing the same
number of reactive elements. Note that this is merely a change in the formal
expression of the system, since the dependence on the time reference is, of course,
maintained under this change.

By forced circuits we mean circuits with an independent time-varying source
that do not oscillate or circuits that exhibit an oscillation synchronized to the
independent periodic source. When integrating the nonlinear differential equations
that describe these circuits from the same initial time to and different initial values
of the state vector to, xo or to, x ′

o, the same steady-state waveform at the same time
values (not shifted in time) will be obtained. Thus, the time-varying generator of the
forced circuit prevents solution invariance versus time translations. This invariance
is a property of autonomous circuits only. Here by the general term autonomous
circuit we mean free-running oscillators or circuits containing oscillations that are
not synchronized to the independent sources.
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When analyzing a system such as (1.46), the designer usually performs a repre-
sentation versus time of the solutions obtained. An alternative way to observe these
solutions is by using the phase space [26]. In the phase space, each axis corresponds
to a different state variable xi . Then, an instantaneous representation of the time
values of these variables xi(t) is carried out, as is done, for example, when tracing
the load cycle of a transistor-based circuit. Plotting the numerical values of all the
variables at a given time t provides a description of the state of the system at that
time. When time evolves, the solution follows a “trajectory” or set of sequential
points versus the implicit time variable. The evolution of the system is indicated
by a path, or trajectory, in the phase space. The phase space enables a geometric
and therefore comprehensible representation of complex behavior. In the case of
a nonautonomous circuit, a time-related variable must be included, such as θ or
the generator value ein(t). In practice, the phase space representation is limited to
three state variables, so a projection of the phase space is actually obtained, which
is usually enough to identify the most relevant properties.

As an example, Fig. 1.13 shows a phase space representation of the solutions
of a FET-based oscillator. The variables chosen are the drain voltage vD and the
current through the load inductance iL. The unstable dc solution, given by the
constant voltage vD = 3.5 V and current iL = 0 (after the dc block), provides a
point in this representation. The periodic steady-state solution gives rise to a closed
trajectory termed a cycle, because the circuit variables repeat their values after one
period. Actually, in a phase-space representation, the steady-state solutions give rise
to bounded sets called limit sets . Dc solutions give rise to points called equilib-
rium points , and periodic solutions give rise to cycles . Other types of steady-state
solutions give rise to other geometric figures.
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FIGURE 1.13 Phase space representation of the solutions of the FET-based oscillator of
Fig. 1.6. The dc solution gives rise to the equilibrium point, indicated as EP. The steady-state
oscillation gives rise to the limit cycle, LC. The spiral-like trajectory corresponds to the
startup transient.
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In a phase space representation [10], transients are open trajectories leading
from one limit set to another. In the case of Fig. 1.13, the spiral trajectory from
the equilibrium point (EP) to the cycle (LC) corresponds to the startup transient,
leading from an unstable dc solution to steady-state oscillation. In a noiseless
system, after reaching the cycle, the solution keeps turning in the cycle for a time
tending to infinity. In practice, the stable cycle is continuously recovering from
the small perturbations that are always present in real life. A single instantaneous
perturbation kicks the system out of the cycle, but because the cycle is stable, an
exponential transient leads the solution back to it. Due to the continuous noise
influence, the solution trajectory will actually surround the cycle. The same is true
for any other type of steady-state regime observed in real life.

As already indicated, when represented in phase space, steady-state solutions
give rise to bounded sets. The type of limit set and its dimension depend on the
particular type of steady-state solution. In general, the steady-state solutions of
nonlinear systems can be classified into four principal types: dc solutions, periodic
solutions, quasiperiodic solutions, and chaotic solutions. The main characteristics
of each type of solution are summarized briefly next.

1.5.1.1 Constant Solution Constant solutions are only possible in circuits with
no time-varying input generators. As already seen, they are obtained by imposing
ẋ = 0. Because there is no time variation of the state variables, the representation
of a constant solution in phase space gives rise to a point called the equilibrium
point (Fig. 1.13). The geometric dimension of the point is zero.

1.5.1.2 Periodic Solution The periodic solution, well known to designers, ful-
fills x(t + nT ) = x(t), with n an integer and T the solution period. The circuit
variables can be expanded in a Fourier series with one fundamental frequency
ωo = 2π/T . For a free-running oscillator, the period T will depend on the values
of the circuit elements and bias generators. In a forced circuit the period T is
determined by the input generator. The periodic solution of a free-running oscilla-
tor gives rise to an isolated closed trajectory in the phase space (see the cycle in
Fig. 1.13), known as the limit cycle. For a sinusoidal oscillator with no harmonic
content, this cycle will be a circumference. Whatever the dimension of the system
in RN , the cycle will have one dimension because it is a line. The trajectories sur-
rounding the limit cycle are open, corresponding to transients. This is why the limit
cycle is an isolated closed trajectory in the phase space. In stable steady-state oscil-
lation, all these neighboring trajectories lead to the cycle. The stable cycle must be
attracting for all its surrounding neighborhood, which must have the same dimen-
sion as the entire phase space RN . Note that the cycles of an ideal LC oscillator
(with no resistance) are not isolated because any initial condition provides a differ-
ent cycle (see Section 1.2). In a conservative oscillator, for arbitrarily close initial
values, arbitrarily close cycles would be obtained. Thus, they are not limit cycles.

It must be remembered that the phase space of an autonomous system does
not contain time or a time-related variable. Due to the invariance versus time
translations of autonomous systems, all possible steady-state oscillations xo(t − τ)
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FIGURE 1.14 Solutions of the FET-based oscillator obtained when integrating the circuit
equations for two different initial values. Although the solutions are time shifted, they
provide the same limit cycle, which is obtained from the projection of these solutions over
the plane defined by the drain voltage and inductance current.

lie on the same limit cycle. This is shown clearly in Fig. 1.14, where the solutions
obtained when integrating the equations of the FET-based oscillator of Fig. 1.6
are shown for two different initial conditions. It is, in fact, the same analysis as
that performed in Fig. 1.9. The difference is that two different state variables, the
drain voltage vD and the inductance current iL, have been considered here for
a three-dimensional representation versus time. The two time-shifted steady-state
solutions give rise to the same limit cycle, obtained by projecting the figure over
the plane defined by vD and iL.

The situation is different for the periodic solution of a forced system. For a
given phase value of a forcing periodic source, the periodic solution is unique. The
cycle is actually due to this source (not generated by the circuit). As shown in
(1.46), time can be considered as a state variable of the nonautonomous system.
Because time is unbounded, either the periodic source value gin(t) or the angle
θ = ωt should be assigned to one of the axis of the phase space representation.
Therefore, a different cycle, with an identical shape, is obtained for each phase
value of the input source.

1.5.1.3 Quasiperiodic Solution In an “almost-periodic” solution, no period
can be defined [24]. However, for each ε > 0 there exists a time-interval length l(ε)

such that each real interval of length l(ε) contains at least one number τ (the trans-
lation number) fulfilling |x(t + τ) − x(t)| < ε. The quasiperiodic solutions can be
expanded in a Fourier series with a finite number M of nonrationally related (incom-
mensurable) fundamentals ωf 1, ωf 2, . . . , ωf M and are thus expressible as a sum of
periodic waveforms [26]. Two frequencies, ωf 1 and ωf 2, are incommensurable if
ωf 1/ωf 2 �= m/n, with m and n integers. A key aspect of quasiperiodic solutions is
that the number M of required fundamental frequencies is uniquely defined, but not
the set of these fundamental frequencies. Actually, ωf 1, ωf 2 + ωf 1 span the same
set of frequencies as ωf 1 and ωf 2. For a simple explanation of why the solution
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cannot be periodic, note that it is not possible to obtain a time value T fulfilling
A cos ωf 1t + B cos ωf 2t = A cos(ωf 1t + ωf 1T ) + B cos(ωf 2t + ωf 2T ). Satisfy-
ing this would require that ωf 1T = n · 2π, ωf 2T = m · 2π, with m and n integers.
Then the ratio ωf 1/ωf 2 would be rational, which is against our initial assumption
of incommensurable fundamentals.

A quasiperiodic solution with two fundamental frequencies is easily obtained
when connecting a periodic generator at the frequency ωin to an existing oscillator
at the frequency ωo. Although other regimes are possible (see Chapter 3), for a
wide range of input generator frequency and power, mixer-like behavior, with two
incommensurable fundamentals, ωin and ωo, will be observed, with the ωo value
influenced by the input generator. Note that it would be equally possible to consider
the fundamental frequency basis ωin, |ωin − ωo|. The circuit is said to operate in
an autonomous quasiperiodic regime. An interesting aspect of this type of regime
is that despite the existence of an independent periodic source connected to the
circuit, different initial values xo at the initial time to give rise to time-shifted
solutions with the same pattern. This is due to the fact that the oscillation is not
synchronized to the input source and can have any phase shift with respect to this
source.

Figure 1.15 shows the quasiperiodic solution obtained when introducing a gen-
erator at fin = 6.33 GHz in the oscillator of Fig. 1.6, with original free-running
oscillation frequency fo = 4.4 GHz. It is clear that when representing a quasiperi-
odic solution in the phase space, no closed cycle can be obtained because the
solution is not periodic. In the particular case of two incommensurable fundamen-
tal frequencies, the steady-state trajectory lies on the surface of a 2-torus. This is in
close relationship with the fact that two fundamental frequencies give two indepen-
dent rotations in phase space. As an example, Fig. 1.16 shows the three-dimensional
representation of the quasiperiodic solution of the FET-based circuit. As time tends
to infinity, the torus surface gets covered entirely by the solution trajectory. Because
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FIGURE 1.15 Time representation of the quasiperiodic solution of a FET-based oscillator
at the original free-running frequency fo = 4.4 GHz when a generator is introduced at
fin = 6.33 GHz.
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FIGURE 1.16 Phase space representation of the quasiperiodic solution of a FET-based
oscillator. The steady-state solution lies on the surface of a 2-torus. This surface is covered
entirely by the solution trajectory, as time tends to infinity.

the solution lies on the torus surface, it has two dimensions in the phase space.
Note that a three-fundamental quasiperiodic solution would have three dimensions.

1.5.1.4 Chaotic Solution Chaotic solutions are neither periodic nor quasiperi-
odic [27]. Thus, they exhibit a continuous spectrum, at least for some frequency
intervals. When performing frequency-domain measurements, chaotic solutions are
often mistaken for noise or interference. However, the power measured is usually
too high to be due to noise only. Chaotic solutions are quite common in prac-
tice. Actually, the minimum mathematical requirement for an autonomous circuit
to exhibit this type of solution is that it contain at least three reactive elements
plus one nonlinear element [28,29]. As an example, the commonly used Colpitts
oscillator can exhibit chaotic solutions for some transistor bias voltages and linear
element values.

Chaotic solutions are characterized by a sensitive dependence on initial con-
ditions, meaning that solutions with arbitrarily close initial values diverge expo-
nentially in time. Figure 1.17 presents simulations of a chaotic Colpitts oscillator,
designed originally for the oscillation frequency fo = 1 GHz. This figure shows
the time evolution of the collector voltage when integrating the circuit equations
from two close initial values. Initially the waveforms seem to overlap, but as time
evolves they diverge and become quite different from each other. Compare the
situation with that of a periodic or quasiperiodic periodic solution, giving the same
steady-state waveform whatever the initial value is xo at to. As we know, this
waveform will be time-shifted for different xo values in the case of autonomous
behavior. Comparing Fig. 1.17, corresponding to a chaotic solution, with Fig. 1.15,
corresponding to a quasiperiodic solution, it can be noted that the chaotic solution
is nonperiodic and highly irregular. The quasiperiodic waveform usually looks like
a periodic signal modulated with another periodic signal of incommensurate fre-
quency. In the example in Fig. 1.18, the amplitude is clearly modulated and the
frequency is modulated too, as the zero crossings are not uniformly spaced [26].
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FIGURE 1.17 Time evolution of the collector voltage in a chaotic Colpitts oscillator
when integrating the circuit equations from two close initial values. Initially, the waveforms
overlap, then diverge, and after a little time become quite different from each other.
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FIGURE 1.18 Phase space representation of a chaotic solution corresponding to a Colpitts
oscillator. The bounded set obtained is not covered entirely by the trajectory; it has a
fractal dimension. In close relation with this fractal dimension, the bounded set exhibits a
self-similar structure.

When represented in phase space, the steady-state chaotic solution gives rise
to a bounded figure, which unlike a limit cycle or a torus, is not entirely covered
by the trajectory. As an example, Fig. 1.18 shows the phase space representation
of a chaotic solution of a Colpitts oscillator. Some sections of the figure are not
filled by the trajectory even when the simulation time tends to infinite. Owing to
this fact, the dimension of the figure is fractal. The meaning of fractal dimension
is explained in the following. A figure will have an entire dimension Dim if we
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can break it into an integer number NDim of self-similar figures. As an example,
a line can be broken into N self-similar pieces. A square can be broken into N2

self-similar pieces, and a cube can be broken into N3 pieces. In each case the total
number of pieces is NDim and the magnification factor of each piece, to recover
the original figure, is N . As the reader can verify, the dimension of the figure
can be obtained by setting Dim = log(number of pieces) − log(magnification of
each piece). The chaotic bounded sets are characterized by a self-similar structure,
meaning that they look the same for any scale of magnification. However, because
some pieces are missing, as in Fig. 1.18, the definition of dimension introduced
provides a fractional number.

1.5.2 Stability Analysis

As shown in previous sections, not all the steady-state solutions of a given circuit
will be observable physically. To be observable, a given solution must be robust
versus the small perturbations that are always present in real life (e.g., those coming
from noise or any fluctuation of the bias sources). Stable means robust versus small
perturbations. If a small perturbation is applied to a stable solution, the system will
return to it exponentially in time. In contrast, if a small perturbation is applied to
an unstable solution, the system will evolve to a different steady-state solution after
an initially exponential transient. The solution obtained after the transient will be
a stable solution and thus will be physically observable.

Note that for stability analysis, no assumption is made as to the value of the
instantaneous perturbation applied. The only condition is that it has to be small.
This is because two or more stable steady-state solutions may coexist and a large
perturbation may lead the system to the a different stable solution. Thus, the sta-
bility definition is local in nature: it refers only to the system behavior near the
steady-state solution [24]. The stability or instability of a given steady-state solu-
tion depends on the system and the particular solution, but not on the value of
the applied small perturbation. This necessary restriction to small perturbations is
advantageous, as it allows linearization of the circuit equations about the particular
steady-state solution. Because an arbitrary perturbation will have components in
any direction of an N -dimensional phase space, the stable steady-state solution
must be attracting for all the neighboring trajectories. This is why stable solu-
tions are also called attractors . An example of an attractor is the limit cycle of
Fig. 1.13, which attracts, as can be seen, all its neighboring trajectories in the phase
space.

We can express the solution of (1.44) in terms of its initial value as x(t, xo).
The basin of attraction for a given steady-state solution xs is the set of initial
conditions xo such that the system evolves to this solution as time tends to infinity:
limt→∞ x(t, xo) = xs [24]. For an N -dimensional system with only one stable
solution, the basin of attraction for this solution will be the entire space RN . This
single stable solution is said to be globally asymptotically stable. For a system
with two or more coexisting stable solutions, each solution will have a different
basin of attraction. The basins of attraction are disjoint because the solution of a
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system ẋ = f (x), with f smooth, is unique, so the trajectories cannot intersect.
If they did, using the intersection point to, xo as the initial value for the system
integration, the system might tend to either of the coexisting steady-state solutions,
which is, of course, impossible. A key fact is that the dimension of each of the
disjoint basins of attraction of the coexisting stable steady-state solutions agrees
with the dimension N of the entire space. This is because each solution is stable.
The union of the basins of attraction will be equal to RN .

The circuit of Fig. 1.19a constitutes an example of bistable behavior. The nonlin-
earity is i(v) = av + bv3. The circuit equations are obtained by adding the branch
currents, which can be solved for three different dc solutions:

G1v + G2v + av + bv3 = 0 (1.47)

The three solutions are given by Vdc1 = 0, which, as will be shown later, is unstable,
and Vdc2 = 1 V and Vdc3 = −1 V, which are stable. Each of the stable solutions
Vdc2 and Vdc3 has its own basin of attraction. Taking v and the current through
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FIGURE 1.19 Cubic nonlinearity circuit with three dc solutions: Vdc1 = 0, Vdc2 = 1 V,
and Vdc3 = −1 V. The circuit element values are L = 1 nH, C = 0.5 pF, R2 = 100 �, and
G1 = 0.01 �−1. (a) Circuit schematic. (b) Solutions obtained for the two initial values:
iLo = 0 and vo = 0.01 V (solid line) and iLo = 0 and vo = −0.01 V (dashed line).
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the inductance iL as state variables, the initial points iLo = 0 and vo > 0 belong
to the basin of attraction of Vdc2 = 1 V, whereas the initial points iLo = 0 and
vo < 0 belong to the basin of attraction of Vdc3 = −1 V. As an example, Fig. 1.19b
shows the solution obtained when integrating the system equations from iLo = 0
and vo = 0.01 V, which evolves to Vdc2 = 1 V, and the solution obtained when
integrating the system equations from iLo = 0 and vo = −0.01 V, which evolves
to Vdc2 = −1 V.

For the stability analysis of a given steady-state solution xs(t), either constant
or time varying, a small perturbation is applied at a given time instant to, and
from this value the system is allowed to evolve according to its own dynamics.
Thus, beginning at this time value, the system analyzed is a perturbed system in
which the stimulus that was applied is no longer present. Due to the effect of
the instantaneous perturbation, the solution becomes xs(t) + �x(t). Because the
perturbation is small, it will be possible to expand the nonlinear equation system
(1.47) in a Taylor series around xs(t). The expansion is carried out only up to
first order (higher order is rarely necessarily), which provides the following linear
time-varying system:

ẋ s(t) + �ẋ(t) = f (xs(t)) + Jf (xs(t))�x(t) (a)
(1.48)

�ẋ(t) = Jf (xs(t))�x(t) (b)

where Jf (xs(t)) is the Jacobian matrix of the nonlinear function f in (1.48),
evaluated at the steady-state solution xs(t). Because xs(t) fulfills (1.44), equation
((1.48)a) can be simplified to ((1.48)b). For the steady-state solution xo(t) to be sta-
ble, the perturbation �x(t) must vanish exponentially in time. This will depend on
the properties of the Jacobian matrix Jf (xs(t)) evaluated at this particular solution.
Because the Jacobian matrix is evaluated at the steady-state solution, it will have
the same periodicity or nonperiodicity of this solution. Therefore, the difficulties
of the stability analysis are totally dependent on the solution type. The simplest
case will be that of a dc solution, providing a constant Jacobian Jf (xdc). For a
periodic solution of period T , the Jacobian matrix will also be periodic, with the
same period T .

1.5.2.1 Stability Analysis of a dc Solution In a dc solution xdc, the Jacobian
matrix is constant. Then equation (1.44) becomes a time-invariant linear system
given by �ẋ = Jf (xdc)�x(t), since Jf (xdc) is a constant matrix. The general
solution of this linear system is [27]

�x(t) =
N∑

n=1

cke
λk tuk =cc1e

(σc1+jωc1)tuc1 + c∗
c1e

(σc1−jωc1)tu∗
c1 + cr1e

γr1t ur1 + · · ·
(1.49)

where the exponents λk, k = 1 to N , which may be real or complex conjugate, are
the eigenvalues of the Jacobian matrix Jf (xdc), the vectors uk are the eigenvectors
of this matrix, and ck are constants that depend on the initial conditions, thus on the
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instantaneous perturbation applied. Note that for the expression (1.49) to be valid,
all the eigenvalues λk, k = 1 to N of the Jacobian matrix Jf (xdc) are assumed dif-
ferent, which is the general case. For a double eigenvalue λj , the coefficient of the
associated exponential term eλj t will depend linearly on time, as (coj + c1j t)e

λj t .
For three repeated real eigenvalues λj , the exponential term eλj t will have the
quadratic dependence (coj + c1j t + c2j t

2)eλj t . This is easily generalized to any
number of repeated eigenvalues, whose presence will require calculation of gen-
eralized eigenvectors. Note, however, that the presence of repeated eigenvalues is
rare in practical circuits unless they contain perfect symmetries. Thus, this possi-
bility will be discarded in most derivations. Exceptions are the Rucker and N -push
oscillators with symmetric topology that we study in Chapter 10.

The application of the Laplace transform to �ẋ = Jf (xdc)�x(t) provides
the following system in the Laplace variable s : (sIN − Jf (xdc))�X(s) = 0,
with IN the identity matrix in the space RN . Clearly, the eigenvalues λk, k = 1
to N , of Jf (xdc) agree with the roots of the characteristic determinant
det(sIN − Jf (xdc)) = 0. It is possible to define a closed-loop transfer function
associated with this linearized system as was done in Section 1.2. For that, an
arbitrary input U(s) is introduced into the system and an arbitrary output Y(s) is
selected:

(sIN − Jf (xdc))�X(s) = G(s)U(s)

Y (s) = F�X(s)
(1.50)

where G(s) is a N × 1 matrix and F(s) is a 1 × N matrix. The closed-loop transfer
function will be

H(s) = F [sIN − Jf (xdc)]+G(s)

det [sIN − Jf (xdc)]
(1.51)

Unless pole–zero cancellations occur, giving rise to changes in the numerator and
denominator of (1.51), all possible closed-loop transfer functions that one may
define in the linearized system will have the same denominator. This denominator
agrees with the characteristic determinant, and its roots, which correspond to the
system poles, agree with the exponents λk of (1.49). When dealing with a dc
solution here, the exponents λk will be called, indistinctly, eigenvalues or poles.

It will be assumed that there are no repeated (multiple) eigenvalues and that
no eigenvalue is zero. The time evolution of the perturbation �x(t) will be deter-
mined by the eigenvalues λk, because ck and uk are constant. For stability, all the
eigenvalues must have a negative real part. This means that the perturbation will
vanish exponentially in time and the system will return exponentially to the original
steady-state solution xdc. The linearized solution of a practical circuit will gener-
ally contain many eigenvalues (or poles), as many as the dimensions of the state
variable vector x, which in lumped circuits agrees with the total number of induc-
tors plus capacitors. Typically, an unstable solution contains only a few unstable
poles. Common situations are one real pole γ > 0 or a pair of complex-conjugate
poles σ ± jω, with σ > 0, with all the rest of the poles on the left-hand side of the
complex plane.
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From an inspection of (1.49), not all the eigenvalues λk will have the same
weight on the transient response to the perturbation. This transient will be domi-
nated by the eigenvalues with maximum real part σc or γr . In an unstable state,
this real part will be positive. In a stable solution, the transient will be dominated
by poles of smaller absolute value, abs(σc) or abs(γr ). The associated frequencies
will be observed during the transient response. In the common case of a single
dominant pair of complex-conjugate poles σc ± jωc, an oscillation at the pole fre-
quency ωc, with amplitude decaying to zero will be observed during the transient
response. Obviously, the response will be longer for a smaller absolute value of
σc. As already shown, this can be due to a high quality factor for the resonance at
ωc. However, it can also be due to circuit operation close to instability, with the
pair of complex-conjugate poles σc ± jωc very near the imaginary axis. Actually,
the observation (in simulation) of slower transients versus the variation in a cir-
cuit parameter such as bias voltage usually indicates that the circuit is approaching
instability at the frequency of the transient.

According to (1.49), for any eigenvalue on the right-hand side of the complex
plane, the perturbation �x(t) tends to infinity over time. This unbounded growth
of the perturbation is, of course, totally unrealistic. Expression (1.49) is a solution
of the linearized system �ẋ = Jf (xdc)�x(t), which assumes a small perturbation
�x. For any eigenvalue on the right-hand side of the complex plane, this assump-
tion soon becomes invalid. After a very short time, the linearization is no longer
applicable. The solution does not tend to infinity but to a different steady-state
solution that cannot be predicted with the linearization.

Each eigenvalue of the Jacobian matrix Jf (Xdc) is associated with a particular
eigenvector, and the set of N vectors spans the space RN . For illustration it will
be assumed that m eigenvalues of a solution xdc have a negative real part and
q = N − m eigenvalues have a positive real part. This type of solution, having
stable and unstable eigenvalues or poles, is called a saddle. The solution is unstable
because not all the eigenvalues have a negative real part. The m vectors associated
with eigenvalues that have a negative real part u1, . . . , um span, close to xdc, the
stable eigenspace of this solution. The q vectors associated with eigenvalues that
have a positive real part um+1, . . . , uN span, close to xdc, the unstable eigenspace
of this solution. Thus, unstable solutions may have stable eigenspaces, which is the
most common situation in practical circuits, due to the usually high dimension of
the system of differential equations determined by the number of reactive elements.
For an unstable real pole, the unstable eigenspace will have one dimension and be
defined by a single eigenvector, providing a straight line in the space RN . In
the case of two complex-conjugate poles, the unstable eigenspace will have two
dimensions, defined by the two associated eigenvectors, corresponding to a plane
in the space RN .

Because the eigenvectors correspond to linearization of the original nonlinear
system about the dc solution xdc, they are meaningful only in the neighborhood
of this solution. At a larger distance from xdc, the stable and unstable eigenspaces
become the stable and unstable manifolds associated with this solution. A manifold
is a connected set in RN instead of the disjoint junction of two or more nonempty
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subspaces [27]. All the points in the manifold have a continuous time derivative.
The manifold can be closed, like a limit cycle, or it can be open, starting or
ending in a steady-state solution or limit set. The stable manifold of xdc is the
set of initial values xo such that limt→∞ x(t, xo) = xdc. Close to xdc the stable
manifold is tangent to the stable eigenspace spanned by u1, . . . , um [24]. The
unstable manifold of xdc is the set of initial values xo such that limt→−∞ x(t, xo) =
xdc. Note the negative sign in the time limit, indicating that the system actually
gets away from xdc as time increases. Close to xdc the unstable manifold is tangent
to the unstable eigenspace spanned by um+1, . . . , uN . As already stated, because
an arbitrary perturbation will have components in the N dimensions of the phase
space, any dc solution with an unstable eigenspace or manifold will be unstable
and physically unobservable. For the dc solution to be stable, the dimension m of
its stable eigenspace must agree with the total system dimension N , so m ≡ N .
Thus, the dc solution must be an attractor, that is, attracting for all the directions
of the phase space.

Figure 1.20 shows an illustration of the eigenspaces of a dc solution in an
R3 system located in the plane in the center of the spiral [27]. Because it is an
R3 system, there are three eigenvalues associated with the dc solution. In this
particular example, two eigenvalues are complex conjugate λ1,2 = σ ± jω, with
σ < 0. The associated eigenvectors define the stable eigenspace ES associated with
this dc solution. The third eigenvalue is real and positive, λ3 = γ > 0. Its associated
eigenvector defines a straight line that constitutes the unstable eigenspace of the dc
solution. Note that due to the negative σ, the trajectories assume positions close to
the straight line. The spirals shrink very quickly, so the system mostly evolves along
a line corresponding to the unstable eigenspace EU when getting away from the
dc solution. Thus, the eigenvalue λ3 > 0 totally dominates the transient behavior.
However, as the distance to the dc point increases, the eigenspace evolves into a
nonlinear manifold. It is no longer a straight line but generally a curve tending to
a different steady-state solution that cannot be predicted using linear analysis.

Es

Eu

FIGURE 1.20 Eigenspaces of a dc solution in an R3 system located in the plane in the
center of a spiral. Because it is an R3 system, there are three eigenvalues associated with
the dc solution. The corresponding eigenvectors define stable and unstable eigenspaces.
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Note that even though the new steady-state solution to which the solution evolves
cannot be determined using the linearized analysis of (1.49), in most cases it will
be possible to predict its constant or oscillatory nature and, in the latter case, the
fundamental frequency of the oscillation. Exceptions can be encountered, however,
because the linearization (1.49) has local validity only. As an example, for a domi-
nant pair of complex-conjugate poles σ ± jω, with σ > 0, the transient predicted by
(1.49) will be oscillatory at the frequency ω, with exponentially growing amplitude.
The system is expected to evolve to steady-state oscillation at about the frequency
ω. In the case of a real pole γ on the right-hand side of the complex plane, no
oscillation will be generally observed. The system is expected to evolve under a
monotonic transient to a different dc solution (see Fig. 1.19b). Note that relaxation
oscillations [24] are also possible in the presence of positive real poles.

To illustrate, the stability analysis described previously will be applied to the
dc solution vc,dc = 0, iL,dc = 0 of the second-order nonlinear system (1.45). The
linearized system is given by


�v̇c(t)

�i̇L(t)


 =


−GT + 3bv2

c,dc

C

−1

C

1/L 0


 [

�vc(t)

�iL(t)

]
=




−GT

C

−1

C
1/L 0




[
�vc(t)

�iL(t)

]

(1.52)
where GT = 1/R + a. As expected, the eigenvalues of the Jacobian matrix agree
totally with the complex-conjugate poles σ ± jω calculated in (1.11), and are
given by

λ1,2 = −GT

2C
± 1

2

√
G2

T

C2
− 4

LC
= 109 ± j9.5 × 109 (1.53)

Because there are eigenvalues with a positive real part, the dc solution is unstable.
The two complex-conjugate eigenvalues have two associated complex-conjugate
eigenvectors spanning a two-dimensional space. The unstable manifold agrees, in
this simple case, with the entire space R2. If GL is increased continuously, GT =
a + GL decreases, and at GT = 0 the pair of poles crosses the imaginary axis to the
left-hand side of the complex plane. The dc solution vc dc = 0, iL dc = 0 is stable
for GT > 0, unstable for GT < 0, and undergoes a qualitative stability change at the
critical value GL = |a|. Note that the decaying transient, with oscillatory behavior,
will be very slow for GL = |a| + ε with positive ε, that is, when approaching
the critical value GL = |a|. A qualitative change in the solution stability when a
parameter is modified continuously is known as bifurcation . As has been shown, the
values of the solution poles will generally change when varying a circuit parameter,
such as GL or L. Because of this, one real pole or a pair of complex-conjugate poles
may cross the imaginary axis, giving rise to a qualitative change in the solution
stability. Two complex poles may also turn into two real poles, or vice versa. This
change in the nature of the poles may happen in either the left- or right-hand side
of the complex plane, and does not give rise to a bifucation. However, the total
pole number remains unchanged and is equal to the system order N . Note that
for the large inductance value L > 4C/G2

T = 0.1nH , the linearized system will
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have two real eigenvalues of the same or different sign γ1, γ2, whose associated
eigenvectors also span the entire space R2.

As a second example, the stability of the three coexisting dc solutions of the
circuit of Fig. 1.19b will be analyzed. These three dc solutions, calculated with
(1.47), are Vdc1 = 0, Vdc2 = 1 V, and Vdc3 = −1 V. For each stability analysis,
the nonlinear element is replaced by its linearization about the corresponding dc
solution ∂i(Vdci )/∂v, obtaining the linearized differential equation system


 �v̇c(t)

�i̇L(t)


 =




−G′
T (Vdci )

C

−1

C
1

L

−R2

L




[
�vc(t)

�iL(t)

]
(1.54)

with G′
T (Vdci ) = G1 + a + 3bV 2

dci and R2 = 1/G2. Vdc2 = 1 V and Vdc3 = −1 V
have the same two poles, which are complex conjugate: p1,2 = −6 × 1010 ± j2 ×
1010. They fulfill Re[p1,2] < 0, so Vdc2 and Vdc3 are stable. The two poles of Vdc2 =
0 V are real, with the values p1 = −8.385 × 1010 and p2 = 2.385 × 1010. Thus,
the solution Vdc2 = 0 V is unstable and unobservable. The eigenvector associated
with p1, which is u1 = (16.148, 1), spans the stable eigenspace of Vdc2 = 0. The
eigenvector associated with p2, which is u1 = (123.852, 1), spans the unstable
eigenspace of Vdc2 = 0. In terms of the state variables, this unstable eigenspace can
be expressed as �v = 123.852�iL. It separates the disjoint basins of attraction of
the two stable solutions Vdc2 and Vdc3.

1.5.2.2 Stability Analysis of a Periodic Solution Periodic solutions can be
obtained in both autonomous and nonautonomous systems. For compactness, the
two types of systems will be described as ẋ = f (x). However, in a nonautonomous
system, the vector x will include θ = (2π/T )t as one of the state variables. In the
following, the same dimension N of the vector x will be considered in the two
cases, so the autonomous system should contain N reactive elements, whereas the
nonautonomous system should contain N−1 reactive elements.

For the stability analysis of a periodic solution xsp(t), with period T , a small
perturbation will be applied at a particular time instant to, giving rise to the incre-
ment �x(t) in the circuit state variables. Due to the small value of the increment
�x(t), the nonlinear system (1.55) can be linearized about xsp(t). This leads to
the time-varying linear system

�ẋ(t) = Jf (xsp(t))�x(t) (1.55)

where the Jacobian matrix Jf (xsp(t)) is periodic with the same period T as the
steady-state solution xsp(t). The stability of the periodic solution will be determined
by the time evolution of �x(t). The general form of this perturbation is [24]

�x(t) =
N∑

i=k

cke
λk tuk(t)

= cc1e
(σc1+jωc1)tuc1(t) + c∗

c1e
(σc1−jωc1)tu∗

c1(t) + cr1e
γr1t ur1(t) + · · · (1.56)
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where the complex vectors uk(t), k = 1 to N , are periodic with the same period T

as the periodic solution, and the complex exponents λk are constant. The complex
constants ck, k = 1 to N , depend on the initial conditions (i.e., on the applied
instantaneous perturbation). Note the similarity with the general expression of the
perturbation of a dc regime (1.49). The only difference is the periodicity of the
vectors uk(t). Because these vectors are periodic, the extinction (or not) of the
perturbation will depend only on the real part of the exponents λk in (1.56). This
transient will be dominated by the terms associated with exponents with maximum
real part σc or γr . Calculation of the exponents λk requires a Floquet analysis of
the time-periodic linear system (1.57). Note that the λk are constant and cannot be
the eigenvalues of the periodic matrix Jf (xsp(t)). Their calculation is carried out
in several steps, outlined below.

Because system (1.55) has N dimensions, it will also have N linearly indepen-
dent solutions �x1(t), �x2(t), . . . , �xN(t). This means that the solution obtained
for any initial value �xo can be expressed as a linear combination of N indepen-
dent solutions. However, different sets of N independent solutions can be chosen.
A useful set is the one obtained by integrating the linear system (1.55) successively
from initial condition vectors �xok given by columns of the N -order identity matrix
IN . Each independent solution �xck(t), with k = 1 to N , is determined by inte-
grating (1.55) from �xk = [0, . . . , 1, . . . , 0]T , where the “1” is located at the kth
position. A matrix [Wc(t)] can then be defined by the N independent solutions
�xck(t) obtained in this manner. It is called a canonical fundamental solution
matrix , [Wc(t)] = [�xc1(t), �xc2(t), . . . , �xcN (t)]. Note that [Wc(t)] is not peri-
odic since, as gathered from (1.56), it will contain products of periodic terms and
exponential terms.

Any particular initial value vector �xo of an N -dimensional system can be
written �xo = [IN ]�xo. Knowing the canonical matrix [Wc(t)] and the initial value
�xo at to = 0, the solution �x(t) can be calculated through a simple matrix–vector
product:

�x(t) = [Wc(t)]�xo (1.57)

To illustrate some other properties of [Wc(t)], the auxiliary matrix
[V (t)] = [Wc(t + T )] will be defined, which is the same matrix [Wc(t)]
as that evaluated at the time incremented in one period of the steady-state solution:
t + T . We emphasize that due to the exponential factors, [Wc(t)] is not periodic.
However, the Jacobian matrix Jf (xsp(t)) is indeed periodic. Because of this,
[V (t)] is also a fundamental solution matrix of (1.55), as can easily be verified:

[V̇ (t)] = [Ẇc(t + T )] = [Jf (xsp(t + T ))][Wc(t + T )] = [Jf (xsp(t))][V (t)]
(1.58)

Thus, all the components of [V (t)] fulfill (1.55). Because [V (t)] is a fundamental
(but not canonical) solution matrix, its columns will be expressible as in (1.57).
Therefore, the solution matrix [V (t)] = [Wc(t + T )] can be expressed in terms
of the canonical fundamental solution matrix as [V (t)] = [Wc(t)][V (0)], where
[V (0)] is the initial condition matrix. Replacing [V (t)] with its original expres-
sion [V (t)] = [Wc(t + T )], the following relationship is obtained: [Wc(t + T )] =
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[Wc(t)][Wc(T )]. Note that unlike [Wc(t)], the matrix [Wc(T )] evaluated at t = T

is constant and will have constant eigenvalues and eigenvectors. The eigenvalues,
assumed different, will be mk, k = 1 to N , and the associated eigenvectors will
be wk .

The eigenvectors wk of [Wc(T )] are linearly independent, so when taking these
vectors as initial values for linear system integration, a set of N independent solu-
tions is obtained. For each wk , the following relationship is fulfilled:

�xf k(t + T ) = [Wc(t + T )]wk = [Wc(t)][Wc(T )]wk = [Wc(t)]mkwk

= mk[Wc(t)]wk = mk�xf k(t) (1.59)

where mk is the eigenvalue of [Wc(T )] associated with the eigenvector wk. The
N solutions �xf k(t) form a set of independent solutions in terms of which any
general solution �x(t) of (1.55) can be expressed. It is easily shown that each
solution �xf k(t) fulfills �xf k(t + nT ) = [Wc(T )]n�xf k(t) = mn

k�xf k(t). Due to
this property, the solutions �xf k(t) are called multiplicative. The N eigenvalues
mk of [Wc(T )] are known as the Floquet multipliers of the linearized system (1.55).

It is easily derived that a multiplicative solution fulfilling �xf k(t + nT ) =
mn

k�xf k(t) can be written as �xf k(t) = eλk tuk(t), with uk(t) a periodic vector.
Taking into account the form of these independent solutions, the general solution
�x(t) is written

�x(t) =
N∑

k=1

cke
λk tuk(t) (1.60)

which demonstrates (1.56). The N Floquet multipliers are related to the N expo-
nents in (1.60) through the expressions [24]

mk = eλkT k = 1 to N (1.61)

The exponents λk are known as Floquet’s exponents . At each time instant t , the
periodic vectors uk(t) provide N independent directions in which the perturbation
is decomposed in a manner similar to the N eigenvectors associated with the
linearization about a dc solution [see equation (1.49)]. Each vector uk(t) is obtained
by integrating the linearized system (1.55) from the eigenvector wk of the constant
matrix [Wc(T )] and dividing by eλk t . Note that the exponents λk are calculated
directly from the eigenvalues mk, k = 1 to N , of [Wc(T )].

The Floquet multipliers mk can be real or complex. The relation (1.61) between
Floquet multipliers and Floquet exponents is not univocal. Actually, there is an
infinite set of exponents λk + jm(2π/T ), with m an integer and T the solution
period, associated with each multiplier mk , as can easily be verified by introducing
the exponent λk + jm(2π/T ) into (1.61).
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Writing the time variable as t = t ′ + nT , with n a positive integer, it is possible
to introduce the multipliers into the general expression (1.60)

�x(t ′ + nT ) =
N∑

k=1

ckm
n
ke

λk t ′uk(t
′) (1.62)

Remember that the objective is to determine the limit value of the perturbation when
time tends to infinity. Whether the increment �x(t) will decay to zero or grow
unboundedly will depend solely on the limit value of mn

k with n tending to infinity,
as the vectors uk(t) are periodic with the same period T as in the steady-state solu-
tion. Clearly, if any of the multipliers has a modulus larger than 1, the perturbation
will tend to infinity and the solution will be unstable. For the periodic solution to
be stable, all the multipliers must have modulus smaller than 1, except the one
corresponding to variations tangent to the periodic cycle, with value m = 1. It is
easily shown that in a nonautonomous circuit, this multiplier is associated with
the extra variable θ. The case of a free-running oscillation is considered below.
However, an exception is the periodic free-running oscillation, considered below.

As already shown, any arbitrary time shift τ of the periodic solution of
an autonomous system xsp(t) gives rise to a new solution xsp(t − τ). All the
time-shifted solutions lie in the same limit cycle (see Fig. 1.14). Thus, we can
assume that the periodic solution of an autonomous system is invariant under
displacements along this cycle. The cycle has dimension 1, and at each time value,
the tangent to the cycle can be considered as one of the N dimensions into which
any small perturbation is decomposed. Perturbations tangent to the limit cycle will
not vanish, as the solution is invariant under displacements along this cycle. Due
to this invariance, one of the multipliers of the periodic solution will be m1 = 1,
which means that the perturbation neither grows nor decays. The associated vector
u1(t) is tangent to the cycle at each time value, and thus is equal to the time deriva-
tive of the periodic solution u1(t) = ẋsp(t). Therefore, x1(t) = eλ1tu1(t) = ẋsp(t),
where the value λ1 = 0 has been taken into account. Thus, u1(t) = ẋsp(t) must be
an independent solution of the linearized system (1.55). This is easily demonstrated
by deriving both sides of (1.55) with respect to time, which provides the equality
ẍsp = Jf (xsp)ẋsp, so the vector ẋsp , tangent to the limit cycle, fulfills (1.55).

The Floquet multiplier calculation has been used in the stability analysis of the
steady-state oscillation at fo = 1.59 GHz of the parallel resonance circuit shown
in Fig. 1.1. Because it is a two-dimensional system, two different multipliers are
obtained: m1 = 1 and m2 = 0.2828. As already explained, the first is associated
with perturbations along the direction of the cycle. The second multiplier is real
and has magnitude smaller than 1, which means that the steady-state oscillation is
stable. The vector u1(t) agrees with the time derivative of the periodic solution
u1(t) = ẋsp(t). The vector u2(t) can be calculated as u2(t) = e−λ2t�xf 2(t), where
�xf 2(t) is the fundamental solution obtained by integrating the linearized system
from the initial condition w2, with w2 being the eigenvector of [Wc(T )] associated
with m2 = 0.2828.

Because the steady solution xsp(t) is periodic, it can be expressed in a Fourier
series at the oscillation frequency fo : xsp(t) = ∑M

m=−M Xmejmωot , where M is the
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number of harmonic terms considered. Note that the vectors uk(t) in the general
expression (1.56) for �x(t) are also periodic, with the same fundamental fre-
quency ωo. Thus, considering two different time scales in �x(t), one for the
periodic uk(t) and the other for the exponents eλk t , it will be possible to decompose
this perturbation in an M-order Fourier series, with time-varying harmonic terms
�x(t) = ∑M

m=−M �Xm(t)ejmωot . Note that because N independent variables com-
prise �x(t), each harmonic component �Xm(t) will be an N -dimensional vector.
Before continuing, note that the harmonic components of a time-domain product
c(t) = a(t)b(t) can be obtained as C = T oep(a)B, where C and B are vectors
containing the 2M+1 harmonic components of c(t) and b(t), respectively, and
Toep(a) is a matrix composed of the Fourier coefficients of a(t). The rows of this
matrix are permutations of the harmonic components of a(t), such that the product
of row m by the harmonic vector B provides the mth harmonic component of c(t).
Note that the calculation is affected by the truncation error in the Fourier series.
One example of this type of matrix was shown in (1.40). The same principle will
be applied to the time-domain product Jf (xsp(t))�x(t) in the system (1.55). On
the other hand, the harmonic components of �ẋ(t) can be related to the harmonic
components of �x(t). Note that �Ẋ (t) is given by �Ẋ (t) = ∑M

m=−M(�Ẋ m(t) +
jmωo�Xm(t))ejmωot . Then it is possible to write in matrix form

�Ẋ (t) + [jmωo]�X (t) = Toep[Jf (xsp)]�X(t) (1.63)

with the components of the matrix Toep[Jf (xsp)] being constant values, since
Jf (xsp(t)) is periodic at ωo. Note that the dimension of the system (1.63) is
(2M+1)N for N independent variables. Applying the Laplace transform to
equation (1.63), the following system in the Laplace frequency s is obtained:

{
[s + jmωo] − Toep

[
Jf (xsp)

]}
�X(s) = 0 (1.64)

Note that (1.64) is the characteristic system associated with the system lineariza-
tion about the periodic solution xsp(t). Recent works [30, 31] have rigorously
demonstrated that for M = ∞ the Floquet exponents λk agree with the poles
associated with the harmonic linear system (1.64). Because of this, there will
be a set of poles λk + jm(2π/T ), with |m| ≤ M and T the solution period
associated with each multiplier mk. In a free-running oscillator, one of these
poles is s = 0, so the matrix [jmωo]− matrix T oep[Jf (xsp)] must be singular.
The periodicity λk + jm(2π/T ) of the poles associated with a nonlinear system
linearization about a periodic regime can be understood intuitively. Consider
the particular case of an instability of the periodic regime at ωo due to a pair
of complex-conjugate poles σ ± jω, with σ > 0. The instability will lead to the
generation of an incommensurable frequency ω. This will give rise to sidebands
of the form mωo ± ω in the oscillator spectrum, so the circuit reacts as if it had
“sources” of instability at all the sidebands, originated by the periodic poles.

As an example, the analysis presented will be applied to the FET-based oscillator
of Fig. 1.6. The system dimension is N = 13, due to a relatively large number of
inductors and capacitors. The steady-state oscillation frequency is fo = 4.39 GHz.



58 OSCILLATOR DYNAMICS

The two pairs of dominant poles, extracted through numerical calculation, are
p1,2 = 0 ± j4.39 GHz and p3,4 = −0.071 ± j0.404 GHz. Note that the frequency
of p1,2 agrees with the oscillation frequency fo = 4.39 GHz, so these poles corre-
spond to the Floquet multiplier m = 1 and are due to the autonomy of the oscillator
solution. On the other hand, the pair of poles p3,4 = −0.071 ± j0.404 GHz corre-
spond to the complex-conjugate multipliers m1,2 = 0.9881 ± j0.0503, of absolute
value |m1,2| = 0.9894. Thus, the steady-state oscillation is stable.

There are three main types of instability of a periodic solution associated with
the three different possible situations: one unstable real multiplier mu > 1, one
unstable real multiplier mu < −1, and a pair of complex-conjugate multipliers mu

and m∗
u, with |mu| > 1. The type of instability will generally determine the type of

solution to which the system will evolve after a transient.

Instability Due to a Positive Real Multiplier mk > 1 The case of a periodic
oscillation with multipliers m1 = 1, |mj �=k| < 1, j = 1 to N , and mk > 1 will be
considered. This oscillation will be unstable due to mk > 1. The real multiplier
mk > 1 is associated with a real eigenvalue γk . Thus, the perturbed steady-state
oscillation will have a transient dominated by eγktuk(t), as gathered from (1.56).
Because the real exponent does not introduce any new frequency components,
this type of instability will generally lead to a different periodic solution. This
type of instability is typically obtained in multivalued solution curves. An example
is shown in Fig. 1.21, corresponding to a MOSFET-based oscillator at 0.4 GHz
[32]. Variation of the oscillation amplitude has been represented versus the gate
bias voltage. The curve is bi-valued in the interval represented, which is due to
the existence of a turning point at VGG = −1.2 V at which the solution curve
folds over itself. The entire curve is composed of solution points of a free-running
oscillator regime, so at all the solution points there is a multiplier m1 = 1. The
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FIGURE 1.21 Variation of the oscillation amplitude versus the gate voltage in a
MOSFET-based oscillator. The solution curve is bi-valued, due to the existence of a turning
point.
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upper section of the curve (the solid line) is stable, with all its Floquet multipliers,
except m1 = 1, having magnitude smaller than 1. However, a real multiplier m2 < 1
increases its value when reducing VGG and takes the critical value m2 = 1 at the
infinite slope point T . The lower section of the curve (the dashed line) is unstable
with a real multiplier m2 > 1. At the turning point T , m2 = 1, which implies a real
pole γ2 = 0, due to the relationship between the multipliers and the roots of the
characteristic determinant associated with (1.64). As demonstrated in Chapter 3,
a pole at zero implies a singularity of the system at steady state, thus the infinite
value of the curve slope at this point. This example shows again that the stability
properties of a given steady-state solution vary when a parameter is modified. At
the turning point, a qualitative stability change or bifurcation takes place in the
system.

In Fig. 1.22a, the oscillator solutions at the particular bias voltage VGG = −1
V have been represented in the phase space. The point designated EP corresponds
to the coexisting dc solution. The stability of the dc solution has been analyzed
independently and it has been found that this solution is stable. The limit cycle
LC1 (the dashed line) has one multiplier, m1 = 1, due to the solution autonomy,
plus a second real multiplier, m2 = 1.0281, so this limit cycle is unstable. The
fundamental frequency of this solution is fo = 0.418 GHz. The limit cycle LC2
has a multiplier m1 = 1, plus a second, dominant multiplier m2 = 0.9863, so this
limit cycle is stable. Its fundamental frequency is fo = 0.414 GHz.

The stable dc solution and the stable limit cycle coexist for the same values of
the circuit elements (Fig. 1.22b). The unstable limit cycle is located between these
two stable solutions. The unstable manifold of the unstable limit cycles separates
their disjoint basins of attraction. To illustrate this idea, Fig. 1.22b shows the
system behavior in a plane transversal to the unstable limit cycle LC1. The cycle
intersection with this transversal plane gives rise to the point depicted. The stable
manifold has dimension N − 2, with N the total system dimension. Note that one
of the N dimensions corresponds to the cycle and is lost in the intersection with the
transversal plane. The stable manifold of dimension N − 2 is simply sketched with
two arrows pointing toward the cycle intersection point. The unstable manifold has
one dimension, and depending on the initial conditions, leads to the stable limit
cycle LC1 or the stable equilibrium point EP. According to Figs. 1.21 and 1.22,
when reducing the gate bias voltage, the stable and unstable limit cycles LC1 and
LC2 approach each other, overlap, and vanish at the turning point. For VGG smaller
than a value corresponding to the turning point, the dc solution is the only stable
solution.

Instability Due to a Negative Real Multiplier mk < −1 A periodic oscillation
with associated Floquet multipliers m1 = 1, |mj �=k| < 1, j = 1 to N , and a real
multiplier mk < −1 will be considered. This steady-state solution is unstable. Under
small perturbations, the transient, ruled by (1.56), will be dominated by the real
term cke

(σ+j (ωo/2))tuk(t) + c∗
ke

(σ−j (ωo/2))tu∗
k(t). To understand this, the relationship

between Floquet multipliers and exponents mk = eλkT must be taken into account.
A real multiplier mk < −1 can be expressed as mk = e(σ+j (1/2)(2π/T )+n(2π/T ))T =
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FIGURE 1.22 Phase space representation of coexisting solutions of a MOSFET-based
oscillator for VGG = −1 V. Both the equilibrium point EP and the outer limit cycle LC2 are
stable. The inner limit cycle LC1 is unstable. Its unstable manifold behaves as a separator
of the basins of attraction of EP and LC2.

e(σ+j (ωo/2)+nωo)T = −eσT , with n an integer. Because the vectors uk(t) are peri-
odic at the same frequency ωo of the steady-state oscillation, the initial tran-
sient cke

(σ+j (ωo/2))tuk(t) + c∗
ke

(σ−j (ωo/2))tu∗
k(t) will correspond to an exponentially

growing oscillation at the subharmonic frequency ωo/2. This transient will gener-
ally lead to a steady-state regime at the divided frequency ωo/2.

The frequency division by 2 has been observed in a Colpitts oscillator, discussed
below. A stable periodic oscillation at fo = 1 GHz is obtained for the original set of
element values, with L = 10 nH. This solution has one multiplier, m1 = 1, whereas
the remaining multipliers have magnitude smaller than 1. Then the inductance L is
swept, recalculating the steady-state solution for each L value. Note that due to the
circuit autonomy, the oscillation frequency fo will vary with L. After obtaining
each steady-state solution, the corresponding Floquet multipliers are determined
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FIGURE 1.23 Subharmonic solution in a Colpitts oscillator. The oscillation at fo = 0.808
GHz exhibites a real multiplier m = −1.7340, responsible for generation of the subharmonic
frequency fo/2 = 0.404 GHz.

numerically. It is found that when increasing the inductance value, one multiplier,
m2, crosses the circle through the point −1 at the value Lo = 12.11 nH. The
periodic oscillation at fo is unstable for L > Lo, so it is unobservable. For each L >

Lo, the system evolves to a stable subharmonic solution at fo/2. Figure 1.23 shows
that the stable subharmonic solution emerged from the unstable periodic solution
at L = 16 nH. This unstable solution has the Floquet multipliers m1 = 1 and m2 =
−1.734. The voltage spectrum at the collector node is represented in Fig. 1.23.
Both the primary oscillation at 0.870 GHz and the subharmonic components can
be distinguished. This subharmonic solution is autonomous and periodic, so it will
have a multiplier m′

1 = 1. Because it is stable, the remaining multipliers will have
magnitude smaller than 1. Note that the unstable nondivided solution coexists with
the stable divided solution. It is a mathematical solution that cannot be observed
physically.

Instability Due to a Pair of Complex-Conjugate Multipliers mk, mk+1 =
m∗

k , |mk | > 1 A periodic solution with a pair of complex-conjugate multipliers
mk, mk+1 = m∗

k, |mk| > 1 will be unstable and under small perturbations will
generally lead the system to a quasiperiodic solution with two fundamental
frequencies ωo and ω′

o = αωo, with α ∈ R. To understand this, the relationship
between Floquet multipliers and exponents mk = eλkT must be taken into account.
A Floquet multiplier |mk| > 1 can be expressed as mk = eσ+j (α(2π/T )+n(2π/T ))T

= e(σ+jαωo)T = e(σ+jωa)T . Because the multipliers mk and mk+1 are the dominant
ones, the transient after a small perturbation will initially evolve according to
cke

(σ+jωa)tuk(t) + c∗
ke

(σ−jωa)tu∗
k(t). The vector uk(t) is periodic at ωo, so this

transient will contain the two incommensurate frequencies ωa and ωo, which will
generally lead to a quasiperiodic solution with a mixerlike spectrum at these two
fundamental frequencies.
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FIGURE 1.24 Output power spectrum of an oscillator at fo = 18 GHz, with a second
undesired oscillation at f ′

o = 8.989 MHz.

As an example, Fig. 1.24 shows the output power spectrum of an oscillator at
fo = 18 GHz, with a second undesired oscillation at f ′

o = 8.989 MHz. The unstable
periodic solution had a pair of complex-conjugate multipliers m1,2 = 1.0011 ±
j0.0077. The nonharmonically related oscillation at f ′

o = αfo emerges from this
solution. Mixing the two frequencies gives rise to the spectrum shown in Fig. 1.24.
Note that the unstable periodic solution at fo coexists with a quasiperiodic solution.
It is a mathematical solution that cannot be observed physically.

1.6 PHASE NOISE

The phase noise problem in free-running oscillators is linked directly to the invari-
ance of the steady-state periodic solution versus time translations. As shown in
Section 1.2, in the frequency domain this gives rise to an irrelevance versus the
phase origin. When a small impulse perturbation is applied to a stable periodic
solution, the system will return to this solution (due to its stability) with a time
shift τ (positive or negative) with respect to the original waveform. This gives rise
to a shift �φ = −ωoτ in the phase origin. Note that the new phase value resulting
from the perturbation corresponds to an equally valid oscillator solution. Because
the linearized system �ẋ(t) = Jf (xsp(t))�x(t) is a time-variant system, the time
shift τ of the steady-state solution recovered depends on the particular time tp of
the solution period (0, T ] at which the perturbation is applied [8]. This is illus-
trated in the simulations of Fig. 1.25, which were carried out in the FET-based
oscillator of Fig. 1.6. Figure 1.25a shows the steady-state waveform correspond-
ing to the voltage across the gate capacitance vG(t). A short current pulse will
be introduced at the gate node at different time values tp, analyzing the effect on
the drain voltage waveform. Figure 1.25b shows the original steady-state wave-
form (the solid line) and the time-shifted steady-state waveforms resulting from
the use of an instantaneous perturbation of equal magnitude applied at different
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FIGURE 1.25 Time shift of the steady-state solution of the FET-based oscillator of Fig. 1.6
as a result of the introduction of short current pulses at different times. The current per-
turbations are introduced at the gate node. (a) Gate voltage waveform. (b) Drain voltage
waveform. The waveform indicated by “total” is the result of three different perturbations
applied at tp = 110.915, 111, and 111.049 ns.

points in time. The curve corresponding to a perturbation applied at tp = 110.863
ns is nearly overlapped with the curve corresponding to a perturbation applied at
tp = 110.915 ns, represented by diamonds. The dashed curve corresponds to a per-
turbation applied at tp = 111 ns. The dotted curve corresponds to a perturbation
applied at tp = 111.049 ns. In agreement with Hajimiri and Lee [8], larger time
shifts are obtained when a perturbation is applied at points of the waveform with
a larger magnitude of the time derivative, due to rapid evolution of the system
at these points. When applying several perturbations, the time shift accumulates.
This is evidenced by the bold dotted curve, which is obtained as the result of three
different perturbations applied at tp = 110.915, 111, and 111.049 ns.
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Unlike the test perturbations considered in the analysis shown in Fig. 1.25, the
circuit noise sources are not deterministic. Thus, for phase noise analysis it will
be necessary to obtain the stochastic characterization of the phase deviation in the
presence of noise perturbations. The fundamental background for the understanding
and analysis of oscillator phase noise is provided in Chapter 2.
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