
CHAPTER 1
Concepts of Probability

1.1 INTRODUCTION

Will Microsoft’s stock return over the next year exceed 10%? Will the
one-month London Interbank Offered Rate (LIBOR) three months from
now exceed 4%? Will Ford Motor Company default on its debt obligations
sometime over the next five years? Microsoft’s stock return over the next
year, one-month LIBOR three months from now, and the default of Ford
Motor Company on its debt obligations are each variables that exhibit
randomness. Hence these variables are referred to as random variables.1 In
this chapter, we see how probability distributions are used to describe the
potential outcomes of a random variable, the general properties of prob-
ability distributions, and the different types of probability distributions.2

Random variables can be classified as either discrete or continuous. We
begin with discrete probability distributions and then proceed to continuous
probability distributions.

1The precise mathematical definition is that a random variable is a measurable
function from a probability space into the set of real numbers. In this chapter, the
reader will repeatedly be confronted with imprecise definitions. The authors have
intentionally chosen this way for a better general understandability and for the sake
of an intuitive and illustrative description of the main concepts of probability theory.
In order to inform about every occurrence of looseness and lack of mathematical
rigor, we have furnished most imprecise definitions with a footnote giving a reference
to the exact definition.
2For more detailed and/or complementary information, the reader is referred
to the textbooks of Larsen and Marx (1986), Shiryaev (1996), and Billingsley
(1995).
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1.2 BASIC CONCEPTS

An outcome for a random variable is the mutually exclusive potential result
that can occur. The accepted notation for an outcome is the Greek letter ω.
A sample space is a set of all possible outcomes. The sample space is
denoted by �. The fact that a given outcome ωi belongs to the sample space
is expressed by ωi ∈ �. An event is a subset of the sample space and can be
represented as a collection of some of the outcomes.3 For example, consider
Microsoft’s stock return over the next year. The sample space contains
outcomes ranging from 100% (all the funds invested in Microsoft’s stock
will be lost) to an extremely high positive return. The sample space can
be partitioned into two subsets: outcomes where the return is less than or
equal to 10% and a subset where the return exceeds 10%. Consequently,
a return greater than 10% is an event since it is a subset of the sample
space. Similarly, a one-month LIBOR three months from now that exceeds
4% is an event. The collection of all events is usually denoted by A. In the
theory of probability, we consider the sample space � together with the set
of events A, usually written as (�, A), because the notion of probability is
associated with an event.4

1.3 DISCRETE PROBABILITY DISTRIBUTIONS

As the name indicates, a discrete random variable limits the outcomes where
the variable can only take on discrete values. For example, consider the
default of a corporation on its debt obligations over the next five years. This
random variable has only two possible outcomes: default or nondefault.
Hence, it is a discrete random variable. Consider an option contract where
for an upfront payment (i.e., the option price) of $50,000, the buyer of the
contract receives the payment given in Table 1.1 from the seller of the option
depending on the return on the S&P 500 index. In this case, the random
variable is a discrete random variable but on the limited number of outcomes.

3Precisely, only certain subsets of the sample space are called events. In the case
that the sample space is represented by a subinterval of the real numbers, the events
consist of the so-called ‘‘Borel sets.’’ For all practical applications, we can think of
Borel sets as containing all subsets of the sample space. In this case, the sample space
together with the set of events is denoted by (R, B). Shiryaev (1996) provides a
precise definition.
4Probability is viewed as a function endowed with certain properties, taking events
as an argument and providing their probabilities as a result. Thus, according to the
mathematical construction, probability is defined on the elements of the set A (called
sigma-field or sigma-algebra) taking values in the interval [0, 1], P : A → [0, 1].
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TABLE 1.1 Option Payments Depending on the Value of the S&P 500 Index.

If S&P 500 Return Is: Payment Received By Option Buyer:

Less than or equal to zero $0
Greater than zero but less than 5% $10,000
Greater than 5% but less than 10% $20,000
Greater than or equal to 10% $100,000

The probabilistic treatment of discrete random variables is compara-
tively easy: Once a probability is assigned to all different outcomes, the
probability of an arbitrary event can be calculated by simply adding the
single probabilities. Imagine that in the above example on the S&P 500
every different payment occurs with the same probability of 25%. Then
the probability of losing money by having invested $50,000 to purchase
the option is 75%, which is the sum of the probabilities of getting either
$0, $10,000, or $20,000 back. In the following sections we provide a
short introduction to the most important discrete probability distributions:
Bernoulli distribution, binomial distribution, and Poisson distribution. A
detailed description together with an introduction to several other discrete
probability distributions can be found, for example, in the textbook by
Johnson et al. (1993).

1.3.1 Bernoulli Distribution

We will start the exposition with the Bernoulli distribution. A random
variable X is Bernoulli-distributed with parameter p if it has only two
possible outcomes, usually encoded as 1 (which might represent success or
default) or 0 (which might represent failure or survival).

One classical example for a Bernoulli-distributed random variable occur-
ring in the field of finance is the default event of a company. We observe a
company C in a specified time interval I, January 1, 2007, until December 31,
2007. We define

X =
{

1 if C defaults in I
0 else.

The parameter p in this case would be the annualized probability of default
of company C.

1.3.2 Binomial Distribution

In practical applications, we usually do not consider a single company but a
whole basket, C1, . . . , Cn, of companies. Assuming that all these n companies
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have the same annualized probability of default p, this leads to a natural
generalization of the Bernoulli distribution called binomial distribution. A
binomial distributed random variable Y with parameters n and p is obtained
as the sum of n independent5 and identically Bernoulli-distributed random
variables X1, . . . , Xn. In our example, Y represents the total number of
defaults occurring in the year 2007 observed for companies C1, . . . , Cn.
Given the two parameters, the probability of observing k, 0 ≤ k ≤ n defaults
can be explicitly calculated as follows:

P(Y = k) =
(

n
k

)
pk(1 − p)n − k,

where
(

n
k

)
= n!

(n − k)!k!
.

Recall that the factorial of a positive integer n is denoted by n! and is equal
to n(n − 1)(n − 2) · . . . · 2 · 1.

Bernoulli distribution and binomial distribution are revisited in
Chapter 4 in connection with a fundamental result in the theory of proba-
bility called the Central Limit Theorem. Shiryaev (1996) provides a formal
discussion of this important result.

1.3.3 Poisson Distribution

The last discrete distribution that we consider is the Poisson distribution.
The Poisson distribution depends on only one parameter, λ, and can be
interpreted as an approximation to the binomial distribution when the
parameter p is a small number.6 A Poisson-distributed random variable is
usually used to describe the random number of events occurring over a
certain time interval. We used this previously in terms of the number of
defaults. One main difference compared to the binomial distribution is that
the number of events that might occur is unbounded, at least theoretically.
The parameter λ indicates the rate of occurrence of the random events, that
is, it tells us how many events occur on average per unit of time.

5A definition of what independence means is provided in Section 1.6.4. The reader
might think of independence as no interference between the random variables.
6The approximation of Poisson to the binomial distribution concerns the so-called
rare events. An event is called rare if the probability of its occurrence is close to zero.
The probability of a rare event occurring in a sequence of independent trials can be
approximately calculated with the formula of the Poisson distribution.
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The probability distribution of a Poisson-distributed random variable
N is described by the following equation:

P(N = k) = λk

k!
e−λ, k = 0, 1, 2, . . .

1.4 CONTINUOUS PROBABILITY DISTRIBUTIONS

If the random variable can take on any possible value within the range
of outcomes, then the probability distribution is said to be a continuous
random variable.7 When a random variable is either the price of or the return
on a financial asset or an interest rate, the random variable is assumed to
be continuous. This means that it is possible to obtain, for example, a price
of 95.43231 or 109.34872 and any value in between. In practice, we know
that financial assets are not quoted in such a way. Nevertheless, there is
no loss in describing the random variable as continuous and in many times
treating the return as a continuous random variable means substantial gain
in mathematical tractability and convenience. For a continuous random
variable, the calculation of probabilities is substantially different from the
discrete case. The reason is that if we want to derive the probability that
the realization of the random variable lays within some range (i.e., over
a subset or subinterval of the sample space), then we cannot proceed in a
similar way as in the discrete case: The number of values in an interval is so
large, that we cannot just add the probabilities of the single outcomes. The
new concept needed is explained in the next section.

1.4.1 Probability Distribution Function, Probability
Density Function, and Cumulative Distribution Function

A probability distribution function P assigns a probability P(A) for every
event A, that is, of realizing a value for the random value in any specified
subset A of the sample space. For example, a probability distribution
function can assign a probability of realizing a monthly return that is
negative or the probability of realizing a monthly return that is greater than
0.5% or the probability of realizing a monthly return that is between 0.4%
and 1.0%.

7Precisely, not every random variable taking its values in a subinterval of the real
numbers is continuous. The exact definition requires the existence of a density
function such as the one that we use later in this chapter to calculate probabilities.
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To compute the probability, a mathematical function is needed to
represent the probability distribution function. There are several possibilities
of representing a probability distribution by means of a mathematical
function. In the case of a continuous probability distribution, the most
popular way is to provide the so-called probability density function or
simply density function.

In general, we denote the density function for the random variable X
as f X(x). Note that the letter x is used for the function argument and the
index denotes that the density function corresponds to the random variable
X. The letter x is the convention adopted to denote a particular value for
the random variable. The density function of a probability distribution is
always nonnegative and as its name indicates: Large values for f X(x) of
the density function at some point x imply a relatively high probability of
realizing a value in the neighborhood of x, whereas f X(x) = 0 for all x in
some interval (a, b) implies that the probability for observing a realization
in (a, b) is zero.

Figure 1.1 aids in understanding a continuous probability distribution.
The shaded area is the probability of realizing a return less than b and
greater than a. As probabilities are represented by areas under the density
function, it follows that the probability for every single outcome of a
continuous random variable always equals zero. While the shaded area
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FIGURE 1.1 The probability of the event that a given
random variable, X, is between two real numbers, a and
b, which is equal to the shaded area under the density
function, f X(x).
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in Figure 1.1 represents the probability associated with realizing a return
within the specified range, how does one compute the probability? This is
where the tools of calculus are applied. Calculus involves differentiation
and integration of a mathematical function. The latter tool is called integral
calculus and involves computing the area under a curve. Thus the probability
that a realization from a random variable is between two real numbers a
and b is calculated according to the formula,

P(a ≤ X ≤ b) =
∫ b

a
fX(x)dx.

The mathematical function that provides the cumulative probability of
a probability distribution, that is, the function that assigns to every real
value x the probability of getting an outcome less than or equal to x, is called
the cumulative distribution function or cumulative probability function or
simply distribution function and is denoted mathematically by FX(x). A
cumulative distribution function is always nonnegative, nondecreasing, and
as it represents probabilities it takes only values between zero and one.8 An
example of a distribution function is given in Figure 1.2.
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FX(a)

FX(b)

FIGURE 1.2 The probability of the event that a
given random variable X is between two real
numbers a and b is equal to the difference
FX(b) − FX(a).

8Negative values would imply negative probabilities. If F decreased, that is, for some
x < y we have FX(x) > FX(y), it would create a contradiction because the probability
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The mathematical connection between a probability density function
f , a probability distribution P, and a cumulative distribution function F of
some random variable X is given by the following formula:

P(X ≤ t) = FX(t) =
∫ t

−∞
fX(x)dx.

Conversely, the density equals the first derivative of the distribution
function,

fX(x) = dFX(x)
dx

.

The cumulative distribution function is another way to uniquely char-
acterize an arbitrary probability distribution on the set of real numbers. In
terms of the distribution function, the probability that the random variable
is between two real numbers a and b is given by

P(a < X ≤ b) = FX(b) − FX(a).

Not all distribution functions are continuous and differentiable, such
as the example plotted in Figure 1.2. Sometimes, a distribution function
may have a jump for some value of the argument, or it can be composed
of only jumps and flat sections. Such are the distribution functions of a
discrete random variable for example. Figure 1.3 illustrates a more general
case in which FX(x) is differentiable except for the point x = a where there
is a jump. It is often said that the distribution function has a point mass at
x = a because the value a happens with nonzero probability in contrast to
the other outcomes, x �= a. In fact, the probability that a occurs is equal to
the size of the jump of the distribution function. We consider distribution
functions with jumps in Chapter 7 in the discussion about the calculation
of the average value-at-risk risk measure.

1.4.2 The Normal Distribution

The class of normal distributions, or Gaussian distributions, is certainly one
of the most important probability distributions in statistics and due to some
of its appealing properties also the class which is used in most applications
in finance. Here we introduce some of its basic properties.

The random variable X is said to be normally distributed with param-
eters µ and σ , abbreviated by X ∈ N(µ, σ 2), if the density of the random

of getting a value less than or equal to x must be smaller or equal to the probability
of getting a value less than or equal to y.
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FIGURE 1.3 A distribution function FX(x) with a jump
at x = a.

variable is given by the formula,

fX(x) = 1√
2πσ 2

e− (x − µ)2

2σ2 , x ∈ R.

The parameter µ is called a location parameter because the middle
of the distribution equals µ and σ is called a shape parameter or a scale
parameter. If µ = 0 and σ = 1, then X is said to have a standard normal
distribution.

An important property of the normal distribution is the location-scale
invariance of the normal distribution. What does this mean? Imagine you
have random variable X, which is normally distributed with the parameters
µ and σ . Now we consider the random variable Y, which is obtained as Y =
aX + b. In general, the distribution of Y might substantially differ from the
distribution of X but in the case where X is normally distributed, the random
variable Y is again normally distributed with parameters and µ̃ = aµ + b
and σ̃ = aσ . Thus we do not leave the class of normal distributions if we
multiply the random variable by a factor or shift the random variable.
This fact can be used if we change the scale where a random variable
is measured: Imagine that X measures the temperature at the top of the
Empire State Building on January 1, 2008, at 6 a.m. in degrees Celsius.
Then Y = 9

5 X + 32 will give the temperature in degrees Fahrenheit, and if
X is normally distributed, then Y will be too.
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Another interesting and important property of normal distributions
is their summation stability. If you take the sum of several independent9

random variables that are all normally distributed with location parameters
µi and scale parameters σ i, then the sum again will be normally distributed.
The two parameters of the resulting distribution are obtained as

µ = µ1 + µ2 + · · · + µn

σ =
√

σ 2
1 + σ 2

2 + · · · + σ 2
n .

The last important property that is often misinterpreted to justify
the nearly exclusive use of normal distributions in financial modeling is
the fact that the normal distribution possesses a domain of attraction. A
mathematical result called the central limit theorem states that under certain
technical conditions the distribution of a large sum of random variables
behaves necessarily like a normal distribution. In the eyes of many, the
normal distribution is the unique class of probability distributions having
this property. This is wrong and actually it is the class of stable distributions
(containing the normal distributions) that is unique in the sense that a large
sum of random variables can only converge to a stable distribution. We
discuss the stable distribution in Chapter 4.

1.4.3 Exponential Distribution

The exponential distribution is popular, for example, in queuing theory
when we want to model the time we have to wait until a certain event takes
place. Examples include the time until the next client enters the store, the
time until a certain company defaults or the time until some machine has a
defect.

As it is used to model waiting times, the exponential distribution
is concentrated on the positive real numbers and the density function f
and the cumulative distribution function F of an exponentially distributed
random variable τ possess the following form:

fτ (x) = 1
β

e− x
β , x > 0

and

Fτ (x) = 1 − e− x
β , x > 0.

9A definition of what independent means is provided in section 1.6.4. The reader
might think of independence as nointerference between the random variables.



Concepts of Probability 11

In credit risk modeling, the parameter λ = 1/β has a natural inter-
pretation as hazard rate or default intensity. Let τ denote an exponential
distributed random variable, for example, the random time (counted in days
and started on January 1, 2008) we have to wait until Ford Motor Company
defaults. Now, consider the following expression:

λ(�t) = P(τ ∈ (t, t + �t]|τ > t)
�t

= P(τ ∈ (t, t + �t])
�tP(τ > t)

.

where �t denotes a small period of time.
What is the interpretation of this expression? λ(�t) represents a ratio

of a probability and the quantity �t. The probability in the numerator
represents the probability that default occurs in the time interval (t, t + �t]
conditional upon the fact that Ford Motor Company survives until time t.
The notion of conditional probability is explained in section 1.6.1.

Now the ratio of this probability and the length of the considered time
interval can be denoted as a default rate or default intensity. In applications
different from credit risk we also use the expressions hazard or failure rate.

Now, letting �t tend to zero we finally obtain after some calculus
the desired relation λ = 1/β. What we can see is that in the case of an
exponentially distributed time of default, we are faced with a constant rate
of default that is independent of the current point in time t.

Another interesting fact linked to the exponential distribution is the fol-
lowing connection with the Poisson distribution described earlier. Consider
a sequence of independent and identical exponentially distributed random
variables τ 1, τ 2, . . . We can think of τ 1, for example, as the time we have
to wait until a firm in a high-yield bond portfolio defaults. τ 2 will then
represent the time between the first and the second default and so on. These
waiting times are sometimes called interarrival times. Now, let Nt denote
the number of defaults which have occurred until time t ≥ 0. One important
probabilistic result states that the random variable Nt is Poisson distributed
with parameter λ = t/β.

1.4.4 Student’s t -distribution

Student’s t-distributions are used in finance as probabilistic models of assets
returns. The density function of the t-distribution is given by the following
equation:

fX(x) = 1√
πn

	((n + 1)/2)
	(n/2)

(
1 + x2

n

)− n + 1
2

, x ∈ R,
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where n is an integer valued parameter called degree of freedom. For
large values of n, the t-distribution doesn’t significantly differ from a
standard normal distribution. Usually, for values n > 30, the t-distribution
is considered as equal to the standard normal distribution.

1.4.5 Extreme Value Distribution

The extreme value distribution, sometimes also denoted as Gumbel-type
extreme value distribution, occurs as the limit distribution of the (appropri-
ately standardized) largest observation in a sample of increasing size. This
fact explains its popularity in operational risk applications where we are
concerned about a large or the largest possible loss. Its density function f and
distribution function F, respectively, is given by the following equations:

fX(x) = 1
b

e− x − a
b −e

− x − a
b , x ∈ R

and
FX(x) = e−e

− x − a
b , x ∈ R,

where a denotes a real location parameter and b > 0 a positive real shape
parameter. The class of extreme value distributions forms a location-scale
family.

1.4.6 Generalized Extreme Value Distribution

Besides the previously mentioned (Gumbel type) extreme value distribution,
there are two other types of distributions that can occur as the limiting
distribution of appropriately standardized sample maxima. One class is
denoted as the Weibull-type extreme value distribution and has a similar
representation as the Weibull distribution. The third type is also referred to
as the Fréchet-type extreme value distribution. All three can be represented
as a three parameter distribution family referred to as a generalized extreme
value distribution with the following cumulative distribution function:

FX(x) = e−(1 + ξ
x − µ

σ )−1/ξ

, 1 + ξ
x − µ

σ
> 0,

where ξ and µ are real and σ is a positive real parameter. If ξ tends to
zero, we obtain the extreme value distribution discussed above. For positive
values of ξ , the distribution is Frechet-type and, for negative values of ξ ,
Weibull-type extreme value distribution.10

10An excellent reference for this and the following section is Embrechts et al. (1997).
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1.5 STATISTICAL MOMENTS AND QUANTILES

In describing a probability distribution function, it is common to summarize
it by using various measures. The five most commonly used measures are:

■ Location
■ Dispersion
■ Asymmetry
■ Concentration in tails
■ Quantiles

In this section we describe these measures and the more general notion of
statistical moments. We also explain how statistical moments are estimated
from real data.

1.5.1 Location

The first way to describe a probability distribution function is by some
measure of central value or location. The various measures that can be used
are the mean or average value, the median, or the mode. The relationship
among these three measures of location depends on the skewness of a prob-
ability distribution function that we will describe later. The most commonly
used measure of location is the mean and is denoted by µ or EX or E(X).

1.5.2 Dispersion

Another measure that can help us to describe a probability distribution
function is the dispersion or how spread out the values of the random
variable can realize. Various measures of dispersion are the range, variance,
and mean absolute deviation. The most commonly used measure is the
variance. It measures the dispersion of the values that the random variable
can realize relative to the mean. It is the average of the squared deviations
from the mean. The variance is in squared units. Taking the square root of
the variance one obtains the standard deviation. In contrast to the variance,
the mean absolute deviation takes the average of the absolute deviations
from the mean. In practice, the variance is used and is denoted by σ 2 and the
standard deviation σ . General types of dispersion measures are discussed in
Chapter 6.

1.5.3 Asymmetry

A probability distribution may be symmetric or asymmetric around its
mean. A popular measure for the asymmetry of a distribution is called its
skewness. A negative skewness measure indicates that the distribution is
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Positive skewness
Negative skewness

FIGURE 1.4 The density graphs of a positively
and a negatively skewed distribution.

skewed to the left; that is, compared to the right tail, the left tail is elongated
(see Figure 1.4). A positive skewness measure indicates that the distribution
is skewed to the right; that is, compared to the left tail, the right tail is
elongated (see Figure 1.4).

1.5.4 Concentration in Tails

Additional information about a probability distribution function is provided
by measuring the concentration (mass) of potential outcomes in its tails.
The tails of a probability distribution function contain the extreme values.
In financial applications, it is these tails that provide information about the
potential for a financial fiasco or financial ruin. The fatness of the tails of the
distribution is related to the peakedness of the distribution around its mean
or center. The joint measure of peakedness and tail fatness is called kurtosis.

1.5.5 Statistical Moments

In the parlance of the statistician, the four measures described above are
called statistical moments or simply moments. The mean is the first moment
and is also referred to as the expected value. The variance is the second
central moment, skewness is a rescaled third central moment, and kurtosis
is a rescaled fourth central moment. The general mathematical formula for
the calculation of the four parameters is shown in Table 1.2.

The definition of skewness and kurtosis is not as unified as for the
mean and the variance. The skewness measure reported in Table 1.2 is the
so-called Fisher’s skewness. Another possible way to define the measure is
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TABLE 1.2 General Formula for Parameters.

Parameter Discrete Distribution Continuous Distribution

Mean EX =
∑

i

xiP(X = xi) EX =
∫ ∞

−∞
xfX(x)dx

Variance σ 2 = E(X − EX)2 σ 2 = E(X − EX)2

Skewness ζ = E(X − EX)3

(σ 2)3/2 ζ = E(X − EX)3

(σ 2)3/2

Kurtosis κ = E(X − EX)4

(σ 2)4 κ = E(X − EX)4

(σ 2)4

the Pearson’s skewness, which equals the square of the Fisher’s skewness.
The same holds true for the kurtosis, where we have reported the Pearson’s
kurtosis. Fishers’ kurtosis (sometimes denoted as excess kurtosis) can be
obtained by subtracting three from Pearson’s kurtosis.

Generally, the moment of order n of a random variable is denoted by
µn defined as

µn = EXn,

where n = 1, 2, . . . For a discrete probability distribution, the moment of
order k is calculated according to the formula

µn =
∑

i

xn
i P(X = xi),

and in the case of a continuous probability distribution, the formula is

µn =
∫ ∞

−∞
xnfX(x)dx.

The centered moment of order n is denoted by mn and is defined as

mn = E(X − EX)n,

where n = 1, 2, . . . . For a discrete probability distribution, the centered
moment of order n is calculated according to the formula

mn =
∑

i

(xi − EX)nP(X = xi),
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and in the case of a continuous probability distribution, the formula is

mn =
∫ ∞

−∞
(x − EX)nfX(x)dx.

1.5.6 Quantiles

Not only are the statistical moments described in the previous section used
to summarize a probability distribution, but also a concept called α-quantile.
The α-quantile gives us information where the first α% of the distribution
are located. Given an arbitrary observation of the considered probability
distribution, this observation will be smaller than the α-quantile qα in α%
of the cases and larger in (100 − α)% of the cases.11

Some quantiles have special names. The 25%-, 50%- and 75%-quantile
are referred to as the first quartile, second quartile, and third quartile,
respectively. The 1%-, 2%-, . . . , 98%-, 99%-quantiles are called percentiles.
As we will see in Chapters 6, the α-quantile is closely related with the
value-at-risk measure (VaRα(X)) commonly used in risk management.

1.5.7 Sample Moments

The previous sections have introduced the four statistical moments mean,
variance, skewness, and kurtosis. Given a probability density function f or a
probability distribution P we are able to calculate these statistical moments
according to the formulae given in Table 1.2. In practical applications
however, we are faced with the situation that we observe realizations of a
probability distribution (e.g., the daily return of the S&P 500 index over the
last two years), but we don’t know the distribution which generates these
returns. Consequently, we are not able to apply our knowledge about the
calculation of statistical moments. But, having the observations r1, . . . , rk,
we can try to estimate the true moments out of the sample. The estimates are
sometimes called sample moments to stress the fact that they are obtained
out of a sample of observations.

The idea is simple. The empirical analogue for the mean of a random
variable is the average of the observations:

EX ≈ 1
k

k∑
i = 1

ri.

11Formally, the α-quantile for a continuous probability distribution P with strictly
increasing cumulative distribution function F is obtained as qα = F−1(α).
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TABLE 1.3 Calculation of Sample Moments.

Moment Sample Moment

Mean r = 1
k

k∑
i = 1

ri

Variance s2 = 1
k

k∑
i = 1

(ri − r)2

Skewness ζ̂ =
1
k

∑k
i = 1(ri − r)3

(s2)3/2

Kurtosis κ̂ =
1
k

∑k
i = 1(ri − r)4

(s2)2

For large k, it is reasonable to expect that the average of the obser-
vations will not be far from the mean of the probability distribution.
Now, we observe that all theoretical formulae for the calculation of
the four statistical moments are expressed as means of something. This
insight leads to the expression for the sample moments, summarized in
Table 1.3.12

This simple and intuitive idea is based on a fundamental result in
the theory of probability known as the law of large numbers. This result,
together with the central limit theorem, forms the basics of the theory of
statistics.

1.6 JOINT PROBABILITY DISTRIBUTIONS

In the previous sections, we explained the properties of a probability
distribution of a single random variable; that is, the properties of a univariate
distribution. An understanding of univariate distributions allows us to
analyze the time series characteristics of individual assets. In this section,
we move from the probability distribution of a single random variable

12A hat on a parameter (e.g., κ̂) symbolizes the fact that the true parameter (in this
case the kurtosis κ) is estimated.
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(univariate distribution) to that of multiple random variables (multivariate
distribution). Understanding multivariate distributions is important because
financial theories such as portfolio selection theory and asset-pricing theory
involve distributional properties of sets of investment opportunities (i.e.,
multiple random variables). For example, the theory of efficient portfolios
covered in Chapter 8 assumes that returns of alternative investments have a
joint multivariate distribution.

1.6.1 Conditional Probability

A useful concept in understanding the relationship between multiple random
variables is that of conditional probability. Consider the returns on the
stocks of two companies in one and the same industry. The future return
X on the stocks of company 1 is not unrelated to the future return
Y on the stocks of company 2 because the future development of the
two companies is driven to some extent by common factors since they
are in one and the same industry. It is a reasonable question to ask,
what is the probability that the future return X is smaller than a given
percentage, e.g. X ≤ −2%, on condition that Y realizes a huge loss,
e.g. Y ≤ −10%? Essentially, the conditional probability is calculating the
probability of an event provided that another event happens. If we denote
the first event by A and the second event by B, then the conditional
probability of A provided that B happens, denoted by P(A|B), is given by
the formula,

P(A|B) = P(A ∩ B)
P(B)

,

which is also known as the Bayes formula. According to the formula,
we divide the probability that both events A and B occur simultaneously,
denoted by A ∩ B, by the probability of the event B. In the two-stock
example, the formula is applied in the following way,

P(X ≤ −2%|Y ≤ −10%) = P(X ≤ −2%, Y ≤ −10%)
P(Y ≤ −10%)

. (1.1)

Thus, in order to compute the conditional probability, we have to be
able to calculate the quantity

P(X ≤ −2%, Y ≤ −10%),

which represents the joint probability of the two events.
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1.6.2 Definition of Joint Probability Distributions

A portfolio or a trading position consists of a collection of financial assets.
Thus, portfolio managers and traders are interested in the return on a
portfolio or a trading position. Consequently, in real-world applications,
the interest is in the joint probability distribution or joint distribution of
more than one random variable. For example, suppose that a portfolio
consists of a position in two assets, asset 1 and asset 2. Then there will be a
probability distribution for (1) asset 1, (2) asset 2, and (3) asset 1 and asset
2. The first two distributions are referred to as the marginal probability
distributions or marginal distributions. The distribution for asset 1 and asset
2 is called the joint probability distribution.

Like in the univariate case, there is a mathematical connection between
the probability distribution P, the cumulative distribution function F, and the
density function f of a multivariate random variable (also called a random
vector) X = (X1, . . . , Xn). The formula looks similar to the equation we
presented in the previous chapter showing the mathematical connection
between a probability density function, a probability distribution, and a
cumulative distribution function of some random variable X:

P(X1 ≤ t1, . . . , Xn ≤ tn) = FX(t1, . . . , tn)

=
∫ t1

−∞
. . .

∫ tn

−∞
fX(x1, . . . , xn)dx1 . . . dxn.

The formula can be interpreted as follows. The joint probability that the
first random variable realizes a value less than or equal to t1 and the second
less than or equal to t2 and so on is given by the cumulative distribution
function F. The value can be obtained by calculating the volume under the
density function f . Because there are n random variables, we have now
n arguments for both functions: the density function and the cumulative
distribution function.

It is also possible to express the density function in terms of the distri-
bution function by computing sequentially the first-order partial derivatives
of the distribution function with respect to all variables,

fX(x1, . . . , xn) = ∂nFX(x1, . . . , xn)
∂x1 . . . ∂xn

. (1.2)

1.6.3 Marginal Distributions

Beside this joint distribution, we can consider the above mentioned marginal
distributions, that is, the distribution of one single random variable Xi. The
marginal density f i of Xi is obtained by integrating the joint density over all
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variables which are not taken into consideration:

fXi (x) =
∫ ∞

−∞
. . .

∫ ∞

−∞
fX(x1, . . . , xi − 1, x, xi + 1, . . . , xn)dx1 . . . dxi − 1dxi + 1 . . . dxn

1.6.4 Dependence of Random Variables

Typically, when considering multivariate distributions, we are faced with
inference between the distributions; that is, large values of one random
variable imply large values of another random variable or small values of a
third random variable. If we are considering, for example, X1, the height of
a randomly chosen U.S. citizen, and X2, the weight of this citizen, then large
values of X1 tend to result in large values of X2. This property is denoted
as the dependence of random variables and a powerful concept to measure
dependence will be introduced in a later section on copulas.

The inverse case of no dependence is denoted as stochastic independence.
More precisely, two random variables are independently distributed if
and only if their joint distribution given in terms of the joint cumulative
distribution function F or the joint density function f equals the product of
their marginal distributions:

FX(x1, . . . , xn) = FX1 (x1) . . . FXn (xn)
and

fX(x1, . . . , xn) = fX1 (x1) . . . fXn (xn).

In the special case of n = 2, we can say that two random variables are
said to be independently distributed, if knowing the value of one random
variable does not provide any information about the other random variable.
For instance, if we assume in the example developed in section 1.6.1 that the
two events X ≤ −2% and Y ≤ −10% are independent, then the conditional
probability in equation (1.1) equals

P(X ≤ −2%|Y ≤ −10%) = P(X ≤ −2%)P(Y ≤ −10%)
P(Y ≤ −10%)

= P(X ≤ −2%).

Indeed, under the assumption of independence, the event Y ≤ −10% has
no influence on the probability of the other event.

1.6.5 Covariance and Correlation

There are two strongly related measures among many that are commonly
used to measure how two random variables tend to move together, the
covariance and the correlation. Letting:
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σ X denote the standard deviation of X.

σ Y denote the standard deviation of Y.

σ XY denote the covariance between X and Y.

ρXY denote the correlation between X and Y.

The relationship between the correlation, which is also denoted by ρXY

= corr(X, Y), and covariance is as follows:

ρXY = σXY

σXσY
.

Here the covariance, also denoted by σ XY = cov(X, Y), is defined as

σXY = E(X − EX)(Y − EY)

= E(XY) − EXEY.

It can be shown that the correlation can only have values from −1 to
+1. When the correlation is zero, the two random variables are said to be
uncorrelated.

If we add two random variables, X + Y, the expected value (first
central moment) is simply the sum of the expected value of the two random
variables. That is,

E(X + Y) = EX + EY.

The variance of the sum of two random variables, denoted by σ 2
X + Y, is

σ 2
X + Y = σ 2

X + σ 2
Y + 2σXY .

Here the last term accounts for the fact that there might be a dependence
between X and Y measured through the covariance. In Chapter 8, we
consider the variance of the portfolio return of n assets which is expressed
by means of the variances of the assets’ returns and the covariances between
them.

1.6.6 Multivariate Normal Distribution

In finance, it is common to assume that the random variables are normally
distributed. The joint distribution is then referred to as a multivariate normal
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distribution.13 We provide an explicit representation of the density function
of a general multivariate normal distribution.

Consider first n independent standard normal random variables X1, . . . ,
Xn. Their common density function can be written as the product of their
individual density functions and so we obtain the following expression as
the density function of the random vector X = X1, . . . , Xn:

fX(x1, . . . , xn) = 1

(
√

2π)n
e− x′x

2 ,

where the vector notation x′x denotes the sum of the components of the
vector x raised to the second power, x′x = ∑n

i = 1 x2
i .

Now consider n vectors with n real components arranged in a matrix
A. In this case, it is often said that the matrix A has a n × n dimension. The
random variable

Y = AX + µ, (1.3)

in which AX denotes the n × n matrix A multiplied by the random vector
X and µ is a vector of n constants, has a general multivariate normal
distribution. The density function of Y can now be expressed as14

fY(y1, . . . , yn) = 1
(π |�|)n/2

e− (y − µ)′�−1(y − µ)
2 ,

where |�| denotes the determinant of the matrix � and �−1 denotes the
inverse of �. The matrix � can be calculated from the matrix A, � = AA′.
The elements of � = {σij}n

i, j = 1 are the covariances between the components
of the vector Y,

σij = cov(Yi, Yj).

Figure 1.5 contains a plot of the probability density function of a
two-dimensional normal distribution with a covariance matrix,

� =
(

1 0.8
0.8 1

)

13The joint distribution of a random vector X = (X1, . . . , Xn) is called a multivariate
normal distribution if any linear combination a1X1 + · · · + anXn of its components
is normally distributed. It is not sufficient that only the marginals are normally
distributed.
14In order for the density function to exist, the joint distribution of Y must be
nondegenerate (i.e., the matrix � must be positive definite).
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FIGURE 1.5 The probability density function of a
two-dimensional normal distribution.

and mean µ = (0, 0). The matrix A from the representation given in
formula (1.3) equals

A =
(

1 0
0.8 0.6

)
.

The correlation between the two components of the random vector Y
is equal to 0.8, corr(Y1, Y2) = 0.8 because in this example the variances of
the two components are equal to 1. This is a strong positive correlation,
which means that the realizations of the random vector Y clusters along
the diagonal splitting the first and the third quadrant. This is illustrated in
Figure 1.6, which shows the contour lines of the two-dimensional density
function plotted in Figure 1.5. The contour lines are ellipses centered at
the mean µ = (0, 0) of the random vector Y with their major axes lying
along the diagonal of the first quadrant. The contour lines indicate that
realizations of the random vector Y roughly take the form of an elongated
ellipse as the ones shown in Figure 1.6, which means that large values of Y1

will correspond to large values of Y2 in a given pair of observations.

1.6.7 Elliptical Distributions

A generalization of the multivariate normal distribution is given by the
class of elliptical distributions.15 We discuss this class because elliptical
distributions offer desirable properties in the context of portfolio selection

15This section provides only a brief review of elliptical distributions. Bradley and
Taqqu (2003) provide a more complete introduction to elliptical distributions and
their implications for portfolio selection.
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FIGURE 1.6 The level lines of the two-dimensional probability
density function plotted in Figure 1.5.

theory. It turns out that in fact it is the class of elliptical distributions where
the correlation is the right dependence measure, and that for distributions
which do not belong to this family, alternative concepts must be sought.

Simply speaking, an n-dimensional random vector X with density
function f is spherically distributed if all the level curves,16 that is, the set of
all points where the density function f admits a certain value c, possesses the
form of a sphere. In the special case when n = 2, the density function can be
plotted and the level curves look like circles. Analogously, a n-dimensional
random vector X with density function f is elliptically distributed if the
form of all level curves equals the one of an ellipse.

One can think of elliptical distributions as a special class of symmetric
distributions which possess a number of desirable properties. Examples
of elliptically distributed random variables include all multivariate normal
distributions, multivariate t-distributions, logistic distributions, Lapace dis-
tributions, and a part of the multivariate stable distributions.17 Elliptical

16The reader interested in outdoor activities such as hiking or climbing as well as
geographically interested people might know the concept of level curves from their
hiking maps, where the mountains are visualized by there iso-level lines.
17For a thorough introduction into the class of ellipitcal distribution, see Fang et al.
(1994).
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distributions with existing density function can be described by a triple
(µ, �, g),18 where µ and � play similar roles as the mean vector and the
variance-covariance matrix in the multivariate normal setting. The function
g is the so-called density generator. All three together define the density
function of the distribution as:

fX(x) = c√|�|g((x − µ)′�−1(x − µ))

where c is a normalizing constant. The reader may compare the similarity
between this expression and the density function of a multivariate normal
distribution.

1.6.8 Copula Functions

Correlation is a widespread concept in modern finance and risk management
and stands for a measure of dependence between random variables. How-
ever, this term is often incorrectly used to mean any notion of dependence.
Actually, correlation is one particular measure of dependence among many.
In the world of multivariate normal distribution and more generally in the
world of spherical and elliptical distributions, it is the accepted measure.

A major drawback of correlation is that it is not invariant under
nonlinear strictly increasing transformations. In general,

corr(T(X), T(Y)) �= corr(X, Y),

where T(x) is such transformation. One example which explains this tech-
nical requirement is the following: Assume that X and Y represent the
continuous return (log-return) of two assets over the period [0, t], where
t denotes some point of time in the future. If you know the correlation
of these two random variables, this does not imply that you know the
dependence structure between the asset prices itself because the asset prices
(P and Q for asset X and Y, respectively) are obtained by Pt = P0 exp(X)
and Qt = Q0 exp(Y), where P0 and Q0 denote the corresponding asset prices
at time 0. The asset prices are strictly increasing functions of the return
but the correlation structure is not maintained by this transformation. This
observation implies that the return could be uncorrelated whereas the prices
are strongly correlated and vice versa.

18A triple or a 3-tuple is simply the notation used by mathematicians for a group of
three elements.
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A more prevalent approach that overcomes this disadvantage is to
model dependency using copulas. As noted by Patton (2004, p. 3), ‘‘The
word copula comes from Latin for a ‘link’ or ‘bond,’ and was coined by
Sklar (1959), who first proved the theorem that a collection of marginal
distributions can be ‘coupled’ together via a copula to form a multivariate
distribution.’’ The idea is as follows. The description of the joint distribution
of a random vector is divided into two parts:

1. The specification of the marginal distributions.
2. the specification of the dependence structure by means of a special

function, called copula.

The use of copulas19 offers the following advantages:

■ The nature of dependency that can be modeled is more general. In
comparison, only linear dependence can be explained by the correlation.

■ Dependence of extreme events might be modeled.
■ Copulas are indifferent to continuously increasing transformations (not

only linear as it is true for correlations).

From a mathematical viewpoint, a copula function C is nothing more
than a probability distribution function on the n-dimensional hypercube
In = [0, 1] × [0, 1] × . . . × [0, 1]:

C : In → [0, 1]

(u1, . . . , un) → C(u1, . . . , un).

It has been shown20 that any multivariate probability distribution
function FY of some random vector Y = (Y1, . . . , Yn) can be represented
with the help of a copula function C in the following form:

FY(y1, . . . , yn) = P(Y1 ≤ y1, . . . , Yn ≤ yn) = C(P(Y1 ≤ y1), . . . , P(Yn ≤ yn))

= C(FY1 (y1), . . . , FYn (yn)),

where FYi (yi), i = 1, . . . , n denote the marginal distribution functions of the
random variables Yi, i = 1, . . . , n.

19Mikosch (2006), Embrechts and Puccetti (2006), and Rüschendorf (2004) provide
examples and further references for the application of copulas in risk management.
20The importance of copulas in the modeling of the distribution of multivariate
random variables is provided by Sklar’s theorem. The derivation was provided in
Sklar (1959).
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The copula function makes the bridge between the univariate dis-
tribution of the individual random variables and their joint probability
distribution. This justifies the fact that the copula function creates uniquely
the dependence, whereas the probability distribution of the involved random
variables is provided by their marginal distribution. By fixing the marginal
distributions and varying the copula function, we obtain all possible joint
distributions with the given marginals. The links between marginal distri-
butions and joint distributions are useful in understanding the notion of a
minimal probability metric discussed in Chapter 3.

In the remaining part of this section, we consider several examples
that illustrate further the concept behind the copula function. We noted
that the copula is just a probability distribution function and, therefore,
it can be characterized by means of a cumulative distribution function or
a probability density function. Given a copula function C, the density is
computed according to equation (1.2),21

c(u1, . . . , un) = ∂nC(u1, . . . , un)
∂u1 . . . ∂un

.

In this way, using the relationship between the copula and the distribution
function, the density of the copula can be expressed by means of the
density of the random variable. This is done by applying the chain rule of
differentiation,

c(FY1 (y1), . . . , FYn (yn)) = fY(y1, . . . , yn)
fY1 (y1) . . . fYn (yn)

. (1.4)

In this formula, the numerator contains the density of the random variable
Y and on the denominator we find the density of the Y but under the
assumption that components of Y are independent random variables. Note
that the left hand-side corresponds to the copula density but transformed
to the sample space by means of the marginal distribution functions FYi (yi),
i = 1, 2, . . . , n. The copula density of a two-dimensional normal distribution
with covariance matrix,

� =
(

1 0.8
0.8 1

)

and mean µ = (0, 0), is plotted in Figure 1.7. The contour lines of the copula
density transformed in the sample space through the marginal distribution

21The density of a copula function may not exist since not all distribution functions
possess densities. In this discussion, we consider only the copulas with a density.
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FIGURE 1.7 The copula density of a two-dimensional
normal distribution.

functions are given in Figure 1.8. Plots of the probability density function
and the contour lines of the probability density function are given in Figures
1.5 and 1.6.

Equation (1.4) reveals that, if the random variable Y has independent
components, then the density of the corresponding copula, denoted by c0,
is a constant in the unit hypercube,

c0(u1, . . . , un) = 1

and the copula C0 has the following simple form,

C0(u1, . . . , un) = u1 . . . un.

This copula characterizes stochastic independence.
Now let us consider a density c of some copula C. The formula in

equation (1.4) is a ratio of two positive quantities because the density
function can only take nonnegative values. For each value of the vector of
arguments y = (y1, . . . , yn), equation (1.4) provides information about the
degree of dependence between the events that simultaneously Yi is in a small
neighborhood of yi for i = 1, 2, . . . , n. That is, the copula density provides
information about the local structure of the dependence. With respect to the
copula density c0 characterizing the notion of independence, the arbitrary
copula density function can be either above 1, or below 1. How is this fact
related to the degree of dependence of the corresponding n events? Suppose
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that for some vector y, the right hand-side of equation (1.4) is close to zero.
This means that the numerator is much smaller than the denominator,

fY(y1, . . . , yn) < fY1 (y1) . . . fYn (yn).

As a consequence, the joint probability of the events that Yi is in a
small neighborhood of yi for i = 1, 2, . . . , n is much smaller than what it
would if the corresponding events were independent. Therefore, this case
corresponds to these events being almost disjoint; that is, with a very small
probability of occurring simultaneously.

Suppose that the converse holds, the numerator in equation (1.4) is
much larger than the denominator and, as a result, the copula density is
larger than 1. In this case,

fY(y1, . . . , yn) > fY1 (y1) . . . fYn (yn),

which means that the joint probability of the events that Yi is in a small
neighborhood of yi for i = 1, 2, . . . , n is larger than what it would if the
corresponding events were independent. Therefore, copula density values
larger than 1 mean that the corresponding events are more likely to happen
simultaneously.

This analysis indicates that the copula density function provides infor-
mation about the local dependence structure of a multidimensional random
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variable Y relative to the case of stochastic independence. Figure 1.8 provides
an illustration is the two-dimensional case. It shows the contour lines of
the surface calculated according to equation (1.4) for the two-dimensional
normal distribution considered in section 1.6.6. All points that have an
elevation above 1 have a local dependence implying that the events Y1 ∈
(y1, y1 + ε) and Y2 ∈ (y2, y2 + ε) for a small ε > 0 are likely to occur
jointly. This means that in a large sample of observations, we observe the
two events happening together more often than implied by the independence
assumption. In contrast, all points with an elevation below 1 have a local
dependence implying that the events Y1 ∈ (y1, y1 + ε) and Y2 ∈ (y2, y2 +
ε) for a small ε > 0 are likely to occur disjointly. This means that in a
large sample of observations we will observe the two events happening less
frequently than implied by the independence assumption.

1.7 PROBABILISTIC INEQUALITIES

Some of the topics discussed in the book concern a setting in which we
are not aware of the particular distribution of a random variable or the
particular joint probability distribution of a pair of random variables. In
such cases, the analysis may require us to resort to general arguments
based on certain general inequalities from the theory of probability. In this
section, we give an account of such inequalities and provide illustration
where possible.

1.7.1 Chebyshev’s Inequality

Chebyshev’s inequality provides a way to estimate the approximate proba-
bility of deviation of a random variable from its mean. Its most simple form
concerns positive random variables.

Suppose that X is a positive random variable, X > 0. The following
inequality is known as Chebyshev’s inequality,

P(X ≥ ε) ≤ EX
ε

, (1.5)

where ε > 0. In this form, equation (1.5) can be used to estimate the
probability of observing a large observation by means of the mathematical
expectation and the level ε. Chebyshev’s inequality is rough as demonstrated
geometrically in the following way. The mathematical expectation of a
positive continuous random variable admits the representation,

EX =
∫ ∞

0
P(X ≥ x)dx,
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FIGURE 1.9 Chebyshev’s inequality, a geometric
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which means that it equals the area closed between the distribution function
and the upper limit of the distribution function. This area is illustrated in
Figure 1.9 as the shaded area above the distribution function. On the other
hand, the quantity εP(X ≥ ε) = ε(1 − FX(x)) is equal to the area of the
rectangle in the upper-left corner of Figure 1.9. In effect, the inequality

εP(X ≥ ε) ≤ EX

admits the following geometric interpretation—the area of the rectangle is
smaller than the shaded area in Figure 1.9.

For an arbitrary random variable, Chebychev’s inequality takes the
form

P(|X − EX| ≥ εσX) ≤ 1
ε2

,

where σ X is the standard deviation of X and ε > 0. We use Chebyshev’s
inequality in Chapter 6 in the discussion of dispersion measures.

1.7.2 Fréchet-Hoeffding Inequality

Consider an n-dimensional random vector Y with a distribution function
FY(y1, . . . , yn). Denote by

W(y1, . . . , yn) = max(FY1 (y1) + · · · + FYn (yn) + 1 − n, 0)
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and by
M(y1, . . . , yn) = min(FY1 (y1), . . . , FYn (yn)),

in which FYi (yi) stands for the distribution function of the i-th marginal. The
following inequality is known as Fréchet-Hoeffding inequality,

W(y1, . . . , yn) ≤ FY(y1, . . . , yn) ≤ M(y1, . . . , yn). (1.6)

The quantities W(y1, . . . , yn) and M(y1, . . . , yn) are also called the
Fréchet lower bound and the Fréchet upper bound. We apply Fréchet-
Hoeffding inequality in the two-dimensional case in Chapter 3 when dis-
cussing minimal probability metrics.

Since copulas are essentially probability distributions defined on the
unit hypercube, Fréchet-Hoeffding inequality holds for them as well. In this
case, it has a simpler form because the marginal distributions are uniform.
The lower and the upper Fréchet bounds equal

W(u1, . . . , un) = max(u1 + · · · + un + 1 − n, 0)
and

M(u1, . . . , un) = min(u1, . . . , un)

respectively. Fréchet-Hoeffding inequality is given by

W(u1, . . . , un) ≤ C(u1, . . . , un) ≤ M(u1, . . . , un).

In the two-dimensional case, the inequality reduces to

max(u1 + u2 − 1, 0) ≤ C(u1, u2) ≤ min(u1, u2).

In the two-dimensional case only, the lower Fréchet bound, sometimes
referred to as the minimal copula, represents perfect negative dependence
between the two random variables. In a similar way, the upper Fréchet
bound, sometimes referred to as the maximal copula, represents perfect
positive dependence between the two random variables.

1.8 SUMMARY

We considered a number of concepts from probability theory that will be
used in later chapters in this book. We discussed the notions of a random
variable and a random vector. We considered one-dimensional and multidi-
mensional probability density and distributions functions, which completely
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characterize a given random variable or random vector. We discussed sta-
tistical moments and quantiles, which represent certain characteristics of
a random variable, and the sample moments which provide a way of
estimating the corresponding characteristics from historical data. In the
multidimensional case, we considered the notion of dependence between the
components of a random vector. We discussed the covariance matrix versus
the more general concept of a copula function. Finally, we described two
probabilistic inequalities, Chebychev’s inequality and Fréchet-Hoeffding
inequality.
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