
Introducing SQL CLR

SQL Server’s .NET integration is arguably the most important feature of SQL Server 2005 for
developers. Developers can now move their existing .NET objects closer to the database with SQL
CLR. SQL CLR provides an optimized environment for procedural- and processing-intensive tasks
that can be run in the SQL Server tier of your software’s architecture. Also, database administra-
tors need a strong knowledge of SQL CLR to assist them in making key administrative decisions
regarding it. If you ignore SQL CLR, you’re missing out on the full potential SQL Server 2005 can
offer you and your organization, thus limiting your effectiveness with the product.

SQL CLR is a very hot topic in the technical communities but also one that is frequently misunder-
stood. Unquestionably, there will be additional work devoted to SQL CLR from Microsoft and
Paul Flessner (Microsoft’s senior vice president, server applications), including the support of
future database objects being created in SQL CLR. The book you are reading is your one and only
necessary resource for commanding a strong knowledge of SQL CLR, including understanding
when to use the technology and, just as importantly, when not to use it.

What is SQL CLR?
SQL CLR is a new SQL Server feature that allows you to embed logic written in C#, VB.Net, and
other managed code into the body of T-SQL objects like stored procedures, functions, triggers,
aggregates and types. Client applications interact with these resulting routines like they are writ-
ten in native T-SQL. Internally, things like string manipulations and complex calculations become
easier to program because you are no longer restricted to using T-SQL and now have access to
structured .Net languages and the reuse of base class libraries. Externally, the logic you create is
wrapped in T-SQL prototypes so that the client application is not aware of the implementation
details. This is advantageous because you can employ SQL CLR where you need it without re-
architecting your existing client code.

With SQL CLR, you are also freed from the constraint of logic that applies only within the context
of the database. You can with appropriate permissions write logic to read and write to file systems,

04_054034 ch01.qxp 11/2/06 11:54 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

use logic contained in external COM or .Net DLLs, or process results of Web service or remoting meth-
ods. These capabilities are exciting and concerning, especially in the historical context of new feature
overuse. To help you use this new feature appropriately, we want to make sure that you understand how
it integrates with SQL Server and where this feature may be heading. In this chapter, we’ll give you this
type of overview. We’ll spend the rest of the book explaining these concepts using real-world SQL CLR
examples that you can use today.

The Evolution of SQL CLR
A few years ago, we came across a product roadmap for Visual Studio and SQL Server that mentioned a
feature that was described as “creating SQL Server programming objects in managed languages.” At the
time, we could not comprehend how this feature would work or why Microsoft had chosen to do this.
.NET 1.0 had just been released not, and to be able to use these compiled procedural languages to create
database objects just did not “compute” to us.

At the time of this writing, the year is 2006 and Microsoft SQL Server 2005 has arrived with a big roar in
the database market. CLR Integration is the official Microsoft term for the .NET Framework integration
into SQL Server. SQL CLR was the original term used by Microsoft to refer to this technology and it con-
tinues to be used predominantly in the surrounding technical communities.

Pre-SQL Server 2005 Extensibility Options
Before SQL Server 2005, there was a handful of options a database developer could implement to extend
beyond the boundaries of T-SQL. As we will discuss in this chapter, SQL CLR is almost always a better
environment for these routines. The pre-SQL Server 2005 extensible options are:

❑ Extended Stored Procedures, C/C++ DLLs that SQL Server can dynamically load, run, and
unload.

❑ sp_oa Procedures, OLE automation extended stored procedures. You can use these system pro-
cedures to invoke OLE objects. Even with the arrival of the SQL CLR technology there may be
times when you still need to use these procedures for those situations in which you must use a
Object Linking and Embedding (OLE) object.

Why Does SQL CLR Exist?
Dr. E. F. “Ted” Codd is the “father” of relational databases and thus Structured Query Language (SQL)
as well. SQL is both an American National Standards Institute (ANSI) and International Organization for
Standardization (ISO) standard. SQL (and its derivatives, including T-SQL) are set-based languages
designed to create, retrieve, update, and delete (CRUD) data that is stored in a relational database

The Common Language Runtime (CLR) is the core of the Microsoft .NET Framework,
providing the execution environment for all .NET code. SQL Server 2005 hosts the
CLR, thus the birth name of the technology “SQL CLR,” and its successor “CLR
Integration.”

2

Chapter 1

04_054034 ch01.qxp 11/2/06 11:54 AM Page 2

management system (RDBMS). SQL was and still is the natural choice when you only require basic
CRUD functionality.

There are many business problems in the real world that require much more than basic CRUD function-
ality, however. These requirements are usually fulfilled in another logical layer of a software solution’s
architecture. In today’s current technical landscape, web services, class libraries, and sometimes even
user interfaces fulfill the requirements beyond CRUD. Passing raw data across logical tiers (which some-
times can be physical tiers as well) can be undesirable, depending upon the entire solution’s require-
ments; in some cases, it may be more efficient to apply data transformations on the raw data before
passing it on to another logical tier in your architecture. SQL CLR allows the developer to extend beyond
the boundaries of T-SQL in a safer environment than what was previously available, as just discussed.
There are unlimited potential uses of SQL CLR, but the following situations are key candidates for it:

❑ Complex mathematical computations

❑ String operations

❑ Recursive operations

❑ Heavy procedural tasks

❑ Porting extended stored procedures into the safer managed code environment

The Goals of SQL CLR
The architects and designers of the CLR integration into SQL Server at Microsoft had a few objectives for
the functionality:

❑ Reliability: Managed code written by a developer should not be able to compromise the SQL
Server hosting it.

❑ Scalability: Managed code should not stop SQL Server from supporting thousands of concur-
rent user sessions, which it was designed to support.

❑ Security: managed code must adhere to standard SQL Server security practices and permis-
sions. Administrators must also be able to control the types of resources that the CLR assemblies
can access.

❑ Performance: Managed code being hosted inside SQL Server should execute just as fast as if the
code were running outside of SQL Server.

Supported SQL CLR Objects
SQL CLR objects are the database objects that a developer can create in managed code. Originally, most
people thought that SQL CLR would only allow the creation of stored procedures and functions, but
luckily there are even more database programming objects supported. As of the RTM release of SQL
Server 2005, you can create the following database objects in a managed language of your choice:

❑ Stored procedures

❑ Triggers (supporting both Data Manipulation Language [DML] and Data Definition Language
[DDL] statements)

3

Introducing SQL CLR

04_054034 ch01.qxp 11/2/06 11:54 AM Page 3

❑ User-defined Functions (UDF) (supporting both Scalar-Valued Functions [SCF] and Table-
Valued Functions [TVF])

❑ User-defined aggregates (UDA)

❑ User-defined types (UDT)

Stored procedures are stored collections of queries or logic used to fulfill a specific requirement. Stored
procedures can accept input parameters, return output parameters, and return a status value indicating
the success or failure of the procedure. Triggers are similar to stored procedures in that they are collec-
tions of stored queries used to fulfill a certain task; however, triggers are different in that they execute in
response to an event as opposed to direct invocation. Prior to SQL Server 2005, triggers only supported
INSERT,UPDATE, DELETE events, but with SQL Server 2005 they also support other events such as
CREATE TABLE.

Functions are used primarily to return either a scalar (single) value or an entire table to the calling code.
These routines are useful when you want to perform the same calculation multiple times with different
inputs. Aggregates return a single value that gets calculated from multiple inputs. Aggregates are not new
with SQL Server 2005; however, the ability to create your own is new. User-defined types provide you with
a mechanism to model your specific data beyond what the native SQL Server data types provide you with.

The .NET Architecture
The assembly is the unit of deployment for managed code in .NET, including SQL Server’s implementa-
tion of it. To understand what an assembly is, you need a fundamental understanding of the CLR (which
is the heart of the .NET Framework, providing all managed code with its execution environment). The
CLR is the Microsoft instance of the CLI standard. The CLI is an international standard developed by the
European Computer Manufactures Association (ECMA) that defines a framework for developing appli-
cations in a language agnostic manner. The CLI standard’s official name is ECMA-335, and the latest
draft of this standard, as of the time of this writing, was published in June 2005.

There are several key components of the CLI and thus the Microsoft implementation of it (the CLR and
Microsoft Intermediate Language [MSIL] code):

❑ Common Type System (CTS)

❑ Common Language Specification (CLS)

❑ Common Intermediate Language (CIL)

❑ Virtual Execution System (VES)

❑ Just-in-Time compiler (JIT)

Figure 1-1 shows how these components work together.

CTS
The CTS defines a framework for both value types and reference types (classes, pointers, and interfaces).
This framework defines how types can be declared, used, and managed. The CTS describes type safety,

4

Chapter 1

04_054034 ch01.qxp 11/2/06 11:54 AM Page 4

how types are agnostic of programming language, and high-performing code. The CTS is a core compo-
nent in supporting cross-language interoperability given the same code base. In the Microsoft .NET
context, this is implemented by the .NET Framework as well as custom types created by users (all types
in .NET must derive from System.Object).

CLS
The CLS defines an agreement between programming language and class library creators. The CLS con-
tains a subset of the CTS. The CLS serves as a baseline of CTS adoption for designers of languages and
class libraries (frameworks). In the Microsoft.NET context, this could be any .NET-supported language
including Visual Basic .NET and C#.

CIL
CIL is the output of a compiler that adheres to the CLI standard. ECMA-335 specifies the CIL instruction
set. CIL code is executed by the VES (discussed shortly). In the Microsoft .NET context, this is the code
you produce when you build a project in Visual Studio or via the command line using one of the sup-
plied compilers such as VBC for Visual Basic .NET and CSC for C#. Microsoft Intermediate Language
(MSIL) is the Microsoft instance of CIL.

VES
The VES is the execution environment for CIL code; the VES loads and runs programs written in CIL.
There are two primary pieces of input for the VES, CIL/MSIL code and metadata. In the Microsoft .NET
context, this occurs during the runtime of your .NET applications.

JIT
The JIT compiler is a subsystem of the VES, producing native CPU-specific code from CIL/MSIL code.
As its name implies, the JIT compiler compiles CIL/MSIL code at runtime as it’s requested, or just in
time. In the Microsoft.NET context, this is during runtime of your .NET applications as you instantiate
new classes and their associated methods.

How does the assembly fit into this CLI architecture? In the .NET context, it is when you compile your
source code (this is what occurs “behind the scenes” when you build a project in Visual Studio as well)
using one of the supported compilers, the container for your MSIL code is the assembly. There are two cat-
egories of assemblies in .NET: the EXE and the DLL (SQL CLR assemblies are always DLLs). Assemblies
contain both the MSIL code and an assembly manifest. Assemblies can be either single-file- or multi-file-
based. In the case of a single-file assembly, the manifest is part of the contents of the assembly. In the case
of the latter, the manifest is a separate file itself. Assemblies are used to identify, version, and secure MSIL
code; it is the manifest that enables all of these functions.

If you’re a compiler guru or you just wish to learn more about the internal workings of Microsoft’s
CLR implementation of the CLI standard, Microsoft has made the Shared Source Common Language
Infrastructure 1.0 Release kit available to the general public. You can find this limited open source ver-
sion of the CLR at www.microsoft.com/downloads/details.aspx?FamilyId=3A1C93FA-
7462-47D0-8E56-8DD34C6292F0&displaylang=en.

5

Introducing SQL CLR

04_054034 ch01.qxp 11/2/06 11:54 AM Page 5

Figure 1-1

Managed Code and Managed Languages
Code that is executed inside the CLR is called managed code. Thus, the languages that produce this code
are called managed languages. The languages are called managed because the CLR provides several run-
time services that manage the code during its execution, including resource management, type-checking,
and enforcing security. Managed code helps prevent you from creating a memory-leaking application. It
is this “managed nature” of CLR code that makes it a much more secure environment to develop in than
previous platforms.

Managed Languages
(ie Visual Basic.Net, C#)

Managed Languages
Compiler

(ie vbc.exe or csc.exe)

CPU specific instructions
01100110

MSIL code

CLR

CLI

6

Chapter 1

04_054034 ch01.qxp 11/2/06 11:54 AM Page 6

Hosting the CLR
The CLR was designed from the beginning to be hosted, but only since the arrival of SQL Server hosting
has the concept received so much attention. All Windows software today begins unmanaged, that is,
running native code. In the future, the operating system will probably provide additional CLR services
so that applications can actually begin as managed software as opposed to what we have today. Thus, in
today’s Windows environment any application that wishes to leverage the CLR and all its advantages
must host it in-process, and this means invoking it from unmanaged code. The .NET Framework
includes unmanaged application program interfaces (APIs) to enable this loading and initialization of
the CLR from unmanaged clients. It is also worthwhile to mention that the CLR supports the notion of
running multiple versions of itself side by side on the same machine, but a CLR host can only load one
version of the runtime; thus, it must decide which version to load before doing so.

There are several pieces of software that you use today that host the CLR, including ASP.NET, Internet
Explorer, and shell executables.

SQL CLR Architecture
SQL Server 2005 hosts the CLR in a “sandbox”-like environment in-process to itself, as you can see
Figure 1-2. When a user requests a SQL CLR object for the first time, SQL Server will load the .NET exe-
cution engine mscoree.dll (which is the CLR) into memory. If you were to disable SQL CLR (see
Chapter 2 for more details) at a later point in time, the hosted CLR would immediately be unloaded
from memory.

This contained CLR environment aids SQL Server in controlling key CLR operations. The CLR makes
requests to SQL Server’s operating system (SQLOS) for resources such as new threads and memory;
however, SQL Server can refuse these requests (for example, if SQL Server has met its memory restric-
tion, and doesn’t have any additional memory to allocate to the CLR). SQL Server will also monitor for
long-running CLR threads, and if one is found, SQL Server will suspend the thread.

SQLOS is not a topic for the novice; we are talking about the “guts” of SQL Server
here. SQLOS is an abstraction layer over the base operating system and its corre-
sponding hardware. SQLOS enables SQL Server (and future server applications
from Microsoft) to take advantage of new hardware breakthroughs without having
to understand each platform’s complexities and uniqueness. SQLOS enables such
concepts as locality (fully utilizing local hardware resources to support high levels
of scalability) and advanced parallelism. SQLOS is new with SQL Server 2005.

If you wish to learn more about SQLOS you can visit Slava Oks’s weblog at
http://blogs.msdn.com/slavao. Slava is a developer on the SQLOS team for
Microsoft.

7

Introducing SQL CLR

04_054034 ch01.qxp 11/2/06 11:54 AM Page 7

Figure 1-2: The SQL CLR Architecture

Application Domains
You can think of an application domain as a mini-thread, that is an execution zone. Application domains
are managed implicitly by the CLR for you. Application domains are important because if the CLR code
encounters a fatal exception, its corresponding application domain will be aborted, but not the entire
CLR process. Application domains also increase code reliability, including the SQL Server hosting of it.
All assemblies in a particular database owned by the same user form an application domain in the SQL
Server context. As new assemblies are requested at runtime they are loaded into either an existing or
new application domain.

The CLR Security Model
Microsoft’s CLR security model is called code access security (CAS). The primary goal of CAS is to pre-
vent unauthenticated code from performing tasks that should require preauthentication. The CLR iden-
tifies code and its related code groups as it loads assemblies at runtime. The code group is the entity that
assists the CLR in associating a particular assembly with a permission set. In turn, the permission set
determines what actions the code is allowed to perform. Permission sets are determined by a machine’s
administrator. If an assembly requires higher permissions that what it was granted, a security exception
is thrown.

CLR

Hosting Layer

SQL Engine

SQL OS

Windows

8

Chapter 1

04_054034 ch01.qxp 11/2/06 11:54 AM Page 8

So how does the CLR security model apply to SQL CLR? There are two methods of applying security in
SQL CLR, CAS permission sets and Role-Based Security (RBS) also known as Role-Based Impersonation
(RBI), both of which can be used to ensure that your SQL CLR objects run with the required permissions
and nothing more.

SQL CLR CAS Permission Sets
When you load your assemblies into SQL Server, you assign those assemblies a permission set. These
permission sets determine what actions the corresponding assembly can perform. There are three default
permission sets you can assign to your assemblies upon loading them into SQL Server (see Chapter 8 for
more details):

❑ SAFE indicates that computational or string algorithms as well as local data access is permitted.

❑ EXTERNAL_ACCESS inherits all permissions from SAFE plus the ability to access files, net-
works, registry, and environmental variables.

❑ UNSAFE is the same as EXTERNAL_ACCESS without some of its restrictions and includes the
ability to call unmanaged code.

RBS/RBI
RBS is useful when your SQL CLR objects attempt to access external resources. SQL Server will natively
execute all SQL CLR code under the SQL Server’s service account; this can be an erroneous approach to
enforcing security because all users of the SQL CLR object will run under the same Windows account
regardless of their individual permissions. There are specific APIs to allow SQL CLR developers to check
and impersonate the user’s security context (see Chapter 8 for more details).

RBS is only applicable when the user is logged in to SQL Server using Windows Authentication. If
your SQL CLR code determines the user is using SQL Server Authentication, it will automatically
deny them access to resources that require authentication.

Key SQL CLR Decisions
With the arrival of the SQL CLR technology, you’re now faced with several key decisions to be made
regarding when and how to use it. These key decisions are some of the hottest topics regarding the tech-
nology in the online and offline technical communities.

Using SQL CLR or T-SQL
The one decision always coming to the foreground is now, “Should I implement this object in T-SQL or
managed code?” Do not discount T-SQL just because you now have a more secure alternative in SQL CLR.
T-SQL has been greatly enhanced in SQL Server 2005. If you take away only one concept from this chapter,
let it be that SQL CLR is not a replacement for T-SQL — SQL CLR complements T-SQL. The following table
compares the various attributes of each environment.

9

Introducing SQL CLR

04_054034 ch01.qxp 11/2/06 11:54 AM Page 9

Attribute T-SQL SQL CLR

Code Execution Interpreted Compiled

Code Model Set-Based Procedural-Based

Access to subset of the .NET No Yes
Framework Base Class Libraries (BCL)

SQL Server Access Direct Access In-Process Provider

Support Complex types No Yes

Parameter Support Input and Output Input and Output
Parameters Parameters

Be aware that the CLR natively does not support VarChar or Timestamp datatypes.

Based on this information, you can draw some general conclusions about when to use T-SQL for a solu-
tion and when to employ SQL CLR: In general, if you are performing basic CRUD functionality you
should use traditional T-SQL for these tasks; for anything else, such as intensive cursor processing,
accessing external resources, you should use SQL CLR.

Using SQL CLR or Extended Stored Procedures
Extended Stored Procedures (XPs) are typically written in C/C++ against the SQL Server Extended
Procedure API, and produce a DLL that SQL Server can load, execute, and unload at runtime. XPs are
notorious for causing memory leaks and compromising the integrity of the SQL Server process. In addi-
tion, XPs will not be supported in future versions of SQL Server. SQL CLR provides a much safer alter-
native to using XPs. We recommend that all new development that requires such functionality employ
SQL CLR and not XPs. We also recommend that you immediately begin the process of converting your
existing XPs to the CLR (see Chapter 4 for more details).

One of the strongest reasons to adopt SQL CLR is to port existing XPs to the safer environment of
the CLR.

Using SQL CLR or OLE Automation Procedures
Since SQL Server 6.5 standard edition, SQL Server has supported the functionality of calling Component
Object Model (COM) objects from within T-SQL; this feature is known as OLE Automation. OLE
Automation is implemented in SQL Server using several XPs prefixed with sp_oa, oa meaning OLE
Automation. By leveraging these XPs in your T-SQL code you can instantiate objects, get or set proper-
ties, call methods, and destroy objects.

Similarly to using XPs, the COM objects you invoke with sp_oa run in the same address space as the
database engine, which creates the possibility of compromising the entire database engine. OLE
Automation has been known to cause memory leaks too; there have been knowledge base articles from
Microsoft about these XPs leaking memory natively without poor coding techniques. So again, the main
benefit of SQL CLR as compared to older technologies is stability and security.

10

Chapter 1

04_054034 ch01.qxp 11/2/06 11:54 AM Page 10

Using the Data Tier or Application Tier for Business Logic
Prior to SQL Server 2005, business logic would typically reside on another server in the form of a COM
object or a web service. With the advent of SQL CLR middle-tier developers now have a choice regard-
ing where they want their routines to “reside.” When you’re deciding where your business logic should
be placed, there is one key issue you must consider: the cost of bandwidth versus the cost of computing
resources. Generally speaking, you are going to want to consider leveraging SQL CLR for your business
logic when your data access returns a lot of data. On the other hand, when your business logic returns
minimal data, it probably makes more sense not to employ SQL CLR. Again, the key here is which
resources do you have more of, and which resource do you wish to use to support your business logic
processing? Maybe you have excessive amounts of bandwidth to spare, but your SQL Server’s CPUs and
memory are already maxed out. In this case, it may still make more sense to send a lot of data across the
wire as you would have done previously.

The other consideration is whether or not you wish to keep your business logic close to the database to
help promote its global use. Typically, developers will create a logical middle tier to encapsulate their
business logic, but one drawback of this approach is that your business logic is not as “close” to the
database it’s accessing. If you were to employ SQL CLR for your business logic it would help, but not
enforce, your middle-tier logics use. The bottom line here is that each environment and software solution
is unique, but these are the issues you should be contemplating when making these crucial decisions.

SQL CLR Barriers of Entry
Not only are there crucial decisions that must be made about a new technology, but there are also barri-
ers of entry in order to properly use and obtain the benefit provided by the technology. SQL CLR is no
different in this aspect. There are security, implementation, performance, and maintenance tasks that
should be addressed.

Security Considerations
We realize that security from a developer’s standpoint is more of a nuisance and you’d rather leave this
task to the DBAs. But our experience as DBAs tell us that security is a from-the-ground-up thought pro-
cess with TSQL and even more so with SQL CLR. If you’re a developer, we have some shocking news:
you are going to have to understand SQL CLR security because it’s very important in dictating what
your assemblies are allowed to do. Organizations that are successful in deploying SQL CLR assemblies
will foster teamwork between its DBAs and developers (more than the typical organization does).

As an example of the concepts that you’ll be deciding about the security of SQL CLR code is how TSQL
and SQL CLR will enforce and respect security between shared calls. Links or Comingling is the term
assigned to the relationship formed between T-SQL and managed code calling one another. You should
already be aware of CAS permission sets as they were briefly covered earlier in the chapter, as well as
Role-Based Impersonation. You have also heard a bit about application domains; just be aware that
application domains, in a security context, are important because they form a level of isolation for your
managed code. So, if a piece of SQL CLR tries to perform an illegal operation, the entire application
domain gets unloaded. Bottom line, security is always important, but in the SQL CLR context an open
dialogue between both developers and DBAs is even more important. Chapter 9 will explore SQL CLR
security in depth.

11

Introducing SQL CLR

04_054034 ch01.qxp 11/2/06 11:54 AM Page 11

The DBA Perspective on SQL CLR
The DBA is typically very cautious about giving developers flexibility, as they should be. One piece of
poorly written code could compromise the entire SQL Server instance executing it. As we previously men-
tioned, XPs are notorious for causing SQL Server problems, and this has contributed to DBAs enforcing
strong policies on developers. After all, the DBA is ultimately responsible for the overall health of a SQL
Server, and not the developers.

SQL CLR’s arrival is forcing DBAs to consider the question of “should I enable this thing or not?” It has
been our experience with SQL Server 2005 thus far that DBAs will leave this feature turned off unless it
is explicitly required to fulfill certain requirements of the organization. SQL CLR is turned off, by default
upon a fresh installation of SQL Server 2005, part of Microsoft’s “secure by default” strategy.

Although leaving SQL CLR off is not necessarily a bad option, we also think enabling SQL CLR and
restricting what your developers can do via CAS permissions is a better solution. By allowing (and even
promoting) SQL CLR in your SQL Server environment, developers will have a safe, secure, and managed
alternative to T-SQL with permissions designated by you. After reading this book, DBAs will be well
equipped to be proactive about SQL CLR and at the same time be confident in what you are allowing
your developers to do with the technology.

Implementation Considerations
Before you even think about using SQL CLR (whether you’re a DBA or developer), you must learn either
VB.NET or C#. This is not an option. VB.NET and C# are the only officially supported SQL CLR lan-
guages. (Managed C++ is somewhere in between not supported and supported, because it does have a
Visual Studio template for SQL CLR projects, but it must also be compiled with a special /safe switch
for reliability). We encourage you to explore using other managed languages for creating SQL CLR
objects, but be aware that they are not officially supported as of the time of this writing.

Logically you’re probably now wondering what we mean by officially supported managed languages.
Remember, all managed code gets translated into MSIL, so really we are misleading you here. The lan-
guage you choose is largely about a choice of syntax, but what is supported and not supported is what
your managed code does and what types it uses. The reason VB.NET and C# are the officially supported
managed languages for SQL CLR is that they have built-in project templates that are guaranteed to gen-
erate code that is safe for SQL CLR execution. If you create a new VB.NET/C# Database/SQL Server
project, and select “Add Reference,” you will notice that not all of the .NET Framework classes or types
appear which brings us to the next implementation point. You do not have access to the complete .NET
Framework Base Class Library (BCL) in SQL CLR, as most people presume. In reality, you have access to
a subset of the BCL that adheres to the SQL Server host requirements.

Host Protection Attributes (HPAs) are the implementation for a CLR host’s requirements, which deter-
mine what types can be used when the CLR is hosted as opposed to when the CLR is running natively.
Additionally, HPAs become more important when coupled with the various CAS permission sets you
can apply to your SQL Server assemblies. For now, just understand that there are CLR host require-
ments, which assist SQL Server in determining if it should allow the use of a particular type or not.

If you use an unsupported managed language to create an assembly that you then load into SQL Server
as an UNSAFE assembly and that assembly does not adhere to the HPAs, the assembly could attempt
an operation that could threaten the stability of the SQL Server hosting it. Any time the stability of

12

Chapter 1

04_054034 ch01.qxp 11/2/06 11:54 AM Page 12

SQL Server is threatened by an assembly, the offending assembly’s entire application domain gets
unloaded. This fact goes a long way in proving that stability was designed and implemented well in
SQL CLR.

Finally, there is the relation of the CAS permission sets to implementation considerations (which we
started to discuss above). The CAS permission set assigned to your SQL CLR assemblies will ultimately
determine just how much you can do in the assembly. One of the most common questions about SQL CLR
is whether you can call native code in a SQL CLR assembly. The answer is based on the permission set
assigned to the assembly. In Chapter 3, we will thoroughly go through all of this material, but realize that
if you assign the UNSAFE permission set to an assembly it can attempt practically any operation (includ-
ing calling native code). Whether the host of the CLR executes “allows” it or not is another matter.

Performance Considerations
Performance is always important, but even more so when you’re talking about code running inside of a
relational database engine designed to handle thousands of concurrent requests. Consider these SQL
CLR performance issues:

First and foremost, if your routine simply needs to perform basic relational data access, it will always
perform better when implemented in T-SQL than in SQL CLR. If there is a “no brainer” performance
decision relating to SQL CLR, it is when your code just needs to perform CRUD functionality, use T-SQL
100% every time.

Second, transactions are important for your SQL CLR performance considerations. By default, all SQL
CLR code is enlisted in the current transaction of the T-SQL code that called it. Thus, if you have a long-
running SQL CLR routine, your entire transaction will be that much longer. The point is, be very hesitant
about creating long-running routines in SQL CLR (see Chapter 3 for more details on the handling of
transactions).

Last, once you have elected to use SQL CLR for a particular routine, be aware of the various resources
you have at your disposal to monitor SQL CLR performance (see Chapter 9 for more information). These
resources include:

❑ System and Dynamic Management Views

❑ SQL Trace Events (captured with SQL Server Profiler or system stored procedures for custom
monitoring needs)

❑ Performance Counters

Maintenance Considerations
If we had a dollar for every SQL Server instance we have worked on that was poorly maintained . . . we
wouldn’t be rich, but we’d be well off. Databases can easily become unwieldy beasts if you don’t take a
proactive approach to maintenance (this is usually the case when we work on SQL Server installations
that did not have an official DBA assigned to them). SQL CLR assemblies and their related database
objects are no different.

The DBA is usually the title of the person in an organization who is responsible for database mainte-
nance, so naturally this aspect of SQL CLR is going to affect him or her more than the developer. If the

13

Introducing SQL CLR

04_054034 ch01.qxp 11/2/06 11:54 AM Page 13

DBA chooses to enable SQL CLR in one of the SQL Servers, he or she should also be willing to keep track
and monitor the inventory of SQL CLR assemblies. Not only would it be a serious security risk to allow
developers to “push” SQL CLR assemblies to a production box without first consulting the DBA, but
you could also end up with potentially hundreds of assemblies stored in your database that no one uses
anymore or even knows their purpose.

SQL Server 2005 SQL CLR support
All nonportable editions of SQL Server 2005 support SQL CLR, including SQL Server Express. We also
found that SQL Server 2005 Mobile does not offer similar functionality via hosting the .NET Compact
Framework’s CLR in-process on portable devices. We will be using the Express edition of SQL Server 2005
for the creation of our code samples in this book. SQL Server Express is the free successor to MSDE (the
older SQL Server 2000–based engine that had a workload governor on it to limit concurrent access). SQL
Server Express can be found at http://msdn.microsoft.com/vstudio/express/sql. In addition,
there is a free management tool built explicitly for the Express edition called SQL Server Management
Studio Express, which can also be found at http://msdn.microsoft.com/vstudio/express/sql.
The following are the system requirements for SQL Server Express:

Resource Required Recommended

Processor 600-megahertz (MHz) Pentium III–compatible 1–gigahertz (GHz) or faster
or faster processor processor

Operating Windows XP with Service Pack 2 or later N/A
System Windows 2000 Server with Service Pack 4 or later

Windows Server 2003 Standard, Enterprise, or
Datacenter editions
Windows Server 2003 Web Edition Service Pack 1
Windows Small Business Server 2003 with
Service Pack 1 or later

Memory 192 megabytes (MB) of RAM 512 megabytes (MB)

Hard Disk Approximately 350 MB of available hard-disk Approximately 425 MB of
Drive space for the recommended installation additional available hard-disk

space for SQL Server Books
Online, SQL Server Mobile Books
Online, and sample databases

Display Super VGA (1,024x768) or higher-resolution N/A
video adapter and monitor

Visual Studio 2005 SQL CLR support
Visual Studio 2005 is the preferred development environment to create, debug, and deploy your SQL
CLR routines in, however Visual Studio 2005 is not required. You could even use Notepad to create your
source code, compile the source code with your managed language’s corresponding command-line com-
piler, and then manually deploy it to SQL Server. If you do wish to use Visual Studio 2005, you will need

14

Chapter 1

04_054034 ch01.qxp 11/2/06 11:54 AM Page 14

at least the Professional Edition of Visual Studio 2005 to be able to create, deploy, and debug your SQL
CLR objects in Visual Studio. Thus, you need either Visual Studio Professional Edition, Visual Studio
Tools for Office, or Visual Studio Team System. We will be using the Professional Edition of Visual
Studio 2005 for the creation of our code samples in this book. The following are the requirements for
Visual Studio 2005 Professional Edition:

Resource Recommended

Processor 600 mHz

Operating System Windows XP with Service Pack 2 or later
Windows XP Professional x64 Edition (WOW)
Windows Server 2003 with Service Pack 1
Windows Server 2003 x64 Edition (WOW)
Windows Server 2003R2
Windows Server 2003R2 x64 Edition (WOW)
Windows Vista

Memory 192 MB of RAM or more

Hard Disk 2 GB available

Drive DVD-ROM drive

Required Namespaces for SQL CLR Objects
There are four namespaces required to support the creation of SQL CLR objects. The required name-
spaces are:

❑ System.Data

❑ System.Data.Sql

❑ System.Data.SqlTypes

❑ Microsoft.SqlServer.Server

All of these namespaces physically reside in the System.Data assembly. System.Data is part
of the BCL of the .NET Framework and resides in both the Global Assembly Cache (GAC) as well as
in the .NET 2 Framework directory: C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\
System.Data.dll.

System.Data is automatically referenced for you when using Visual Studio 2005 for creating your
SQL CLR objects. Also, the above-mentioned namespaces are automatically imported for you as well.

Summary
In this introductory chapter, we have covered a lot of information that you need to comprehend before
you begin creating your SQL CLR objects. You learned of the database objects you can create in the SQL
CLR technology. We have shown the architecture of the .NET Framework and when it is being hosted by

15

Introducing SQL CLR

04_054034 ch01.qxp 11/2/06 11:54 AM Page 15

SQL Server. We have addressed the biggest decisions developers and administrators have to make
regarding SQL CLR. We also wanted to inform you that we are using SQL Server Express coupled with
Visual Studio Professional for the production of this book’s sample code, we choose these editions of the
tools because they are the “lightest” editions of each product that support the SQL CLR technology, and
we feel the vast majority of Microsoft developers use Visual Studio as opposed to the command-line
compilers. Now that you have a strong foundation in how .NET and SQL CLR works, its time to begin
creating your first SQL CLR objects. In Chapter 2, we are going to be covering how to create, deploy, and
debug a managed stored procedure.

16

Chapter 1

04_054034 ch01.qxp 11/2/06 11:54 AM Page 16

