
Chapter 1

Architecting Speed

Sophisticated tool optimizations are often not good enough to meet most design

constraints if an arbitrary coding style is used. This chapter discusses the first of

three primary physical characteristics of a digital design: speed. This chapter also

discusses methods for architectural optimization in an FPGA.

There are three primary definitions of speed depending on the context of the

problem: throughput, latency, and timing. In the context of processing data in an

FPGA, throughput refers to the amount of data that is processed per clock cycle.

A common metric for throughput is bits per second. Latency refers to the time

between data input and processed data output. The typical metric for latency will

be time or clock cycles. Timing refers to the logic delays between sequential

elements. When we say a design does not “meet timing,” we mean that the delay

of the critical path, that is, the largest delay between flip-flops (composed of

combinatorial delay, clk-to-out delay, routing delay, setup timing, clock skew,

and so on) is greater than the target clock period. The standard metrics for timing

are clock period and frequency.

During the course of this chapter, we will discuss the following topics in detail:

. High-throughput architectures for maximizing the number of bits per

second that can be processed by the design.

. Low-latency architectures for minimizing the delay from the input of a

module to the output.

. Timing optimizations to reduce the combinatorial delay of the critical path.

Adding register layers to divide combinatorial logic structures.

Parallel structures for separating sequentially executed operations into

parallel operations.

Flattening logic structures specific to priority encoded signals.

Register balancing to redistribute combinatorial logic around pipelined

registers.

Reordering paths to divert operations in a critical path to a noncritical path.

1

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.

CO
PYRIG

HTED
 M

ATERIA
L



1.1 HIGH THROUGHPUT

A high-throughput design is one that is concerned with the steady-state data rate

but less concerned about the time any specific piece of data requires to propagate

through the design (latency). The idea with a high-throughput design is the same

idea Ford came up with to manufacture automobiles in great quantities: an assem-

bly line. In the world of digital design where data is processed, we refer to this

under a more abstract term: pipeline.

A pipelined design conceptually works very similar to an assembly line in

that the raw material or data input enters the front end, is passed through various

stages of manipulation and processing, and then exits as a finished product or data

output. The beauty of a pipelined design is that new data can begin processing

before the prior data has finished, much like cars are processed on an assembly

line. Pipelines are used in nearly all very-high-performance devices, and the

variety of specific architectures is unlimited. Examples include CPU instruction

sets, network protocol stacks, encryption engines, and so on.

From an algorithmic perspective, an important concept in a pipelined design

is that of “unrolling the loop.” As an example, consider the following piece of

code that would most likely be used in a software implementation for finding the

third power of X. Note that the term “software” here refers to code that is targeted

at a set of procedural instructions that will be executed on a microprocessor.

XPower = 1;
for (i=0;i < 3; i++)

XPower = X * XPower;

Note that the above code is an iterative algorithm. The same variables and

addresses are accessed until the computation is complete. There is no use for par-

allelism because a microprocessor only executes one instruction at a time (for the

purpose of argument, just consider a single core processor). A similar implemen-

tation can be created in hardware. Consider the following Verilog implementation

of the same algorithm (output scaling not considered):

module power3(
output [7:0] XPower,
output finished,
input [7:0] X,
input clk, start); // the duration of start is a

single clock
reg [7:0] ncount;
reg [7:0] XPower;

assign finished = (ncount == 0);

always@(posedge clk)
if(start) begin

XPower <= X;
ncount <= 2;

end

2 Chapter 1 Architecting Speed



else if(!finished) begin
ncount <= ncount - 1;
XPower <= XPower * X;

end
endmodule

In the above example, the same register and computational resources are reused

until the computation is finished as shown in Figure 1.1.

With this type of iterative implementation, no new computations can begin

until the previous computation has completed. This iterative scheme is very

similar to a software implementation. Also note that certain handshaking signals

are required to indicate the beginning and completion of a computation. An

external module must also use the handshaking to pass new data to the module

and receive a completed calculation. The performance of this implementation is

Throughput ¼ 8/3, or 2.7 bits/clock

Latency ¼ 3 clocks

Timing ¼ One multiplier delay in the critical path

Contrast this with a pipelined version of the same algorithm:

module power3(
output reg [7:0] XPower,
input clk,
input [7:0] X
);
reg [7:0] XPower1, XPower2;
reg [7:0] X1, X2;
always @(posedge clk) begin

// Pipeline stage 1
X1 <= X;
XPower1 <= X;

// Pipeline stage 2
X2 <= X1;
XPower2 <= XPower1 * X1;

// Pipeline stage 3
XPower <= XPower2 * X2;

end
endmodule

Figure 1.1 Iterative implementation.

1.1 High Throughput 3



In the above implementation, the value of X is passed to both pipeline stages

where independent resources compute the corresponding multiply operation. Note

that while X is being used to calculate the final power of 3 in the second pipeline

stage, the next value of X can be sent to the first pipeline stage as shown in

Figure 1.2.

Both the final calculation of X3 (XPower3 resources) and the first calculation

of the next value of X (XPower2 resources) occur simultaneously. The perform-

ance of this design is

Throughput ¼ 8/1, or 8 bits/clock

Latency ¼ 3 clocks

Timing ¼ One multiplier delay in the critical path

The throughput performance increased by a factor of 3 over the iterative

implementation. In general, if an algorithm requiring n iterative loops is

“unrolled,” the pipelined implementation will exhibit a throughput performance

increase of a factor of n. There was no penalty in terms of latency as the pipelined

implementation still required 3 clocks to propagate the final computation. Like-

wise, there was no timing penalty as the critical path still contained only one

multiplier.

Unrolling an iterative loop increases throughput.

The penalty to pay for unrolling loops such as this is an increase in area. The

iterative implementation required a single register and multiplier (along with some

control logic not shown in the diagram), whereas the pipelined implementation

required a separate register for both X and XPower and a separate multiplier for

every pipeline stage. Optimizations for area are discussed in the Chapter 2.

The penalty for unrolling an iterative loop is a proportional increase in area.

1.2 LOW LATENCY

A low-latency design is one that passes the data from the input to the output as

quickly as possible by minimizing the intermediate processing delays. Oftentimes,

a low-latency design will require parallelisms, removal of pipelining, and logical

short cuts that may reduce the throughput or the max clock speed in a design.

Figure 1.2 Pipelined implementation.

4 Chapter 1 Architecting Speed



Referring back to our power-of-3 example, there is no obvious latency optim-

ization to be made to the iterative implementation as each successive multiply

operation must be registered for the next operation. The pipelined implemen-

tation, however, has a clear path to reducing latency. Note that at each pipeline

stage, the product of each multiply must wait until the next clock edge before it is

propagated to the next stage. By removing the pipeline registers, we can minimize

the input to output timing:

module power3(
output [7:0] XPower,
input [7:0] X
);
reg [7:0] XPower1, XPower2;
reg [7:0] X1, X2;

assign XPower = XPower2 * X2;

always @* begin
X1 = X;
XPower1 = X;

end

always @* begin
X2 = X1;
XPower2 = XPower1*X1;

end
endmodule

In the above example, the registers were stripped out of the pipeline. Each stage

is a combinatorial expression of the previous as shown in Figure 1.3.

The performance of this design is

Throughput ¼ 8 bits/clock (assuming one new input per clock)

Latency ¼ Between one and two multiplier delays, 0 clocks

Timing ¼ Two multiplier delays in the critical path

By removing the pipeline registers, we have reduced the latency of this design

below a single clock cycle.

Latency can be reduced by removing pipeline registers.

The penalty is clearly in the timing. Previous implementations could theoreti-

cally run the system clock period close to the delay of a single multiplier, but in the

Figure 1.3 Low-latency implementation.

1.2 Low Latency 5



low-latency implementation, the clock period must be at least two multiplier delays

(depending on the implementation) plus any external logic in the critical path.

The penalty for removing pipeline registers is an increase in combinatorial delay

between registers.

1.3 TIMING

Timing refers to the clock speed of a design. The maximum delay between any

two sequential elements in a design will determine the max clock speed. The idea

of clock speed exists on a lower level of abstraction than the speed/area trade-offs

discussed elsewhere in this chapter as clock speed in general is not directly

related to these topologies, although trade-offs within these architectures will cer-

tainly have an impact on timing. For example, one cannot know whether a pipe-

lined topology will run faster than an iterative without knowing the details of the

implementation. The maximum speed, or maximum frequency, can be defined

according to the straightforward and well-known maximum-frequency equation

(ignoring clock-to-clock jitter):

Equation 1.1 Maximum Frequency

Fmax ¼
1

Tclk�q þ Tlog ic þ Trouting þ Tsetup � Tskew

(1:1)

where Fmax is maximum allowable frequency for clock; Tclk-q is time from clock

arrival until data arrives at Q; Tlogic is propagation delay through logic between

flip-flops; Trouting is routing delay between flip-flops; Tsetup is minimum time data

must arrive at D before the next rising edge of clock (setup time); and Tskew is

propagation delay of clock between the launch flip-flop and the capture flip-flop.

The next sections describes various methods and trade-offs required to

improve timing performance.

1.3.1 Add Register Layers

The first strategy for architectural timing improvements is to add intermediate

layers of registers to the critical path. This technique should be used in highly

pipelined designs where an additional clock cycle latency does not violate the

design specifications, and the overall functionality will not be affected by the

further addition of registers.

For instance, assume the architecture for the following FIR (Finite Impulse

Response) implementation does not meet timing:

module fir(
output [7:0] Y,
input [7:0] A, B, C, X,
input clk,

6 Chapter 1 Architecting Speed



input validsample);
reg [7:0] X1, X2, Y;

always @(posedge clk)
if(validsample) begin

X1 <= X;
X2 <= X1;
Y <= A* X+B* X1+C* X2;

end
endmodule

Architecturally, all multiply/add operations occur in one clock cycle as

shown in Figure 1.4.

In other words, the critical path of one multiplier and one adder is greater

than the minimum clock period requirement. Assuming the latency requirement is

not fixed at 1 clock, we can further pipeline this design by adding extra registers

intermediate to the multipliers. The first layer is easy: just add a pipeline layer

between the multipliers and the adder:

module fir(
output [7:0] Y,
input [7:0] A, B, C, X,
input clk,
input validsample);
reg [7:0] X1, X2, Y;
reg [7:0] prod1, prod2, prod3;

always @ (posedge clk) begin
if(validsample) begin

X1 <= X;
X2 <= X1;
prod1 <= A * X;
prod2 <= B * X1;
prod3 <= C * X2;

end

Y <= prod1 + prod2 + prod3;
end

endmodule

Figure 1.4 MAC with long path.

1.3 Timing 7



In the above example, the adder was separated from the multipliers with a pipe-

line stage as shown in Figure 1.5.

Multipliers are good candidates for pipelining because the calculations can

easily be broken up into stages. Additional pipelining is possible by breaking the

multipliers and adders up into stages that can be individually registered.

Adding register layers improves timing by dividing the critical path into two paths

of smaller delay.

Various implementations of these functions are covered in other chapters, but

once the architecture has been broken up into stages, additional pipelining is as

straightforward as the above example.

1.3.2 Parallel Structures

The second strategy for architectural timing improvements is to reorganize the

critical path such that logic structures are implemented in parallel. This technique

should be used whenever a function that currently evaluates through a serial

string of logic can be broken up and evaluated in parallel. For instance, assume

that the standard pipelined power-of-3 design discussed in previous sections does

not meet timing. To create parallel structures, we can break the multipliers into

independent operations and then recombine them. For instance, an 8-bit binary

multiplier can be represented by nibbles A and B:

X ¼ {A, B};

where A is the most significant nibble and B is the least significant:
Because the multiplicand is equal to the multiplier in our power-of-3

example, the multiply operation can be reorganized as follows:

X � X ¼ {A, B} � {A, B} ¼ {(A � A), (2 � A � B), (B � B)};

This reduces our problem to a series of 4-bit multiplications and then recombining

the products. This can be implemented with the following module:

module power3(
output [7:0] XPower,

Figure 1.5 Pipeline registers added.

8 Chapter 1 Architecting Speed



input [7:0] X,
input clk);
reg [7:0] XPower1;
// partial product registers
reg [3:0] XPower2_ppAA, XPower2_ppAB, XPower2_ppBB;
reg [3:0] XPower3_ppAA, XPower3_ppAB, XPower3_ppBB;
reg [7:0] X1, X2;
wire [7:0] XPower2;

// nibbles for partial products (A is MS nibble, B is LS
nibble)

wire [3:0] XPower1_A = XPower1[7:4];
wire [3:0] XPower1_B = XPower1[3:0];
wire [3:0] X1_A = X1[7:4];
wire [3:0] X1_B = X1[3:0];
wire [3:0] XPower2_A = XPower2[7:4];
wire [3:0] XPower2_B = XPower2[3:0];
wire [3:0] X2_A = X2[7:4];
wire [3:0] X2_B = X2[3:0];

// assemble partial products
assign XPower2 = (XPower2_ppAA << 8)+

(2*XPower2_ppAB << 4)+
XPower2_ppBB;

assign XPower = (XPower3_ppAA << 8)+
(2*XPower3_ppAB << 4)+
XPower3_ppBB;

always @(posedge clk) begin

// Pipeline stage 1
X1 <= X;
XPower1 <= X;

// Pipeline stage 2
X2 <= X1;
// create partial products
XPower2_ppAA <= XPower1_A * X1_A;
XPower2_ppAB <= XPower1_A * X1_B;
XPower2_ppBB <= XPower1_B * X1_B;

// Pipeline stage 3
// create partial products
XPower3_ppAA <= XPower2_A * X2_A;
XPower3_ppAB <= XPower2_A * X2_B;
XPower3_ppBB <= XPower2_B * X2_B;

end
endmodule

This design does not take into consideration any overflow issues, but it serves to

illustrate the point. The multiplier was broken down into smaller functions that

could be operated on independently as shown in Figure 1.6.

1.3 Timing 9



By breaking the multiply operation down into smaller operations that can

execute in parallel, the maximum delay is reduced to the longest delay through

any of the substructures.

Separating a logic function into a number of smaller functions that can be

evaluated in parallel reduces the path delay to the longest of the substuctures.

1.3.3 Flatten Logic Structures

The third strategy for architectural timing improvements is to flatten logic structures.

This is closely related to the idea of parallel structures defined in the previous section

but applies specifically to logic that is chained due to priority encoding. Typically,

synthesis and layout tools are smart enough to duplicate logic to reduce fanout, but

they are not smart enough to break up logic structures that are coded in a serial

fashion, nor do they have enough information relating to the priority requirements of

the design. For instance, consider the following control signals coming from an

address decode that are used to write four registers:

module regwrite(
output reg [3:0] rout,
input clk, in,
input [3:0] ctrl);

always @(posedge clk)
if(ctrl[0]) rout[0] <= in;
else if(ctrl[1]) rout[1] <= in;
else if(ctrl[2]) rout[2] <= in;
else if(ctrl[3]) rout[3] <= in;

endmodule

In the above example, each of the control signals are coded with a priority rela-

tive to the other control signals. This type of priority encoding is implemented as

shown in Figure 1.7.

Figure 1.6 Multiplier with separated stages.

10 Chapter 1 Architecting Speed



If the control lines are strobes from an address decoder in another module,

then each strobe is mutually exclusive to the others as they all represent a unique

address. However, here we have coded this as if it were a priority decision. Due

to the nature of the control signals, the above code will operate exactly as if it

were coded in a parallel fashion, but it is unlikely the synthesis tool will be smart

enough to recognize that, particularly if the address decode takes place behind

another layer of registers.

To remove the priority and thereby flatten the logic, we can code this module

as shown below:

module regwrite(
output reg [3:0] rout,
input clk, in,
input [3:0] ctrl);

always @(posedge clk) begin
if(ctrl[0]) rout[0] <= in;
if(ctrl[1]) rout[1] <= in;
if(ctrl[2]) rout[2] <= in;
if(ctrl[3]) rout[3] <= in;

end
endmodule

As can be seen in the gate-level implementation, no priority logic is used as

shown in Figure 1.8. Each of the control signals acts independently and controls

its corresponding rout bits independently.

By removing priority encodings where they are not needed, the logic structure is

flattened and the path delay is reduced.

Figure 1.7 Priority encoding.

1.3 Timing 11



1.3.4 Register Balancing

The fourth strategy is called register balancing. Conceptually, the idea is to redis-

tribute logic evenly between registers to minimize the worst-case delay between

any two registers. This technique should be used whenever logic is highly imbal-

anced between the critical path and an adjacent path. Because the clock speed is

limited by only the worst-case path, it may only take one small change to success-

fully rebalance the critical logic.

Many synthesis tools also have an optimization called register balancing. This

feature will essentially recognize specific structures and reposition registers around

logic in a predetermined fashion. This can be useful for common structures such

as large multipliers but is limited and will not change your logic nor recognize

custom functionality. Depending on the technology, it may require more expensive

synthesis tools to implement. Thus, it is very important to understand this concept

and have the ability to redistribute logic in custom logic structures.

Figure 1.8 No priority encoding.

12 Chapter 1 Architecting Speed



Note the following code for an adder that adds three 8-bit inputs:

module adder(
output reg [7:0] Sum,
input [7:0] A, B, C,
input clk);
reg [7:0] rA, rB, rC;

always @(posedge clk) begin
rA <= A;
rB <= B;
rC <= C;
Sum <= rA + rB + rC;

end
endmodule

The first register stage consists of rA, rB, and rC, and the second stage consists of

Sum. The logic between stages 1 and 2 is the adder for all inputs, whereas

the logic between the input and the first register stage contains no logic (assume

the outputs feeding this module are registered) as shown in Figure 1.9.

If the critical path is defined through the adder, some of the logic in the criti-

cal path can be moved back a stage, thereby balancing the logic load between the

two register stages. Consider the following modification where one of the add

operations is moved back a stage:

module adder(
output reg [7:0] Sum,
input [7:0] A, B, C,
input clk);
reg [7:0] rABSum, rC;

Figure 1.9 Registered adder.

1.3 Timing 13



always @(posedge clk) begin
rABSum <= A + B;
rC <= C;
Sum <= rABSum + rC;

end
endmodule

We have now moved one of the add operations back one stage between the input

and the first register stage. This balances the logic between the pipeline stages

and reduces the critical path as shown in Figure 1.10.

Register balancing improves timing by moving combinatorial logic from the

critical path to an adjacent path.

1.3.5 Reorder Paths

The fifth strategy is to reorder the paths in the data flow to minimize the critical

path. This technique should be used whenever multiple paths combine with the

critical path, and the combined path can be reordered such that the critical path

can be moved closer to the destination register. With this strategy, we will only

be concerned with the logic paths between any given set of registers. Consider the

following module:

module randomlogic(
output reg [7:0] Out,
input [7:0] A, B, C,
input clk,
input Cond1, Cond2);

always @(posedge clk)
if(Cond1)
Out <= A;

else if(Cond2 && (C < 8))
Out <= B;

else
Out <= C;

endmodule

Figure 1.10 Registers balanced.

14 Chapter 1 Architecting Speed



In this case, let us assume the critical path is between C and Out and consists of a

comparator in series with two gates before reaching the decision mux. This is

shown in Figure 1.11. Assuming the conditions are not mutually exclusive, we

can modify the code to reorder the long delay of the comparitor:

module randomlogic(
output reg [7:0] Out,
input [7:0] A, B, C,
input clk,
input Cond1, Cond2);
wire CondB = (Cond2 & !Cond1);

always @(posedge clk)
if(CondB && (C < 8))

Out <= B;
else if(Cond1)

Out <= A;
else

Out <= C;

endmodule

By reorganizing the code, we have moved one of the gates out of the critical path

in series with the comparator as shown in Figure 1.12. Thus, by paying careful

Figure 1.11 Long critical path.

Figure 1.12 Logic reordered to reduce critical path.

1.3 Timing 15



attention to exactly how a particular function is coded, we can have a direct

impact on timing performance.

Timing can be improved by reordering paths that are combined with the critical

path in such a way that some of the critical path logic is placed closer to the des-

tination register.

1.4 SUMMARY OF KEY POINTS

. A high-throughput architecture is one that maximizes the number of bits

per second that can be processed by a design.

. Unrolling an iterative loop increases throughput.

. The penalty for unrolling an iterative loop is a proportional increase in

area.

. A low-latency architecture is one that minimizes the delay from the input

of a module to the output.

. Latency can be reduced by removing pipeline registers.

. The penalty for removing pipeline registers is an increase in combinatorial

delay between registers.

. Timing refers to the clock speed of a design. A design meets timing when

the maximum delay between any two sequential elements is smaller than

the minimum clock period.

. Adding register layers improves timing by dividing the critical path into

two paths of smaller delay.

. Separating a logic function into a number of smaller functions that can be

evaluated in parallel reduces the path delay to the longest of the

substructures.

. By removing priority encodings where they are not needed, the logic struc-

ture is flattened, and the path delay is reduced.

. Register balancing improves timing by moving combinatorial logic from

the critical path to an adjacent path.

. Timing can be improved by reordering paths that are combined with the

critical path in such a way that some of the critical path logic is placed

closer to the destination register.

16 Chapter 1 Architecting Speed


