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1.1 INTRODUCTION

Several landmark experimental paradigms have shown the feasibility of using neuropros-

thetic devices to restore motor function and control in individuals who are “locked in” or

have lost the ability to control movement of their limbs [1–19]. In these experiments,

researchers seek to both rehabilitate and augment the performance of neural–motor

systems using brain–machine interfaces (BMIs) that transfer the intent of the individual

(as collected from the cortex) into control commands for prosthetic limbs and/or compu-

ters. Brain–machine interface research has been strongly motivated by the need to help the

more than 2 million individuals in the United States suffering from a wide variety of

neurological disorders that include spinal cord injury and diseases of the peripheral

nervous system [20]. While the symptoms and causes of these disabilities are diverse,

one characteristic is common in many of these neurological conditions: Normal function-

ing of the brain remains intact. If the brain is spared from injury and control signals can be

extracted, the BMI problem becomes one of finding optimal signal processing techniques

to efficiently and accurately convert these signals into operative control commands.

A variety of noninvasive and invasive techniques have been used to collect control

signals from the cortex. Some of the earliest brain–computer interfaces (BCIs) utilized

electrical potentials collected from the scalp through the use of electroencephalography

(EEG) [21]. This approach to interfacing individuals with machines has the appeal of a

low threshold of clinical use since no surgical procedures are required to install the

sensors detecting the control signals. Additionally, EEG hardware technology is at a

stage where it is relatively inexpensive, portable, and easy to use. In terms of ease of

access to the neurophysiology, EEG is an attractive choice; however, in terms of signal

processing, this approach has been limited to basic communication capabilities with a

computer screen and suffers from a low bandwidth (a few bits per second). The fundamen-

tal difficulty of using EEG for BCI is due to the “spatiotemporal filtering” of neuronal

activity resulting from the different conductivities of the scalp, skull, and dura, which

limits the signal-to-noise ratio of the time series and blurs the localization of the neural

population firings [22]. Long training sessions are often required for BCI users to learn

to modulate their neuronal activity, and users can respond only after minutes of concen-

tration. Another approach to noninvasively collecting control signals is through the use
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of near-infrared (NIR) spectroscopy, which uses the scattering of light to detect blood oxy-

genation [23]. Like EEG, NIR spectroscopy is also a noninvasive technology with relatively

course spatial resolution, however the temporal resolution is on the order of tens of milli-

seconds. To overcome the difficulties of recording control signals through the skull,

researchers have moved to using a more invasive technique of measuring EEG on the

surface of the brain with the electrocorticogram (ECoG). By placing dense arrays directly

upon the motor cortex, this approach has the appeal of increasing the spatial resolution of

EEG, and studies are now underway to assess the utility of the collected signals [24].

Recently, invasive techniques that utilize multiple arrays of microelectrodes that are chroni-

cally implanted into the cortical tissue have shown the most promise for restoring motor

function to disabled individuals [10]. It has been shown that the firing rates of single

cells collected from multiple cortices contain precise information about the motor intent

of the individual. A variety of experimental paradigms have demonstrated that awake,

behaving primates can learn to control external devices with high accuracy using optimal

signal processing algorithms to interpret the modulation of neuronal activity as collected

from the microelectrode arrays. A recent special issue of the IEEE Transactions on Biome-

dical Engineering (June 2004) provides a very good overview of the state of the art.

A conceptual drawing of a BMI is depicted in Figure 1.1, where neural activity from

hundreds of cells is recorded (step 1), conditioned (step 2), and translated (step 3) directly

into hand position (HP), hand velocity (HV), and hand gripping force (GF) of a prosthetic

arm or cursor control for a computer. The focus of this chapter is centered on step 3 of the

diagram where we will use optimal signal processing techniques to find the functional

relationship between neuronal activity and behavior. From an optimal signal processing

point of view, BMI modeling in step 3 is a challenging task because of several factors:

the intrinsic partial access to the motor cortex information due to the spatial subsampling

of the neural activity, the unknown aspects of neural coding, the huge dimensionality of the

problem, the noisy nature of the signal pickup, and the need for real-time signal processing

algorithms. The problem is further complicated by the need for good generalization in non-

stationary environments, which is dependent upon model topologies, fitting criteria, and

training algorithms. Finally, we must contend with reconstruction accuracy, which is

linked to our choice of linear-versus-nonlinear and feedforward-versus-feedback models.

Since the basic biological and engineering challenges associated with optimal signal

processing for BMI experiments requires a highly interdisciplinary knowledgebase invol-

ving neuroscience, electrical and computer engineering, and biomechanics, the BMI mod-

eling problem will be addressed in several steps. First, an overview of the pioneering

modeling approaches will give the reader depth into what has been accomplished in

this area of research. Second, we will familiarize the reader with characteristics of the

Figure 1.1 Conceptual drawing of BMI components.
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neural recordings that the signal processing methods utilize. Third, we cover in detail the

current approaches to modeling in BMIs. Finally, real implementations of optimal models

for BMIs will be presented and their performance compared.

1.2 HISTORICAL OVERVIEW OF BMI
APPROACHES/MODELS

The foundations of BMI research were probed in the early 1980s by E. Schmidt and

E. Fetz, who were interested in finding out if it was possible to use neural recordings

from the motor cortex of a primate to control an external device [1, 25]. In this pioneering

work, Schmidt measured how well primates could be conditioned to modulate the firing

patterns of single cortical cells using a series of eight target lamps each symbolizing a cel-

lular firing rate that the primate was required to produce. The study did confirm that a

primate was able to modulate neural firing to match the target rates and additionally esti-

mated the information transfer rate in the neural recordings to be half that of using the

intact motor system as the output. With this result, Schmidt proposed that engineered inter-

faces could be designed to use modulations of neural firing rates as control signals.

Shortly after Schmidt [1] published his results, Georgopoulos et al. [2] presented a

theory for neural population coding of hand kinematics as well as a method for reconstruct-

ing hand trajectories called the population vector algorithm (PVA) [3]. Using center-out

reaching tasks, Georgopoulos proposed that each cell in the motor cortex has a “preferred

hand direction” for which it fires maximally and the distribution of cellular firing over a

range of movement directions could be characterized by a simple cosine function [2].

In this theory, arm movements were shown to be constructed by a population “voting”

process among the cells; each cell makes a vectoral contribution to the overall movement

in its preferred direction with magnitude proportional to the cell’s average firing rate [26].

Schmidt’s proof of concept and Georgopoulos et al.’s BMI application to reaching

tasks spawned a variety of studies implementing “out-of-the-box” signal processing mod-

eling approaches. One of the most notable studies by Chapin et al. [6] showed that a recur-

rent neural network could be used to translate the neural activity of 21–46 neurons of rats

trained to obtain water by pressing a lever with their paw. The usefulness of this BMI was

demonstrated when the animals routinely stopped physically moving their limbs to obtain

the water reward. Also in the neural network class, Lin et al. [27] used a self-organizing

map (SOM) that clustered neurons with similar firing patters which then indicated move-

ment directions for a spiral drawing task. Borrowing from control theory, Kalaska et al.

[28] proposed the use for forward- and inverse-control architectures for reaching move-

ments. Also during this period other researchers presented interpretations of population

coding which included a probability-based population coding from Sanger [29] and

muscle-based cellular tuning from Mussa-Ivaldi [30].

Almost 20 years after Schmidt’s [1] and Georgopoulos et al.’s initial experiments,

Wessberg and colleagues [10] presented the next major advancement in BMIs [2, 3] by

demonstrating a real (nonportable) neuroprosthetic device in which the neuronal activity

of a primate was used to control a robotic arm [10]. This research group hypothesized that

the information needed for the BMI is distributed across several cortices and therefore

neuronal activity was collected from 100 cells in multiple cortical areas (premotor,

primary motor, and posterior parietal) while the primate performed a three-dimensional

(3D) feeding (reaching) task. Linear and nonlinear signal processing techniques including

a frequency-domain Wiener filter (WF) and a time delay neural network (TDNN) were

used to estimate hand position. Trajectory estimates were then transferred via the Internet

to a local robot and a robot located at another university.
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In parallel with the work of Nicolelis [20], Serruya and colleagues [14] presented a

contrasting view of BMIs by showing that a 2D computer cursor control task could be

achieved using only a few neurons (7–30) located only in the primary motor cortex of a

primate. The WF signal processing methodology was again implemented here; however

this paradigm was closed loop since the primate received instant visual feedback from

the cursor position output from the WF. The novelty of this experiment results from the

primate’s opportunity to incorporate the signal processing model into its motor processing.

The final BMI approach we briefly review is from Andersen’s research group, which

showed that the endpoint of hand reaching can be estimated using a Bayesian probabilistic

method [31]. Neural recordings were taken from the parietal reach region (PRR) since they

are believed to encode the planning and target of hand motor tasks. Using this hypothesis

this research group devised a paradigm in which a primate was cued to move its hand to

rectangular grid target locations presented on a computer screen. The neural-to-motor

translation involves computing the likelihood of neural activity given a particular target.

While this technique has been shown to accurately predict the endpoint of hand reaching,

it differs for the aforementioned techniques by not accounting for the hand trajectory.

1.3 CHARACTERISTICS OF NEURAL RECORDINGS

One of the most important steps in implementing optimal signal processing technique for

any application is data analysis. Here the reader should take note that optimality in the

signal processing technique is predicated on the matching between the statistics of the

data match and the a priori assumptions inherent in any signal processing technique

[32]. In the case of BMIs, the statistical properties of the neural recordings and the analysis

of neural ensemble data are not fully understood. Hence, this lack of information means

that the neural–motor translation is not guaranteed to be the best possible, even if

optimal signal processing is utilized (because the criterion for optimality may not

match the data properties). Despite this reality, through the development of new neuronal

data analysis techniques we can improve the match between neural recordings and BMI

design [33, 34]. For this reason, it is important for the reader to be familiar with the charac-

teristics of neural recordings that would be encountered.

The process of extracting signals from the motor, premotor, and parietal cortices of a

behaving animal involves the implantation of subdural microwire electrode arrays into the

brain tissue (usually layer V) [10]. At this point, the reader should be aware that current

BMI studies involve the sampling of a minuscule fraction of motor cortex activity

(tens to hundreds of cortical cells recorded from motor-related areas that are estimated

to contain 100 million neurons) [35]. Each microwire measures the potentials (action

potentials) resulting from ionic current exchanges across the membranes of neurons

locally surrounding the electrode. Typical cellular potentials as shown in Figure 1.2a

have magnitudes ranging from hundreds of microvolts to tens of millivolts and time

durations of tens to a couple of milliseconds [34]. Since action potentials are so short in

duration, it is common to treat them as point processes where the continuous voltage wave-

form is converted into a series of time stamps indicating the instance in time when the

spike occurred. Using the time stamps, a series of pulses (spikes—zeros or ones) can be

used to visualize the activity of each neuron; this time series shown in Figure 1.2b is

referred to as a spike train. The spike trains of neural ensembles are sparse, nonstationary,

and discontinuous. While the statistical properties of neural recordings can vary depending

on the sample area, animal, and behavior paradigm, in general spike trains are assumed to

have a Poisson distribution [33]. To reduce the sparsity in neuronal recordings, a method
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of binning is used to count the number of spikes in 100-ms nonoverlapping windows as

shown in Figure 1.2c. This method greatly reduces the number of zeros in the digitized

time series and also provides a time-to-amplitude conversion of the firing events. Even

with the binning procedure, the data remain extremely sparse. In order for the reader to

assess the degree of sparsity and nonstationarity in BMI data, we present in Table 1.1

observations from a 25-min BMI experiment recorded at the Nicolelis’s laboratory at

Duke University. From the table we can see that the percentage of zeros can be as high

as 80% indicating that the data are extremely sparse. Next we compute the firing rate

for each cell in nonoverlapping 1-min windows and compute the average across all

cells. The ensemble of cells used in this analysis primarily contains low firing rates

given by the small ensemble average. Additionally we can see the time variability of

the 1-min ensemble average given by the associated standard deviation.

In Figure 1.3, the average firing rate of the ensemble (computed in nonoverlapping

60-s windows) is tracked for a 38-min session. From minute to minute, the mean value in

the firing rate can change drastically depending on the movement being performed. Ideally

we would like our optimal signal processing techniques to capture the changes observed in

Figure 1.3. However, the reader should be aware that any of the out-of-the-box signal pro-

cessing techniques such as WFs and artificial neural networks assume stationary statistics

TABLE 1.1 Neuronal Activity for 25-min Recording Session

Percentage of

zeros

Average firing rate

(spikes/cell/min)

3D reaching task (104 cells) 86 0.25 + 0.03

2D cursor control task (185 cells) 60 0.69 + 0.02

Figure 1.2 Spike-binning process: (a) cellular potentials; (b) a spike train; (c) bin count for single

cell; (d ) ensemble of bin counts.
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over time, which means that the derived neural-to-motor mapping will not be optimal

unless the window size is very well controlled. More importantly, any performance evalu-

ations and model interpretations drawn by the experimenter can be biased by the mismatch

between data and model type.

1.4 MODELING PROBLEM

The models implemented in BMIs must learn to interpret neuronal activity and accurately

translate it into commands for a robot that mimic the intended motor behavior. By analyz-

ing recordings of neural activity collected simultaneously with behavior, the aim is to find

a functional relationship between neural activity and the kinematic variables of position,

velocity, acceleration, and force. An important question here is how to choose the class of

functions and model topologies that best match the data while being sufficiently powerful

to create a mapping from neuronal activity to a variety of behaviors. As a guide, prior

knowledge about the nervous system can be used to help develop this relationship.

Since the experimental paradigm involves modeling two related multidimensional time

variables (neural firing and behavior), we are directed to a general class of input–

output (I/O) models. Within this class there are several candidate models available, and

based on the amount of neurophysiological information that is utilized about the

system, an appropriate modeling approach can be chosen. Three types of I/O models

based on the amount of prior knowledge exist in the literature [36]:

. “White Box” The model is perfectly known (except for the parameters) and based on

physical insight and observations.

. “Gray Box” Some physical insight is available but the model is not totally specified

and other parameters need to be determined from the data.

Figure 1.3 Time-varying statistics of neuronal recordings for two behaviors.
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. “Black Box” Little or no physical insight is available or used to choose the model, so

the chosen model is picked on other grounds (e.g., robustness, easy implementation).

The choice of white, gray, or black box is dependent upon our ability to access and

measure signals at various levels of the motor system as well as the computational cost

of implementing the model in our current computing hardware.

The first modeling approach, white box, would require the highest level of physio-

logical detail. Starting with behavior and tracing back, the system comprises muscles, per-

ipheral nerves, the spinal cord, and ultimately the brain. This is a daunting task of system

modeling due to the complexity, interconnectivity, and dimensionality of the involved

neural structures. Model implementation would require the parameterization of a complete

motor system [37] that includes the cortex, cerebellum, basal ganglia, thalamus, corticosp-

inal tracts, and motor units. Since all of the details of each component/subcomponent of

the described motor system remain unknown and are the subject of study for many neu-

rophysiological research groups around the world, it is not presently feasible to implement

white-box BMIs. Even if it was possible to parameterize the system to some high level of

detail, the task of implementing the system in our state-of-the-art computers and digital

signal processors (DSPs) would be an extremely demanding task.

The gray-box model requires a reduced level of physical insight. In the gray-box

approach, one could take a particularly important feature of the motor nervous system,

incorporate this knowledge into the model, and then use data to determine the rest of the

unknown parameters. Two examples of gray-box models can be found in the BMI

literature. One of the most common examples is Georgopoulos’s PVA [3]. Using obser-

vations that cortical neuronal firing rates were dependent on the direction of arm movement,

a model was formulated to incorporate the weighted sum of the neuronal firing rates. The

weights of the model are then determined from the neural and behavioral recordings. A

second example is given by Todorov, who extended the PVA by observed multiple corre-

lations of M1 firing with movement position, velocity, acceleration, force exerted on an

object, visual target position, movement preparation, and joint configuration [7, 8]. With

these observations, Todorov [42] proposed a minimal, linear model that relates the

delayed firings in M1 to the sum of many mechanistic variables (position, velocity, accel-

eration, and force of the hand). Todorov’s model is intrinsically a generative model [16, 43].

Using knowledge about the relationship between arm kinematics and neural activity, the

states (preferably the feature space of Todorov) of linear or nonlinear dynamical systems

can be assigned. This methodology is supported by a well-known training procedure devel-

oped by Kalman for the linear case [44] and has been recently extended to the nonlinear

case under the graphical models or Bayesian network frameworks. Since the formulation

of generative models is recursive in nature, it is believed that the model is well suited for

learning about motor systems because the states are all intrinsically related in time.

The last I/O model presented is the black-box model for BMIs. In this case, it is

assumed that no physical insight is available for the model. The foundations of this

type of time-series modeling were laid by Norbert Wiener for applications of gun

control during World War II [45]. While military gun control applications may not

seem to have a natural connection to BMIs, Wiener provided the tools for building

models that correlate unspecified time-series inputs (in our case neuronal firing rates)

and outputs (hand/arm movements). While this WF is topographically similar to the

PVA, it is interesting to note that it was developed more than 30 years before Georgopou-

los was developing his linear model relating neuronal activity to arm movement direction.

The three I/O modeling abstractions have gained large support from the scientific

community and are also a well-established methodology in control theory for system
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identification [32]. Here we will concentrate on the last two types, which have been

applied by engineers for many years to a wide variety of applications and have proven

that the methods produce viable phenomenological descriptions when properly applied

[46, 47]. One of the advantages of the techniques is that they quickly find, with relatively

simple algorithms, optimal mappings (in the sense of minimum error power) between

different time series using a nonparametric approach (i.e., without requiring a specific

model for the time-series generation). These advantages have to be counterweighted by

the abstract (nonstructural) level of the modeling and the many difficulties of the

method, such as determining what a reasonable fit, a model order, and a topology are to

appropriately represent the relationships among the input and desired response time series.

1.4.1 Gray Box

1.4.1.1 Population Vector Algorithm The first model discussed is the PVA, which

assumes that a cell’s firing rate is a function of the velocity vector associated with the

movement performed by the individual. The PVA model is given by

sn(V) ¼ bn
0 þ bn

xvx þ bn
yvy þ bn

z vz ¼ B �V ¼ jBjjVj cos u (1:1)

where the firing rate s for neuron n is a weighted (bn
x,y,z ) sum of the vectoral components

(vx,y,z ) of the unit velocity vector V of the hand plus the mean firing rate b0
n. The relationship

in (1.1) is the inner product between the velocity vector of the movement and the weight

vector for each neuron. The inner product (i.e., spiking rate) of this relationship becomes

maximum when the weight vector B is collinear with the velocity vector V. At this point,

the weight vector B can be thought of as the cell’s preferred direction for firing since it indi-

cates the direction for which the neuron’s activity will be maximum. The weights bn can be

determined by multiple regression techniques [3]. Each neuron makes a vectoral contri-

bution w in the direction of Pi with magnitude given in (1.2). The resulting population

vector or movement is given by (1.3), where the reconstructed movement at time t is

simply the sum of each neuron’s preferred direction weighted by the firing rate:

wn(V, t) ¼ sn(V)� bn
0 (1:2)

P(V, t) ¼
XN

n¼1

wn(V, t)
Bn

kBnk
(1:3)

It should be noted that the PVA approach includes several assumptions whose appropriate-

ness in the context of neural physiology and motor control will be considered here. First,

each cell is considered independently in its contribution to the kinematic trajectory. The

formulation does not consider feedback of the neuronal firing patterns—a feature found

in real interconnected neural architectures. Second, neuronal firing counts are linearly

combined to reproduce the trajectory. At this point, it remains unknown how the neural

activation of nonlinear functions will be necessary for complex movement trajectories.

1.4.1.2 Todorov’s Mechanistic Model An extension to the PVA has been proposed

by Todorov [42], who considered multiple correlations of M1 firing with movement vel-

ocity and acceleration, position, force exerted on an object, visual target position, move-

ment preparation, and joint configuration [2, 4, 10, 12–15, 38–41]. Todorov advanced the

alternative hypothesis that the neural correlates with kinematic variables are epipheno-

mena of muscle activation stimulated by neural activation. Using studies showing that

M1 contains multiple, overlapping representations of arm muscles and forms dense
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corticospinal projections to the spinal cord and is involved with the triggering of motor

programs and modulation of spinal reflexes [35], Todorov [42] proposed a minimal,

linear model that relates the delayed firings in M1 to the sum of mechanistic variables

(position, velocity, acceleration, and force of the hand). Todorov’s model takes the form

Us(t � D) ¼ F�1GF(t)þ mHA(t)þ bHV(t)þ kHP(t) (1:4)

where the neural population vector U is scaled by the neural activity s(t) and is related to

the scaled kinematic properties of gripping force GF(t), hand acceleration HA(t), velocity

HV(t), and position HP(t).1 From the BMI experimental setup, spatial samplings (in the

hundred of neurons) of the input s(t) and the hand position, velocity, and acceleartion are

collected synchronously; therefore the problem is one of finding the appropriate constants

using a system identification framework [32]. Todorov’s model in (1.4) assumes a first-

order force production model and a local linear approximation to multijoint kinematics

that may be too restrictive for BMIs. The mechanistic model for neural control of

motor activity given in (1.4) involves a dynamical system where the output variables,

position, velocity, acceleration, and force, of the motor system are driven by an high-

dimensional input signal that is comprised of delayed ensemble neural activity [42]. In

this interpretation of (1.4), the neural activity can be viewed as the cause of the

changes in the mechanical variables and the system will be performing the decoding. In

an alternative interpretation of Eq. (1.4), one can regard the neural activity as a distributed

representation of the mechanical activity, and the system will be performing generative

modeling. Next, a more general state space model implementation, the Kalman filter,

will be presented. This filter corresponds to the representation interpretation of Todorov’s

model for neural control. Todorov’s model clearly builds upon the PVA and can explain

multiple neuronal and kinematic correlations; however, it is still a linear model of a

potentially nonlinear system.

1.4.1.3 Kalman Filter A variety of Bayesian encoding/decoding approaches have

been implemented in BMI applications [12, 16, 48]. In this framework, model designs

have been developed based upon various assumptions that include the Kalman filter

(linear, Gaussian model), extended Kalman filter (EKF, nonlinear, Gaussian model),

and particle filter (PF, linear/nonlinear, Poisson model). Our discussion will begin with

the most basic of the Bayesian approaches: the Kalman filter. This approach assumes a

linear relationship between hand motion states and neural firing rates as well as Gaussian

noise in the observed firing activity. The Kalman formulation attempts to estimate the state

x(t) of a linear dynamical system as shown in Figure 1.4. For BMI applications, we define

the states as the hand position, velocity, and acceleration, which are governed by a linear

dynamical equation, as shown in

x(t) ¼ ½HP(t) HV(t) HA(t)�
T

(1:5)

where HP, HV, and HA are the hand position, velocity, and acceleration vectors,2 respect-

ively. The Kalman formulation consists of a generative model for the data specified by the

linear dynamic equation for the state in

x(t þ 1) ¼ Ax(t)þ u(t) (1:6)

1The mechanistic model reduces to the PVA if the force, acceleration, and position terms are removed and

neurons are independently considered.
2The state vector is of dimension 9þ N; each kinematic variable contains an x, y, and z component plus the

dimensionality of the neural ensemble.
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where u(t) is assumed to be a zero-mean Gaussian noise term with covariance U. The

output mapping (from state to spike trains) for this BMI linear system is simply

s(t) ¼ Cx(t)þ v(t) (1:7)

where v(t) is the zero-mean Gaussian measurement noise with covariance V and s is a

vector consisting of the neuron firing patterns binned in nonoverlapping windows. In

this specific formulation, the output-mapping matrix C has dimensions N � 9. Alterna-

tively, we could have also included the spike counts of N neurons in the state vector as

f1, . . . , fN. This specific formulation would exploit the fact that the future hand position

is a function of not only the current hand position, velocity, and acceleration but also

the current cortical firing patterns. However, this advantage comes at the cost of large

training set requirements, since this extended model would contain many more parameters

to be optimized. To train the topology given in Figure 1.4, L training samples of x(t) and

s(t) are utilized, and the model parameters A and U as given in (1.6) are determined using

least squares. The optimization problem to be solved is given by

A ¼ arg min
A

XL�1

t¼1

kx(t þ 1)� Ax(t)k2 (1:8)

The solution to this optimization problem is found to be

A ¼ X1XT
0 (X1XT

1 )�1 (1:9)

where the matrices are defined as X0 ¼ ½x1 � � � xL�1�, X1 ¼ ½x2 � � � xL�. The

estimate of the covariance matrix U can then be obtained using

U ¼
(X1 � AX0)(X1 � AX0)T

L� 1
(1:10)

Once the system parameters are determined using least squares on the training data,

the model obtained (A, C, U) can be used in the Kalman filter to generate estimates of hand

positions from neuronal firing measurements. Essentially, the model proposed here

assumes a linear dynamical relationship between current and future trajectory states.

Since the Kalman filter formulation requires a reference output from the model, the

spike counts are assigned to the output, as they are the only available signals.

The Kalman filter is an adaptive state estimator (observer) where the observer

gains are optimized to minimize the state estimation error variance. In real-time

Figure 1.4 Kalman filter block diagram.
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operation, the Kalman gain matrix K (1.12) is updated using the projection of the error

covariance in (1.11) and the error covariance update in (1.14). During model testing, the

Kalman gain correction is a powerful method for decreasing estimation error. The state

in (1.13) is updated by adjusting the current state value by the error multiplied with the

Kalman gain:

P�(t þ 1) ¼ AP(t)AT þ U (1:11)

K(t þ 1) ¼ P�(t þ 1)CT(CP�(t þ 1)CT)�1 (1:12)

x̃(t þ 1) ¼ Ax̃(t)þK(t þ 1)(S(t þ 1)� CAx̃(t)) (1:13)

P(t þ 1) ¼ (I�K(t þ 1)C)P�(t þ 1) (1:14)

While the Kalman filter equations provide a closed-form decoding procedure for

linear Gaussian models, we have to consider the fact that the relationship between neur-

onal activity and behavior may be nonlinear. Moreover, measured neuronal firing often

follows Poisson distributions. The consequences for such a mismatch between the

model and the real system will be expressed as additional errors in the final position

estimates. To cope with this problem, we need to go beyond the linear Gaussian

model assumption. In principle, for an arbitrary nonlinear dynamical system with arbi-

trary known noise distributions, the internal states (HP, HV, and HA) can be estimated

from the measured outputs (neuronal activity). Algorithms designed to this end include

the EKF, the unscented Kalman filter (UKF), the PF, and their variants. All of these

algorithms basically try the complicated recursive Bayesian state estimation problem

using various simplifications and statistical techniques. In the literature, BMI research-

ers have already implemented the PF approach [16].

In this most general framework, the state and output equations can include nonlinear

functions f1(.) and f2(.) as given in

x(t þ 1) ¼ f1(x(t))þ u(t) s(t) ¼ f2(x(t))þ v(t) (1:15)

Experimental observations have shown that the measured spike trains typically follow a

Poisson distribution, which is given in

p(s(t) j x(t)) ¼
YN
n¼1

e�li(x(t))½li(x(t))�yi(t)

½si(t)�!
(1:16)

The tuning function of the ith neuron is denoted by li and si(t) is the firing count of the ith

neuron at time instant t. In order to decode neuronal activity into hand kinematics for the

nonlinear observation equations and Poission spiking models, the recursive Bayesian

estimator called the PF can be used. In this approach, we seek to recursively update the

posterior probability of the state vector given the neuronal measurements as shown in

(1.17), where St is the entire history of neuronal firing up to time t :

p(x(t)jSt) ¼ mp(s(t)jx(t))p(x(t)jSt�1) (1:17)

After some manipulations, the equivalent expression in (1.18) can be obtained [49]:

p(x(t)jSt) ¼ mp(s(t)jx(t))

ð
p(x(t)jx(t � 1))p(x(t � 1)jSt�1) dx(t � 1) (1:18)

Notice that (1.18) is essentially the recursion of the conditional state distribution that we

seek from p(x(t � 1)jSt�1) to p(x(t)jSt). Analytical evaluation of the integral on the right-

hand side is, in general, impossible. Therefore, the following simplifying assumption is

made: The conditional state distribution can be approximated by a delta train, which
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samples the continuous distribution at appropriately selected values called particles. Each

particle also has a weight associated with it that represents the probability of that particle,

as shown in Figure 1.5. The elegance of the PF approach lies in the simplification of the

integral in (1.18) to a summation. These simplifications lead to the following update

equations for the particles, their weights, and the state estimate:

xi(t þ 1) ¼ f1(xi(t)) (1:19)

~wi(t þ 1) ¼ P(s(t)jxi(t))wi(t) (1:20)

wi(t þ 1) ¼
~wi(t þ 1)P
i ~wi(t þ 1)

(1:21)

x̃(t þ 1) ¼
XN

i¼1

wi(t þ 1)xi(t þ 1) (1:22)

We have shown that, using measured position, velocity, and acceleration as states

and neuronal firing counts as model outputs within this recursive, probabilistic framework,

this approach may seem to be the best state-of-the-art method available to understand the

encoding and decoding between neural activity and hand kinematics. Unfortuntely, for

BMIs this particular formulation is faced with problems of parameter estimation. The

generative model is required to find the mapping from the low-dimensional kinematic

parameter state space to the high-dimensional output space of neuronal firing patterns

(100þ dimensions). Estimating model parameters from the collapsed space to the high-

dimensional neural state can be difficult and yield multiple solutions. Moreover, in the

BMI literature the use of the PF has only produced marginal improvements over the stan-

dard Kalman formulation, which may not justify the extra computational complexity [16].

For this modeling approach, our use of physiological knowledge and choice of modeling

framework actually complicates the mapping process. As an alternative, one could

disregard any knowledge about the system being modeled and use a strictly data-driven

methodology to build the model.

1.4.2 Black Box

1.4.2.1 Wiener Filters The first black-box model we will discuss assumes that there

exists a linear mapping between the desired hand kinematics and neuronal firing counts. In

this model, the delayed versions of the firing counts, s(t 2 l ), are the bases that construct

the output signal. Figure 1.6 shows the topology of the multiple input–multiple output

(MIMO) WF where the output yj is a weighted linear combination of the l most recent

Figure 1.5 Estimation of continuous distributions by sampling (particles).

14 CHAPTER 1 OPTIMAL SIGNAL PROCESSING FOR BRAIN–MACHINE INTERFACES



values3 of neuronal inputs s given in (1.23) [32]. Here yj can be defined to be any of the

single coordinate directions of the kinematic variables HP, HV, HA, or GF. The model

parameters are updated using the optimal linear least-squares (LS) solution that matches

the Wiener solution. The Wiener solution is given by (1.24), where R and Pj are the auto-

correlation and cross-correlation functions, respectively, and dj is hand trajectory,

velocity, or gripping force:4

yj(t) ¼Wjs(t) (1:23)

Wj ¼ R�1Pj ¼ E(sTs)�1E(sTdj) (1:24)

The autocorrelation matrix R and the cross-correlation matrix P can be estimated directly

from the data using either the autocorrelation or the covariance method [32]. Experimen-

tally we verified that the size of the data block should contain at least 10 min of recordings

for better performance. In this MIMO problem, the autocorrelation matrix is not Toeplitz,

even when the autocorrelation method is employed. One of the real dangers of computing

the WF solution to BMIs is that R may not be full rank [50]. Instead of using the Moore–

Penrose inverse, we utilize a regularized solution substituting R21 by (Rþ lI)21, where l

is the regularization constant estimated from a cross-validation set. Effectively this sol-

ution corresponds to ridge regression [51]. The computational complexity of the WF is

high for the number of input channels used in our experiments. For 100 neural channels

using 10 tap delays and three outputs, the total number of weights is 3000. This means

that one must invert a 1000 � 1000 matrix every N samples, where N is the size of the

training data block.

As is well known in adaptive filter theory [32], search procedures can be used to find

the optimal solution using gradient descent or Newton-type search algorithms. The most

widely used algorithm in this setting is the least mean-square (LMS) algorithm, which

utilizes stochastic gradient descent [32]. For real data we recommend the normalized

LMS algorithm instead,

Wj(t þ 1) ¼Wj(t)þ
h

ks(t)k
ej(t)s(t) (1:25)

where h is the step size or learning rate, e(t) ¼ dx(t) 2 yx(t) is the error, and ks(t)k is the

power of the input signal contained in the taps of the filter. Using the normalized LMS

Figure 1.6 FIR filter topology. Each neuronal input sN contains a tap delay line with l taps.

3In our studies we have observed neuronal activity correlated with behavior for up to 10 lags.
4Each neuronal input and desired trajectory for the WF was preprocessed to have a mean value of zero.
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algorithm (NLMS), the model parameters are updated incrementally at every new sample

and so the computation is greatly reduced. The step size must be experimentally deter-

mined from the data. One may think that the issues of nonstationarity are largely resolved

since the filter is always being updated, tracking the changing statistics. However, during

testing the desired response is not available so the weights of the filter have to be frozen

after training. Therefore, NLMS is still subject to the same problems as the Wiener sol-

ution, although it may provide slightly better results when properly trained (when the

data are not stationary, the LMS and the Wiener solution do not necessarily coincide [32]).

Linear filters trained with mean-square error (MSE) provide the best linear estimate

of the mapping between neural firing patterns and hand position. Even though the solution

is guaranteed to converge to the global optimum, the model assumes that the relationship

between neural activity and hand position is linear, which may not be the case. Further-

more, for large input spaces, including memory in the input introduces many extra

degrees of freedom to the model, hindering generalization capabilities.

1.4.2.2 Time Delay Neural Network Spatiotemporal nonlinear mappings of neur-

onal firing patterns to hand position can be constructed using a TDNN [52]. The TDNN

architecture consists of a tap delay line memory structure at the input in which past neur-

onal firing patterns in time can be stored, followed by a one-hidden-layer perceptron with a

linear output as shown in Figure 1.7. The output of the first hidden layer of the network can

be described with the relation y1(t) ¼ f (W1s(t)), where f (.) is the hyperbolic tangent non-

linearity ½tanh(bx)�.5 The input vector s includes l most recent spike counts from N input

neurons. In this model the nonlinear weighted and delayed versions of the firing counts

s(t 2 l ) construct the output of the hidden layer. The number of delays in the topology

should be set so that there is significant coupling between the input and desired signal.

The number of hidden processing elements (PEs) is determined through experimentation.

The output layer of the network produces the hand trajectory y2(t) using a linear combi-

nation of the hidden states and is given by y2(t) ¼W2y1(t). The weights (W1, W2) of

this network can be trained using static backpropagation6 with the MSE as the learning

criterion. This is the great advantage of this artificial neural network.

This topology is more powerful than the linear finite impulse response (FIR) filter

because it is effectively a nonlinear combination of FIR filters (as many as the number

of hidden PEs). Each of the hidden PE outputs can be thought of as a basis function

of the output space (nonlinearly adapted from the input) utilized to project the

Figure 1.7 Time delay neural network topology.

5The logistic function is another common nonlinearity used in neural networks.
6Backpropagation is a simple application of the chain rule, which propagates the gradients through the topology.
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high-dimensional data. While the nonlinear nature of the TDNN may seem as an attractive

choice for BMIs, putting memory at the input of this topology presents difficulties in train-

ing and model generalization. Adding memory to the high-dimensional neural input intro-

duces many free parameters to train. For example, if a neural ensemble contains 100

neurons with 10 delays of memory and the TDNN topology contains five hidden PEs,

5000 free parameters are introduced in the input layer alone. Large data sets and slow

learning rates are required to avoid overfitting. Untrained weights can also add variance

to the testing performance, thus decreasing accuracy.

1.4.2.3 Nonlinear Mixture of Competitive Local Linear Models The next model

topology that we will discuss is in general similar to the TDNN; however, the training pro-

cedure undertaken here is significantly different. This modeling method uses the

divide-and-conquer approach. Our reasoning is that a complex nonlinear modeling task

can be elucidated by dividing it into simpler linear modeling tasks and combining them

properly [53]. Previously, this approach was successfully applied to nonstationary

signal segmentation, assuming that a nonstationary signal is a combination of piecewise

stationary signals [54]. Hypothesizing that the neural activity will demonstrate varying

characteristics for different localities in the space of the hand trajectories, we expect the

multiple-model approach, in which each linear model specializes in a local region, to

provide a better overall I/O mapping. However, here the problem is different since the

goal is not to segment a signal but to segment the joint input/desired signal space. The

overall system archtitecture is depicted in Figure 1.8.

The local linear models can be conceived as a committee of experts each specializ-

ing in one segment of the hand trajectory space. The multilayer perceptron (MLP) is

introduced to the system in order to nonlinearly combine the predictions generated by

all the linear models. Experiments demonstrated that this nonlinear mixture of competitive

local linear models is potentially more powerful than a gated mixture of linear experts,

where only the winning expert’s opinion or their weighted sum is considered. In addition,

Figure 1.8 This topology consists of selecting a winner using integrated squared errors from each

linear model. Outputs from M trained linear models are then fed to a MLP.
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for BMI applications, it has the advantage that it does not require a selection scheme in

testing, which can only be accurately done using the desired output. For example, in a

prosthetic arm application, the desired hand position is not available in practice.

The topology allows a two-stage training procedure that can be performed

independently: first competitive learning for the local linear models and then error back-

propagation learning for the MLP. In off-line training, this can be done sequentially, where

first the local linear models are optimized and then their outputs are used as training inputs

for the following MLP. It is important to note that in this scheme both the local linear

models and the MLP are trained to approximate the same desired response, which is the

hand trajectory of the primate.

The training of the multiple linear models is accomplished by competitively (hard or

soft) updating their weights in accordance with previous approaches using the normalized

least-mean-square (NLMS) algorithm [32]. The winning model is determined by compar-

ing the (leaky) integrated squared errors of all competing models and selecting the model

that exhibits the least integrated error for the corresponding input [54]. In competitive

training, the leaky integrated squared error for the ith model is given by

1i(t) ¼ (1� m)1i(t � 1)þ me2
i (t) i ¼ 1, . . . , M (1:26)

where M is the number of models and m is the time constant of the leaky integrator. If hard

competition is employed, then only the weight vector of the winning model is updated.

Specifically, the hard-competition update rule for the weight vector of the winning

model is

wwinner(t þ 1) ¼ wwinner(t)þ
hewinner(t)s(t)

gþ ks(t)k2
(1:27)

where wwinner is the weight vector, s(t) is the current input, ewinner (t) is the instantaneous

error of the winning model, h is the learning rate, and g is the small positive constant. If

soft competition is used, a Gaussian weighting function centered at the winning model is

applied to all competing models. Every model is then updated proportional to the weight

assigned to that model by this Gaussian weighting function:

wi(t þ 1) ¼ wi(t)þ
h(t)Li, j(t)et(t)x(t)

gþ kx(t)k2
i ¼ 1, . . . ; M (1:28)

where wi is the weight vector of the ith model, the jth model is the winner, and Li,j(t) is the

weighting function

Li,j(t) ¼ exp �
d2

i,j

2s2(t)

 !
(1:29)

where di,j is the Euclidean distance between index i and j which is equal to j j 2 ij, h(t) is

the annealed learning rate, and s2(t) is the kernel width, which decreases exponentially as t

increases. The learning rate also decreases exponentially with time.

Soft competition preserves the topology of the input space by updating the models

neighboring the winner; thus it is expected to result in smoother transitions between

models specializing in topologically neighboring regions (of the state space). However,

in the experimental results, it was shown that the hard-competition rule comparisons on

data sets utilized in BMI experiments did not show any significant difference in general-

ization performance (possibly due to the nature of the data set used in these experiments).

The competitive training of the first layer of linear models to match the hand

trajectory using the neural activity creates a set of basis signals from which the following
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single hidden-layer MLP can generate accurate hand position predictions. However, this

performance is at the price of an increase in the number of free model parameters

which results from each of the local linear models (100 neurons � 10 tap delays � 3

coordinates � 10 models ¼ 30,000 parameters in the input). Additional experimentation

is necessary to evaluate the long-term performance (generalization) of such a model in

BMI applications.

1.4.2.4 Recurrent Multilayer Perceptron The final black-box BMI model dis-

cussed is potentially the most powerful because it not only contains a nonlinearity but

also includes dynamics through the use of feedback. The recurrent multilayer perceptron

(RMLP) architecture (Fig. 1.9) consists of an input layer with N neuronal input channels, a

fully connected hidden layer of PEs (in this case tanh), and an output layer of linear PEs.

Each hidden layer PE is connected to every other hidden PE using a unit time delay. In the

input layer equation (1.30), the state produced at the output of the first hidden layer is a

nonlinear function of a weighted combination (including a bias) of the current input and

the previous state. The feedback of the state allows for continuous representations on mul-

tiple time scales and effectively implements a short-term memory mechanism. Here, f (.) is

a sigmoid nonlinearity (in this case tanh), and the weight matrices W1, W2, and Wf as well

as the bias vectors b1 and b2 are again trained using synchronized neural activity and hand

position data. Each hidden PE output can be thought of as a nonlinear adaptive basis of the

output space utilized to project the high-dimensional data. These projections are then lin-

early combined to form the outputs of the RMLP that will predict the desired hand move-

ments. One of the disadvantages of the RMLP when compared with the Kalman filter is

that there is no known closed-form solution to estimate the matrices Wf, W1, and W2 in

the model; therefore, gradient descent learning is used. The RMLP can be trained with

backpropagation through time (BPTT) or real-time recurrent learning (RTRL) [55]:

y1(t) ¼ f (W1s(t)þWf y1(t � 1)þ b1) (1:30)

y2(t) ¼W2y1(t)þ b2 (1:31)

If the RMLP approach for the BMI is contrasted with Todorov’s model, one can see that

the RMLP accepts the neuronal activity (also as binned spike counts) as input and gener-

ates a prediction of the hand position using first-order internal dynamics. Although the

model output y2 can consist of only the hand position, the RMLP must learn to build an

efficient internal dynamical representation of the other mechanical variables (velocity,

Figure 1.9 Fully connected, state recurrent neural network.
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acceleration, and force) through the use of feedback. In fact, in this model, the hidden state

vector (y1) can be regarded as the RMLP representation of these mechanical variables

driven by the neural activity in the input (s). Hence, the dynamical nature of Todorov’s

model is implemented through the nonlinear feedback in the RMLP. The output layer is

responsible for extracting the position information from the representation in y1 using a

linear combination. An interesting analogy exists between the output layer weight

matrix W2 in the RMLP and the matrix U in Todorov’s model. This analogy stems from

the fact that each column of U represents a direction in the space spanning the mixture

of mechanical variables to which the corresponding individual neuron is cosine tuned,

which is a natural consequence of the inner product. Similarly, each column of W2 rep-

resents a direction in the space of hand position to which a nonlinear mixture of neuronal

activity is tuned. In general, the combination of Todorov’s theory with the use of nonli-

nearity and dynamics gives the RMLP a powerful approximating capability.

1.4.3 Generalization/Regularization/Weight Decay/
Cross Validation

The primary goal in BMI experiments is to produce the best estimates of HP, HV, and GF

from neuronal activity that has not been used to train the model. This testing performance

describes the generalization ability of the models. To achieve good generalization for a

given problem, the two first considerations to be addressed are the choice of model top-

ology and training algorithm. These choices are especially important in the design of

BMIs because performance is dependent upon how well the model deals with the large

dimensionality of the input as well as how the model generalizes in nonstationary environ-

ments. The generalization of the model can be explained in terms of the bias-variance

dilemma of machine learning [56], which is related to the number of free parameters of

a model. The MIMO structure of BMIs built for the data presented here can have as

few as several hundred to as many as several thousand free parameters. On one extreme

if the model does not contain enough parameters, there are too few degrees of freedom

to fit the function to be estimated, which results in bias errors. On the other extreme,

models with too many degrees of freedom tend to overfit the function to be estimated.

In terms of BMIs, models tend to err on the latter because of the large dimensionality of

the input. The BMI model overfitting is especially a problem in topologies where

memory is implemented at the input layer. With each new delay element, the number of

free parameters will scale with the number of input neurons as in the FIR filter and TDNN.

To handle the bias-variance dilemma, one could use the traditional Akaike or BIC

criteria; however, the MIMO structure of BMIs excludes these approaches [57]. As a

second option, during model training regularization techniques could be implemented

that attempt to reduce the value of unimportant weights to zero and effectively prune

the size of the model topology [58].

In BMI experiments we are not only faced with regularization issues but also we

must consider ill-conditioned model solutions that result from the use of finite data sets.

For example, computation of the optimal solution for the linear WF involves inverting

a poorly conditioned input correlation matrix that results from sparse neural firing data

that are highly variable. One method of dealing with this problem is to use the pseudoin-

verse. However, since we are interested in both conditioning and regularization, we chose

to use ridge regression (RR) [51] where an identity matrix is multiplied by a white-noise

variance and is added to the correlation matrix. The criterion function of RR is given by

J(w) ¼ E½kek2� þ dkwk2 (1:32)
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where w are the weights, e is the model error, and the additional term dkwk2 smooths the

cost function. The choice of the amount of regularization (d) plays an important role in the

generalization performance and for larger deltas performance can suffer because SNR is

sacrificed for smaller condition numbers. It has been proposed by Larsen et al. that d

can be optimized by minimizing the generalization error with respect to d [47]. For

other model topologies such as the TDNN, RMLP, and the LMS update for the FIR,

weight decay (WD) regularization is an on-line method of RR to minimize the criterion

function in (1.32) using the stochastic gradient, updating the weights by

w(nþ 1) ¼ w(n)þ hr(J)� dw(n) (1:33)

Both RR and WD can be viewed as the implementations of a Bayesian approach to com-

plexity control in supervised learning using a zero-mean Gaussian prior [59].

A second method that can be used to maximize the generalization of a BMI model is

called cross validation. Developments in learning theory have shown that during model

training there is a point of maximum generalization after which model performance on

unseen data will begin to deteriorate [60]. After this point the model is said to be over-

trained. To circumvent this problem, a cross-validation set can be used to indicate an

early stopping point in the training procedure. To implement this method, the training

data are divided into a training set and a cross-validation set. Periodically during model

training, the cross-validation set is used to test the performance of the model. When the

error in the validation set begins to increase, the training should be stopped.

1.5 EXAMPLES

Four examples of how optimal signal processing can be used on real behavioral and neural

recordings for the development of BMIs will now be given. The examples are focused on

comparing the performance of linear, generative, nonlinear, feedforward, and dynamical

models for the hand-reaching motor task. The four models include the FIR Wiener

filter, TDNN (the nonlinear extension to the WF), Kalman filter, and RMLP. Since each

of these models employs very different principles and has different mapping power, it

is expected that they will perform differently and the extent to which they differ will be

quantitatively compared. With these topologies, it will be shown how BMI performance

is affected by the number of free model parameters, computational complexity, and non-

linear dynamics. In the following examples, the firing times of single neurons were

recorded by researchers at Duke University while a primate performed a 3D reaching

task that involved a right-handed reach to food and subsequent placing of the food in

the mouth, as shown in Figure 1.10 [10]. Neuronal firings, binned (added) in nonoverlap-

ping windows of 100 ms, were directly used as inputs to the models. The primate’s hand

position (HP), used as the desired signal, was also recorded (with a time-shared clock) and

digitized with a 200-Hz sampling rate. Each model was trained using 20,010 consecutive

time bins (2001 s) of data.

One of the most difficult aspects of modeling for BMIs is the dimensionality of the

neuronal input (in this case 104 cells). Because of this large dimensionality, even the sim-

plest models contain topologies with thousands of free parameters. Moreover, the BMI

model is often trying to approximate relatively simple trajectories resembling sine

waves which practically can be approximated with only two free parameters. Immediately,

we are faced with avoiding overfitting the data. Large dimensionality also has an impact

on the computational complexity of the model, which can require thousands more multi-

plications, divisions, and function evaluations. This is especially a problem if we wish to
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implement the model in low-power portable DSPs. Here we will assess each of the four

BMI models in terms of their number of free parameters and computational complexity.

Model overfitting is often described in terms of prediction risk (PR), which is the

expected performance of a topology when predicting new trajectories not encountered

during training [61]. Several estimates of the PR for linear models have been proposed

in the literature [62–65]. A simple way to develop a formulation for the prediction risk

is to assume the quadratic form in (1.34), where e is the training error for a model with

F parameters and N training samples. In this quadratic formulation, we can consider an

optimal number of parameters, FOpt, that minimizes the PR. We wish to estimate how

the PR will vary with F, which can be given by a simple Taylor series expansion of

(1.34) around FOpt as performed in [65]. Manipulation of the Taylor expansion will

yield the general form in (1.35). Other formulations for the PR include the generalized

cross validation (GCV) and Akaike’s final prediction error (FPE) given in (1.36) and

(1.37). The important characteristic of (1.35)–(1.37) is that they all involve the interplay

of the number of model parameters to the number of training samples. In general, the PR

increases as the number of model parameters increases:

PR ¼ E½e2(FN)� (1:34)

PR � e2 1þ
F

N

� �
(1:35)

GCV ¼
e2

(1�F=N)2
(1:36)

FPE ¼ e2 1þF=N

1�F=N

� �
(1:37)

The formulations for the PR presented here have been extended to nonlinear models [66].

While the estimation of the PR for linear models is rather straightforward, in the case non-

linear models the formulation is complicated by two factors. First, the nonlinear

Figure 1.10 Reaching movement trajectory.
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formulation involves computing the effective number of parameters (a number that differs

from the true number of parameter in the model), which is nontrivial to estimate since it

depends on the amount of model bias, model nonlinearity, and amount of regularization

used in training [66]. Second, the formulation involves computing the noise covariance

matrix of the desired signal, another parameter that is nontrivial to compute, especially

in the context of BMI hand trajectories.

For the reaching task data set, all of the models utilize 104 neuronal inputs, as shown

in Table 1.2. The first encounter with an explosion in the number of free parameters occurs

for both the WF and TDNN since they contain a 10-tap delay line at the input. Immediately

the number of inputs is multiplied by 10. The TDNN topology has the greatest number of

free parameters, 5215, of the feedforward topologies because the neuronal tap delay

memory structure is also multiplied by the 5 hidden processing elements following the

input. The WF, which does not contain any hidden processing elements, contains 3120

free parameters. In the case of the Kalman filter, which is the largest topology, the

number of parameters explodes due to the size of the A and C matrices since they both

contain the square of the dimensionality of the 104 neuronal inputs. Finally, the RMLP

topology is the most frugal since it moves its memory structure to the hidden layer

through the use of feedback, yielding a total of 560 free parameters.

To quantify how the number of free parameters affects model training time, a

Pentium 4 class computer with 512 MB DDR RAM, the software package NeuroSolutions

for the neural networks [67], and MATLAB for computing the Kalman and Wiener sol-

ution were used to train the models. The training times of all four topologies are given

in Table 1.2. For the WF, the computation of the inverse of a 1040 � 1040 autocorrelation

matrix took 47 s in MATLAB, which is optimized for matrix computations. For the neural

networks, the complete set of data is presented to the learning algorithm in several iter-

ations called epochs. In NeuroSolutions, whose programming is based on C, 20,010

samples were presented 130 and 1000 times in 22 min, 15 s and 6 min, 35 s for the

TDNN and RMLP, respectively [67]. The TDNN was trained with backpropagation and

the RMLP was trained with BPTT [55] with a trajectory of 30 samples and learning

rates of 0.01, 0.01, and 0.001 for the input, feedback, and output layers, respectively.

Momemtum learning was also implemented with a rate of 0.7. One hundred Monte

TABLE 1.2 Model Parameters

WF TDNN Kalman filter RMLP

Training time 47 s 22 min, 15 s 2 min, 43 s 6 min, 35 s

Number of epochs 1 130 1 1000

Cross validation N/A 1000 pts. N/A 1000 pts.

Number of inputs 104 104 104 104

Number of tap delays 10 10 N/A N/A

Number of hidden PEs N/A 5 113 (states) 5

Number of outputs 3 3 9 3

Number of adapted

weights

3120 5215 12073 560

Regularization 0.1 (RR) 1 � 1025 (WD) N/A 1 � 1025 (WD)

Learning rates N/A 1 � 1024 (input) N/A 1 � 1022 (input)

1 � 1025 (output) 1 � 1022 (feedback)

1 � 1023 (output)
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Carlo simulations with different initial conditions were conducted of neuronal data to

improve the chances of obtaining the global optimum. Of all the Monte Carlo simulations,

the network with the smallest error achieved a MSE of 0.0203 + 0.0009. A small training

standard deviation indicates the network repeatedly achieved the same level of perform-

ance. Neural network training was stopped using the method of cross validation (batch

size of 1000 pts.), to maximize the generalization of the network [60]. The Kalman

proved to be the slowest to train since the update of the Kalman gain requires several

matrix multiplies and divisions. In these simulations, the number of epochs chosen was

based upon performance in a 1000-sample cross-validation set, which will be discussed

in the next section. To maximize generalization during training, ridge regression,

weight decay, and slow learning rates were also implemented.

The number of free parameters is also related to the computational complexity of each

model given in Table 1.3. The number of multiplies, adds, and function evaluations describe

how demanding the topology is for producing an output. The computational complexity

especially becomes critical when implementing the model in a low-power portable DSP,

which is the intended outcome for BMI applications. In Table 1.3 define N0, t, d, and N1

to be the number of inputs, tap delays, outputs, and hidden PEs, respectively. In this case,

only the number of multiplications and function evaluations are presented since the

number of additions is essentially identical to the number of multiplications. Again it can

be seen that demanding models contain memory in the neural input layer. With the addition

of each neuronal input the computational complexity of the WF increases by 10 and the

TDNN by 50. The Kalman filter is the most computationally complex [O((N0 þ 9)3)]

since both the state transition and output matrix contain dimensionality of the neuronal

input. For the neural networks, the number of function evaluations is not as demanding

since they contain only five for both the TDNN and RMLP. Comparing the neural

network training times also exemplifies the computational complexity of each topology;

the TDNN (the most computationally complex) requires the most training time and

allows only a hundred presentations of the training data. As a rule of thumb, to overcome

these difficulties, BMI architectures should avoid the use of memory structures at the input.

In testing, all model parameters were fixed and 3000 consecutive bins (300 s) of

novel neuronal data were fed into the models to predict new hand trajectories.

Figure 1.11 shows the output of the three topologies in the test set with 3D hand position

for one reaching movement. While only a single movement is presented for simplicity, it

can be shown that during the short period of observation (5 min) there is no noticeable

degradation of the model fitting across time. From the plots it can be seen that qualitatively

all three topologies do a fair job at capturing the reach to the food and the initial reach to

the mouth. However, both the WF and TDNN cannot maintain the peak values of HP at the

mouth position. Additionally the WF and TDNN have smooth transitions between the food

and mouth while the RMLP sharply changes its position in this region. The traditional way

to quantitatively report results in BMI is through the correlation coefficient (CC) between

TABLE 1.3 Model Computational Complexity

Multiplications Function evaluations

WF N0 � t � d N/A

TDNN N0 � t � N1 � d N1

Kalman filter O((N0 þ 9)3) N/A

RMLP N0 � N1 þ N1 � d þ N1 � N1 N1
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the actual and estimated hand position trajectories as shown in Table 1.4 which was

computed for the entire trajectory. The WF and TDNN perform similarly on average in

their CC values while the RMLP has significantly greater performance. In general, the

overall experimental performance can also depend on the movement trajectory studied,

animal, daily recording session, and variability in the neurons probed.

The reaching task which consists of a reach to food and subsequent reach to the

mouth is embedded in periods where the animal’s hand is at rest as shown by the flat tra-

jectories to the left and right of the movement. Since we are interested in how the models

perform in each mode of the movement we present CC for movement and rest periods. The

performance metrics are also computed using a sliding window of 40 samples (4 s) so that

an estimate of the standard deviation could be quantified. The window length of 40 was

selected because each movement spans about 4 s.

The reaching task testing metrics are presented in Table 1.5. It can be seen in the

table that the CC can give a misleading perspective of performance since all the models

produce approximately the same values. Nevertheless, the Kolmogorov–Smirnov

(K–S) for a p value of 0.05 is used to compare the correlation coefficients with the sim-

plest model, the WF. The TDNN, Kalman, and RMLP all produced CC values that were

significantly different than the FIR filter and the CC values itself can be used to gauge if

TABLE 1.4 Model Performance

Correlation coefficient

X Y Z

WF 0.52 0.60 0.64

TDNN 0.46 0.56 0.58

Kalman filter 0.56 0.64 0.65

RMLP 0.67 0.76 0.83

Figure 1.11 Testing performance for three reaching movements.

1.5 EXAMPLES 25



the difference is significantly better. All four models have poor resting CC values which

can be attributed to the output variability in the trajectory (i.e. there is not a strong linear

relationship between the output and desired trajectories).

1.6 PERFORMANCE DISCUSSION

With the performance results reported in these experiments we can now discuss practical

considerations when building BMIs. By far the easiest model to implement is the WF.

With its quick computation time and straightforward linear algebra mathematics it is

clearly an attractive choice for BMIs. We can also explain its function in terms of

simple weighted sums of delayed versions of the ensemble neuronal firing (i.e., it is cor-

relating neuronal activity with HP). However, from the trajectories in Figure 1.11, subplot

1, the output is noisy and does not accurately capture the details of the movement. These

errors may be attributed, first, to the solution obtained from inverting a poorly conditioned

autocorrelation matrix and, second, to the number of free parameters in the model top-

ology. While we may think that by adding nonlinearity to the WF topology as in the

TDNN we can obtain a more powerful tool, we found that the large increase in the

number of free parameters overshadowed the increase in performance. We have also

found that training the TDNN for this problem is slow and tedious and subject to

getting trapped in local minima. The next model studied, the Kalman filter, was the

most computationally complex to train and contained the largest number of free par-

ameters (see comparison in Tables 1.2 and 1.3), which resulted in noisy trajectories

similar to the linear model. Training this model involved the difficult mapping from a

lower dimensional kinematic state space to the neuronal output space as well as initial esti-

mates of the noise covariances, which are unknown to the operator. In contrast, many of

these training and performance issues can be overcome in the RMLP. With the choice of

moving the memory structure to the hidden layer, we immediately gain a reduction in the

number of free parameters. This change is not without a cost since the BPTT training

algorithm is more difficult to implement than, for example, the WF. Nevertheless, using

a combination of dynamics and nonlinearity in the hidden layer also allowed the model

to accurately capture the quick transitions in the movement as well as maintain the

peak hand positions at the mouth. Capturing these positions resulted in larger values in

the correlation coefficient. While the RMLP was able to outperform the other two topol-

ogies, it is not free from error; the output is still extremely noisy for applications of real

BMIs (imagine trying to grasp a glass of water). Additionally the negative sloping trajec-

tories for the reach to the food were not accurately captured. The search for the right mod-

eling tools and techniques to overcome the errors presented here is the subject of future

research for optimal signal processing for BMIs.

TABLE 1.5 Comparison of Reaching vs. Resting Movements

WF TDNN Kalman filter RMLP

Correlation coefficient (movement) 0.83 + 0.09 0.08 + 0.17 0.83 + 0.11 0.84 + 0.15

CC K–S test (movement) 0 1 1 1

Correlation coefficient (rest) 0.10 + 0.29 0.04 + 0.25 0.03 + 0.26 0.06 + 0.25

CC K–S test (rest) 0 1 1 1
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