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1.1 INTRODUCTION

Technologically important forms of luminescence may be split up into several categories 
(Table 1.1). Although the means by which the luminescence is excited varies, all lumines-
cence is generated by means of accelerating charges. The portion of the electromagnetic 
spectrum visible to the human eye is in wavelengths from 400 to 700 nm. The evolution of 
the relatively narrow sensitivity range of the human eye is complex, but is intimately related 
to the solar spectrum, the absorbing behavior of the terrestrial atmosphere, and the refl ecting 
properties of organic materials. Green is the dominant color in nature and, not surprisingly, 
the wavelength at which the human eye is most sensitive. In this chapter, we cover the 
physical basis for radiation and radiation sources in solids that produce visible light.

1.2 RADIATION THEORY

A stationary point charge has an associated electric fi eld E (Figure 1.1). A charge moving 
with uniform velocity relative to the observer gives rise to a magnetic fi eld (Figure 1.2).
Electric and magnetic fi elds both store energy, and the total energy density is given by
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2   LUMINESCENT MATERIALS AND APPLICATIONS

It is important to note that the energy density moves with the charge so long as the charge 
is either stationary or undergoing uniform motion; this is evident since a new reference 
frame may be constructed in which the observer is stationary with respect to the charge.

However, for an accelerated charge, energy continuously leaves the charge to compen-
sate exactly for the work done in causing the charge to accelerate. Consider the charge q 
in Figure 1.3. Initially at rest in position A, it then accelerates to position B and stops there. 
The electric fi eld lines now emanate from position B, but would, if further out, have ema-
nated from position A, since the fi eld lines cannot convey information about the location 
of the charge at speeds greater than the velocity of light c. This results in kinks in the lines 
of electric fi eld which propagate away from q with velocity c. Each time q accelerates, a 
new series of propagating kinks is generated. Each kink is made up of a component of E 
that is transverse to the direction of expansion, which we call E⊥. If the velocity of the 
charge during its acceleration does not exceed a small fraction of c, then for r:
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Table 1.1 Luminescence types, applications and typical effi ciencies (visible output power/electrical 
input power)

Luminescence type Typical application Luminous effi ciency

Blackbody radiation Tungsten fi lament lamp ~5%
Photoluminescence Fluorescent lamp ~20%
Cathodoluminescence Television screen ~10%
Electroluminescence Light-emitting diode, fl at panel display 0.1–50%

q

E

Figure 1.1 The lines of electric fi eld E due to a point charge q. Solid State Luminescence, Adrian 
Kitai, Copyright 1993 with kind permission from Springer Science and Business Media

q B

Figure 1.2 The lines of magnetic fi eld B due to a point charge q moving into the page with uniform 
velocity. Solid State Luminescence, Adrian Kitai, Copyright 1993 with kind permission from Springer 
Science and Business Media
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Here, a is acceleration, and r is the distance between the charge and the position where 
the electric fi eld is evaluated. The strongest transverse fi eld occurs in directions normal to 
the direction of acceleration (Figure 1.3).

Likewise, a transverse magnetic fi eld B⊥ is generated during the acceleration of the charge 
(Figure 1.4), given by
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The two transverse fi elds propagate outwards with velocity c each time q undergoes 
acceleration, giving rise to the electromagnetic radiation, the frequency of which matches 

B

E⊥
q

A а~

Figure 1.3 Lines of electric fi eld emanating from an accelerating charge (after Eisberg and Resnick 
[1]). Solid State Luminescence, Adrian Kitai, Copyright 1993 with kind permission from Springer 
Science and Business Media
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Figure 1.4 Lines of magnetic fi eld B emanating from an accelerating charge. B is perpendicular to 
the page. Solid State Luminescence, Adrian Kitai, Copyright 1993 with kind permission from Springer 
Science and Business Media
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the frequency with which q accelerates. Note that E⊥ and B⊥ are perpendicular to each other. 
The energy density of the radiation is
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The Poynting vector or energy fl ow per unit area (radiation intensity) is
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where r̂ is a unit radial vector.
Maximum energy is emitted in a ring perpendicular to the direction of acceleration, but 

no energy is emitted along the line of motion. To obtain the total radiated energy per unit 
time or power P leaving q due to its acceleration, we integrate S over a sphere surrounding 
q to obtain

 
P S A S r= ( ) = ( )∫∫ θ θ π θ θ

π

d d2 2

0
sin

since dA is a ring of area 2pr2 sinθqdq.
Substituting for S(q), we obtain
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1.3 SIMPLE HARMONIC RADIATOR

If a charge q moves about the origin of the x-axis with position x = A sin w t, then we can 
easily calculate the average power radiated away from the oscillating charge. Note that
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Now, average power P̄ is the root-mean-square power, which gives
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If we now consider that an equal and opposite stationary charge –q is located at x = 0, 
then we have a dipole radiator with electric dipole moment of amplitude p = qA. Now we 
may write
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Non-oscillatory radiation also exists; the synchroton radiation source is an example of a 
radiator that relies on the constant centripetal acceleration of an orbiting charge. Quadrupole 
and higher-order poles may exist, even in the absence of a dipole moment, but they have 
lower rates of energy release.

1.4 QUANTUM DESCRIPTION

A charge q (possibly an electron) does not exhibit energy loss or radiation when in a sta-
tionary state or eigenstate of a potential energy fi eld. This requires that no net acceleration 
of the charge occurs, in spite of its uncertainty in position and momentum dictated by the 
Heisenberg uncertainty principle. However, experience tells us that radiation may be pro-
duced when a charge moves from one stationary state to another. It will be the purpose of 
this section to show that radiation may only be produced if an oscillating dipole results from 
a charge moving from one stationary state to another.

Consider a charge q initially in stationary state jn and eventually in state jn′. During the 
transition, a superposition state is created which we call js:

 ψ ψ ψ2
2 2 1= + + =′a b a bn n ,

where a and b are time-dependent coeffi cients. Initially, a = 1, b = 0 and fi nally, a = 0, b = 1.
Quantum mechanics allows us to calculate the expected value of the position 〈r〉 of a 

particle in a quantum state. For example, for stationary state js,

 
r r r Vn n n nv

= = ∫ψ ψ ψ 2 d

provided jn is not normalized, and V represents all space. Since, by defi nition, |jn|2 is not 
a function of time because jn is a stationary state, the answer to this integral is always time 
independent and may be written as r0. Note that the time dependence of a stationary state 
is given by |e(iE/h)t|2 = e(1E/h)te(−1E/h)t = 1. If we now calculate the expectation value of the 
position of q for the superposition state js, we obtain
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We let

 
ψ φn n

nE
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where fn is the spatially dependent part of jn. Hence
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since the position must be a real number. This may be written as
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(1.2)

Note that we have introduced the relationship E = h̄w that defi nes the energy of one 
photon generated by the charge q as it moves from jn to jn′. Note also that 〈r(t)〉 is oscil-
lating with frequency wnn′ = (En − En′)/h̄ such that the required number of oscillations at the 
required frequency releases one photon having energy E = h̄wnn′ from the oscillating charge. 
The term rnn′ also varies with time, but does so slowly compared with the cosine term. 
Consider that an electron oscillates about x = 0 with amplitude A = 1Ǻ to produce a photon 
with l = 550 nm. From Equation (1.1)
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One photon of this wavelength has energy E = hc/l = 3 × 10−19 J. Hence, the approximate 
length of time taken to release the photon is (3 × 10−19 J)/(4 × 10−12 J s−1) = 7.7 × 10−8s. Since 
the period of electromagnetic oscillation is T = l/c = 1.8 × 10−15s, approximately 107 
oscillations take place. We have assumed |rnn′| to be a constant, which will be shown not 
to be the case in a later section.

We may defi ne a photon emission rate Rnn′ of a continuously oscillating charge. We use 
Equations (1.1) and (1.2) and E = h̄w to obtain
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1.5 SELECTION RULES

A particle cannot change quantum states without conserving energy. When energy is 
released as electromagnetic radiation, we can determine whether or not a particular transi-
tion is allowed by calculating the term |rnn′|, and seeing whether it is zero or non-zero. The 
results over a variety of possible transitions give selection rules that name allowed and 
forbidden transitions.

The transitions involved in the hydrogen atom are of particular import ance. We will now 
derive the well-known selection rules for the electron in hydrogen states, or more generally 
in one-electron atomic states. We use polar coordinates and begin by calculating rnn:
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Note that since we are working in three dimensions, we must consider r in vector form, 
and let j(r, q, f) = Rn(r)Qlm(q)Fm(f). Now
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The term in brackets may be broken up into orthogonal components of unit vector r = 
sin q cosfx + sinq sinf y + cosq z, to obtain three terms:
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(1.3)

Since Fm(f) = eimf, the three integrals in f may be written as
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I3 is zero unless m′ = m.
I1 may be written as
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which is zero unless m′ = m ± 1. I2 gives the same result.
Now consider the integrals in q, which multiply I1, I2 and I3. We shall name them J1, J2, 

and J3, If I3 is non-zero, then m′ = m. Hence we obtain
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J l m lm3 = ( ) ( )′∫ sin cos *θ θ θ θ θ
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The integral:
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is zero unless l′ = 1, a property of the associated Legendre polynomials which, being eigen-
functions, are orthogonal to each other [2]. Since cosq is an odd function over the range 0 
≤ q ≤ p, the parity is reversed in J3 and hence J3 = 0 unless l′ = l ± 1.

If I1 is non-zero, then m′ = m ± 1. Hence, we obtain
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Using the properties of associated Legendre polynomials once again, we note that it is 
always possible to write Qlm(q) = aQl−1,m+1(q) + bQl+1,m+1(q), where a and b are constants. 
Choosing m′ = m + 1, we obtain
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For a non-zero result, l′ = 1 ± 1 using the orthogonality property. The same conclusion 
is obtained from the case m′ = m − 1 and from the J2 integral. Therefore, we have shown 
that the selection rules for a one-electron atom are

 ∆ ∆m l= ± = ±0 1 1, and

Note that we have neglected spin-orbit coupling here. Its inclusion would give

 ∆ ∆l j= ± = ±1 0 1and ,

Selection rules do not absolutely prohibit transitions that violate them, but they are far 
less likely to occur. Transitions may take place from oscillating magnetic dipole moments, 
or higher-order electric pole moments.

These alternatives are easily distinguished from allowed transitions since they occur 
much more slowly, resulting in photon release times of milliseconds to seconds rather than 
nanoseconds as calculated earlier. It is important to realize that practical phosphors having 
atomic luminescent centers often release photons via ‘forbidden’ transitions. The surround-
ing atoms in a crystal may lift the restrictions of ideal selections rules because they lower 
the symmetry of atomic states.

1.6 EINSTEIN COEFFICIENTS

Consider that an ensemble of atoms has electrons in quantum states k of energy Ek, which 
may make transitions to states 1 of energy El with the release of photons (Figure 1.5).
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In order to begin making such transitions, something is needed to perturb the electrons 
in states k, otherwise they would not initiate the transitions, and would not populate super-
position states js. The study of quantum electrodynamics shows that there is always some 
electromagnetic fi eld present in the vicinity of an atom, at whatever frequency is required 
to induce the charge oscillations and to initiate the radiation process. This is because elec-
tromagnetic fi elds are quantized and hence a zero-point energy exists in the fi eld. We call 
this process spontaneous emission.

Alternatively, the transition may be initiated by applied photons (an applied electromag-
netic fi eld), which give rise to stimulated emission. It is also possible to excite electrons 
in state l to state k by using photons of suitable energy.

These ideas may be summarized as follows. The rate, at which atoms in the Ek state decay, 
is Wk1. This is proportional to the number of photons of frequency w supplied by the radiation 
fi eld, which is proportional to photon energy density u(v) and to the number of atoms in the 
Ek state. The spontaneous process occurs without supplying radiation, and hence its rate is 
determined simply by the number of atoms in the Ek state, Nk. We may write

 W A B u v N Nkl kl kl k kl k= + ( )[ ] = ω  (1.4.a)

The proportionality constants A and B are called the Einstein A and B coeffi cients, and 
wkl is the rate on a per atom basis.

Atoms in the El state may not spontaneously become excited to the Ek state, whereas 
photons of energy Ek – El may be absorbed. Hence:

 W B u v N Nkl lk l lk l= ( ) = ω  (1.4.b)

At this point, the idea of stimulated emission needs to be developed in order to explain 
why transition rates are proportional to u(v). However, it is clear that Akl is simply another 
name for Rnn′, the photon emission rate, in the case of dipole radiation.

1.7 HARMONIC PERTURBATION

Consider an atom possessing electron levels k and I that experiences a weak electromagnetic 
fi eld. By ‘weak’ we require that the potential energy experienced by the electrons due to 
this fi eld is small compared with the Coulomb potential from the nucleus and other 

many atoms 

many atoms 

Ek

E�

hu

Figure 1.5 The decay of an electron from state k to state l results in the release of a photon. Solid 
State Luminescence, Adrian Kitai, Copyright 1993 with kind permission from Springer Science and 
Business Media
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electrons. The total Hamiltonian is given by the sum of the atomic term Ho(r) and the per-
turbation term H′(r, t):

 H r t H r H r t H r t H r f t, , ,( ) = ( ) + ′( ) ′( ) = ′( ) ( )0 with

If the fi eld is turned on at t = 0 with frequency w, then
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Time-dependent perturbation theory [2] may be used to determine the wavefunction that 
results from the perturbation which is harmonic in this case. Assume the electron is initially 
in eigenstate jl(r, t). In general, if jk(r, t) are all eigenstates of Ho(r) then the wavefunctions  
after the perturbation term H′(r, t) is added will be of the form:
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The probability of a transition from the initial eigenstate jl(r, t) to a new eigenstate 
jk(r, t) is given simply by |Ck(t)|2. We write
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Because of the weak electromagnetic fi eld, f(t) = 2cos wt, and therefore
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Resonance occurs when wkl = ± w. The two signs signify either a stimulated absorption 
process (wkl = w) or a stimulated emission process (wkl = −w) since energy is then released 
(Ekl negative). If wkl = w:
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The probability of the transition (stimulated emission or absorption) is always propor-
tional to |H′kl|2. Plk is shown in Figure 1.6, which should be thought of as a graph that grows 
rapidly in height with time t. Note, however, that being taller to begin with, the central peak 
grows faster than the others with time, and the function resembles a delta function for long 
time evolution. This is consistent with the uncertainty relationship ∆E ∆t ≥ h/2 since, as 
time increases, the uncertainty in energy approaches zero.

The term |H′kl|2 may be expressed in terms of the electric fi eld E of the electromagnetic 
perturbation. If p is the dipole moment of the electron as it undergoes the lk transition, 
then

 
′ = − ⋅ ∝H Ep E .

Since energy density u(v) is proportional to |E |2, it is clear that |H′kl|2 ∝ u(v), and so we 
have shown that the Einstein B coeffi cients must be multiplied by u(v), as in Equations 1.4a 
and 1.4b.

When we wish to describe the time evolution of the rate of emission for an ensemble of 
N atoms undergoing stimulated emission, we may use

 
W

N P

t
lk

l lktransitions s
transitions

s
−( ) =

( )
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1

Figure 1.6 Dependence of transition probability on wkl − w as a result of harmonic perturbation. 
Solid State Luminescence, Adrian Kitai, Copyright 1993 with kind permission from Springer Science 
and Business Media
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Thus it is evident that when Plk ∞ t 2, then the transition rate increases linearly with time. 
This situation obtains for small t, since from Equation (1.5) we see that
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kl kl
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Of course, for long times, W1k becomes constant as equilibrium is reached. Note that

 B B P Plk kl lk kl= =since .

1.8 BLACKBODY RADIATION

If an ensemble of electron states are in equilibrium, Wlk = Wkl. However, the spontaneous 
emission process may only take place in one direction, and we can write

 A B u v N W W B u v N B u v Nkl kl k kl lk lk l kl l+ ( )[ ] = = = ( ) = ( )

Therefore
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Since the populations of atoms having excited states of certain energies will obey 
Boltzmann statistics:

 

N

N
l

k

E E kT kTk l= =−( )e e�ω

it follows that

 u v
A B

e kT
( ) =

−�ω 1
 (1.6)

where subscripts have been dropped.
Consider a cavity with metallic walls uniformly heated to temperature T. If we could 

observe the cavity through a small hole the wall, we would detect electromagnetic radiation 
due to the thermally agitated electrons in the cavity walls.

For analysis, suppose the cavity is cubic with edge length a, and principal axes x, y and 
z (Figure 1.7). Since the cavity walls are electrically conductive, the electric fi eld in the 
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radiation fi eld must be zero at the cavity walls, and because of electromagnetic refl ections 
at metallic surfaces, standing waves will only exist in equilibrium. Hence, the E fi eld for 
waves traveling in the x-direction will be given by

 
E x t E

x
vt v

c
, sin sin( ) = ( ) ( ) =0

2
2

π
λ

π
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where

To satisfy boundary conditions, E(a, t) = 0, and therefore
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cn

a
x x n

x= = =, and

Note that the frequencies are quantized and may be counted using integers nx. Similar 
expressions may be written for Ey and Ez. Consider an artifi cial space having axes (nx, ny, 
nz). Such a space consists of a lattice of points, each of which uniquely describes a particular 
three-dimensional radiation pattern or mode. It is easy to show that all points (nx, ny, nz), at 
a given distance r = 2av/c from the origin, represent standing waves of the same frequency 
v, but along different directions within the cavity [1]. We can then count the number of 
cavity modes between spheres of radii 2av/c and 2a(v + dv)/c (Figure 1.8). Since each point 
occupies a unit ‘volume’, the number of points in the spherical shell is shell volume 4prw2 
dr = 4p(2a/c)3 v2 dv. Since we wish only to consider positive values of n, we divide by 8 
to count only one octant of the shell, and multiply by 2 because each standing wave has 
two possible polarizations. Hence, the number of modes over frequency range dv is

 
N v

a

c
v v

V

c
v v( ) = =8 83

3
2

3
2π π

d d

Because each mode has a degree of freedom, namely the choice of electric fi eld ampli-
tude, on average each mode will have the same energy E which, from classical kinetic 

z

a

a
a

y

x

Figure 1.7 Cavity of cubic shape with edge length a (after Solymar and Walsh, [3]). Solid State 
Luminescence, Adrian Kitai, Copyright 1993 with kind permission from Springer Science and 
Business Media
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theory, is E = kT. Should one mode gain in E, it would lose it owing to collisions of electrons 
in the cavity walls, which would transfer it to other modes. Therefore the energy per unit 
cavity volume over the frequency interval dv may be expressed in terms of the energy 
density u(v) as

 u v v
v

c
kT v( ) =d d

8 2

3

π  (1.7)

This expression clearly differs from Equation (1.6). This is because our classical wave 
theory assumes that the energy of each cavity mode is continuously variable as just stated, 
even though the allowed cavity modes have discrete frequencies v. However, in our treat-
ment leading to Equation (1.6), we treated the energy levels giving rise to modes at fre-
quency v as discrete, such that hv = ∆E. Starting with lowest frequency mode, for example 
along the x-direction, nx = 1 and v1 = c/2a. If nx = 2, then v2 = c/a. This implies a pair of 
discrete energy levels, E1 = hv1 and E2 = hv2 with difference ∆E = hc/2a. So long as ∆E = 
kT, there is no real problem with the classical treatment. However, for higher-order modes, 
or for lower temperatures, the energy spacing between modes may by far exceed kT and it 
becomes essential to take the energy of each mode as discrete. Since Equation (1.7) gives 
the correct result for

 lim lim
v v

u v
v kT

c→∞ →∞
( ) = 8 2

3

π  (1.8)

we can now evaluate A/B in Equation (1.6) by requiring that

 
lim
v hv kT

A B A B

hv kT

v kT

c→∞ −
= =

e 1

8 2

3

π

Therefore

n

nx

ny

dr = 2adu
c

nz

r = 2au
c

Figure 1.8 Spherical shell enclosing points in (nx, ny, nz) space lattice that represent standing waves 
that range in frequency from v to v + dv (after Solymar and Walsh [3]). Solid State Luminescence, 
Adrian Kitai, Copyright 1993 with kind permission from Springer Science and Business Media
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A B

v

c
= 8 3

3

π

and the fi nal result, valid over all v and T, is Planck’s famous blackbody radiation energy 
density function:

 
u v

v

c hv kT
( ) =

−
8 1

1

3

3

π
e

This is shown in Figure 1.9, for three different temperatures.
For visible light sources, tungsten fi lament lamps, which are blackbody radiators, are 

limited in fi lament temperature to somewhat below the melting point of tungsten, or ~3000 K. 
Only a small fraction of the area under the curve in Figure 1.9 corresponds to this tempera-
ture in the visible range: the physical basis for the low effi ciency of such lamps. A consider-
able attenuation of short-wavelength (blue-violet) compared with long-wavelength (red) 
visible is also evident. A lamp operating at 6000 K would approximately match the Sun’s 
surface temperature (5700 K) and be far more effi cient. The tungsten halogen lamp allows 
for a modest gain in performance over a regular tungsten lamp by chemically stabilizing 
the tungsten fi lament, allowing for higher fi lament temperature.

1.9 DIPOLE–DIPOLE ENERGY TRANSFER

We now explain how energy may be transferred from one atom to another without the actual 
release of a photon.

0

Pλ

12,000° K

6,000° K

3,000° K

200 400 600 800 1000

Wavelength in µm

1200 1400 1600 1800 2000

Figure 1.9 Blackbody radiation spectrum showing spectral power density for sources at tempera-
tures of 3000 K, 6000 K and 12 000 K. Note that the 6000 K curve matches the visible range best, and 
is similar to the solar spectrum. The three curves are artifi cially normalized to appear identical in 
height. Solid State Luminescence, Adrian Kitai, Copyright 1993 with kind permission from Springer 
Science and Business Media
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Consider an excited atom, S, and a nearby unexcited, but otherwise identical atom, A 
(Figure 1.10). As S radiates, it generates an oscillating electric fi eld E due to its oscillating 
dipole. This fi eld falls off as 1/r3 [4] and, provided that its energy does not have time to 
escape as a photon, it will directly stimulate a transition in A by means of the same process 
described by Equation (1.4). Since E falls off as 1/r3, then the energy density in the electric 
fi eld

 
u v E( ) = 1

2
0

2ε

falls off as 1/r6. Therefore, from Equation (1.4), the rate (or the probability) of energy 
transfer from S to A depends on R −6

SA.

1.10 ENERGY LEVELS IN ATOMS

It is always possible to formulate Schrodinger’s equation to give the energy levels of elec-
tron states for an atom. Consider an optically active atom in a crystal surrounded by a space 
lattice of atoms. The total Hamiltonian is

 Htot = Hisolated + H electrostatic lattice + H dynamic lattice

Hisolated involves a Coulomb potential due to the atom nucleus and appropriate screening 
effects of inner shell electrons (H0). The optically active electrons are now affected by spin-
orbit coupling (Hs0), and LS coupling or exchange energy (Hc):

 Hisolated = H0 + Hs0 + Hc

H0 is spherically symmetric and yields the one-electron atom states having quantum 
numbers n, l, m, s. Spectroscopists use notation to describe the shell according to n levels 
s, p, d, f, g that correspond to l = 0, 1, 2, 3, 4, respectively, which represent subshells. For 
example, a subshell containing fi ve electrons with n = 3 and l = 2 would be written as 3d5. 
Such a subshell exists in manganese.

Spin-orbit coupling requires the introduction of a new quantum number j, and is caused 
by the magnetic moments due to electron orbit and electron spin. In fact, j = l ± 1/2, which 
gives rise to a splitting of each energy level into two levels, unless l = 0 (no orbital magnetic 
moment).

Ek

RSA

S A

E� E�

Ek

r

Figure 1.10 Excited atom S a distance RSA from atom A. Solid State Luminescence, Adrian Kitai, 
Copyright 1993 with kind permission from Springer Science and Business Media



 PRINCIPLES OF LUMINESCENCE   17

In LS coupling, the effects of more than one electron within unfi lled subshells are con-
sidered. A Coulombic electron – electron interaction energy term exists. The spin angular 
momenta of individual electrons add together, as do orbital angular momenta, giving rise 
to a total spin s′ and a total orbital angular momentum l′. For example, consider an atom 
with confi guration 3d14p1. There are, because of both Hs0 and Hc, 12 levels in this case [1], 
which are labelled 3D3, 1F3, 1P1, etc. The superscript is 2s′ + 1; the letter designates l′ (the 
same scheme as for l, but now using capital letters to acknowledge addition of orbital 
angular momenta) and the subscript is j′ formed by adding s′ and l′ as vectors. Energy split-
tings occur since the average separation and therefore Coulombic energy between electrons 
depends upon the way in which angular momenta are added.

Additional complications arise if Hs0 and Hc are similar in strength. The level splittings 
become more complex, and the LS coupling exclusion principle forbids the existence of 
certain states.

1.11 CRYSTAL FIELD SPLITTING

When an atom S is placed in a crystal, it experiences the crystal fi eld, or the electric fi eld 
due to surrounding atoms. We will assume that the electrons involved in the energy levels 
of interest for luminescence are not involved in bonding. This is generally true in practice. 
Because of crystal symmetry, atoms surrounding S will give rise to an electric fi eld with 
some symmetry. For example, a tetrahedral crystal site will have tetrahedral symmetry, and 
an octahedral site will have octahedral symmetry. The electric potential of an electron in 
atom S due to the crystalline environment may always be expressed in the form:

 
V a ys lm l

m

l m

θ φ θ φ, ,
,

( ) = ( )∑

where ym
l are the spherical harmonics. This is analogous to a Fourier series expansion, but 

is specifi cally applicable to an atom or sphere surrounded by a fi eld that has angular depen-
dence. The crystal fi eld may now be taken into account, using time-independent perturbation 
theory if Vs is small. If we know the eigenstates of Ho and add perturbation H′, then to fi rst 
order:

 
φ φ φ φ φn n

i n

n in
i

H

E E
= +

′
−

( )
( ) ( )

( ) ( )
≠

( )∑0
0 0

0 0
0

i

and

 E E Hn n n n= + ′( ) ( ) ( )0 0 0φ φ

Note that the new eigenstates, fn and eigenenergies, En are based on the eigenstates, f (0)
n 

and eigenenergies E (0)
n  of the unperturbed system. To account for the crystal fi eld, we simply 

substitute H′(q, f) = Vs(q, f) and determine the new states due to the crystal fi eld.
If the symmetry of the crystal fi eld is different from the eigenstates involved, which is 

usually the case, then degenerate states will probably split because of the crystal fi eld. This 
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is known as crystal fi eld splitting. In this case, E (0)
n  − E (0)

i  = 0 for some n, i, n ≠ i. In order 
to determine the fn and En, we must fi rst make the matrix element 〈f (0)

i |H|f (0)
n 〉 zero whenever 

E (0)
i = E (0)

n , such that these singular terms vanish. This may be accomplished by diagonalizing 
the submatrix of H′in, which contains the degenerate states. The energy splittings are then 
obtained directly.

For transition metal ions placed in a crystal fi eld, the three-dimensional states may be 
more infl uenced by the crystal fi eld than by Hc. This is known as the strong fi eld scheme 
[5]. For such an ion in an octahedral crystal fi eld, for example, the fi ve-fold degenerate 
three-dimensional orbitals split into a two-fold degenerate eg state and a three-fold degener-
ate t2g state. The energy separation between the two states is called 10Dq, where Dq is a 
parameter determined by the crystal fi eld strength. Now, Hc may be accounted for in a 
manner analogous to free-ion LS coupling.

In Cr3+, for example, there is a 3d3 confi guration. If placed in an octa hedral crystal fi eld, 
the splitting depends on the term Dq/B, which is a measure of the crystal fi eld infl uence. A 
theoretical treatment [6] gives the splittings.

Transitions that were forbidden in the free ion may become dipole transitions with a 
crystal fi eld. The lower symmetry allows a dipole moment to exist and these new transitions 
can take place, although with small rates. Radiative lifetimes of 10−3 s are not unusual for 
transition metal ions such as Mn2+ in a tetrahedral crystal fi eld.
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