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1
Fundamentals

1.1 Multilinear and Nonlinear Regression Analyses

Traditional simple linear regression analysis calculates the correlation between one depen-
dent (i.e. log k′ value of a solute) and one independent variable (i.e. concentration of organic
modifier in the eluent C vol%). The general formula can be described by:

Y = a + b1 · X1 (1.1)

where Y = log k′, a = constant, X1 = C and b1 is the coefficient of regression.
However, when the retention time of a set of solutes has been determined on more than

one HPLC column, in mobile phases containing various organic modifiers at different
concentrations and at various temperatures and we are looking for the influence of each

chromatographic parameter on the log k’ value, each of them has to be included in equation
(1.1), which modifies to:

Y = a + bi · Xi + · · · + bi · Xi + · · · + bk · Xk (1.2)

Multivariate (multiple) linear regression (MLR) analysis deals with the solution of equa-
tions containing minimally two independent variables. Moreover the parameters included
in equation (1.2) software generally calculate some additional mathematical-statistical val-
ues such as standard deviation of regression coefficients (sbi, where ‘i’ indicates any of the
independent variables included in MLR), the path coefficients (b

′
i), calculated F values,

and the coefficient of determination (r2). The path coefficients are dimensionless numbers
indicating the relative impact of a given independent variable (stationary phase charac-
teristics, mobile phase composition, column temperature, etc.) on the dependent variable
(generally retention time of the set of analytes). A higher path coefficient value (close to 1)
indicates a higher influence of the given independent variable on the dependent one. The
calculated F value shows the fit of the equation to the experimental data. When it is higher
than the tabulated value corresponding to the same number of observations and independent
variables, the relationship between the variables is significant. Calculated F values can be
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found in every statistical handbook. The coefficient of determination indicates the ratio of
the change of the dependent variable explained by the change of the independent variables.
In other words, r2 = 0.9243 indicates that 92.43% of the change of the dependent variable
can be explained by the change of the independent variables.

The number of papers dealing with the application of multiple nonlinear regression
(MNLR) is fairly low. This may be due to the fact that linear models generally adequately
describe the relationship between dependent and independent variables making it unneces-
sary to use the more complicated nonlinear (mainly exponential and logarithm) regression
analysis.

1.2 Stepwise Regression Analysis and Partial Least Squares Method

Besides the traditional MLR technique some new computerized regression analysis methods
have been developed based on theoretical considerations.

It is well known that in the traditional multivariate regression analysis the presence of
independent variables (chromatographic parameters or physicochemical characteristics)
that exert no significant influence on the dependent variable (retention behaviour) lessens
the significance level of the independent variables that significantly influence the dependent
variable. To overcome this difficulty, stepwise regression analysis (SRA) automatically
eliminates from the selected equation the insignificant independent variables increasing
in this manner the information power of the calculation. The form and the statistical
parameters computed by SRA are identical to those discussed in Section 1.1 and their
statistical meaning is the same.

The partial least squares (PLS) technique is actually a method of preference for carrying
out regression analysis. The advantage of the method is that it can be successfully employed
when the independent variables are highly intercorrelated. PLS relates two different sets of
variables using one data set as predictor variables. The dimensionality of the original data
set is reduced by estimating one or more underlying background variables. PLS forms the
score vectors as linear combinations of the original sets of variables. The theory of PLS
has been previously discussed in detail [1]. PLS has been readily accepted and extensively
used in up-to-date mathematical-statistical studies. The theory of various regression analysis
models is discussed in detail in Mager [2].

1.3 Two- and Three-dimensional Principal Component Analysis,
Various Factor Analytical Techniques

In many cases the chromatographer is not interested in the dependence of one retention
parameter on the chromatographic or physicochemical characteristics (see above multiple
regression methods), but rather wishes to find the relationship between all parameters with-
out one being the dependent variable. Both PCA and factor analysis (FA) comply with this
requirement. The main advantages of these computation techniques in chromatography are:

� elucidating the similarity and dissimilarity among the variables (clustering chromato-
graphic systems or solutes according to their retention behaviour);
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� the possibility of the extraction of one or more background (theoretical) variables having
concrete physicochemical meaning for the theory and practice of chromatography;� making it possible to reduce the number of variables (chromatographic systems or solutes)
to the minimum necessary for the solution of a problem.

Traditional two-dimensional principal component analysis (2D-PCA), a versatile and
easy-to-use multivariate mathematical-statistical method has been developed to contribute
to the extraction of maximal information from large data matrices containing numerous
columns and rows. PCA makes possible the elucidation of the relationship between the
columns and rows of any data matrix without one being the dependent variable. 2D-PCA
is a so-called projection method representing the original data in smaller dimensions. It
calculates the correlations (similarities and dissimilarities) between the columns of the
data matrix and classifies the variables according to the coefficients of correlations taking
into consideration simultaneously the magnitude and sign of the coefficients of correla-
tion. As the resulting matrices of principal component loadings and variables (scores)
are also multidimensional, the visual evaluation of such matrices is cumbersome or even
impossible.

The plot of principal component loadings and/or scores of the first versus the second
principal component has been frequently used for the evaluation of the similarities and
differences among the observations. This method takes into consideration only the vari-
ance explained in the first two principal components and ignores the impact of variances
explained by the other principal components on the distribution of the matrix elements.
The use of this approximation is only justified when the first two principal components
explain the overwhelming majority of variance, which is not probable in the case of large
original data matrices. Theoretically PCA can be used for the analysis of any data matrices;
however, its inadequate application may lead to serious misinterpretation of the results. As
it was previously mentioned, PCA calculates the similarities and dissimilarities among the
variables and observations according to the differences among the coefficients of correla-
tion. This means that the distribution of principal component loadings and scores will be
similar in the theoretical cases when each coefficient of correlation is in the range of 0.1,
0.5 or 0.9. While the scattering of points calculated from the coefficient of correlation 0.1
does not contain any useful (significant) information, a similar distribution of points marks
significant relationships when it is calculated from the correlation matrices of 0.9. The
publication of a table containing each coefficient of correlation overcomes the difficulty
emerging from the similar scattering of points.

PCA software generally calculates the so-called ‘eigenvalue’, the ratio of variance ex-
plained by the individual principal component loadings and scores, and the numerical
values of principal component loadings and scores in the principal components. The total
variance explained by PCA has to be previously fixed and arriving at this limit value the
computation stops. Depending on the character of the original data matrix the total variance
explained is generally fixed at 95 or 99%. Eigenvalues indicate the ratio of variance ex-
plained by the individual principal components; their value decreases monotonously with
increasing number of principal components. It is generally assumed that only eigenvalues
more than 1 contain valuable information; eigenvalues less than 1 only refer to the error of
measurement. Similarly to eigenvalues, the ratio of variance also decreases with increasing
number of principal components. The numerical values of principal component loadings
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and scores indicate the impact of a given point of observation on the individual principal
component.

Traditional PCA is a typical multivariate two-dimensional statistical method unsuitable
for the evaluation of three(or more)-dimensional data matrices. A three-dimensional PCA
(3D-PCA) model has been developed (Tucker model) to overcome this difficulty. However,
3D-PCA, a very elegant and easy method to carry out, has not found frequent application
in the evaluation of chromatographic data matrices.

For the exact mathematical treatment of these methods see references [1], [2], [5] and
[6] in the Introduction and Malinowski and Howery [3].

As a result of its versatility PCA has been extensively used not only in chromatography
but also in other fields of research.

Interestingly, FA suitable for similar calculations has been less frequently employed in
chemometrics studies than PCA.

1.4 Canonical Correlation Analysis

Sometimes analytical chemists are interested in the simultaneous dependence of more than
one retention characteristic or more than one chromatographic parameter on a considerable
number of chemical (eluent composition, eluent pH, etc.), physical (temperature, flow rate,
etc.) and physicochemical (connectivity and sterical indices, etc.) variables. As the number
of dependent variables is higher than one, traditional MLR models cannot be applied in
these instances. Canonical correlation analysis (CCA) has been developed for the solution
of this type of computational problem; it calculates the correlation between two different
data sets. CCA computes linear correlations between the variables of the two data sets, both
of them including more than one variable. The variables in the data set with lower number
of variables (matrix II, i.e. more than one retention parameter) are considered as dependent
variables, while the variables in the data set with higher number of variables (matrix I,
i.e. physicochemical parameters of solutes) are considered as independent variables. The
correlation coefficients of the linear relationships are computed in such a manner that they
explain the maximal information in the data set containing the lower number of variables
(matrix II) using the information in the other matrix (matrix I). The number of relationships
explaining 100% of the variance in matrix II is equal to the number of original variables in
matrix II. The theoretical background of CCA is given in detail in Orloci et al. [4].

Despite its obvious advantages, CCA has found only limited application in chromatog-
raphy [5–8].

1.5 Discriminant Analysis

Discriminant analysis (DA) can be used for the computation of a hyperplane in the input
space minimizing the within class variance and maximizing the between class distance. It
is one of the supervised pattern recognition methods frequently used in various fields of
chemometric calculations. It finds explicit boundaries between given classes, in order to
discriminate them. The latent (combined) variable is the linear combination of the original
variables.
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1.6 Spectral Mapping

The majority of multivariate methods classify the chromatographic retention data taking
into consideration simultaneously the strength and selectivity of the retention, so cannot
be applied when the separation of the strength and selectivity of the effect is required. The
spectral mapping (SPM) technique, another multivariate mathematical-statistical method,
overcomes this difficulty [9]. The method divides the information into two matrices using
the logarithm of the original data. The first matrix is a vector containing the potency values
related to the overall effect. The second matrix (selectivity map) contains information con-
cerning the spectra of activity (the qualitative characteristics of the effect) [10]. SPM first
calculates the logarithm of the members of the original data matrix facilitating the evalua-
tion of the final plots in terms of log ratios. Consecutively, SPM subtracts the corresponding
column-mean and row-mean from each logarithmic element of the matrix calculating po-
tency values. The source of variation remaining in the centred data set can be evaluated
graphically (selectivity map). SPM has been previously employed for the characterization
of stationary phases in HPLC [11].

1.7 Nonlinear Mapping

As mentioned in Section 1.3, the principal components and scores computed by PCA are
generally multidimensional, which makes the visual evaluation cumbersome, even impossi-
ble. Nonlinear mapping (NLM) has been developed for the reduction of the dimensionality
of complicated matrices consisting of numerous columns and rows. The method can re-
duce the dimensionality of the data matrices to two in such a manner that the distances
between the points on the projection plane approximate the distances on the multidimen-
sional space. This means that points (i.e. chromatographic systems) near to each other are
similar and points situated far away from each other are markedly different.

1.8 Cluster Analysis

Similarly to NLM various cluster analysis (CA) techniques have been developed and suc-
cessfully employed for the easy visualization of multidimensional data matrices by reduc-
ing dimensionality. Variables with similar characteristics are near to each other on the CA
dendograms, while variables with different characteristics are far away from each other.
On account of the good visualization of the results, CA is generally combined with other
multivariate methods (mainly with PCA). The principles of CA are discussed in detail in
Willett [12].

1.9 Other Multivariate Techniques

In addition to the mathematical-statistical methods discussed above, many other compu-
tational techniques have been developed and applied in the chemometrical evaluation of
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chromatographic data sets. However, they have not been frequently used so that their con-
tribution to mathematical-statistical evaluation in chromatography is fairly low.

1.10 Measured and Calculated Physicochemical Parameters
of Chromatographic Systems and Analytes

A high number of physical, physicochemical and biophysical parameters have been applied
in the chemometrical investigation of chromatographic data. The majority of these charac-
teristics are calculated and not measured values. This can be explained by the fact that the
advent of rapid computers with high calculation capacity and complicated software make
possible the rapid calculation of numerous parameters, while the measurement of any con-
crete parameter is time-consuming and sometimes expensive compared with computational
results.

Since different principles are involved in the various chromatographic techniques, the
impact of parameters used in the calculations may also be different. Thus, the importance
of a given molecular characteristic may be high in GC and negligible in CZE. The param-
eters used more frequently in GC are: boiling point, molar volume, molecular mass, molar
refraction, octanol-water partition coefficient, various indicator variables (i.e. no side chain
= 0, one side chain = 1, two side chains = 2), AM1 total energy, Randic molecular profile,
Randic shape profile, mean electrotopological state, number of rotatable bonds, Gutman
molecular topological index by valence vertex degree, third component accessibility direc-
tional WHIM index/unweighted, H autocorrelation of lag 5/weighted by atomic masses,
R maximal autocorrelation of lag 2/weighted by atomic Sanderson electronegativities, H
autocorrelation of lag 2/weighted by atomic Sanderson electronegativities, R maximal auto-
correlation of lag 4/weighted by atomic van der Waals volume, Balaban-type index from van
der Waals weighted distance matrix, Balaban-type index from electronegativity weighted
distance matrix, average valence connectivity index chi-2 and chi-0, valence connectivity
index chi-1, polarity index, magnitude of dispersive interactions between a methylene group
and the stationary phase, partial molar excess Gibbs free energy of solution per methylene
group, cohesive energy, solubility parameter, enthalpy of vaporization distance edge vector,
standard molecule chemical potential, energy of the lowest unoccupied molecular orbital
(LUMO), dipole moment (DIP), the maximum of the net atomic charge on the C atom
(QMAX), the sum of positive charge on C atoms (QTOT), topological indexes (CHI-2,
CHI-0AV, CHI-2AV, CHI-0a, CHI-2A), wiener index (WA), heat of formation (HOF), total
energy (TE), the maximum of the net atomic charge on the H atoms (Q+), binding energy
(BE), core–core interaction (CCIE), solvent accessible surface area (SASA), polar solvent
accessible surface area (pSASA), and apolar solvent accessible surface area (apSASA).

Quantitative structure–retention relationship (QSRR) studies carried out in subcritical
chromatography used excess molar refraction, dipolarity/polarizability, hydrogen bond
acidity and basicity, and McGowan’s characteristic volume as molecular parameters.

The principle of separation in TLC and HPLC is similar, so the physicochemical param-
eters employed are also similar. Thus, the following molecular characteristics have been
extensively applied: Hansch-Fujita’s substituent constants characterizing hydrophobicity
(�); indicator variables for proton acceptor and proton donor properties (H-Ac and H-Do,
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respectively); molar refractivity (M-RE); Swain and Luton’s electronic parameters charac-
terizing the inductive and resonance effects (F and R, respectively); Hammett’s constant
characterizing the electron-withdrawing power of the substituents at meta and para+ortho
positions (�m and �p+o, respectively); Taft′s constant characterizing the steric effects of
substituents (Es); Sterimol width parameters determined by distance of substituents at their
maximum point perpendicular to attachment (B1 and B4). These molecular parameters
were calculated according to the additivity rule from the fragmental constants. Fragmental
constants are parameters characterizing elementary molecular substructures. However, it
has to be borne in mind that the application of the additivity rule does not take into consid-
eration the possible intramolecular interactions among the substructures in the molecule
which may result in inadequate results.
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