
1 On Patterns and Pattern
Languages

Neither can embellishment of language be found
without arrangement and expression of thoughts,

nor can thoughts be made to shine
without the light of language.

Marcus Tullius Cicero, Roman stateman, orator,
and philosopher, 106–43 BC

In this chapter we introduce patterns briefly, including their history,
along with a number of pattern concepts. We examine the anatomy
of a pattern, what it offers, and what drives it. We explore the
relationships we often find between patterns. We conclude with a
discussion of pattern languages, what they are, and how they can be
presented and used.

CO
PYRIG

HTED
 M

ATERIA
L



4 On Patterns and Pattern Languages

1.1 Patterns Introduced

From a design perspective, software is often thought of in terms of
its parts: functions, source files, modules, objects, methods, classes,
packages, libraries, components, services, subsystems, and so on.
These all represent valid views of the different kinds and scales
of units of composition with which developers work directly. These
views focus on the parts, however, and de-emphasize the broader
relationships and the reasoning that make a design what it is. In
contrast, patterns have become a popular and complementary way
of describing and evolving software designs, capturing and naming
proven and common techniques. They emphasize the why, where,
and how of designs, not just the what.

A pattern documents a recurring problem–solution pairing within
a given context. A pattern, however, is more than either just the
problem or just the solution structure: it includes both the problem
and the solution, along with the rationale that binds them together.
A problem is considered with respect to conflicting forces, detailing
why the problem is a problem. A proposed solution is described in
terms of its structure, and includes a clear presentation of the con-
sequences—both benefits and liabilities—of applying the solution.

The recurrence of patterns is important—hence the term pattern—as
is the empirical support for their designation as patterns. Capturing
the commonality that exists in designs found in different applica-
tions allows developers to take advantage of knowledge they already
possess, applying familiar techniques in unfamiliar applications. Of
course, by any other name this is simply ‘experience.’ What takes
patterns beyond personal experience is that patterns are named and
documented, intended for distilling, communicating, and sharing
architectural knowledge.

From Building Architecture to Software Architecture

Although patterns are now popular and relatively widespread in
the world of software development, they originated in the phys-
ical world of building rather than the virtual world of software.
Throughout the 1960s and 1970s the architect Christopher Alexan-
der and his colleagues identified the concept of patterns for capturing



Patterns Introduced 5

architectural decisions and arrangements [Ale79] [AIS77]. In partic-
ular, they wanted to focus on patterns that were ‘whole’—proven
solutions drawn from experience that helped to improve the qual-
ity of life for people whose environment could be shaped by such
patterns. Identifying architectural patterns was a response to the
perceived dysfunctionality of many popular but unsuccessful trends
and practices in contemporary building architecture.

The patterns they documented were combined as a coherent set, a
pattern language that embraced different levels of scale—the city, the
neighborhood, the home—with a connected view of how to apply one
pattern in the presence of another. This approach first made its way
into software in the form of a handful of user-interface design patterns
by Kent Beck and Ward Cunningham [BeCu87], which included sug-
gestions of a larger pattern language for object-oriented programming.
Related ideas emerged over the following years, from Jim Coplien’s
book on C++ idioms and styles [Cope92] to Erich Gamma’s thesis on
framework design [Gam92], and Bruce Andersen’s vision of a Hand-
book of Software Architecture. Following this groundswell of interest
and convergence of thinking, the Gang-of-Four’s1 seminal Design
Patterns book [GoF95] was published.

In addition to the widespread interest in software patterns, a whole
community has sprung up focusing on collecting and documenting
patterns, improving them through shepherding and writer’s work-
shops. Many patterns have been published online, in journals, and in
books following the early work. One series of books has been the Pat-
tern Language of Program Design series [PLoPD1] [PLoPD2] [PLoPD3]
[PLoPD4] [PLoPD5], which are distillations from the PLoP conferences
held around the world. Another is the Pattern-Oriented Software Archi-
tecture volumes. The first volume, A System of Patterns [POSA1], was
complementary to Design Patterns in that some of its patterns built on
or extended the Gang-of-Four patterns. It was also complementary in
the sense that it focused more explicitly on different levels of scale in
software architecture, with an emphasis on large-scale systems. The
second volume in the series, Patterns for Concurrent and Networked
Objects [POSA2], and the third, Patterns for Resource Management

1 The ‘Gang of Four,’ as they and their book have become known, are Erich Gamma,
Richard Helm, Ralph Johnson, and the late John Vlissides.



6 On Patterns and Pattern Languages

[POSA3], explored specific topics of architecture—particularly con-
currency and networked applications—in greater detail. The fourth
volume, A Pattern Language for Distributed Computing, is in your
hands.

1.2 Inside Patterns

Consider the following situation. You check the cupboard: it’s bare.
You check the refrigerator: the only thing going on is the light.
It is therefore time to go shopping—you need milk, juice, coffee,
pizza, fruit, and many of the other major food types. You go to the
supermarket, enter, find the milk, pick some up, pay for the it,
return home, and put the milk in the fridge. You then go back to the
supermarket, enter, find the juice, pick some up, pay for it, return
home, and put the juice in the fridge. Repeat as necessary, until you
have everything you need.

Although shopping in this way is possible, it is not a particularly effec-
tive approach—even if the supermarket is next door to you. There are
wiser ways to spend your time. Significant performance improvements
will not come about from tweaks and micro-optimizations, such as
leaving the front door unlocked, leaving the fridge door open, using
cash rather than card. Instead, a fundamentally different approach
to shopping is needed.

Take 2: you make out a shopping list, go to the supermarket, enter,
collect a shopping cart, find each of the items on the shopping list
and place them in your cart (less the ones that are out of stock,
plus some impulse buys), pay for the items in the cart, return home,
unpack, and put the items away.

A Problem in a Context

The domain of groceries may at first seem far removed from the
domain of software development, but what we have just described
is essentially a distributed programming problem and its resolution.
The programming task is that of iteration: traversing a collection to
fulfill a particular objective. When the code performing the iteration is



Inside Patterns 7

collocated in the same process as the collection object being accessed,
the cost of access is minimal to the point of irrelevant. A change of
situation can invalidate this assumption, however, along with any
solution that relies on it. A distributed system introduces a significant
overhead for any access—any design that does not take this context
into account is likely to be inefficient, inflexible, and inadequate. This
observation is generally true of patterns and design: context helps to
frame and motivate a particular problem, and any solution must be
sensitive to this.

Forces: The Heart of Every Pattern

Where the context sets the scene for a problem, the forces are what
characterize it in detail. Forces determine what an effective solution
must take into account. For any significant design decision, forces
inevitably find themselves in conflict.

Returning to the context of distributed computing and the problem
of traversing a collection, we are presented with a number of issues
that must be considered. There is a significant time overhead in
communicating over a network (or going out of the house to visit the
supermarket), so a time-efficient solution cannot assume that the
overhead is negligible. A further space and time overhead is involved
in communication, because values (or groceries) must be marshaled
and unmarshaled (packed and unpacked). We must also, however,
consider convenience: picking up a carton of milk, paying for it, and
putting it in the fridge involves much less ceremony than taking a
shopping cart around the supermarket and packing and unpacking
bags. Fine-grained iteration is more familiar to programmers, better
supported by libraries and languages, and leads to less apparent
blocking. We must also consider partial failure (or partial success):
networks can become ‘notworks.’

Solutions and Consequences

An effective solution needs to balance the forces that make the
problem a problem. It should also be described clearly. In this par-
ticular case, our solution involves preparing and sending a bulk
request (the shopping list) from one address space to another, imple-
mented with respect to the appropriate protocol (driving, walking,



8 On Patterns and Pattern Languages

cycling, and so on), performing all the traversal locally in a single
batch (walking around the supermarket with the shopping cart),
marshaling the results back to the caller and unmarshaling them
into the local address space (paying, packing, and returning home),
and then traversing the batch result locally (unpacking and putting
everything away).

Another feature of any design decision is that it may not be perfect,
in the sense that every design decision has consequences, some of
which are benefits and some liabilities. An effective application of a
pattern is therefore one in which the benefits clearly outweigh the
liabilities, or one in which the liabilities do not even appear to come
into play.

In this case, perhaps the overriding consideration is the communi-
cation-to-computation ratio, which has led to a design that minimizes
the amount of communication involved (once out, once back) for
the amount of work done (accessing multiple items) and ensures
that partial failure does not result in partial state—all results are
returned, or none at all. There is no ‘free lunch,’ however. Instead
of a single iteration, there are many: a local iteration to prepare
the call (compile the shopping list), a remote iteration to perform
the computation and collect the results for each item in the request
(walking round the supermarket), a local iteration to process each
result (unpacking and putting away the groceries). The design style is
rather idiomatic for distributed systems, but not necessarily for the
more common programming experience of iteration over collections
collocated in the same address space.

The Naming of Names

A pattern contributes to the software design vocabulary, which means
that it must have a name. The name is the shorthand we use in
conversation and the way we index and refer to the pattern else-
where. Without a name, we find ourselves having to redescribe the
essential elements of the pattern in order to communicate it to
others.

The most effective names for patterns are those that identify some
key aspect of the solution, which means that names are often noun



Inside Patterns 9

phrases. In the example examined here the name of the pattern
is BATCH METHOD (302). This name helps to differentiate the pattern
from other iteration patterns that are appropriate for different con-
texts or slightly different problems, such as ITERATOR (298)—the pat-
tern applied in the first shopping attempt—and ENUMERATION METHOD

(300)—a pattern that inverts the sense of iteration, encapsulating
the loop within the collection and calling out to a piece of code for
each element.

Brief Notes on the Synthesis of Pattern Form

Patterns are often recognized and used informally, acquiring a name
based on a particular implementation, with the implication that any
use of the key characteristics of a particular design follows that
pattern. For software architects and developers to apply patterns
more generally and broadly, however, a more concrete description is
often needed. We have detailed the anatomy of a pattern in terms of
concepts such as context and forces, but how are we to present the
pattern in writing?

It turns out that there is more than one answer to this question.
There are many pattern forms in common use, each with different
emphases, and each with a different audience or reading style in
mind. For example, full documentation of a single pattern that is
focused on a pattern common to a particular programming language
is often high on technical detail, including sample code. It may best
be motivated through one or more examples. For long patterns, divid-
ing the pattern into clearly titled subsections may make it more
accessible to readers and potential users. Conversely, a pattern pre-
sented alongside many other patterns that are intended as general
development-process guidelines is not as well served by length, detail,
and code. A more summarized and less elaborate form may thus be
appropriate in this case.

Whichever form is adopted for a pattern or catalog of patterns,
the form should state the essential problem and solution clearly,
emphasize forces and consequences, and include as much structure,
diagramming, and technical detail as is considered appropriate for
the target audience.



10 On Patterns and Pattern Languages

1.3 Between Patterns

Patterns can be used in isolation with some degree of success. They
represent foci for discussion, point solutions, or localized design
ideas. Patterns are generally gregarious, however, in that they are
rather fond of the company of other patterns. Any given application
or library will thus make use of many patterns.

Patterns can be collected into catalogs, which may be organized
according to different criteria—patterns for object-oriented frame-
works, patterns for enterprise computing, patterns for security,
patterns for working with a particular programming language, and
so on. In these cases what is perhaps most interesting is how the
patterns relate. An alphabetical listing is good for finding patterns by
name, but it does not describe their relationships.

Software architecture involves an interlocking network of many dif-
ferent decisions, each of which springs from, contradicts, suggests,
or otherwise relates to other decisions. To make practical sense as
an architectural concept, therefore, where they compete and cooper-
ate, patterns inevitably enlist other patterns for their expression and
variation.

Pattern Complements

It is all too easy to get stuck in a design rut, always applying a par-
ticular pattern for a general class of problem. Although this strategy
can often be successful, there are situations in which not only is
a habitual pattern-of-choice not the most effective approach, it can
actually be the least effective. To paraphrase Émile-Auguste Chartier,
‘nothing is more dangerous than a design idea when you have but
one design idea.’

In a design vocabulary, as with any vocabulary, part of effective
expression is based on breadth of vocabulary, particularly synonyms,
each of which has slightly different qualities and implications. Two
or more patterns may appear to solve the same or similar prob-
lems—ITERATOR and BATCH METHOD, for example. Deciding between
them involves a proper appreciation of the context, goal of the



Between Patterns 11

problem, forces, and solution trade-offs. In this sense the patterns
are perceived as complementary because together they present the
choices involved in a design decision.

Patterns can also cooperate, so that one pattern can provide the miss-
ing ingredient needed by another. The goal of this cooperation is to
make the resulting design better balanced and more complete. In this
sense patterns are complementary because they coexist and reinforce
one another in the same design. Moreover, many patterns that might
be characterized as alternatives that are in competition with each
other, such as ITERATOR and BATCH METHOD, can also complement one
another through cooperation.

Consider again the distributed iteration problem. By accessing a
single element each time around the loop, ITERATOR on its own offers
an overly fine-grained approach that is inefficient for remote collection
access. BATCH METHOD, in contrast, replaces loop repetition across the
network with repetition of data—passing and/or receiving collections.
This works well in many cases, but for large collections, or for clients
that need responsive replies, the time spent marshaling, sending,
receiving, and unmarshaling can lead to unacceptably long periods
of time when the client is just blocked. An alternative approach is
to combine both patterns: use the basic concept of an ITERATOR as a
traversal position, but instead of stepping a single element at a time,
use a BATCH METHOD to take larger strides.

Pattern Compounds

Pattern compounds capture recurring subcommunities of patterns.
They are common and identifiable enough to allow them to be treated
as a single decision in response to a recurring problem. In distributed
computing, the technique of combining ITERATOR and BATCH METHOD,
for example, is one such example, to which the names BATCH ITERATOR

and CHUNKY ITERATOR are often applied.

Pattern compounds are also known as compound patterns, and were
originally known as composite patterns. In conversation, however,
there is obvious scope for confusion between ‘a composite pattern’
and ‘the COMPOSITE (319) pattern,’ which is one of the widely known
Gang-of-Four patterns.



12 On Patterns and Pattern Languages

In truth, most patterns are compound at one level or other, or from
one viewpoint or other, so the concept is essentially relative to the
design granularity of interest.

Pattern Stories

The development of a system can be considered a single narrative
example, in which design questions are asked and answered, struc-
tures assembled for specific reasons, and so on. We can view the
emergence and refinement of many designs as the progressive appli-
cation of particular patterns. The design emerges from a narrative—a
pattern story—that builds one pattern on another, responding to the
design issues introduced or left outstanding by the previous pattern.

As with many stories, they capture the spirit, although not necessarily
the truth, of the detail of what happens. Sequential ordering matters
more in presenting a design and its evolution than it does in the
actual evolution of a design. It is rare that our design thinking fits
into a tidy, linear arrangement, so there is a certain amount of
retrospection, revisionism, and rearrangement involved in retelling
how a design played out over time.

These stories, then, may be of systems already built, forecasts of
systems to be built, or simply hypothetical illustrations of how sys-
tems could be built. They may be recovered whole or idealized from
the development of real systems, a guide to the architecture and its
design rationale. They may be used as storyboarding technique for
envisioning and exploring future design decisions and paths for a
system. They may be speculative and idealized, intended to teach or
explore design thinking, but not an actual system.

Pattern Sequences

Pattern sequences are related to pattern stories in the same way that
individual patterns are related to examples that illustrate or motivate
those patterns: they generalize the progression of patterns and the
way a design can be established, without necessarily being a specific
design. In this sense, a given pattern sequence can be considered a
highly specific development process. Predecessor patterns form part
of the context of each successive pattern.



Into Pattern Languages 13

For example, BATCH ITERATOR as the application of ITERATOR and BATCH

METHOD can also be seen as a (very) short sequence, in which first
ITERATOR is applied to provide the notion of a traversal position, then
BATCH METHOD is applied to define the style of access.

1.4 Into Pattern Languages

While patterns represent a design vocabulary, pattern languages are
somewhat like grammar and style. Through the use of patterns,
a pattern language offers guidance on how to create a particular
kind of system, or how to implement a certain kind of class, or
how to fulfill a particular kind of cross-cutting requirement, or how
to approach the design of a particular family of products. Whether
we are interested in building a distributed system for managing
a warehouse, writing exception-safe code in C++, or developing a
Java-based Web application, if there is experience in the domain of
interest, it is likely that this experience can be distilled into patterns
and organized as a pattern language.

From Sequences to Languages

While pattern stories are concrete and linear, pattern sequences are
more abstract but still essentially linear. Feedback should inform the
designer how to apply the next pattern in a sequence, or whether
to revisit an earlier application. Pattern languages are more abstract
still, and typically more richly interconnected.

A pattern language defines a network of patterns that build on one
another, typically a tree or directed graph, so that one pattern can
optionally or necessarily draw on another, elaborating a design in a
particular way, responding to specific forces, taking different paths
as appropriate. The relationships explored in the previous section,
Between Patterns, are those that can be found in various forms within
a pattern language. For example, a pattern sequence defines a path
through a language, taking in some or all of its patterns, and a
pattern story recalls a route along one path.



14 On Patterns and Pattern Languages

Presenting and Using Pattern Languages

A pattern language includes its sequences, and the knowledge of
how to handle feedback should be considered part of the scope and
responsibility of a language. A given pattern sequence can be used as
a guide to the reader about one way that a language has been, can be,
or is to be used. When taken together, a number of sequences can be
seen to provide guidance on the use of a given pattern language—or,
alternatively, when taken together, a number of sequences can be
used as the basis of a pattern language.

Pattern sequences therefore have the potential to play a number of
roles. Other than in the form of pattern stories, however, they are
normally not made explicit as part of the presentation of a language.
As a result there is generally more discussion in the patterns com-
munity about pattern sequences than actual cataloging or specific
description of them. Given that different pattern sequences give rise to
different common design fragments with different properties that are
useful in different situations, it seems worthwhile to document some
of these, even if briefly. Of course, enumerating all the reasonable
sequences for anything but a small or simply structured language is
likely to be a Sisyphean task that will overwhelm both its author and
any readers who try to use it for guidance.

The common vehicle for illustrating pattern languages in action is
stories. Of course, there is the risk that stories may be taken too liter-
ally. In the way that a motivating example in a pattern is sometimes
mistaken for the pattern itself, a pattern story may end up stealing
the limelight from the language it represents. Although readers are
free to generalize, they may be drawn to the specifics of an example
to the exclusion of its general themes and structure.

It is therefore crucial to strike the right balance between the specific
and the general to ensure that the patterns within a language are
also documented in a sufficiently complete form individually, but
with obvious emphasis on their interconnections. A single pattern
can often be used in a variety of situations and a variety of differ-
ent pattern languages. To keep its role within a language focused, it
makes sense to concentrate on documenting the aspects that are rel-
evant to the language, and reducing or omitting aspects that are only
relevant in other situations. The context for a given pattern can also



Patterns Connected 15

be narrowed to predecessor patterns in the language. This overall mix
of specific examples, in-context patterns, and relationships between
patterns offers a practical approach to presentation and usage of
pattern languages.

1.5 Patterns Connected

The value that individual patterns have should not be underrated,
but the tremendous value that they have when brought together as
a community should not be underestimated. Patterns are outgoing,
fond of company, and community spirited.

It is this networking on the part of patterns that reflects the nature
both of design and of designs. The notions of synthesis, overlap, rein-
forcement, and balance across different design elements according to
the roles that they play reinforces what to some appears an initially
counterintuitive view of design: that the code-based units of compo-
sition found in a given design are not themselves necessarily the best
representation of the design’s history, rationale, or future.




