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Dimensions of cooperative control

Jeff S. Shamma and Gurdal Arslan

1.1 WHY COOPERATIVE CONTROL?

1.1.1 Motivation

Cooperative control is concerned with engineered systems that can be characterized as
a collection of decision-making components with limited processing capabilities, locally
sensed information, and limited inter-component communications, all seeking to achieve
a collective objective. Examples include mobile sensor networks, network congestion
control and routing, transportation systems, autonomous vehicle systems, distributed com-
putation, and power systems. Areas of research that are related to cooperative control
include ‘multi-agent control’, ‘distributed systems’, ‘networked control’, as well as ‘team
theory’ or ‘swarming’. Regardless of the nomenclature, the central challenge remains the
same. That is, to derive desirable collective behaviors through the design of individual
agent control algorithms.

The primary distinguishing feature of a cooperative control system is distribution of
information. As opposed to ‘centralized’ solutions, no one decision-maker has access to
the information gathered by all agents. Furthermore, there is typically a communication
cost in distributing locally gathered information.

A secondary distinguishing feature is complexity. Even if information were centrally
available, the inherent complexity of the decision problem makes a centralized solution
computationally infeasible. Therefore, one looks to ‘decomposition’ approaches as in
cooperative control.

Both these features result in the distributed decision architecture of cooperative control.
The potential benefits of such architectures include the opportunity for real-time adaptation
(or self-organization) and robustness to dynamic uncertainties such as individual compo-
nent failures, non-stationary environments, and adversarial elements. These benefits come
with significant challenges, such as the complexity associated with a potentially large
number of interacting agents and the analytical difficulties of dealing with overlapping
and partial information.
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4 Dimensions of Cooperative Control

1.1.2 Illustrative example: command and control of networked
vehicles

We will use the vehicle-target assignment problem, described below, as an illustrative
scenario for the discussion of many of the concepts in this chapter.

Recent years have seen a boom of research motivated by the application of mobile
unmanned systems that operate with either complete autonomy or semi-autonomy, i.e.,
given high level commands from a remote human operator. In fact, the broader topic of
‘network-centric operations’ was the subject of a very recent National Research Council
committee’s study on Network Science for Future Army Applications.1

A representative scenario is the vehicle-target assignment problem (Ahuja et al. 2003;
Beard et al. 2002; Murphey 1999), illustrated in Figure 1.1. A collection of vehicles
seeks to visit a collection of targets. Each vehicle has a limited range of reachable targets.
There can be an advantage in having multiple vehicles visit a single target in that vehi-
cle capabilities are complementary. However, there is also a diminishing return having
redundancy in vehicle-target assignments. An additional complication is to allow vehicles
to visit multiple targets in succession.

Vehicle-target assignment also encompasses the problem of multiple vehicle motion
planning. In an obstacle-filled congested environment, vehicles need to get to their des-
tination while avoiding obstacles and avoiding each other, yet having only limited com-
munications with neighboring vehicles.

Again, both distinguishing features of cooperative control problems are apparent.
Because of the spatial distribution of vehicles, any information gathered by a single
vehicle does not reach other vehicles without explicit communication. This adds a dimen-
sion of what to communicate and to whom. Furthermore, the vehicle-target assignment
problem is known to be NP-complete (Murphey 1999), and so even a centralized solution
is computationally prohibitive for large numbers of vehicles.

An additional possible complication is the presence of an intelligent adversary. Most
work on vehicle-target assignment assumes an asymmetry between vehicle and target
capability – i.e., targets have simple scripted behavior. The problem becomes much more

target
types

vehicles

range
restriction

Figure 1.1 Vehicle target assignment.

1 The NRC report, Network Science, is available online at http://darwin.nap.edu/books/0309100267/html/.
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interesting if targets also have strategic capability, e.g., mobile targets with stealth modes
of operation. In this case, the problem resembles a sort of networked team-vs-team
encounter.

1.2 DIMENSIONS OF COOPERATIVE CONTROL

It is helpful to impose some sort of structure on the broad scope of issues that can
emerge in cooperative control. With this motivation, we will discuss cooperative control
problems in terms of the following ‘dimensions’: (1) distributed control and computation;
(2) adversarial interactions; (3) uncertain evolution; and (4) complexity management.

In the following subsections, we will describe each of these dimensions in general
and in terms of the above illustrative example. The discussion will largely be in terms
of chapters in this volume and selected immediately relevant results. Other reviews of
cooperative control and related research may be found in Murray (2006) and Panai and
Luke (2005).

1.2.1 Distributed control and computation

This is the primary defining characteristic of cooperative control. The distribution of
information necessitates the distributed control and computation among interacting com-
ponents. Not surprisingly, this dimension represents the highest number of contributions
to the volume.

1.2.1.1 Multivehicle motion planning

Multivehicle motion planning arises in vehicle-target assignment in congested environ-
ments. The objective is to generate real-time trajectories to guide a collection of vehicles
to their destination while avoiding obstacles and each other. Destinations may be speci-
fied in terms of absolute locations, relative locations, coverage patterns, or even general
direction of flow. Example scenarios include rendezvous or formation keeping.

The distributed nature of multivehicle motion planning stems from each vehicle deter-
mining its own trajectory while having only partial measurements of only neighboring
vehicles.

Chapter 22 focuses on a ‘swarm’ of vehicles, i.e., a large collection of autonomous
vehicles that need not maintain a regular formation. An important underlying technique
in this problem is that of ‘consensus algorithm’, which was introduced in Tsitsiklis et al.
(1986) and has received considerable renewed interest in recent years (Blondel et al.
2005; Jadbabaie et al. 2003; Kashyap et al. 2006; Marden et al. 2007; Moreau 2004;
Olfati-Saber and Murray 2003; Olfati-Saber et al. 2007; Xiao and Boyd 2004, 2005).
The general form of the algorithm can be described as follows. Let i ∈ {1, 2, . . . , I}

2 R. Olfati-Saber, ‘Design of behavior of swarms: from flocking to data fusion using microfilter networks’.
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Figure 1.2 Hierarchical formation.

denote the index of the ith agent in a collection {1, 2, . . . , I}. Let θi(t), t ∈ {0, 1, 2, . . .},
denote a time-varying scalar quantity associated with the i th agent. Now define

θi(t + 1) =
∑

j∈Ni(t)

aij (t)θj (t), (1.1)

where Ni(t) ⊂ {1, 2, . . . , I} denotes the set of ‘neighbors’ of the i th agent at time t and
aij (t) is the relative weight that agent i places on agent j . Under suitable assumptions,
one can show that all agents asymptotically synchronize, i.e., for all i �= j ,

lim
t→∞ θi(t) = lim

t→∞ θj (t).

For motion planning problems, the consensus algorithm has been used as an approach
to synchronize heading angles, velocities, or positions, using only ‘local’ information
characterized by Ni(t) and in the face of time-varying network topologies.

Chapter 33 also addresses multivehicle motion planning, but the emphasis is shifted
away from swarms in favor of formations. That is, each vehicle seeks to hold a specified
distance from a subset of other vehicles. In particular, this chapter considers ‘hierarchical
formations’. A very simple example (Figure 1.2) consists of three groups of vehicles, say,
group A, B, and C. Group A seeks to maintain a relative formation, as do groups B and
C. Furthermore, there is a single vehicle in each group, say, vehicles a, b, and c, that
seek to maintain a relative formation with each other. In this way, the overall formation
is induced by the intergroup formation and intragroup formation.

1.2.1.2 Distributed predictive control

Receding horizon control or model predictive control (e.g., Bemporad and Morari 1999)
is a well-known approach to nonlinear control design through successive online optimiza-
tions. Distributed control and computation present an obstacle to implementing predictive
control in a multiagent system.

3 S. Glavaški, A. Williams, and T. Samad, ‘Connectivity and convergence of formations’.
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The ‘single agent’ version can be described briefly as follows. Assume state dynamics
of the form

ẋ = f (x, u).

Let u∗(·) be the optimal control trajectory for the optimization problem

min
u(·)

∫ t+T

t

g(x(τ ), u(τ), τ )dτ + G(x(t + T ))

subject to the above dynamics with initial condition x(t). In model predictive control, the
initial portion of the optimal control is implemented, i.e.,

u(τ) = u∗(τ ), τ ∈ [t, t + δ)

for some δ > 0. The optimization is then resolved at time t + δ using the state x(t + δ)

as the initial condition, and the process is repeated.
Two complications arise in a multiagent framework. For simplicity, consider the case

with two agents. One complication arises when the systems are dynamically coupled,
as in

ẋ1 = f1(x1, x2, u1)

ẋ2 = f2(x2, x2, u2).

Another complication arises when the systems are not dynamically coupled, as in

ẋ1 = f1(x1, u1) (1.2a)

ẋ2 = f2(x2, u2), (1.2b)

but their objective functions are coupled, as in

min
u1(·)

∫ t+T

t

g1(x1(τ ), x2(τ ), u1(τ ), τ )dτ + G1(x1(t + T )) (1.3a)

min
u2(·)

∫ t+T

t

g2(x1(τ ), x2(τ ), u2(τ ), τ )dτ + G2(x2(t + T )). (1.3b)

In either case, the requirement of distributed control and computation prohibits an imme-
diate application of receding horizon control, the main reason being that neither agent
is in control of the other. Accordingly, neither agent is able to control or predict the
trajectory of the other agent.

Chapters 44 and 55 present complementary approaches to multiagent versions of pre-
dictive control. These chapters address how to introduce additional constraints on the
control trajectories, such as ui(·) ∈ Ui , to guarantee stability and performance. As one

4 W.B. Dunbar, ‘Distributed receding horizon control: stability via move suppression’.
5 T. Keviczky, F. Borrelli, and G.J. Balas, ‘Distributed predictive control: synthesis, stability and feasibility’.
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would expect, an important underlying concern of any single agent is the deviation of
the trajectories of other agents from their predicted values. While the problem set-up is
motivated by multivehicle motion planning, the methods and concepts carry over to more
general settings.

1.2.1.3 Task assignment

The multivehicle motion planning component of vehicle-target assignment addresses issue
of ‘how to get there?’. This was the main subject of the Chapters 2–5.

A higher level strategic decision is ‘where to go’? This is the problem of task assign-
ment. Let V = {1, 2, . . . , nV } denote a set of vehicles and T = {1, 2, . . . , nT } denote a
set of targets. Let ai , i ∈ V denote the assignment of the ith vehicle. For example, a1 = 2
means that vehicle #1 is assigned to target #2. The collection of assignment profiles is
denoted by the vector a. In general, these assignments are constrained (e.g., by vehi-
cle range limitations), and so each vehicle’s assignment must belong to a specified set,
denoted by Ai for vehicle #i.

In static assignment problems, there is a scoring function that indicates the utility of
an assignment profile, e.g.,

Ug(a) = Ug(a1, a2, . . . , anV
).

The task assignment problem is then the combinatorial optimization

max
ai∈Ai ,i=1,2,...,nV

Ug(a1, a2, . . . , anV
).

The situation is more complicated in dynamic assignment problems. In these prob-
lems, vehicle locations, target locations, and target constraint sets are all time-varying,
which induces time-variations in the overall utility function. The problem is then to
design dynamic vehicle-target assignment policies whose performance is measured by
time-aggregated behavior such as the rate of successful target assignments.

This problem becomes one of distributed computation and control because individual
vehicles need not be aware of the entirety of target locations. Furthermore, there may be
an incentive for vehicles to be assigned to the same target, and so vehicles must coor-
dinate to complement the actions of other vehicles. Typically, one assumes some sort of
communication graph over which vehicles message each other in an effort to compute
an assignment profile. This brings in the additional dimension of what to communicate
as part of the decision problem. Another reason for a distributed approach is complexity.
Even if a single decision-maker had access to all target locations to determine an assign-
ment profile, the resulting optimization is known to be NP-complete (cf., Murphey 1999).
Imposing a distributed architecture does not alleviate the inherent complexity, per se, but
represents an attempt to compute effective solutions with low computational cost.

Chapters 6–7 address different aspects of the task assignment problem. Chapter 66

investigates the one-to-one assignment problem with static targets. Vehicles can commu-
nicate through a specified communication topology, but these communications introduce
delays in determining an assignment profile. Furthermore, the assignment utility func-
tion changes as vehicles move in the environment en route to their interim assignments.

6 B.J. Moore and K.M. Passino, ‘Task assignment for mobile agents’.
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Vehicles use a modified distributed auction algorithm to determine the action profile, and
the performance is measured through Monte Carlo simulation.

Chapter 77 also considers mobile vehicles and static targets, but targets are regenerated
by a stochastic process. The performance measure is to minimize the average time to visit
a target once it has appeared. This performance objective is an example of the aforemen-
tioned time-aggregated behavior (as opposed to optimal assignment for a specific fixed
target scenario.) The emphasis in Chapter 7 is to investigate the role of communication.
Namely, to what degree do explicit vehicle communications affect performance? Surpris-
ingly, the result in this formulation is that asymptotic performance is not affected. The
intuition is that vehicles implicitly communicate when one vehicle reaches a target before
another vehicle.

Another approach to task assignment is reported by Arslan et al. (2006). This paper
takes a learning in games (Fudenberg and Levine 1998; Young 2006) approach to the
many-to-one static assignment problem. Since many vehicles can visit the same target,
there is an assumed communication topology where two vehicles can communicate if and
only if they share a common target, i.e., Ai ∩ Aj �= ∅.

The method proposed by Arslan et al. (2006) is twofold. The first element is design
of local utility functions. Individual vehicles are endowed with a ‘local’ utility function
that reflects a vehicle’s local influence. A particularly appealing local utility construction
is the marginal contribution utility (or wonderful life utility (Wolpert and Tumer 1999))
defined as follows. We will write an assignment profile as a = (ai, a−i ) where ai is the
assignment of the ith vehicle, and a−i is the assignment of all other vehicles. Let T∅
denote the ‘null’ target, i.e., no assignment, and assume that T∅ ∈ Ai for all agents. Now
define the local utility function

Ui(ai, a−i ) = Ug(ai, a−i ) − Ug(T∅, a−i ).

In words, Ui(·) reflects the change in utility that the ith vehicle can affect. Any sort of geo-
graphical distribution of targets and vehicles reflected in the global utility is automatically
reflected in this definition.

The second element is the design of negotiation protocols. Vehicles that share common
targets communicate repeatedly and propose self-assignments to each other. The negoti-
ation protocol determines how the new proposals are generated as a (stochastic) function
of the history of prior proposals. In particular, Arslan et al. (2006) present different pro-
tocols and show that these protocols are guaranteed to converge to a Nash equilibrium of
the resulting multi-player game. The performance of these protocols is compared through
Monte Carlo simulations.

1.2.1.4 Inducing coordination

The problem of inducing coordination is to design individual agent control laws that use
very limited descriptions of the behaviors of other agents. In terms of the discussion on
predictive control, assume that two agents are not dynamically coupled but are coupled

7 A. Arsie, J.J. Enright, and E. Frazzoli, ‘On the value of information in dynamic multiple-vehicle routing
problems’.
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Figure 1.3 Multivehicle search.

through objective functions, as in Equations (1.2)–(1.3). A centralized control policy
would have each agent’s control law as a function of the state of both agents, e.g.,

u1 = g1(x1, x2),

u2 = g2(x1, x2)

The objective in inducing coordination is to derive control laws that only use a suitably
defined aggregate measure, denoted by mi(·), of the behavior of the other agent, as in

u1 = g1(x1,m1(x2)),

u2 = g2(x2,m2(x1)).

Chapter 88 considers the following scenario, illustrated in Figure 1.3. Two agents are
traversing an unknown (gridded) map that models terrain with obstructed views. Each
agent can measure the cost of travel for many steps ahead in a forward direction but has
very limited view of the cost of travel in diagonal direction. The objective is for both
vehicles to cross the map with minimum cost. This brings up the well-known common
tension between exploration and exploitation. One the one hand, vehicles should explore
the terrain in search of low cost paths. On the other hand, if vehicles are too far apart, then
neither vehicle cannot take advantage of a low cost path found by the other. Chapter 8
computes the optimal policy in this scenario and shows that the optimal policy is charac-
terized by an ideal separation. In terms of the above discussion, the separation factor serves
as the ‘aggregate measure’ of the other vehicle’s performance. If a vehicle exceeds this
separation, then it must be that it has found a path whose cost is below a threshold value.

Chapter 99 investigates a linear version of the vehicle-target assignment problem illus-
trated in Figure 1.4 motivated by the ‘RoboFlag drill’ of Earl and D’Andrea (2002). As
in Chapter 7, targets are regenerated stochastically. The approach here is that each agent
makes a simplified model of the other agent in the form of a probability of being on

8 E. Feron and J. DeMot, ‘Optimal agent cooperation with local information’.
9 V.P.-W. Seah and J.S. Shamma, ‘Multiagent cooperation through egocentric modeling’.
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Figure 1.4 Linear vehicle-target assignment.

the left versus being on the right. This ‘probability’ becomes the aggregate measure of
the behavior of the other agent. A semi-decentralized policy is computed through the
following iterative process. First, an agent forms an empirical model of the behavior of
the other agent. Second, an agent designs an optimal policy given this model. Once agents
deploy the new policy, they remodel each other’s behavior and redesign their individual
policies. The implication of convergence is a consistency condition. Namely, each agent’s
behavior is consistent with how the agent is modeled by others. Furthermore, each agent’s
local strategy is optimal with respect to how it models other agents. Chapter 9 derives
conditions for convergence for the scenario in Figure 1.4, presents illustrative simulations,
and establishes a connection to the learning in games approach.

1.2.2 Adversarial interactions

An important application for cooperative control is autonomous vehicle systems operating
in a possibly hostile environment. Adversarial interactions highlight that these systems
must address the possibility of other hostile vehicles that are also capable of strategic plan-
ning. For example in the vehicle-target assignment problems previously discussed, targets
exhibited only scripted as opposed to strategic behavior. Targets were either stationary
or they regenerated stochastically. In adversarial situation, targets may make strategic
decisions related to mobility or visibility.

1.2.2.1 Trajectory planning with adversaries

Both Chapters 1010 and 1111 look at a particular version of vehicle target assignment
called ‘Roboflag drill’ (see Earl and D’Andrea 2002) illustrated in Figure 1.5. Mobile
attackers seek to penetrate a defense zone. However, an attacker is disabled if it is ‘tagged’
by a defender. Suppose that attacker paths were known in advance. Then it is possible
to set up an optimization problem to compute defender trajectories to intercept attacker
positions. The general form of this optimization is a mixed integer linear program (MILP).
MILP optimization is similar to linear programming, except that some (or all) variables
are constrained to be integers. An illustrative form is

max cTx

subject to Ax ≤ b, xi ∈ {0, 1} .

10 M.G. Earl and R. D’Andrea, ‘Multi-vehicle cooperative control using mixed integer linear programming’.
11 G.C. Chasparis and J.S. Shamma, ‘LP-based multi-vehicle path planning with adversaries’.
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defenders

attackers
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zone

Figure 1.5 RoboFlag drill.

This problem would be a linear program if the constraint set on x were changed to the
interval condition xi ∈ [0, 1]. MILP optimization can be significantly more computation-
ally demanding than LP optimization. However, there are effective commercial solvers.
The integer constraints in Roboflag drill stem from certain binary states in the problem
set-up, such as whether or not an attacker has been intercepted. Chapter 10 goes beyond
the assumption of a known attacker trajectory. Rather, the assumption is a known strategy,
which can be viewed as a guidance law, of the attackers.

Chapter 11 addresses a very similar framework. However, the approach taken is to
avoid MILP formulations in favor of LP formulations. This is achieved by a predictive
control implementation of the defender trajectory planning. The procedure is as follows.
First, a simplified model for trajectory planning is constructed. In this simplification,
certain discrete elements of the model are ignored, thereby allowing an LP computation
of a defender trajectories. An initial phase of the computed trajectory is implemented,
at which point the process is repeated. As in Chapter 11, there is an assumed strategy
of the attackers. However, this strategy is based on myopic predictions of the attacker
trajectories and updated as part of the predictive control iteration. Since the method is
based on computationally simpler LP, it allows one to endow both attackers and defenders
with equal strategic capability. That is, both attackers and defenders optimize online based
on revised strategy predictions of their opponent.

1.2.2.2 Adversary forecasting

An important consideration in both of the above approaches was the lack of knowledge,
and hence assumptions on, the strategy, or ‘intent’, of the opponent. In order to compute
an optimal response, one must make some sort of model of opponent strategies. Recent
work (Mannor et al. 2006) addresses this issue in the framework of learning in games. The
set-up is as follows. Two players P1 and P2 repeatedly play a matrix game over times
t = {0, 1, 2, . . .}. Player Pi selects its action ai(t) from its action set Ai . Each player
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receives a utility (reward) Ui(ai(t), a−i (t)). (Recall that −i denotes the ‘other’ player.)
An important assumption is that players do not know each other’s utility function. In
particular, a zero-sum structure as in

U1(a1, a2) = −U2(a2, a1)

is not assumed. This restriction can be interpreted as a lack of knowledge of the intent
of the other player. To deal with this lack of knowledge, players make forecasts of each
other’s actions. More precisely, given the action history (a2(0), a2(1), . . . , a2(t − 1)) of
player P2, player P1 constructs a forecast f2(t) which can be interpreted as a probability
distribution on the anticipated a2(t). Similarly, player P2 creates a forecast, f1(t), of
a1(t). The action of each player is then to maximize its expected utility based on this
forecast, i.e.,

a1(t) = max
a1∈A1

Ea2(t)∼f2(t)[U1(a1, a2(t))]

a2(t) = max
a2∈A2

Ea1(t)∼f1(t)[U2(a2, a1(t))].

We use the notation ∼ to denote the probability distribution over which the expectation
operation is performed. Of course, this procedure relies heavily on how players forecast
each other’s actions. The forecasting approach in (Mannor et al. 2006) is one of ‘cali-
brated forecasting’. In brief, calibrated forecasts are a ‘universal’ approach to construct
statistically consistent (i.e., calibrated) forecasts of a discrete sequence in the absence of
a model of the generator of the sequence (Foster and Vohra 1997). Unfortunately, these
forecasting schemes, while universal, are not computationally feasible. In (Mannor et al.
2006), universality is sacrificed for computational efficiency. An alternative forecasting
scheme, termed ‘tracking forecast’, is constructed that results in calibrated forecasts for
special classes of sequence generators. This special class include many forms of learning
algorithms. The final result is the ability in repeated play to optimally respond to an
opponent based on observations of past play but without knowledge of the opponent’s
utility function, and hence, intent.

1.2.2.3 Effects of information patterns

Chapter 1212 considers a very different problem in adversarial interactions that is at the
heart of the distributed information patterns prevalent in cooperative control problems. The
problem set-up one of linear systems with a combination of stochastic and deterministic
inputs. The system dynamics are of the form

ẋ = Ax + B0d + B1w + B2u

y = Cx + n

The inputs d and n represent stochastic process noise and measurement noise, respec-
tively. The inputs w and u are opposing adversarial inputs, where w seeks to maximize

12 A. Swarup and J.L. Speyer, ‘Characterization of LQG differential games with different information patterns’.



14 Dimensions of Cooperative Control

a specified cost function that u seeks to minimize. The control u has access to the output
measurement y. A standard assumption in worst case paradigms such as robust control is
that the adversary, w, being ‘nature’, is all knowing. That is, it has full access to the state
and to the measurement of the controller. Chapter 12 departs from this set-up by assuming
that the maximizer, w, can measure the state x but not the noisy output y. It turns out that
such seemingly innocuous differences can significantly alter the resulting constructions of
optimal controllers. (A classic illustration is the Witsenhausen example (Ho 1980; Witsen-
hausen 1968).) For example, under standard assumptions, optimal controllers are of the
same dimension as the state dynamics. Under non-standard assumptions, such as the above
setting, it is not known whether optimal controllers are even finite dimensional, let alone
the same order as the state dynamics. Chapter 12 shows that under mild technical assump-
tions, controllers remain finite dimensional even in this non-standard information scenario.

1.2.3 Uncertain evolution

An operating environment, even if not hostile, introduces significant uncertainty in the
operation of autonomous vehicle systems. Uncertain evolution means that cooperative
control solutions may encompass both estimation and adaptation methods to overcome
environmental uncertainty.

1.2.3.1 Hybrid mode estimation

Let us take the position of an evading mobile target. The construction of an evasion
trajectory would benefit from knowledge of the target assignments of vehicles (cf., the
previous discussion on unknown opponent strategies and intent). Since there is no explicit
communication between vehicles and targets, a target must estimate a vehicle’s assignment
based on some sort of assumed model. In this setting, and for other cooperative control
problems as well, such an underlying model often combines both continuous dynamics
(e.g., vehicle motions) and discrete dynamics (e.g., target assignments), resulting in the
now standard ‘hybrid’ system form.

The general assumed model is

x(t + 1) = A(q(t))x(t) + Bw(t)

y(t) = Cx(t) + n(t)

where w and n are stochastic process and measurement noise, respectively. The parameter
q(t) takes its values from a finite discrete set Q. The problem of mode estimation is to
infer q(t) based on observations y(t).

Chapters 13 and 14 provide complementary approaches to address this problem.
Chapter 1313 takes an information theoretic approach. It is assumed that the mode switches,
q(t), are described by a Markov process with associated transition probabilities. The con-
nection to information theory is that the mode history can be viewed as a ‘message’,

13 N.C. Martins and M.A. Dahleh, ‘Modal estimation of jump linear systems: an information theoretic viewpoint’.
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and the system dynamics and observations can be viewed as a ‘channel’. The information
theoretic connection allows one to provide bounds on mode estimation errors. Chapter 1414

takes a more explicit approach. The evolution dynamics of the mode is augmented onto
the state dynamics, thereby producing a higher order nonlinear system. Approximate non-
linear filtering methods can then be applied to the augmented system to derive an online
mode estimate.

1.2.3.2 Autonomous evolution of languages

The a long-term goal of cooperative control is to enable agents to explore unknown
environments, communicate their findings to one another, and ultimately report back to
human observers. A particularly ambitious goal is that this exploration will occur in highly
unknown ‘first encounter’ environments. Such a scenario can be contrasted with a more
standard search and rescue operation, where the uncertainty is much more structured.
There is an unknown location to be specified, but the general environment of the search
is well understood. By contrast, in first encounter environments, many basic elements of
the environment are not known, and so agents must learn to communicate about findings
that were not ‘pre-programmed’ into their communication protocol.

Chapter 1515 makes an interesting connection between this scenario and the evolution
of languages. Different agents will encounter different discoveries, thereby altering their
internal representations of the environment. The problem of language evolution involves
determining whether initially homogenous languages will evolve into mutually unintel-
ligible dialects or stay mutually understandable. The underlying graphical structure of
communication among agents plays an important role in determining the ultimate out-
come of this process. Interestingly, there are strong connections to the aforementioned
consensus problem as well, cf. Equation (1.1).

1.2.4 Complexity management

Cooperative control problem formulations, if taken at face value, often result in compu-
tationally prohibitive solutions. Complexity management seeks to alleviate the inherent
computational complexity through exploitation of special structures or the introduction of
effective approximations.

Many of the problems discussed have some element of complexity management by
virtue of an imposed distributed structure. For example, much of the task assignment
work involved deriving effective solutions while bypassing an explicit optimization of
the assignment problem. Chapters 16–17 take a more explicit view at complexity man-
agement.

Chapter 1616 revisits the problem of hybrid mode estimation, but for multiple agents.
A motivating problem is estimating a collective assignment profile through observations
of a group of vehicles. A complementary approach to stochastic methods in estimation

14 D. Choukroun and J.L. Speyer, ‘Conditionally-linear filtering for mode estimation in jump-linear systems’.
15 Y. Lee, T.C. Collier, C.E. Taylor, and E.P. Stabler, ‘Cohesion of languages in grammar networks’.
16 D. Del Vecchio and R.M. Murray, ‘Complexity management in the state estimation of multi-agent systems’.
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is set-valued estimation (e.g., Milanese and Vicino 1991; Schweppe 1973; Shamma and
Tu 1997, 1999). The main idea is to compute the entire set of values (as opposed to a
single estimate) of an unknown quantity that are consistent with available observations
to date. For example, for linear systems with bounded process disturbances and measure-
ment noises, this amounts to constructing the set of all possible states based on output
measurements. Not surprisingly, the exact characterization of such a set in the absence
of any additional structure can be computationally prohibitive. Chapter 16 addresses this
problem by superimposing a lattice structure on the state dynamics. The benefit of this
lattice structure is that set-valued estimates can be expressed as generalized intervals, as in
lb(t) ≤ x(t) ≤ ub(t), where lb(t) and ub(t) denote lower bounds and upper bounds from
the lattice structure, respectively. As new measurements are taken, these lower and upper
bounds are recomputed. The approach is demonstrated on the problem of estimating an
assignment profile based on vehicle motions. This also falls under the heading of hybrid
mode estimation, but without a stochastic structure imposed on mode dynamics.

Chapter 1717 discusses complexity management from the perspective of scenario rep-
resentation. The objective is to derive representations of a multivehicle scenario for a
human operator that are both descriptive and not overly detailed. The challenge is to find
an appropriate level of granularity and to represent this level of detail in a graphically
appealing manner. The specific framework taken here is abstraction-based patch models.
Rather than specify locations and trajectories of vehicles, patch models specify sets of pos-
sibilities. The tradeoff is that the omission of details results in the admission of auxiliary
scenarios. By having a variable level of resolution, auxiliary scenarios can be pruned. In
many ways, the framework resembles the set-valued estimation of Chapter 16. The main
difference is that the set of possibilities is deliberately constructed as a representation
device as opposed to the outcome of an estimation process.

1.3 FUTURE DIRECTIONS

We conclude this opening chapter with some comments on future directions in cooperative
control. It should be clear from the present discussion that the scope of cooperative control
admits multiple problem formulations for addressing multiple aspects of the underlying
issues. And so, rather than suggest specific open questions, we will offer some general
directions that have received relatively limited attention.

• Strategic decision-making: Much of the effort in cooperative control has been devoted
to multivehicle trajectory planning and motion execution, such as formation keeping,
rendezvous, or area coverage. Less attention has been given to strategic decision-
making. Strategic decision-making entails determining, coordinating and executing a
plan of attack in response to real-time data as events unfold. In terms of a feedback
hierarchy, strategic decision-making involves higher level planning, while multivehicle
motion planning is at a lower level (with conventional vehicular control at the lowest
level). Some of the work in vehicle-task assignment falls under strategic decision-
making, but in more general settings, one may not have an underlying geometric
framework to exploit.

17 V. G. Rao, S. Goldfarb and R. D’Andrea, ‘Abstraction-based command and control with patch models’.



References 17

• Increasing role of game theory: The use of game theory in cooperative control has
largely been limited to the concept of Nash equilibrium in zero sum or general sum
games. Game theory, by definition, is concerned with the interactions between multiple
decision-makers, and hence it is clearly relevant to cooperative control. There are a
variety of important concepts, such as mechanism design, bargaining, coalition theory,
and correlated equilibrium that are not yet widely known. A challenge in exploiting
these concepts is that they were developed with the intention of being models of social
phenomena, whereas cooperative control applications involve engineered systems and
require prescriptive synthesis tools.

• Benchmark scenarios and problems: A collection of benchmark scenarios would help
to compare different approaches in the broad scope of cooperative control research. The
terminology benchmark ‘scenario’ rather than benchmark ‘problem’ is deliberate here.
For example, we have used vehicle target assignment as a benchmark scenario for much
of the discussion in this chapter. Various research results were discussed in terms of the
relevant component of this benchmark scenario. Benchmark problems are much more
structured, where competing methodologies can be compared quantitatively. Benchmark
problems, stemming from benchmark scenarios would also be very valuable. Here,
one faces the usual challenge of defining specific problems that are neither trivially
concocted nor intractable.
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