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Notation – Matrices and Tensors

In this chapter, we give the definition of matrices and tensors for the purpose of notation used
in the book. We summarize the basic relations that are useful for reading the text, without
any proofs or in-depth presentation. More details are given on the web (Theory, Chapter 1,
Examples, Chapter 1). For further reading the reader should consult books specialized to this
topic (e.g. Fung 1965, Malvern 1969, Mase & Mase 1999).

1.1 Matrix representation of mathematical objects

For some physical quantities, a single number is sufficient to define the quantity. For example,
we use T to denote temperature at a given material point, and associate a certain value with
T (e.g. T = 20 �C). The quantity specified by a single number is called a scalar. We will
denote scalars by italic letters.

However, many quantities need more than one number to be completely defined. For
example, in order to define velocity of a particle, we need to know not only the magnitude of
the velocity, but also its direction and orientation in space. The spatial direction, magnitude
and orientation are defined by, say, three velocity components in a Cartesian coordinate
system: v1� v2� v3. We denote the velocity by a bold letter v, associating with it three scalars
v1� v2� v3. In general, we use a bold lower case letter for a vector b, or a column matrix of
the order 1×n, defined as

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

�
�

bn−1

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.1.1)
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4 COMPUTER MODELING IN BIOENGINEERING

We will be using notation of a transpose of a vector, bT , which assumes an interchange of
the rows and columns, i.e.,

bT = [
b1 b2 � � bn−1 bn

]
(1.1.2)

For some physical quantities we need more complex representation than a vector. For
example, the state of stress at a material point is represented by values of forces per unit area
at three orthogonal planes (details are shown on the web – Theory, Chapter 1). Hence we
need nine scalars (three for each force), which we order in a two-dimensional matrix form
as �11� �12� �13� � � � � � ��31� �32� �33. In general, a two-dimensional matrix B (capital bold
letter is used for a matrix) of order m×n is defined as a mathematical object with terms
Bij in which the first index denotes the row number, and the second index represents the
column number,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 B12 . . B1n−1 B1n

B21 B22 . . B2n−1 B2n

� � . . � �
� � . . � �

Bm−1�1 Bm−1�2 . . Bm−1�n−1 Bm−1�n

Bm1 Bm2 . . Bm�n−1 Bm�n

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.1.3)

We will be mainly using square matrices, where m = n. If the columns and rows are
interchanged, then we have the transposed matrix,

(
BT

)
ij

= Bji (1.1.4)

Following this definition of matrix, it is possible to extend the matrix to have more than
two dimensions. However, in our presentation throughout the book, by a matrix we assume a
two-dimensional square matrix, unless otherwise stated. A square matrix is symmetric when

Bji = Bij i� j = 1� 2� � � � � � n (1.1.5)

1.2 Basic relations in matrix algebra

We list here some of the basic matrix algebra relationships that are used in this book.
The addition of vectors a and b is expressed by

c = a +b or ci = ai +bi i = 1� 2� � � � � � � n (1.2.1)

resulting in the vector c with components ci. In the case of subtraction we have a ‘minus’
instead of ‘plus’ sign. Summation of matrices A and B assumes the same order of these
matrices, say m×n, and is given as

C = A+B or Cij = Aij +Bij i = 1� 2� � � � � � �m� j = 1� 2� � � � � � n (1.2.2)

The resulting matrix C is also of the order m×n, with terms Cij .
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The scalar (matrix) multiplication of vectors a and b results in the scalar c according to
the relation

c = aT b = bT a =
n∑

s=1

asbs = asbs (1.2.3)

We will generally omit the summation sign by using the convention that the summation is
carried over repeated indices (here the index ‘s’ is also called the dummy index). This is
known as the Einstein summation convention. On the other hand, a dyadic multiplication
abT gives the matrix C,

C = abT or Cij = aibj (1.2.4)

with the terms Cij .
The matrix multiplication between a matrix and a vector, or between two matrices, is

defined as follows:

c = Ab� ci = Aikbk (1.2.5)

C = AB� Cij = AikBkj (1.2.6)

Note that the following relation can be proved

CT = �AB�T = BT AT �
(
CT

)
ij

= BkiAjk (1.2.7)

The scalar multiplication of two matrices is given as

c = A ·B = AijBij (1.2.8)

The inverse of a matrix A, denoted as A−1, is the matrix which satisfies the relation

AA−1 = I� AikA
−1
kj = 	ij (1.2.9)

where I is the identity matrix (diagonal terms equal to one, all other terms equal to zero),
and 	ij are the Kronecker delta symbols: 
ij = 1 for i = j� 
ij = 0 for i �= j.

The determinant of a matrix A, denoted as detA or �A�, is defined as

det A ≡ �A� = eijkA1iA2jA3k� i� j� k = 1� 2� 3 (1.2.10)

where eijk is the permutation symbol, with values: eijk = 0 for i = j or j = k or i = k or
i = j = k� eijk = 1 for even permutation of 1,2,3; eijk = −1 for odd permutation of 1,2,3.
Calculation of the matrix determinant is needed for the matrix inversion, therefore the inverse
matrix exists if the determinant of the matrix is not equal to zero.

Two matrices A and B are orthogonal if the following relationship is satisfied:

AB = I� or AikBkj = 	ij� i� j = 1� 2� � � � � � �m� k = 1� 2� � � � � � n (1.2.11)

Note that the identity matrix is of dimension m×m. The matrix A is orthogonal if

AT A = I� or AkiAkj = 	ij� i� j = 1� 2� � � � � � �m� k = 1� 2� � � � � � n (1.2.12)
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1.3 Definition of tensors and some basic tensorial relations

Tensors are mathematical objects defined by components associated with a coordinate system.
These components change when the coordinate system is changed, according to certain
rules (tensorial transformation rules). Note, however, that tensors (as well as vectors) do
not change with the change of the coordinate system, only their components change. We
will use tensors to represent physical quantities for which the transformation rules have the
physical background. Throughout the book we will be using the Cartesian coordinate system
with unit vectors (triad) i1� i2� i3, shown in Fig. 1.3.1.

A first-order tensor b is represented in two coordinate systems (with unit vectors ik and
ik) as

b = bkik = b1i1 +b2i2 +b3i3 = bkik = b1i1 +b2i2 +b3i3 (1.3.1)

where bk and bk are the vector components in the two coordinate systems. The relationships
between the components in the two systems are given by

bj = Tjkbk (1.3.2)

where Tjk are the cosines of angles between the unit vectors ij and ik of the two coordinate
systems, Tjk = cos�ij� ik�. Note that this equation represents the matrix multiplication of
the form (1.2.5), involving the 3 × 3 transformation matrix T and the 3 × 1 vector of the
form (1.1.1).

A second-order tensor B is defined as

B = Bjkijik = B11i1i1 +B12i1i2 +B13i1i3 + � � � � � +B31i3i1 +B32i3i2 +B33i3i3 =
= Bjkijik = B11i1i1 +B12i1i2 +B13i1i3 + � � � � �+B31i3i1 +B32i3i2 +B33i3i3

(1.3.3)

with components Bjk and Bjk in the coordinate systems ik and ik, respectively. These com-
ponents can be represented in the matrix form (1.1.3). The transformation of the tensorial
components due to change of the coordinate system is

Bjm = TjkBksTms (1.3.4a)

Fig. 1.3.1 Graphical representation of a vector b in two Cartesian systems
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which corresponds to the matrix multiplication (1.2.6),

B = TBTT (1.3.4b)

Tensors of higher order can be defined, following (1.3.3), but we will use the second-order
tensors and will call them tensors.

We further cite the tensorial relations used in the book. The dot product (multiplication)
of two vectors, tensor and vector, and two tensors, are consecutively defined as follows:

c = a ·b = akik ·bmim = akbk (1.3.5)

c = Ab = Ajkijik ·bmim = Ajkbmijik · im = Ajkbmij	km = Ajkbkij

cj = Ajkbk

(1.3.6)

C = AB = Ajkijik ·Bmsimis = AjkBmsijik · imis = AjkBms	kmijis = AjkBksijis

Cjs = AjkBks

(1.3.7)

Here we have employed the orthogonality of the unit vectors ik and im, i.e., ik · im = 	km.
The dot product of two vectors is also called the scalar product. It can be seen that the dot
product of two vectors gives a scalar, the dot product of tensor and vector gives vector, and
the dot product of two tensors gives a tensor.

We will also use the cross-product of two vectors defined as

c = a ×b� or ci = eijkajbk (1.3.8)

The scalar product of two tensors gives a scalar, and is defined as

c = A ·B = AijBij (1.3.9)

The Euclidean norms of a vector and a tensor are

�b� = (
bjbj

)1/2
� �A�2 = (

AijAij

)1/2
(1.3.10)

The rotation tensor R corresponding to two coordinate systems with unit vectors ik and
ik is defined by the components

Rkm = cos�ik� im� (1.3.11)

It can be shown that the following relationship holds (see web – Theory, Chapter 1)

im = Rim (1.3.12)

leading to a rotation of vector im. Multiplication of any vector b by the rotation tensor R
rotates this vector as it rotates the vector im. The following relation is valid R = TT . It is
important to emphasize that multiplication of a vector b by the transformation matrix T
gives the vector components in a rotated coordinate system of the same vector (see (1.3.2)
and Fig. 1.3.1; also see web – Theory, Chapter 1). On the other hand, multiplication of a
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vector b by the rotation tensor R produces another vector b, rotated with respect to b (see
web – Theory, Chapter 1).

Finally, we define the principal values and principal directions of a tensor. In order to
introduce these quantities, consider the following equation

Ap = �p or �A−�I� p = 0 (1.3.13)

where � is a scalar, and p is a unit vector. The equation has a nontrivial solution �p �= 0� if
determinant of the system matrix A−�I is equal to zero,

det �A−�I� = 0� or �3 − I1�
2 + I2�− I3 = 0 (1.3.14)

where I1� I2� I3 are the first, second and third invariants of the tensor A,

I1 = trA = Aii = A11 +A22 +A33� I2 = 1
2

(
AiiAjj −AijAji

)
�

I3 = det A = eijkA1iA2jA3k� i� j� k = 1� 2� 3
(1.3.15)

If the matrix A is symmetric and its terms are real numbers, then there are three real solutions
�1� �2� �3 which are the principal values, or eigenvalues of matrix A. To each principal
value �k there corresponds the principal vector, or eigenvector pk. It can be shown that
principal vectors pk are orthogonal (or orthonormal if eigenvectors are unit vectors), forming
the principal basis of the tensor A (see Example 1.5-4). Therefore, the tensor A in the
principal basis, written in a matrix and tensorial form, is:

A =
⎡
⎣�1 0 0

0 �2 0
0 0 �2

⎤
⎦ � or A = �1p1p1 +�2p2p2 +�3p3p3 (1.3.16)

In practical calculations of the principal vectors, we use (for a given principal value �k)
two of the equations (1.3.13) and one representing the condition that pk is a unit vector.
Therefore the following system of equations is solved:

�A11 −�k�p�k�1 +A12p�k�2 +A13p�k�3 = 0

A21p�k�1 + �A22 −�k�p�k�2 +A23p�k�3 = 0� no sum on k
(
p�k�1

)2 + (
p�k�2

)2 + (
p�k�3

)2 = 1

(1.3.17)

Further details about the eigenvalue problem can be seen in Examples 1.5-4; 2.1-4 and 2.1-6
on the web (Examples, Chapter 2).

1.4 Vector and tensor differential operations
and integral theorems

Here, the vector and tensor differential operations and integral theorems used in this book
are summarized. Throughout the text, we mainly refer to the Cartesian coordinate system.
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Differential Operations
We start with the differential operator ‘nabla’ or ‘del’, defined as

� = 



x1

i1 + 



x2

i2 + 



x3

i3 ≡ 



xk

ik (1.4.1)

which is a vector-operator with components 
/
xk� k = 1� 2� 3. When applied to a scalar
function ��x1� x2� x3�, the gradient of the function � is obtained,

�� = 
�


x1

i1 + 
�


x2

i2 + 
�


x3

i3 ≡ 
�


xk

ik (1.4.2)

as a vector, with the components 
�/
xk. The gradient of a vector field b �x1� x2� x3� is

�b = 



xk

(
bjij

)
ik = 
bj


xk

ijik (1.4.3)

and represents the second-order tensor with components ��b�kj = 
bj/
xk. The �b is called
the dyadic product of the vectors � and b.

The divergence of a vector field b �x1� x2� x3� is defined as

� ·b ≡ divb = 



xk

(
bjij

) · ik = 
bj


xk

ij · ik = 
bj


xk

	jk = 
bk


xk

(1.4.4)

and represents a scalar. The divergence of a tensor field A �x1� x2� x3� is

� ·A ≡ divA = ik




xk

· (Ajmijim
) = 
Ajm


xk

ik · ijim = 
Akm


xk

im (1.4.5)

Therefore, � ·A is a vector with components �� ·A�m = 
Akm/
xk.
The curl of a vector field is (see the definition of cross-product (1.3.8)) is

� ×b = emjk


bk


xj

im =
(


b3


x2

− 
b2


x3

)
i1 +

(

b1


x3

− 
b3


x1

)
i2 +

(

b2


x1

− 
b1


x2

)
i3 (1.4.6)

representing a vector with components shown here.
The Laplacian operator is defined as

� ·� ≡ � = ik




xk

· im




xm

= 
2


xk
xk

≡ 
2

�
x1�
2 + 
2

�
x2�
2 + 
2

�
x3�
2 (1.4.7)

which is a scalar differential operator. Hence, the Laplacian of a scalar field is the scalar

� ·�� ≡ �� = 
2�


xk
xk

≡ 
2�

�
x1�
2 + 
2�

�
x2�
2 + 
2�

�
x3�
2 (1.4.8)

while the Laplacian of a vector field is the vector

� ·�b ≡ �b = 
2bj


xk
xk

ij = (
�bj

)
ij (1.4.9)

with components �bj .
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Integral Theorems
We list here the integral theorems that are used subsequently. The mostly used is the Gauss
Theorem (Fung 1965, Bird et al. 2002). If a closed volume V in space is bounded by a
surface S, then for a vector field we have

∫
V

� ·bdV =
∫
S

n ·bdS� or
∫
V


bk


xk

dV =
∫
S

bjnjdS (1.4.10)

where n is the unit normal of the surface element dS. This relation is also known as the
Gauss–Ostrogradskii or the Divergence Theorem. In the case of a scalar field ��xk� and a
tensor field A �xk�, the Gauss theorem is

∫
V

��dV =
∫
S

�ndS� or
∫
V


�


xi

dV =
∫
S

�nidS (1.4.11)

and ∫
V

� ·AdV =
∫
S

n ·AdS� or
∫
V


Aki


xk

dV =
∫
S

nkAkidS (1.4.12)

Note that in case of a two-dimensional domain, the volume V becomes the surface S and the
surface S in the above integrals becomes the two-dimensional domain contour line L. Proof
of the Gauss theorem and additional details are given on the web – Theory, Chapter 1.

Next, we give the expression for the so-called material derivative of volume integral.
Assume that a continuum is moving in space. Considering the continuum as a set of material
particles, we have that physical quantities, such as mass density, temperature, velocity,
stresses, are associated with each material particle, changing over time while particles move.
Let �V be the total value of a quantity � (it is a scalar: temperature, density, � � � , or a
component of a vector or tensor) over all material particles occupying currently a fixed
closed space volume Vspace, i.e.

�V =
∫

Vspace

�dV (1.4.13)

If we want to find the rate of change of �V , we obtain

D�V

Dt
=

∫
Vspace


�


t
dV +

∫
Sspace

�v ·ndS =

=
∫

Vspace

(

�


t
+ 
�


xk

vk +�

vk


xk

)
dV =

∫
Vspace

(
D�

Dt
+�


vk


xk

)
dV

(1.4.14)

The integral over the surface Sspace, which encloses the volume Vspace, represents the flux of
� through the surface. We have used the Gauss theorem (1.4.11) to transform the surface
integral to the volume integral. Also we use the notation D�V /Dt to indicate that the time
derivative is evaluated assuming the same material particles. Consequently, the derivative

D�

Dt
≡ 
�


t
+ 
�


xk

vk (1.4.15)
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is called the material (or substantial) derivative of �. If a spatial field of a physical
quantity � which changes with time is defined, � �xk� t�, then the derivative 
�/
t is the
local derivative assuming constant spatial coordinates xk; while the term �
�/
xk� vk is the
convective derivative which takes into account motion of the material particle. Therefore, for
a given spatial field �, the sum of these last two derivatives gives the rate of change D�/Dt
for a material particle (material point) at a given space position. The material derivatives are
used when transport phenomena are studied (e.g. mass and heat transport).

Additional details about the relations presented in this section are given on the web –
Theory, Chapter 1.

1.5 Examples

Example 1.5-1. Prove the e-� identity
The following relations between the permutation symbol eijk and the Kronecker-delta symbol
	ij can be proved:

eijkeimn = 	jm	kn −	jn	km (E1.5-1.1)

Details of the poof of these relations are given on the web – Examples, Section 1.5.

Example 1.5-2. Derive the procedure for calculation of the inverse matrix
For simplicity, consider a 3×3 matrix A. The matrix A−1 is the matrix which satisfies the
relation (1.2.9). We write the matrix A−1 as

A−1 = [
A−1

ij

] = [
x�1�x�2�x�3�

]
(E1.5-2.1)

where the vector x�i� is the i-th column of the matrix A−1, i.e. we have that x�i�j = A−1
ji . The

equations (1.2.9) can be written as a system of three equations:

Ax�i� = ��i�� i = 1� 2� 3 (E1.5-2.2)

where the vectors ��1����2����3� have the components 	�i�j = 	ij .
By solving this system of equations, we obtain that the terms A−1

ij of the matrix A−1 are:

A−1
ij = 1

D
Dji� or A−1 = 1

D
DT (E1.5-2.3)

where D = [
Dij

]
is the matrix of cofactors of the matrix A. Details of this derivation and

problems for exercise are given on the web – Examples, Section 1.5.

Example 1.5-3. Determine the rotation tensor using the relation (1.3.12)
The component form of this relation is

i���k = Rkji���j (E1.5-3.1)
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We multiply this equation by i���s and sum such three equations on � to obtain

3∑
�=1

i���ki���s =
3∑

�=1

Rkji���ji���s = Rkj

3∑
�=1

i���ji���s = Rkj	js = Rks (E1.5-3.2)

We have used here the orthogonality property of the base vectors i���. Namely, we have that
i���k = i�k�� and then

3∑
�=1

i�j��i�s�� = i�j� · i�s� = 	js (E1.5-3.3)

The relation (E1.5-3.1) can be written in a dyadic (direct notation) as

R =
3∑

�=1

i���i��� = i�1�i�1� + i�2�i�2� + i�3�i�3� (E1.5-3.4)

The tensor R written in a matrix form is

x1 x2 x3

x1

R = x2

x3

l1 l2 l3

m1 m2 m3

n1 n2 n3

(E1.5-3.5)

where the coefficients li�mi� ni are the cosines of the angles between, respectively, the axes
x1� x2� x3 and x1� x2� x3. Note that the transformation matrix T in (1.3.2) is

x1 x2 x3

x1

T = RT x2

x3

l1 m1 n1

l2 m2 n2

l3 m3 n3

(E1.5-3.6)

EXERCISE
(a) Determine the rotation tensor R using the relation (1.3.12) and two orthogonal bases p���

and p��� which do not coincide. The solution is (see web – Examples, Section 1.5):

R =
3∑
�

p���p��� (E1.5-3.7)

(b) Write the rotation tensor in the bases p��� and p���.

(c) Prove that the rotation tensor is orthogonal, i.e. RT R = I.

Example 1.5-4. Show that that the principal vectors are orthogonal and that the
symmetric tensor in the principal directions is diagonal
Consider two principal vectors pm and pn of the symmetric matrix A, corresponding to the
eigenvalues �m �= �n. Then, according to (1.3.13) we have

Apm = �mpm

Apn = �npn� no sum on m and n
(E1.5-4.1)
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If we multiply the first equation by pT
n and the second equation by pT

m and subtract the
resulting scalar equations, we obtain

pT
n Apm −pT

mApn = 0 = ��m −�n� pT
n pm (E1.5-4.2)

since the matrix A is symmetric, and pT
n pm = pT

mpn. The vectors pm and pn are the unit
vectors, therefore we have that

pT
n pm = 	mn (E1.5-4.3)

which shows that the principal vectors are orthogonal (or orthonormal). The orthogonality
of the principal vectors is also applicable in the case when some principal values are equal.
Details of the proof for this case can be found elsewhere, e.g. in Bathe (1996).

To prove that A is diagonal in the coordinate base pm, we write the system of equa-
tions (1.3.13) in a matrix form as

AP = P� (E1.5-4.4)

where the matrices P and � are

P = �p1p2p3� � � =
⎡
⎣ �1 0 0

0 �2 0
0 0 �3

⎤
⎦ (E1.5-4.5)

Note that PT P = I due to the othogonality condition (E1.5-4.3). From multiplication of
(E1.5-4.4) from the left by PT it follows

PT AP = PT P� = �� hence A = � (E1.5-4.6)

where A is the matrix in the coordinate system with the base vectors pm (see also the
transformation rule (1.3.4a,b)).

EXERCISE
Express the matrix A in terms of matrices P and � (spectral decomposition of A) and
determine A−1. Solution is given on the web – Examples, Section 1.5.

Example 1.5-5. Determine the differential operator ‘nabla’ in cylindrical
coordinate system
The relations between Cartesian x� y� z and cylindrical system r� �� z are (see Fig. E1.5-5,
where P is a point in space and P′ is its projection onto x−y or r −x plane),

x = r cos �� y = r sin �� z = z (E1.5-5.1)

The relations between the unit vectors ix� iy� iz and r0� c0� iz are

r0 = cos �ix + sin �iy� c0 = − sin �ix + cos �iy� iz = iz (E1.5-5.2)

Relations between the partial derivatives in the two coordinate systems are





x
= cos �





r
− 1

r
sin �





�
�





y
= sin �





r
+ 1

r
cos �





�
(E1.5-5.3)
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Fig. E1.5-5 Cartesian and cylindrical coordinate systems

Using the relations (E1.5-5.2) and (E1.5-5.3) we obtain that the operator � in the cylindrical
coordinate system is

� = r0





r
+ c0

1
r





�
+ iz





z
(E1.5-5.4)

Note that the following relations are valid:


r0


�
= − sin � ix + cos � iy = c0


c0


�
= − cos � ix − sin � iy = −r0

(E1.5-5.5)

which are obtained from (E1.5-5.2). Derivatives of r0� c0� iz with respect to r and z are equal
to zero.

Detailed derivations of the above relations and problems for exercise are given on the
web – Examples, Section 1.5.
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