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Introductory Concepts and
Noise Fundamentals

Noise Issues in Optical Communications

With the first experiments in optical communications using tiny silica-glass optical fibers,

more than 35 years ago, researchers pointed out the relevance of new, emerging, optical-based

noise phenomena, unknown in contemporary electrical communications. Laser physics and

early compound semiconductor technology were brought together at the start of the 1960s to

create one of the most interesting devices of the twentieth century, namely the GaAs

semiconductor laser, first demonstrated by Hall and Nathan in 1962. The invention of silica

optical fiber at Corning Glass by C. Kao in 1970 led to the first experimental demonstration of

digital optical transmission over a distance of a few hundredmeters in early 1973 atAT&TBell

Labs, using an 870 nm GaAs laser source and a silicon PIN diode. That was the ‘official’

beginning of what today are optical fiber communications. During these 35 years, the amount

of theoretical knowledge and technological progress in the optical fiber communication field

has been enormous. Among the major improvements, knowledge and managing of optical

noise impairments have greatly served to consolidate the success and the deployment of

optical fiber communications.

1.1 Introduction: The Noise Concept

All physical systems are affected by noise. Noise degrades message intelligibility in all

communication systems, including between people, leading to misunderstandings not dis-

similar to those during noisy business meetings.

Why Does Noise Exist?
It would be more correct to pose the question in a slightly different way.

Noise and Signal Interference in Optical Fiber Transmission Systems Stefano Bottacchi

� 2008 John Wiley & Sons, Ltd

CO
PYRIG

HTED
 M

ATERIA
L



What is Noise?
After answering this question, we can better address the first question:

Noise is the effect of a very large number of single events, individually unpredictable and degrading the

message recognition of the communication system we are using.

We need both conditions mentioned above to set up a noisy phenomenon. In fact, dealing with

only a small number of unpredictable events would allow individual random trajectories to be

followed, tracing single-event statistics. On the other hand, if we were faced with a very large

number of coherent and deterministic events, all of them behaving the sameway and following

the same phase trajectories, we would be able to collect them all, describing the whole flux of

events in exactly the same way as a single deterministic event. Accordingly, the only task we

need solve would consist in considering the amplified effect of the individual deterministic

event.

The simultaneous presence of a very large number of unpredictable events leads unavoidably to the

concept of noise.

Under these conditions, we would no longer be able to extract the individual behavior and

would instead sense only the population behavior, computing the expectation values, the mean,

and the fluctuation. However, in order to identify a specific noise population and not an

agglomerate of noisy populations, we require the homogeneous statistical behavior of the

whole population. From a conceptual point of view, we need each individual component of the

population to belong to the same space of phases affected by the same randombehavior. Even if

unpredictable, the behavior of each individual element of a single population must have

common characteristics with all other population components in order to satisfy the same

mathematical picture. As we will see in more detail later in this book, noise is fundamental in

understanding the signal recognition process of every communication system, regardless of the

transmission technique and the modulation format. According to the mathematical represen-

tation, noise is a stochastic process andwewill indicate it with the generic notation _n(t). In this

book we will use an underline to refer to random variables or stochastic processes.

Noise is not a peculiarity of either electrical or optical communication systems or both. Noise

in human communications manifests itself in many different forms: undesired signals, cross-

talk, interference, misunderstandings, etc. Sometimes a person perceives noise as an unex-

pected and hence unrecognizable communication. Sometimes noise is the result of the chaotic

evolution of myriads of entities. Noise is wasted energy. Heat is wasted work, according to the

second law of thermodynamics. This book is simply an introduction to noise in optical

communications and does not aim to delve into natural philosophy. Sowewill stop there. Noise

is everywhere. It is part of our life.

1.2 Functional Classification of Noise

The most relevant parameter involved in the signal recognition process in every electrical or

optical communication system using either analog or digital transmission techniques is the

Signal-to-Noise Ratio (SNR). The greater the SNR, the better the signal recognition process

will be, leading to higher detection sensitivity. One fundamental question related to these
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concepts is the minimum energy-per-bit of information (i.e. the signal) used by the communi-

cation system in order to satisfy the required performance. At first glance, it should be intuitive

that increasing the noise power distributed in the bit interval should correspond to an increased

amount of signal power in order to restore the required signal intelligibility. This reasoning

would lead to the correct approach if the only noise terms were additive to the signal power. In

this case, in fact, at increasing noise power, an equal increment of signal power would restore

the original SNR and accordingly the original communication system performance. Unfortu-

nately, in optical communication this is not the case. Except for a few noise components, all

other contributions have either a linear or a quadratic dependence on the signal power level,

leading to saturated behavior of the SNR and to limited and unimprovable performance of the

optical communication system.

In the following section we will refer to either electrical or optical noise, introducing the

functional classification of noise bymeans of relevant and quite common noise terms present in

optical communication systems. We will represent the average (ensemble) power of the zero

mean randomprocess _n(t) using the standard notations2
_n (t). If the randomprocess satisfies the

ergodic requirement, the ensemble average power is constant and the process becomes

stationary. In Chapter 3 we will review in detail the fundamental concepts of the theory of

stochastic processes, with particular attention to noise modeling.

1.2.1 Constant Term: Thermal Noise

Thermal noise is due to the thermal agitation of electric charges within a conductive medium

and is governed by the Gaussian statistic on large-scale behavior. Individual electron trajec-

tories are not predictable in any deterministic way owing to the large number of collisions per

unit time they suffer along the random path and at every temperature above absolute zero (0K).

The random motion of free particles subjected to small acceleration terms compared with

friction terms is described mathematically by theWiener process _w(t). TheWiener process [1]

is the limiting form of the random-walk _xn(nt) for an indefinitely large number of events n and

an indefinitely small time interval t between any two successive collisions. With a very large

collision density, the position variable _w(t) tends to be distributed as a Gaussian function and

the collision force _F(t) ¼ cf _w
0 (t) assumes the constant Power Spectral Density (PSD),

leading to the fundamental concept of White Gaussian Noise (WGN).

As already mentioned, Chapter 3 will be devoted entirely to reviewing the basic theory of

stochastic processes, with particular attention to the general concepts used in modeling the

different noise contributions encountered in optical fiber communication systems. Among the

fundamental concepts regarding noise theory, thewhite noise model has a particular relevance.

It refers to the stationary random process _x(t) which is completely uncorrelated. From the

mathematical point of view, the autocorrelation function R _x (t) ¼ Ef_x(tþ t)_x�(t)g of the

white noise process _x(t) coincides with the impulsive function R _x(t) ¼ d(t), meaning that

every two indefinitely close events _x(t) and _x(tþ t); t! 0, are still unpredictable.

The corresponding frequency representation of the impulsive autocorrelations leads to a

constant spectrum power density, from which stems the term white noise. Of course, the

indefinitely flat power spectrum of the white noise process is a very useful mathematical

abstraction, but it leads to an infinite energy paradox. The white noise process assumes

physical meaning after it is integrated within a finite time window. In conclusion, referring to

electrical voltages or currents within the bandwidth capabilities of either electrical or optical
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communication systems, the input equivalent thermal noise can be mathematically modeled

as the zero mean white Gaussian noise random process characterized by the Gaussian

Probability Density Function (PDF) and flat power spectral density.

One important property of thermal noise is that it is independent of the signal level available

at the same section. We underline this property, specifying that thermal noise is additive to the

signal. If we denote by _s(t) and _n(t) respectively the (random) signal and the additive thermal

noise evaluated at the same section of the communication system, the total process _x(t) is given

by summing both quantities:

_x(t) ¼ _s(t)þ _n(t) ð1:1Þ
Increase in the value of the signal power brings with it a corresponding increment in the

signal-to-noise power ratio. This suggests that theway to balance the thermal noise increment is

to increase the signal power level by the same amount. However, even if the original system

performance can be restored by operating in thisway, the detection sensitivity of the systemwill

be degraded (minimum detectable power penalty) by the same amount the noise power has

increased. According to the above-mentioned notation, the average power of stationary thermal

noise is represented by the term s2
therm.

1.2.2 Linear Term: Shot Noise

The second important example of noise functional dependence is represented by the shot noise.

As clearly stated by the terminology used, this fundamental randomprocess is a consequence of

the granularity of the events that are detected. The shot noise is intimately related to the Poisson

process and is not a peculiarity of electrical or optical communication systems. We can find

examples of shot noise every time we are interested in counting events occurring at random

times. Referring to electrical or optical quantities, both electrons and photons are particles that

can be detected according to their arrival time _ti. We will consider a constant flux mp of

particles incident on the detector, and form the Poisson probability P{ka in ta} distribution of

detecting ka particles in a fixed time window ta:

P ka in taf g ¼ (mpta)
k

k!
e�mpta ð1:2Þ

In addition, we will assume that any two nonoverlapping time intervals ta and tb, ta \ tb ¼ ˘,

lead to independent measurements:

Pfka in ta; kb in tbg ¼ Pfka in tagPfkb in tbg ð1:3Þ
If the detection process satisfies both conditions above, the outcomes [1] will be called

random Poisson points. The generation of shot noise in physical problems can be represented

as a series of impulse functions d(t�_ti) localized at the random Poisson points _ti:

_x(t) ¼
X
i

d(t�_ti) ð1:4Þ

Although the impulsive function identifies the ideal detection of the particle (electron,

photon), every measuring instrument must have a finite impulse response h(t). We can easily
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imagine the impulse sequence _x(t) being applied at the input of detection mechanisms whose

output accordingly shows the following form:

_s(t) ¼
X
i

h(t�_ti) ð1:5Þ

The random process _s(t) is known as shot noise. The electrical quantity _s(t) associated with

the detection mechanism, either voltage or current, will be distributed according to the Poisson

distribution (1.2) and to the system impulse response h(t). The derivation of the probability

density function of the shot noise represents an interesting case of mathematical modeling of a

noise process, and it will be discussed in detail in Chapter 2. The probability density function of

shot noise is not Gaussian and, in particular for low-density shot noise processes, as in the case

of the electron or photon counting process, it depends strongly on the system impulse response

h(t).Wewill address these concepts properly later on. For themoment, it is important to remark

only that the high-density shot noise process is fairly well approximated by Gaussian statistics,

irrespective of the system impulse response. This fundamental characteristic of shot noise

allows it to be included easily in optical communication theory by adding together thevariances

of several Gaussian noise contributions. However, there is onemore fundamental characteristic

of shot noise that differentiates it from thermal noise. The power s2
shot of the shot noise

generated during the photodetection process is proportional to the incident optical power level.

In otherwords, the shot noise is intimately related to the average fluxmp of detected particles, as

it coincides with the fluctuations of the particle flux. This means that the shot noise generated

during the photodetection process increases with received signal power. It is no longer a simple

additive contribution, as in the case of thermal noise. We will see later the important conse-

quences of this behavior.

1.2.3 Quadratic Term: Beat Noise

There are other contributions of noise involved in optical communications that have a quadratic

dependence on the average optical power level PR detected at the receiver input. In the

following, we will consider briefly the case of the signal-spontaneous beat noise_ns-sp(t)

generated by the coherent beating of the amplified optical signal and the amplified spontaneous

emission noise in optical amplifiers [2, 3] operating at relatively high data rates.Wewill present

an overview of the theory of beat noise in Chapter 2.

Theoptical amplifierprovides amplificationof the light intensity injectedat the inputbymeans

ofthestimulatedemissionprocess. Inprinciple,everysignalphotoninjectedat theinputsectionof

the optical amplifier starts amultiplication chainwhile traveling along the activemedium.At the

output section of the optical amplifier, the input photon has been subjected to the average

multiplicationgainG, thusproviding thecorresponding light intensityaverageamplification.The

stimulated emission is a coherent process: the generated (output) photon has the same energy

E ¼ hn ¼ �hv ¼ hc

l
ð1:6Þ

and the same momentum

p ¼ E

c
k ¼ h

l
k ð1:7Þ
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of the stimulating (input) photon. This is themost important property of the stimulated emission

process: all generated photons, by means of the stimulated emission, have exactly the same

energy and the same momentum of the injected photon. Note that the momentum is a vector

quantity, as reported in Equation (1.7), specifying the direction of propagation of the photons.

Since the energy of photons is proportional to the frequency of the electromagnetic field and the

momentum of the photons is proportional to the direction of propagation k, we conclude that the

stimulated emission provides a coherent amplification mechanism of the light intensity. This is

the fundamental physical phenomenon inside every laser device (‘laser’ stands for Light

Amplification by Stimulated Emission of Radiation).

In addition to stimulated emission, the quantum theory of interaction between light and

matter predicts two other processes, namely photon absorption and photon spontaneous

emission. Photon absorption and spontaneous emission are instead random processes, in the

sense that we cannot predict exactly the instant of time at which the photon is either absorbed or

spontaneously generated. The reason for this is that neither process is driven directly by the

input signal field. However, every spontaneously emitted photon undergoes the same coherent

amplification mechanism as every other signal photon. From this point of view, signal photons

and spontaneously emitted photons are indistinguishable. Nevertheless, stimulated emitted

photons and spontaneously emitted photons are not coherent; they have different energies

(wavelengths) and different propagation directions. In general, optical amplifiers do not have

any momentum-selective device installed, such as mirrors in the laser cavity. The spontaneous

photons differ from the signal amplified photons in their broad energy spectrum and momen-

tum. The spectrum of spontaneous emission is usually broad and coincides approximately with

the optical amplifier bandwidth.

The spontaneous emission process is not correlated with the signal and behaves like a

disturbing mechanism, degrading the intelligibility of the amplified signal. According to

previous concepts, we easily identify spontaneous emission as a noise phenomenon, impairing

the signal integrity of the optical amplification process. Owing to the optical amplification

mechanism, we define this random process as Amplified Spontaneous Emission (ASE) noise.

The beating process is not inherent to the optical amplifier itself; it is not part of the physics of

the optical amplification. Instead, beating noise is generated within the square-law photo-

detection process applied to the total electric field intensity available at the output of the

optical amplifier. Assuming that the optical field incident on the photodetector area is first

filtered with an ideal optical filter of bandwidth Bo > Bn, the noise power of the photocurrent

generated by the beating process between the signal and the ASE is proportional to the

electrical bandwidth Bn and depends on the square of the received average optical power at the

photodetector input. This means equivalently that the RMS amplitude of the signal-spontane-

ous beat noise current is proportional to the received average optical power level.

Sometimes the reader might misunderstand the quadratic dependence of beat noise on

received optical power. The reason for this concern is that the received optical power must be

carefully specified either at the optical amplifier input Ps or at the photodetector input PR.

However, these two power levels are related by the amplifier gain G, with PR¼G(Ps)Ps. In

order to model the gain-saturation behavior of the optical amplifier, we have assumed that the

gainG shows a functional dependence on the input optical power levelPs. Assuming low-signal

input conditions, the amplifier gain is approximately independent of the input optical power,

and the signal-spontaneous beat noise power increases approximately as the square of the

amplifier gain G. For a fixed input optical power Ps, the signal-to-noise ratio at the
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photodetector output exhibits a saturated behavior at relatively high levels of received optical

power PR. However, assuming a fixed optical amplifier gain, the signal-spontaneous beat noise

power increases linearly with optical amplifier input power Ps, leading to the same mathemat-

ical model of signal shot noise as that introduced briefly above.

We deduce that, at relatively high levels of the received optical power PR, the signal-

spontaneous beat noise completely dominates the total noise composition in every optically

amplified transmission systems, leading to the saturatedOptical Signal-to-Noise Ratio (OSNR)

and to corresponding performance limitation. Following the notation we specified previously,

we indicate the power of the signal-spontaneous beat noise with the symbol s2
s-sp.

1.3 Total Noise

An important conclusion we should draw from these brief introductory concepts is that in

optical communications there are three different noise functional dependences on the received

average optical power level. We have identified the constant term (i.e. the thermal noise), the

linear term (i.e. the signal shot noise), and the quadratic term (i.e. the signal-spontaneous beat

noise). A peculiarity of the optical transmission system is the linear relationship between the

received optical power and the photocurrent generated in the photodetector. This is the

consequence of the square-lawphotodetection process, converting the optical intensity (photon

rate, number of detected photons per unit time, proportional to the square of the incident

electric field) into current intensity (electron rate, number of generated electrons per unit

time). After the photodetection process, the electrical signal amplitude (current or voltage) is

then proportional to the received optical power.

As we have briefly touched upon in previous sections, the contributing noise terms might

have different functional relationships with the received average optical power. It is a

fundamental result of the theory of stochastic processes that the power of the sum of stationary

and independent random processes is given by the sum of the power of each additive term.

Assuming zero mean noise processes, the average power of the total noise is given by the

following expression:

s2 ¼
X
k

s2
k ¼ s2

therm þs2
shot þs2

s-sp þ � � � ð1:8Þ

In particular, the functional dependence of the RMS amplitude s of the total noise versus the

received optical power, assuming statistically independent contributions, will present the

constant term, the square-root term, and the linear term dependence:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

s2
k

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
therm þs2

shot þs2
s-sp þ � � �

q
ð1:9Þ

The role of these three functional contributions is fundamental in understanding the noise

limitations affecting optical transmission system performance. Figure 1.1 presents a qualitative

drawing of the functional dependence of the three noise terms we have briefly examined. The

intent is to give a clear picture of the diverse role of these noise components and to understand

the way they lead to different sensitivity relationships.

At a very low level of received optical power, PR�Pa in Figure 1.1, the total noise

is dominated by the constant thermal noise and other signal-independent contributions.
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These noise terms act as background noise, limiting the minimum optical power that can be

detected with the performance required:

s ffi stherm; PR � Pa ð1:10Þ
Increasing the optical power, the linear signal-dependent noise contributions start growing

relative to the background noise value, becoming the dominant contributor above the power

threshold Pa. This is the optical power range usually dominated by the signal shot noise:
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Figure 1.1 Qualitative representation of the three functional dependences of the noise contributions

versus the average input optical power in optical fiber transmission systems. At relatively low optical

power levels, the dominant noise term comes from the constant term as thermal noise. In fact, in the low

power range, signal-dependent contributions are almost negligible, and the total noise remains almost

constant. Increasing the optical power, the shot noise contribution becomes comparable with that of the

thermal noise and the total noise power increases versus the optical powerwith a unit slope of 1 dec/10 dB.

Increasing the optical power furthermakes the beat noise the dominant term in the total noise composition.

The noise power slope reaches asymptotically twice the value exhibited in the shot noise limited range,

with 2 dec/10 dB. The top line shows qualitatively the corresponding Gaussian approximate probability

density functions of the stationary noise process
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s ffi sshot /
ffiffiffiffiffiffi
PR

p
; Pa � PR � Pb ð1:11Þ

Assuming no quadratic noise terms, in this interval the signal-to-noise RMS ratio improves

as the square root of the optical power. In conclusion, under signal shot noise limited operation,

the system performance can still be improved by increasing the optical power level incident at

the receiver input, but at a lower rate than under constant noise conditions. In fact, the net

improvement must account for the increasing signal shot noise too. At the circuit electrical

decision section, the signal shot noise RMS amplitude increases by one-half of the slope of the

signal amplitude, leading to a global performance improvement.

The situation is quite different if we introduce the third functional dependence considered

above, namely the quadratic noise term, as illustrated by the signal-spontaneous beat noise

contribution in an optically amplified transmission system.

In the following, suppose that the received optical power level PR is increased by increasing

the amplifier gain, with a fixed powerPS at the optical amplifier input. Assuming that the optical

filter bandwidth is larger than the electrical noise bandwidth, the signal-spontaneous beat noise

power has the following expression:

s2
s-sp ¼

4q2l
hc

nspG(G�1)BnPS ð1:12Þ

Substituting PR¼GPS, we have

s2
s-sp(PR) ffi 4q2l

hc
nspBn

P2
R

PS

; G � 1 ð1:13Þ

At a relatively higher power level, usually above the signal shot noise range, PR�Pb

in Figure 1.1, and the RMS beat noise amplitude increases linearly with the photocurrent

signal amplitude, leading to a saturated signal-to-noise RMS ratio with limited system

performance:

s ffi ss-sp / PR; PR � Pb ð1:14Þ
From this point on, any further optical power increase does not have any benefit, determining

the proportional RMS beat noise increment. This is the typical operating condition of every

DWDM optical transmission system using optical amplifiers at the receiver end. In this case,

transmission system performance is mainly determined by the signal-spontaneous beat noise,

demanding that the sensitivity requirements specified for the optical amplifier parameter

specifications be specified instead for the PIN-based optical receiver.

A second relevant example of the quadratic noise term is theRelative Intensity Noise (RIN) in

laser sources [4]. The RIN is defined as the ratio between the power spectral density S _I ( f )

(dBm/Hz) of the detected photocurrent process _IR(t) and the squared value h_IR(t)i2 of the
average photocurrent IR � h_IR(t)i ¼ RPR. The constant quantity R is the photodetector

responsivity and depends linearly on the product of the wavelength l and the conversion

efficiency h(l). According to the definition, the RMS noise amplitude of the RIN contribution

depends linearly on the received average optical power, setting a limiting condition on the

maximum achievable signal-to-noise ratio:

sRIN(PR) ¼ RPR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BnRIN

p
ð1:15Þ
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where we have introduced the noise bandwidth approximation applied to the uniform power

spectral density S _I ( f ) (dBm/Hz) of the relative intensity noise process.

1.4 Bit Error Rate Performance

In this book we will focus on the Intensity Modulation Direct Detection (IMDD) optical

communication system. This is the basic and most widely used optical transmission technique

for both short-reach and high-density distribution networks and ultralong-reach backbone

optical links. In spite of the simplicity of the baseband optical transmission technique, millions

of kilometers of installed single-mode and multimode fibers have been networking the whole

world for more than 20 years. The success of this simple transmission format relies both on the

extremely large modulation bandwidth exhibited by the optical fiber and on the high-speed

intensity modulation and detection capabilities of semiconductor-based laser sources and

photodetectors.

It is well known that the success of optical communication is founded on the coincidence

between the optical transmission windows of low-cost silica-based optical fibers and the

emitted spectrum of the direct band-gap compound semiconductor light sources. Of course,

after initial pioneering experiments in the late 1970s usingGaAs semiconductor lasers emitting

at 850 nm and silicon detectors, man-made optical communication technology took giant

strides towards improving performance consistency, working towards optical transmission

window optimization, developing a far more complex semiconductor laser structure, and

designing exotic refractive index profile fibers for almost dispersionless transmission and state-

of-the-art band-gap engineered photodetectors for almost ideal light capture, with astonishing

results.

It is a strange peculiarity of optical fiber communication that, instead of withdrawing more

complex but quite efficient modulation formats from radio and wireless engineering in the past

20 years, using existing technology with appropriate developments, optical fiber communica-

tion engineering has been focused, from the very beginning, on the most dramatic and far-

reaching technology improvements while still relying on the crudest transmission principle

ever conceived, namely the Intensity Modulation Direct Detection (IMDD) technique.

Recently, owing to the continual push towards higher transmission rates over longer distances,

some different modulation formats have been considered, but, again, the optical technology is

making greater strides, supplying new ideas and using unexpected physical phenomena in order

to present alternative solutions to more consolidated light modulation formats. Fiber non-

linearities, for example, have been attracting great interest over a period of at least 10 years

because of the undiscovered capabilities of optical soliton transmission in reaching extremely

long distances at terabit capacity.

As alreadymentioned, in this bookwewill consider the many noise impairments concerning

the basic IMDD transmission system. The choice of the IMDD transmission technique is, of

course, fundamental in developing an appropriate theory of system performance degradation in

the presence of all the noise components affecting the optical signal. The most commonly used

technique for evaluating the performance of optical fiber transmission is based on the bit error

rate (BER). Assuming IMDD transmission, the received optical field intensity is detected and

converted into the corresponding photocurrent. The noise affecting the signal comes from

different sources, as briefly touched upon above. We will address noise source partitioning in

the next part of this introduction.
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The information bit is represented by the photocurrent sampled at the decision instant and

is affected by all noise contributions. The acquired sample then represents the sum of the true

signal embedded and several noise terms. The amplitude binary decision is the simplest

process conceivable in recognizing each one of the two logical states available. Binary direct

detection is sometimes referred to as On-Off Keying (OOK), and by analogy with the

conventional digital modulation formats as Amplitude-Shift Keying (ASK), Frequency-Shift

Keying (FSK), Phase-Shift Keying (PSK), and so on. The decision rule reduces therefore to

recognizing when the sampled amplitude is above or below the logic threshold level. In

optical communication this decision process reduces to recognizing the light or the dark

conditions associated with the detected signal at the sampling instant. Of course, we associate

logic state 1with light recognition and logic state 0with the absence of light (dark). Even if it

seems quite obvious, we should point out that we are dealing with the photodetected current

pulses associated with corresponding optical fields. Intersymbol interference, timing jitter,

and noise components, either additive or signal related, all contribute to obscuring the original

signal content of the detected sample, leading to erroneous identification of a light sample

instead of a dark one, and vice versa. This erroneous bit recognition leads directly to error

generation in the decision procedure.

The BER is the process of counting the erroneously detected bits in relation to the total

number of detected bits. It corresponds to the relative frequency of erroneous bit detection and

for very large numbers it coincides with the error probability Pe of the decision process.

What is the Origin of Error Generation in IMDD Optical Transmission Systems?
As mentioned above, the decision process in IMDD optical transmission systems is a very

basic and crude process, limited to the recognition only of the threshold crossing condition

of the decision circuit. In the following, we will use _sk ¼ _s(tk) to denote the random

variable representing the general photocurrent sample picked up at sampling instant tk. The

best way to analyze the problem is ideally to separate the signal sample _sk ¼ _s(tk) into the

sum of two distinct quantities: the ideal deterministic pulse sample_bk, represented as a

discrete random variable assuming one of two possible values _bk ¼ fb0; b1g, and the

amplitude perturbing random variable_rk ¼ _r(tk), including all the remaining disturbing

effects:

_sk ¼ _bk þ _rk ð1:16Þ
Figure 1.2 shows a qualitative picture of the binary amplitude decision model we are

discussing. We can now answer the question formulated above: each error originates when the

amplitude perturbing random variable _rk ¼ _r(tk) presents a finite probability to cross the

decision threshold, leading to erroneous recognition of the complementary logic state.

It should be clear from these introductive concepts that the error generation does not depend

exclusively on the amount of noise sampled at the decision instant tk but is strongly influenced

by the intersymbol interference and the timing jitter which add further fluctuations to the

decision process. These concepts will be formulated precisely in the following chapters of this

book.

The graphical representation in Figure 1.2 shows the probability density functions of the

random variables _bk ¼ fb0; b1g and _rk ¼ _r(tk), corresponding respectively to the signal and

to the noise samples captured at the ideal decision instant tk. As will be shown in some detail in

Chapter 2, the bit error rate for the Gaussian noise distribution is represented by the
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complementary error function, whose argument, the Q-factor, is defined by the ratio between

the decision amplitude b1� b0 and twice the total RMS noise value s:

Q, b1�b0

2s

QdB , 20 log10Q

ð1:17Þ

and

BER ¼ 1

2
erfc

Qffiffiffi
2

p ð1:18Þ

Figure 1.3 gives a qualitative representation of the QdB-factor in Equation (1.17) and the

corresponding bit error rate curves given by Equation (1.18) versus the received average optical

power, assuming the three different functional dependences of noise contributions that have

been briefly introduced above. As the RMS noise amplitude of the sum of statistically

independent processes adds quadratically, it is possible to identify the single component of

the Q-factor for each noise contribution by defining

Figure 1.2 Graphical representationof the amplitudedecisionprocess for abinary signal embeddedwith

noise. In this model we have assumed that the signal amplitude adopts each discrete value with the same

probability (1/2). The probability density function (pdf) of the random process identified by the sum of the

signal and the noise is given by the convolution of the respective probability density functions. In this case,

the convolution reduces simply to translating the noise pdf over the respective signal amplitudes. The error

condition is represented by the amount of noise pdf crossing the threshold level (light gray boxes)
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Qk ,
b1�b0

2sk

ð1:19Þ

The Q-factor relative to the total noise, from Equations (1.8), (1.17), and (1.18), becomes

1

Q2
¼

X
k

1

Q2
k

¼ 4

(b1�b0)
2

X
k

s2
k ¼

4s2

(b1�b0)
2

ð1:20Þ

At relatively low optical power levels, the dominant thermal noise leads to the steepest

Q-factor and BER slopes. In the thermal noise limited condition, the QdB-factor in
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Figure 1.3 Qualitative drawing of theQ-factor and the BER functionversus the receiver average optical

power, assuming the parameter set of Equations (1.25). The dependence on the quadratic noise term is

responsible for the flooring behavior of the BER performance
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Equation (1.19) gains 20 dB every decade of increment in the received optical power. In the

higher power range, the effect of shot noise becomes comparable with that of constant thermal

noise, leading to an appreciable reduction in the slopes of theQ-factor and in the corresponding

BER performance. In the shot noise limited condition, theQdB-factor in Equation (1.19) gains

one-half of the thermal noise case, increasing only 10 dB every decade of increment in the

received optical power. Finally, in the highest power range, the quadratic dependence of the

beat noise contribution leads to saturated profiles of both theQ-factor and the BER, exhibiting

well-known BER floor behavior. Above this range, any further increment in received optical

power does not result in any error improvements, and the performance of the transmission

system cannot be improved any further.

In the following, wewill report expressions for the partial contribution to theQ-factor of the

three functional noise dependences considered so far, namely the constant thermal noise, the

linear signal shot noise, and the quadraticRIN term. These expressionswill be carefully derived

later in this book. For the moment, wewill use them in order to have a quantitative comparison

among several noise terms. Assuming an infinite extinction ratio and an equiprobable NRZ

symbol sequence, theOptical Modulation Amplitude (OMA) coincides with twice the average

optical powerPR and the decision amplitude b1� b0¼ 2RPR. Substituting into Equation (1.19),

we have

Qk ¼
RPR

sk

ð1:21Þ

For the three specific noise componentsmentioned above, we have the following expressions:

Q
(dB20)
therm ¼ 10 log10

R2

Bnhi2ci
� �

þ 2P
(dBm)
R �60 ð1:22Þ

Q
dB20ð Þ
shot ¼ 10 log10

R

2qBn

� �
þP

dBmð Þ
R �30 ð1:23Þ

Q
(dB20)
RIN ¼ �10 log10Bn�RIN ð1:24Þ

where hi2ci is the power spectral density of the input equivalent noise current from the electric

receiver (A2/Hz), R is the responsivity of the photodetector (A/W), Bn is the noise bandwidth

(Hz), and RIN is the relative intensity noise coefficient (dB/Hz).

It is clear from the above expressions that the functional dependence versus the average input

optical power of the Q-factor relative to the thermal noise has twice the slope of the Q-factor

corresponding to the shot noise limited conditions. The Q-factor relative to the RIN term is

constant, as expected. Note that the expression for theQ-factor is given by Equation (1.20), and

that the individual contributions (Equations (1.22), (1.23), and (1.24)) assume the dominant

role only under noise limited conditions. The following parameter values refer to the

application range for the 10Gb/s optical fiber transmission system operating according to

the ITU-T STM-64 or to the equivalent Bellcore-Telcordia GR-253-CORE OC-192 specifica-

tion. The numbers reported below are intended only as an indication of the considered

calculation:
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R ¼ 1A=W
Bn ¼ 10 GHz

ic;rms ¼ 10 pA=
ffiffiffiffiffiffi
Hz

p

RIN ¼
�130

�120

�110

8<
:

9=
; dB=Hz

ð1:25Þ

Substituting these values into Equations (1.22), (1.23), and (1.24), we have the following linear

relationships in log-log scale representation:

Q
(dB20)
therm ¼ 60þ 2P

(dBm)
R dB ð1:26Þ

Q
(dB20)
shot ffi 55þP

(dBm)
R dB ð1:27Þ

Q
(dB20)
RIN ¼

30

20

10

8<
:

9=
; dB ð1:28Þ

Wecan see that, at the optical power valueP
(dBm)
R ¼ �5 dBm, the individualQ-factors of the

thermal noise and the signal shot noise are equal. We have assumed three different values of

RIN in order to see the relevance of the quadratic noise effect on the saturated performance. In

the example considered we see that the lower RIN value, RIN¼�130 dB/Hz, does not add any

significant contribution to the totalQ-factor and hence does not change the corresponding BER

performance. From Figure 1.3 we see that the computed asymptotic BER value reaches the

unpractical small value of�10�219! In this case, even if the totalQ-factor is determined by the

combination of all noise contributions, we conclude easily that the thermal noise sets the BER

performance while the RIN and the signal shot noise are completely negligible. Increasing the

RIN value by 10 dB, up to RIN¼�120 dB/Hz, raises the asymptotic BER to �10�23. Again,

this limitation does not interfere with the usual transmission system BER specification set at

�10�12.

However, owing to the high slope of the error function, increasing the RIN coefficient

slightly leads to disastrous degradation of the system error performance. This is demonstrated

well in the third case considered. In fact, assuming that RIN¼�110 dB/Hz, we obtain the

unacceptable asymptotic BER of�10�3, more than 20 dec higher than in the previous case. In

order to finalize our qualitative understanding of the relationship between noise contributions

and BER curves, Figure 1.4 shows computed results for the same case as that discussed so far.

The plots have been generated using source code written in MATLAB� (MATLAB� is a

registered trademark of The MathWorks Inc.) R2008a (The MathWorks, Inc., Natick, MA).

TheQ-factor and the BER have been computed using expressions (1.18), (1.20), (1.22), (1.23),

and (1.24) with the data reported in Equations (1.25), without any approximation.

The computed BER performance clearly shows the predicted flooring behavior associated

with higher quadratic noise contributions. For moderate RIN coefficients in the range

�130 dB/Hz	RIN	�120 dB/Hz, the BER plots follow closely the profile determined by

the dominant thermal noise contribution and exhibit almost the same high negative slope

versus the received average optical power.
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This behavior is clearly shown in Figure 1.5, where the reduced error range

10�16	BER	 10�1 used on the vertical scale highlights the thermal noise limited operation.

However, at higher RIN coefficients, the strong quadratic noise contribution becomes

predominant and hardly limits the BER close to 10�3, making the transmission system

performance unacceptable, unless sophisticated Forward Error Correcting (FEC) code

techniques are implemented.

Before concluding this introduction concerning noise contributions and error probability, it

would be instructive to consider onemore aspect of the consequences of quadratic noise terms.
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Figure 1.4 Computed plots of the Q-factor (upper graph) and the corresponding bit error rate (lower

graph) for the case considered in the text, using full-scale representation. The flooring behavior of theBER

curves on account of the quadratic noise term is evident at higher values of the laser relative intensity noise
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From Figure 1.5 it is clear that limiting the error rate to BER	 10�12, as is usually required by

standard telecom specifications, and setting RIN	�120 dB/Hz, any flooring behavior is

observed in the computed BER curve. Nevertheless, if the RIN is close to �120 dB/Hz, an

appreciable optical power penalty is observed. This is a significant effect of the quadratic tail

contribution, even several decades above the saturated floor profile. Figure 1.6 shows details of

the computed BER in a limited power range. Referring to the BER plot associated with

RIN¼�120 dB/Hz,we observe an optical power penalty of about 2 dB evaluated at a reference

error rate of 10�12. The displacement is the effect of the quadratic noise contribution over the

thermal noise. In conclusion, quadratic noise terms affect the BER plots even several decades

above the error probability asymptote, leading to consistent degradation of transmission system

performance. The same considerations hold for the linear noise terms, with minor conse-

quences for the quadratic noise terms.

In order to take a step forward in generalizing the bit error rate analysis,we should include the

effect of timing jitter in the previous discussion. The theory of jitter impairments will not be
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Figure 1.5 BER plots for the same case as Figure 1.4 but represented in a reduced error scale for

practical purposes. The typical BER range of interest for telecommunications is 10�3	BER	 10�13.

Strong flooring behavior of the BER, which is associated with RIN¼�110 dB/Hz, limits the minimum

error rate close to 10�3
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discussed further in this book, but some concepts and considerations regarding the timing jitter

effect will be reported below.

1.5 Timing Jitter

Signal recognition in digital transmission systems is based on the synchronous acquisition of

the information bit by sampling the received signal at a fixed clock rate. The clock signal is

usually extracted by the incoming signal spectrum by means of the Clock and Data Recovery

(CDR) circuit. Figure 1.7 presents a schematic block diagram of the CDR topology with

Phase Locked Loop (PLL)-based clock extraction.

The incoming data stream is usually divided into two branches, one of which is used to

extract the clock frequency, and the other for data recovery and the retiming operation. The
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Figure 1.6 Representation of the computed bit error rate in a reduced range of the average received

optical power. The effect of the quadratic noise contribution can be clearly seen as a displacement from the

thermal noise limit. In the case considered, the optical power penalty is measured at an error rate of 10�12

between the twoBERplots associated respectivelywithRIN¼�140 dB/Hz andRIN¼�120 dB/Hz. The

degradation, assuming RIN¼�130 dB/Hz, is almost negligible
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clock frequency can be extracted by means of either passive or active solutions. However,

referring to the most used NRZ transmission format, wewill note that the signal spectrum does

not include any line at the corresponding data rate frequency, and the CDRmust provide some

nonlinear mechanism to generate the required clock frequency. This feature must be present in

every CDR, regardless of whether it adopts passive or active extraction architecture. Passive

extraction is accomplished using very narrow-bandwidth filters implemented with either

Dielectric Resonator (DR) or Surface Acoustic Wave (SAW) technology.

Active clock frequency extraction is based on PLL architecture with the internal Voltage

Controlled Oscillator (VCO).

As an example, Figure 1.8 reports the maximum permissible jitter specification at the OTU2

interface for STM-64 (10Gb/s) optical transmission systems, according to the ITU-T G.otnjit

1
N

reff

IND

PFD VCOLOOP 

D-FF 
OUTD

OUTCK

Data decision section 

Figure 1.7 Block diagram of the active CDR topology using the PLL technique. The data input signal

is used by the Phase Frequency Detector (PFD) to lock the internal Voltage Controlled Oscillator

(VCO) on the appropriate data phase in order to provide optimum data retiming and regeneration at the

D-Flip-Flop (D-FF) output. The VCO frequency is divided for simplified PFD operation and low-

frequency reference clock signals. Two output buffers provide additional driving capabilities and other

signal features

Figure 1.8 ITU-T G.otnjit mask specification for maximum permissible jitter at the OTU2 interface

operating at the 10Gb/s standard data rate. The peak-to-peak jitter is referred to as theUnit Interval (UI)
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standard [5]. The specification gives the maximum allowed peak-to-peak jitter, expressed in

terms of the Unit Interval (UI). The UI coincides with the bit time step for the selected

transmission rate. In the case of the OTU2 interface for STM-64, the data bit rate is

B¼ 9953.280Mb/s.

Owing to the application of Forward Error Correcting (FEC) code for improving trans-

mission performance, the symbol line rate is increased according to the ratio 255/237, leading

to the increased line bit rateBline¼ 10 709.23MB/s. The corresponding unit interval for the line

bit rate therefore assumes the value UI¼ 93.38 ps. The ITU-T G.otnjit specification requires

that the peak-to-peak jitter in the frequency interval 4MHz	 f	 80MHz be lower than

0.15UIffi 14 ps. Figure 1.9 shows a qualitative drawing of the data signal eye diagram at the

decision section (see Figure 1.7) with principal parameter definition. It is important to point out

that the signal performance must be evaluated prior to the decision process.

Decision errors, phase skew, jitter, and noise are all impairments that are effectiveonly before

the signal sample has been decided.

Figure 1.9 Schematic representation of the eye diagram at the decision section, assuming NRZ binary

transmission format. The principal parameters are shown as they appear in standard laboratory

measurement equipment. The two logic levels are referred to the common ground potential (GND),

but the error rate performance is related only to relative quantities, the eye opening and the eye width

respectively. In this representation, peak quantities are defined as 3 times the corresponding RMS values
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How Does Jitter Affect the Amplitude Decision Process?
We will come back to this question later on, to show the full derivation of the decision model

under simultaneous amplitude noise and jittered time conditions. In spite of the general theory,

we believe it would be worthwhile in this general introduction to give hints as to the way in

which amplitude noise and timing jitter interact to determine erroneous binary decision

conditions. This will serve as an introduction to the general treatment that will be followed

in the coming chapters. To this end, we will consider the signal pulse at the decision section to

be referred to a stable, fixed timeframe, affected only by constant-amplitude noise distributed

with a Gaussian probability density function of fixed RMSwidth s over both signal levels. The

decision instant, referred to the same timeframe as above, is a random process whose

fluctuations are described by means of temporal jitter with a Gaussian probability density

function of fixed RMS width t. These conditions can be qualitatively referred to the eye

diagram shown in Figure 1.9 above. The gray-shaded area represents qualitatively the

uncertainty region for the signal crossing under noise and jitter conditions.

The problem can be correctly approached using the concepts of the conditional probability

and the related total probability theorem. Recall that the conditional probability of event A,

assuming the conditioning event B, is defined by the following ratio:

P(AjB) ¼ P(AB)
P(B) ð1:29Þ

If M ¼ [B1; . . . ;BN] is a partition of the whole event space S
[N
k¼1

Bk ¼ S

Bj \ Bk ¼ ˘; j; k ¼ 1; 2; . . .N; j „ k

ð1:30Þ

the probability of the arbitrary event A 
 S is given by

P(A) ¼
XN
k¼1

P(AjBk)P(Bk) ð1:31Þ

This equation constitutes the total probability theorem. Figure 1.10 gives a qualitative

representation of the partition of the event space.

Referring to the signal amplitude decision process, we can easily identify the jittered

decision time as the conditioning event B and the corresponding symbol error as the

conditioned eventAjB. In the continuous event space with jittered decision time, the bit error

rate coincideswith the total probability ofmaking an erroneous decision under the conditioning

decision time process with the probability density function f _t (t):

BER ¼
ðþ¥

�¥

PfDecision error _t ¼ tgf _t (t)dt
�� ð1:32Þ

Of course, in the notation above, the probability of the event fDecision errorj_t ¼ tgcoincides
with the bit error rate evaluated at the decision instant _t ¼ t.

Figure 1.11 gives a qualitative indication of the mathematical modeling of the amplitude

decision process under the jittered time conditions just introduced. In particular, if the timing
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process were ideal, with no jitter at all, sampling at the deterministic time instant t¼ t0, the

corresponding probability density function of the random variable _t would collapse upon the

delta functionf _t (t) ¼ d(t�t0) and Equation (1.32) would reduce to thewell-known expression

BERðt¼t0Þ ¼ PfDecision errorg. As we will see in Chapter 3, the Power Spectrum Density

(PSD) of the stationary jitter randomprocess, under some assumptions, can be approximated by

the Lorenzian curve, and the first-order probability density function by a Gaussian distribution.

1.6 Partition of Noise Sources

In order to consider the different noise contributions affecting the optical detection and decision

processes, we should specify first the architecture of optical fiber transmission systems and the

modulation format used for symbol coding.Asoutlinedbriefly inprevious sections, optical fiber

transmission is affected by numerous noise sources, some attributable to the electrical domain,

others peculiar to the optical solution adopted. In addition to noise source diversity, recall that

components of the noise in optical systems have different functional relationships with the

received optical power, setting different limitations on the transmission system performance. A

clear example of this behavior is represented inFigure 1.12,which shows a comparison between

system A, equipped with the bare PIN-based direct detection optical receiver, and system B,

using instead the optically preamplified direct detection optical receiver.

The two receivers have the same structure, and we can assume that they use the same

photodetector and even the same transimpedance amplifier. In other words, systems A and B in

Figure 1.12 are considered to have the same optical receiver, but system B has in addition an

optical preamplifier in front of the PIN receiver. At this point we are not concerned about

optimizing the architecture of the two receivers but rather focus on the different roles of the

noise terms involved in determining the optical receiver performances.

Referring to system A and assuming typical operating conditions, the sensitivity of the

optical receiver is determined by the thermal noise generated by the electronics of the front-end

transimpedance amplifier. Accordingly, we expect the BER to decreasewith the fastest slope as

the received optical power increases. Typically, at an error rate of 10�12 the decaying slope is

more than 1 dec over a few tenths of a dB of increment in the received input optical power.

1B

2B

3B

kB
NB 1k+B

A

[ ]1, , N= B BM …

S

Figure 1.10 Event space representation using the partition M ¼ B1; . . . ;BN½ �. The event A 
 S is

decomposed over the partition M ¼ B1; . . . ;BN½ �, with the conditional probabilities

P(ABk) ¼ P(AjBk)P(Bk). The total probability of the event A 
 S is given by the sum of the partial

contributions P(ABk) over the entire space partition
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Equivalently, we expect the Q-factor in Equation (1.17) to increase proportionally to the

received average input optical power, showing a constant slope of 20 dB/dec. To enable a

quantitative comparison between the systems considered, we will assume the following

parameter set:

l ¼ 1550 nm

h ¼ 0:8
Bn ¼ 10 GHz

hi2ci¼ 2� 10�22 A2=Hz
nsp¼ 1:4
G ¼ 0� 30 dB

ð1:33Þ

Figure 1.11 Graphical representation of the calculation of the total error probability of the amplitude

decision processwith noisy and jittered conditions. The jitter probability density function is represented in

green and is assumed to be centered on the ideal sampling time. The timing fluctuations lead to a specific

weight for each contribution to the total error probability. Once the conditional event of a particular

sampling time is accounted for, the error probability contribution depends on the corresponding amplitude

noise distribution at the local time, as is qualitatively shown in the figure for four different sampling time

instants
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The total noise power of system A is given by the thermal noise contribution only:

s2
therm ¼ hi2ciBn ffi 2� 10�12 A2 ð1:34Þ

The performances of system A are plotted in Figure 1.13 for the case of amplifier unity gain,

G¼ 1. In fact, fromEquation (1.12)we can see that, forG¼ 1, the signal-spontaneous beat noise

contribution is null and the total noise coincides with the thermal noise only. As expected, the

computedQ-factor and BER plots pass throughQffi 17 dB and BER¼ 10�12 respectively at the

received average optical power PR¼�20 dBm. This is consistent with the assumptions of

the thermal noise power spectral density hi2ci and noise bandwidth Bn in parameter set (1.33).

The plot of the Q-factor corresponding to amplifier unity gain clearly shows the expected

slope of 20 dB/dec. This results in the steepest achievable BER plot in the lower graph in

Figure 1.13.

The situation is completely different for system B operating with the optical amplifier. The

total noise power is given by the sum of the contributions of the thermal noise and the signal-

spontaneous beat noise. From expressions (1.34) and (1.12) we have

s2 ¼ i2c
� �þ 4q2l

hc
nspG G�1ð ÞPS

� �
Bn ð1:35Þ

Figure 1.13 presents the computed performances versus the average optical power at the

amplifier input for three different gain values. Recall that the case of unity gain coincides with

the configuration of system A. At relatively low gain, G¼ 10, the effect of the beat noise is

almost negligible at low power levels, �40 dBm	PS	�30 dBm, and the computed plot of

the Q-factor reports almost the same slope of system A, showing still dominant thermal noise

operations. At increasing power levels, the beat noise starts to dominate the total noise and

the slope of the Q-factor decreases accordingly, showing the expected asymptotic value of

10 dB/dec. At higher gains, the behavior is similar but the power ranges are shifted towards

lower values. It is important to note that, owing to the quadratic noise contribution, higher gains

Optical Receiver 

System A 

System B 

Optical Receiver Optical Amplifier

RP

RPSP

Figure 1.12 Block diagrams of the simple PIN-based optical receiver and the optically preamplified

optical receiver. SolutionsA andB are both assumed to deploy the samePINdiode and the same electronic

receiver. The sensitivity of systemA is limited by the signal-independent thermal noise of the electronics,

while the sensitivity of systemB is determined by the quadratic dependence of the signal-spontaneous beat

noise of the optical preamplifier
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Figure 1.13 Computed performances of system A and system B for parameter set (1.33). The upper

graph shows the Q-factor versus the average optical power available at the optical amplifier input. The

horizontal solid line corresponds to the value of theQ-factor required for achieving a bit error rate of 10�12

under Gaussian noise conditions and equiprobable symbols. The plot corresponding to the amplifier unity

gain refers to systemA, and the slope of theQ-factor shows the expected constant value of 20 dB/dec. The

performances of systemB are reported for three different amplifier gainvaluesG¼ 10, 100, and 1000. The

corresponding plots of the Q-factor show the increasing effect of the signal-spontaneous beat noise at

increasing optical power levels. The lower graph shows the computed BER values for the same cases as

those in the upper graph
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do not improve the performance of system B. This is clearly shown in Figure 1.13 by the

negligible improvements between the cases of G¼ 100 and G¼ 1000.

An important conclusion emerging from these calculations is that, using the optical

amplifier with a gain G� 100, system B shows a sensitivity improvement of about DPSffi
12.5 dB in relation to system A. This clearly demonstrates the benefit of using the optical

amplifier. However, we see that increasing the gain above G� 100 does not result in any

improvement on account of spontaneous emission noise. These considerations should give

clear directions for designing transmission systems with optical amplifiers. Usually a gain of

20 dB is enough to have transmission system performances limited by the amplifier beat noise
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Figure 1.14 Computed BER performances for transmission system B with parameter set (1.33). The

case G¼ 1 coincides with system A, without an optical amplifier. Increasing the amplifier gain leads to

system sensitivity improvements with a reduced slope owing to the beat noise contribution. In this case,

the amplifier gain benefit saturates at approximatelyG¼ 100, with about 12.5 dB sensitivity improvement

over the value reported by reference system A
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and not by the PIN receiver sensitivity. Of course, it follows that using high sensitivity and

more sophisticated receivers equipped with an Avalanche Photo Detector (APD) would result

only in a waste of money, leading to the same performance as that of the low-cost PIN-based

receiver. Figure 1.14 reports the same plots as Figure 1.13 on a more suitable scale. At the
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Figure 1.15 Computed performances of transmission system B versus the average optical power PR at

the receiver input, assuming parametric variation in the average optical power PS at the optical amplifier

input. The power PR is varied by means of the amplifier gain G. The upper graph shows the Q-factor and

the amplifier gain G versus PR. It is clear in this example that system B reaches the minimum Q-factor

required for the reference error rate BER¼ 10�12 only in the case of PS¼�30 dBm. The corresponding

optical power PR is given by the intersection between the plot of the Q-factor and the horizontal line

corresponding to the reference value Qrefffi 17 dB. The lower graph shows the BER plots that satisfy the

corresponding reference value BER¼ 10�12 at the same optical power level. The saturation behavior of

theQ-factor (upper graph) for higher values of the receivedoptical power and the correspondingBERfloor

(lower graph) are evident
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reference BER¼ 10�12, transmission system improvement versus amplifier gain is clearly

demonstrated.

In order to gain more confidence with the optical amplifier operation, Figures 1.15 and 1.16

report the computed performances of the same systems A and B versus the average optical
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Figure 1.16 Computed error rate performances for system B operating under the same condition as

Figure 1.15. The lower value of the vertical scale has been limited to 10�13 in order to allow better plot

resolution. The BER flooring corresponding to lower values of the average optical power at the amplifier

input is evident. In these cases, in fact, the higher gain required increases the signal-spontaneous beat

noise, leading to a dominant quadratic noise contribution
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power PR evaluated at the PIN-based receiver input, instead of the average power PS at the

optical amplifier input. Figure 1.16 shows a detailed view of the error rate plots in the region of

interest.

Figure 1.17 presents a detailed view of the Q-factor and amplifier gain versus the average

input optical powerPR, assuming afixed amplifier input powerPS¼�30 dBm.The circle in the
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Figure 1.17 Graphical calculation of the amplifier gain and average optical power at the receiver input

for achieving the required Q-factor, Qrefffi 17 dB and error rate BER¼ 10�12. Higher values of the

amplifier gain are associated with lower error rates, but the signal-spontaneous beat noise leads to

saturation behavior of the system performance
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upper graph highlights the intersection region for the required Q-factor. The corresponding

amplifier gain is easily found by reading the corresponding value on the left scale. In the case

considered, we find approximately Gffi 12 dB and PRffi�18 dBm. The same value of the

received optical power in the lower graph leads to the required BERffi 10�12.

1.7 Conclusions

In this chapterwe have introduced several aspects of the amplitude and phase noise contributing

to the degradation of optical fiber transmission performance. To show these effects, we used the

threemost typical noise functional relationships versus received average optical power, namely

the thermal noise (constant), the signal shot noise (linear), and the signal-spontaneous beat

noise (quadratic). We discussed their effect on the bit error rate performance for the direct

detection intensitymodulated optical system, introducing important engineering concepts such

as the slope of the error rate and, in particular, the existence of asymptotic limiting behavior,

known as the BER floor. The BER floor is achievable only if a dominant quadratic noise term

occurs in the error detection process. We introduced the concept of partitioning of noise

sources, referring to the different transmission system contexts in which some noise

contributions become relevant, in spite of others not appearing at all.

System design usually encounters only a few relevant noise terms, depending on the source

and receiver technologies, the fiber link specification, and the transmission architectures.

However, optical communication system designers must be well aware that, behind new

technological choices usually adopted for improving signal transmission, system capacity, and

othermarket-oriented features, different noise contributions can impact severely on the desired

system characteristics, leading to unexpected overall performance degradation. The correct

starting point inmaking choices for system improvement is a profound knowledge of the noise-

related outcome.
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