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Linear Multivariable Control Systems
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Canonical representations and
stability analysis of linear MIMO
systems

1.1 INTRODUCTION

In the first section of this chapter, we consider in general the key ideas and concepts concerning
canonical representations of linear multi-input multi-output (MIMO) control systems (also
called multivariable control systems) with the help of the characteristic transfer functions
(or characteristic gain functions) method (MacFarlane and Belletrutti 1970; MacFarlane
et al. 1977; MacFarlane and Postlethwaite 1977; Postlethwaite and MacFarlane 1979). We
shall see how, using simple mathematical tools of the theory of matrices and linear algebraic
operators, one can associate a set of N so-called one-dimensional characteristic systems acting
in the complex space of input and output vector-valued signals along N linearly independent
directions (axes of the canonical basis) with an N-dimensional (i.e. having N inputs and N
outputs) MIMO system. This enables us to reduce the stability analysis of an interconnected
MIMO system to the stability analysis of N independent characteristic systems, and to
formulate the generalized Nyquist criterion. We also consider some notions concerning the
singular value decomposition (SVD) used in the next chapter for the performance analysis
of MIMO systems. In the subsequent sections, we focus on the structural and geometrical
features of important classes of MIMO systems – uniform and normal systems – and derive
canonical representations for their transfer function matrices. In the last section, we discuss
multivariable root loci. That topic, being immediately related to the stability analysis, is also
very significant for the MIMO system design.

1.2 GENERAL LINEAR SQUARE MIMO SYSTEMS

1.2.1 Transfer matrices of general MIMO systems

Consider an N-dimensional controllable and observable square (that is having the same number
of inputs and outputs) MIMO system, as shown in Figure 1.1. Here, ϕ(s), f (s) and ε(s)
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ϕ(s) ε(s)
W(s)

ƒ(s)

Figure 1.1 Block diagram of a general-type linear MIMO feedback system.

stand for the Laplace transforms of the N-dimensional input, output and error vector signals
ϕ(t), f (t) and ε(t), respectively (we shall regard them as elements of some N-dimensional
complex space CN ); W (s) = {wkr (s)} denotes the square transfer function matrix of the open-
loop system of order N × N (for simplicity, we shall call this matrix the open-loop transfer
matrix) with entries wkr (s) (k, r = 1, 2, . . . , N ), which are scalar proper rational functions
in complex variable s. The elements wkk(s) on the principal diagonal of W(s) are the transfer
functions of the separate channels, and the nondiagonal elements wkr (s) (k �= r ) are the transfer
functions of cross-connections from the rth channel to the kth.

Henceforth, we shall not impose any restrictions on the number N of separate channels, i.e.
on the dimension of the MIMO system, and on the structure (type) of the matrix W(s). At the
same time, so as not to encumber the presentation and to concentrate on the primary ideas,
later on, we shall assume that the scalar transfer functions wkr (s) do not have multiple poles
(we mean each individual transfer function). Also, we shall refer to the general-type MIMO
system of Figure 1.1 as simply the general MIMO system (so as not to introduce any ambiguity
concerning the type of system, which is conventionally defined in the classical control theory
as the number of pure integrators in the open-loop system transfer function).

The output f(s) and error ε(s) vectors, where

ε(s) = ϕ(s) − f (s), (1.1)

are related to the input vector ϕ(s) by the following operator equations:

f (s) = �(s)ϕ(s), ε(s) = �ε(s)ϕ(s), (1.2)

where

�(s) = [I + W (s)]−1 W (s) = W (s) [I + W (s)]−1 and (1.3)

�ε(s) = [I + W (s)]−1 (1.4)

are the transfer function matrices of the closed-loop MIMO system (further, for short, referred
to as the closed-loop transfer matrices) with respect to output and error signals, and I is the
unit matrix. The transfer matrices �ε(s) and �(s) are usually called the sensitivity function
matrix and complementary sensitivity function matrix.1

By straightforward calculation, it is easy to check that �ε(s) and �(s) satisfy the relationship:

�(s) + �ε(s) = I. (1.5)

1 The terms sensitivity function and complementary sensitivity function were introduced by Bode (1945).
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From here, we come to the important conclusion that it is impossible to bring to zero the system
error if the input signal is a sum (mixture) of a reference signal and disturbances, where the
latter may be, for example, the measurement or other noises. Indeed, if the system ideally tracks
the input reference signal, that is if the matrix �ε(s) identically equals the zero matrix, then,
due to the superposition principle (Ogata 1970; Kuo 1995), that system also ideally reproduces
at the output the input noise [since, if �ε(s) = 0, then the matrix �(s) in Equation (1.5) is equal
to the unit matrix I]. A certain trade-off may only be achieved provided the input reference
signal and the measurement noise have nonoverlapping (at least, partially) frequency ranges.2

1.2.2 MIMO system zeros and poles

1.2.2.1 Open-loop MIMO systems

A single-input single-output (SISO) feedback control system with the open-loop transfer func-
tion W(s) is depicted in Figure 1.2. That system may be regarded, if N = 1, as a specific case of

W(s)

Figure 1.2 Block diagram of a SISO control system (N = 1).

the MIMO system of Figure 1.1. The transfer function W(s) is a rational function in complex
variable s and can be expressed as a quotient of two polynomials M(s) and D(s) with real
coefficients:

W (s) = M(s)

D(s)
, (1.6)

where the order m of M(s) is equal to or less than the order n of D(s), that is we consider only
physically feasible systems.

From the classical control theory, we know that the poles pi of W(s) are the roots of the
denominator polynomial D(s), and zeros zi are the roots of the numerator polynomial M(s)
(Ogata 1970; Kuo 1995). In the case of usual SISO systems with real parameters, complex
poles and zeros always occur in complex conjugate pairs. Obviously, at the zeros zi , the transfer
function W(s) vanishes and, at the poles pi , it tends to infinity (or 1/W(s) vanishes).

In the multivariable case, the situation is not so simple, and this refers to the MIMO sys-
tem zeros in particular. This indeed explains the large number of papers in which there are
given different definitions and explanations of the MIMO system zeros: from the state-space
positions, by means of polynomial matrices and the Smith-McMillan form, etc. (Sain and
Schrader 1990; Wonham 1979; Rosenbrock 1970, 1973; Postlethwaite and MacFarlane 1979;
Vardulakis 1991).

First, let us consider the open-loop MIMO system poles. We call any complex number pi

the pole of the open-loop transfer matrix W(s) if pi is the pole of at least one of the entries

2 The MIMO system accuracy is discussed in Chapter 2.
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wkr (s) of the matrix W(s). In fact, if at least one of the entries wkr (s) of W(s) tends to infinity as
s → pi , then W(s) tends (strictly speaking, by norm) to infinity. Therefore, pi may be regarded
as the pole of W(s). As a result, we count the set of the poles of all wkr (s) as the poles of W(s).
Such a prima facie formal definition of the MIMO system pole seems evident but it leads, as
we shall see later, to rather interesting results.

Let the transfer matrix W(s) be expanded, taking into account the above assumption that
wkr (s) have no multiple roots, into partial fractions as:

W (s) =
n∑

i=1

Ki

s − pi
+ D, (1.7)

where n is the total number of simple poles of W(s);

Ki = lim
s→pi

(s − pi )W (s) (1.8)

are the residue matrices of W(s) at the finite poles pi ; and the constant matrix D is

D = lim
s→∞ W (s). (1.9)

Note that the matrix D differs from the zero matrix if any of wkr (s) have the same degree of
the numerator and denominator polynomials.

The rank ri of the ith pole pi is defined as the rank of the residue matrix Ki , and it is called
the geometric multiplicity of that pole. Among all poles of the open-loop MIMO system, of
special interest are those of rank N, which are also the poles of all the nonzero elements wkr (s).
In what follows, we shall call such poles the absolute poles of the open-loop MIMO system. It
is easy to see that if a complex number pi is an absolute pole of the transfer matrix W(s), then
the latter can be represented as

W (s) = 1

s − pi
W1(s), (1.10)

where the matrix W1(pi ) is nonsingular [that matrix cannot have entries with poles at the same
point pi owing to the assumption that wkr (s) have no multiple poles].

In a certain sense, it is more complicated to introduce the notion of zero of the transfer
matrix W(s), as an arbitrary complex number s that brings any of the transfer functions wkr (s)
to vanishing, cannot always be regarded as the zero of W(s). We introduce the following two
definitions:

1. A complex number zi is said to be an absolute zero of the transfer matrix W(s) if it reduces
the latter to the zero matrix.

2. A complex number zi is said to be a local zero of rank k of W(s), if substituting it into
W(s) makes the latter singular and of rank N − k. The local zero of rank N is, evidently, the
absolute zero of W(s).3

3 The notion of MIMO system zero as a complex number z that reduces at s = z, the local rank of the matrix W (s),
is given, for example, in MacFarlane (1975).
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Let us discuss these statements. It is clear that if a number zi is an absolute zero of W(s), then
we can express that matrix as

W (s) = (s − zi )W1(s), (1.11)

where W1(zi ) differs from the zero matrix and has rank N. In other words, the absolute zero
must also be the common zero of all the nonzero elements wkr (s) of W(s).

We are not quite ready yet for detailed discussion of the notion of the open-loop MIMO
system local zero, but, as a simple example, consider the following situation. Let zi be the
common zero of all elements wkr (s) of the kth row or the rth column of W(s), i.e. wkr (zi ) = 0
when k = const, r = 1, 2, . . . , N , or when r = const, k = 1, 2, . . . , N . Then, obviously, if
the rank of W(s) is N for almost all values of s [i.e. the normal rank of W(s) is N], then the
matrix W(zi ) will have at least rank N − 1, since, for s = zi , the elements of the kth row or the
rth column of W(zi ) are zero. Structurally, the equality to zero of all elements of the kth row of
W(s) means that for s = zi , both the direct transfer function wkk(s) of the kth channel and the
transfer functions of all cross-connections leading to the kth channel from all the remaining
channels become zeros. Analogously, the equality to zero of all elements of the rth column of
W(s) means that for s = zi , both the direct transfer function wrr (s) of the rth channel and the
transfer functions of all cross-connections leading from the rth channel to all the remaining
channels become zeros. This situation may readily be expanded to the case of local zero of
rank k. Thus, if, for s = zi , the elements of any k rows or any k columns of W(s) become zeros,
then zi is the local zero of rank k. At this point, however, a natural question arises of whether
local zeros of the matrix W(s) exist which reduce its normal rank but do not have the above
simple explanation and, if such zeros, then what is their number?

A sufficiently definite answer to that question is obtained in the following subsections, and
here we shall try to establish a link between the introduced notions of the open-loop MIMO
system poles and zeros, and the determinant of W(s). It is easy to see that both the absolute
and local zeros of W(s) make detW(s) vanishing, since the determinants of the zero matrices
as well as of the singular matrices identically equal zero. Besides, from the standard rules of
calculating the determinants of matrices (Gantmacher 1964; Bellman 1970), we have that if
some elements of W(s) tend to infinity, then the determinant detW(s) also tends to infinity. In
other words, the poles of W(s) are the poles of detW(s). Based on this, we can represent detW(s)
as a quotient of two polynomials in s:

detW (s) = Z (s)

P(s)
(1.12)

and call the zeros of W (s) the roots of the equation

Z (s) = 0 (1.13)

and the poles of W(s) the roots of the equation

P(s) = 0. (1.14)

Let us denote the degrees of polynomials Z(s) and P(s) as m and n, respectively, where, in
practice, m ≤ n. We shall call Z(s) the zeros polynomial and P(s) the poles polynomial, or the
characteristic polynomial, of the open-loop MIMO system.
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Strictly speaking, the given heuristic definition of the zeros and poles of W(s) as the roots
of Equations (1.13) and (1.14), which are obtained from Equation (1.12), is only valid if
the polynomials Z(s) and P(s) do not have coincident roots.4 The rigorous determination of
the zeros and poles polynomials Z(s) and P(s) can be accomplished via the Smith-McMillan
canonical form (Kailath 1980).5 Besides, there exists another important detail concerning the
definition of the MIMO system poles with the help of Equation (1.14), which deserves special
attention and will be discussed in Remark 1.6.

Based on the introduced notions of the open-loop MIMO system absolute poles and zeros,
we can generally write down for the matrix W(s) the following expression:

W (s) = α(s)

β(s)
W1(s). (1.15)

where α(s) and β(s) represent scalar polynomials of order m0 and n0, whose roots are
absolute zeros and poles of W(s). Here, the matrix W1(s) in Equation (1.15) must have
rank N at the absolute zeros zi and poles pi . Substituting Equation (1.15) into Equation
(1.12) and taking into account the rule of multiplying the determinant by a scalar number
yields

detW (s) = [α(s)]N

[β(s)]N
detW1(s) = [α(s)]N

[β(s)]N

Z1(s)

P1(s)
, (1.16)

from which it follows that all absolute zeros and poles of the open-loop MIMO system have
the algebraic multiplicity N (this is another, equivalent, definition of absolute zeros and poles).
Returning to the definition of the open-loop MIMO system poles and summarizing, we can
finally formulate the following:

– the absolute pole of W(s) is the pole whose algebraic multiplicity, considering the latter as
that of the root of Equation (1.14), and geometric multiplicity, as the rank of the residue matrix
in Equation (1.7), coincide and are equal to the number of channels N.

This notion, as well as the notion of absolute zero, will be very useful when studying
properties of multivariable root loci and MIMO systems performance (see Section 1.6 and
Chapter 2).

1.2.2.2 Closed-loop MIMO systems

Let us first consider, as in the previous part, the SISO system of Figure 1.2. The closed-loop
transfer functions of that system with respect to output and error signals are:

�(s) = W (s)

1 + W (s)
= M(s)

D(s) + M(s)
(1.17)

�ε(s) = 1

1 + W (s)
= D(s)

D(s) + M(s)
. (1.18)

4 If polynomials P(s) and Z (s) do have common roots (i.e. coincident zeros and poles), and they are cancelled
in Equation (1.12), then there always exists a danger that the mentioned zeros and poles correspond to different
directions of the MIMO system (see Subsection 1.2.3).

5 The Smith-McMillan canonical form is discussed in Remark 1.6.
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From here, we can see that the zeros of the open-loop and closed-loop systems [the zeros of the
transfer functions W(s) and �(s)] coincide, and the zeros of the transfer function with respect
to error (the sensitivity function) �ε(s) coincide with the poles of the open-loop system. The
last fact is very significant when analyzing the accuracy of control systems subjected to slowly
changing deterministic signals (see Chapter 2).

The expression 1 + W(s) is usually called the return difference of the SISO system6 and the
closed-loop poles are zeros of the equation

1 + W (s) = D(s) + M(s)

D(s)
= 0, (1.19)

i.e. are the roots of the equation

D(s) + M(s) = 0. (1.20)

Now let us proceed to MIMO systems. From the closed-loop transfer matrix with respect to
output (complimentary sensitivity function) �(s) [Equation (1.3)]:

�(s) = [I + W (s)]−1 W (s) = W (s) [I + W (s)]−1 , (1.21)

we can immediately notice that if a complex number zi is an absolute zero of the open-loop
MIMO system, i.e. at s = zi , the matrix W(s) vanishes, then it is also the absolute zero of the
closed-loop MIMO system. Further, based on the well known Silvester’s low of degeneracy,7

we have that the local zeros of W(s) (which drop the rank of the latter) are also the local zeros
of �(s). Hence, quite similarly to the SISO case, the zeros of the open-loop and closed-loop
transfer matrices W(s) and �(s) coincide.

The corresponding result for the closed-loop transfer matrix with respect to the error signal
(sensitivity function) �ε(s) [Equation (1.4)]:

�ε(s) = [I + W (s)]−1 (1.22)

may be obtained quite easily if we remember that the inverse matrix in the right-hand part of
that expression is found as follows:

[I + W (s)]−1 = 1

det[I + W (s)]
Adj([I + W (s)]), (1.23)

where Adj(·) denotes the adjoint matrix formed from the initial matrix by replacing all its
elements by their cofactors and by subsequent transposing. By analogy with the SISO case, in
the MIMO case, the matrix I + W (s) is called the return difference matrix, and its determinant
is equal to

det[I + W (s)] = det[I + W (∞)]
Pcl(s)

P(s)
, (1.24)

6 The origin of the term return difference, introduced by Bode, is due to the fact that if we break the closed-loop
system with unit negative feedback at an arbitrary point and inject at that point some signal y(s), then the difference
between that signal and the signal −W (s)y(s) returning through the feedback loop to the break point is equal to
[1 + W (s)]y(s).

7 That low states that the degeneracy of the product of two matrices is at least as great as the degeneracy of either
matrix and, at most, as great as the sum of degeneracies of the matrices (Derusso et al. 1965).
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where P(s) and Pcl(s) are the characteristic polynomials of the open-loop and closed-loop
MIMO system, respectively (Postlethwaite and MacFarlane 1979). The constant matrix W(∞)
in Equation (1.24) coincides with D [Equations (1.7) and (1.9)], and differs from the zero
matrix under indicated conditions there.8 Substituting Equation (1.24) into Equation (1.23)
and then into Equation (1.4), we obtain for �ε(s)

�ε(s) = P(s)

det[I + W (∞)]Pcl(s)
Ad j([I + W (s)]). (1.25)

From Equation (1.25) it ensues that the open-loop MIMO system poles, i.e. the roots of the
characteristic polynomial P(s), are, as in the SISO case, the zeros of the closed-loop transfer
matrix �ε(s), where the absolute poles of W (s) become the absolute zeros of �ε(s).9

Thus, we have ascertained that zeros of open-loop and closed-loop MIMO systems are
related just as zeros of open-loop and closed-loop SISO systems. We can state once more that
SISO systems are a special case of MIMO systems, when N = 1.

1.2.3 Spectral representation of transfer matrices: characteristic
transfer functions and canonical basis

The significant notions of poles and zeros of linear square MIMO systems discussed in the
preceding sections form the necessary basis on which the frequency-domain multivariable
control theory is built. At the same time, we have not yet succeeded in understanding the
geometrical and structural properties of multivariable control systems and in establishing links
between frequency-domain representations of SISO and MIMO systems. Now, we proceed
to solving that task. Note also that, speaking about structural properties of MIMO systems,
we shall mean both the ‘internal’ features ensuing from the geometrical properties of linear
algebraic operators acting in finite-dimensional Hilbert spaces and the ‘external’ features
depending, first of all, on the technical characteristics of MIMO systems (though, ultimately,
all these features and characteristics are inseparably linked).

1.2.3.1 Open-loop MIMO systems

Equations (1.1)–(1.4) describe the behaviour of the closed-loop MIMO system of Figure 1.1
with respect to a natural coordinate system (natural basis) formed by a set of N orthonormal unit
vectors ei (i = 1, 2, . . . , N ), where the kth component of ek is unity and all other components
are zero. The ϕi (s), fi (s) and εi (s) coordinates of the vectors ϕ(s), f(s) and ε(s) with respect
to that basis are just the Laplace transforms of the actual input, output and error signals,
respectively, in the ith separate channel of the system. Formally, the transfer matrices W(s), �(s)
and �ε(s) may be regarded as some linear operators mapping an N-dimensional complex space
CN of the input vectors ϕ(s) into the corresponding spaces of the output or error vectors f(s) or

8 Later on, we shall omit the case of the singular matrix [I + W (∞)], which has no practical significance.
9 Strictly speaking, inherent only in the MIMO systems, situations in which some poles of the open-loop system do

not change after closing the feedback loop and coincide with the corresponding poles of the closed-loop system are
not included here. In such cases, the coincident roots of Pcl (s) and P(s) in Equation (1.25) must be cancelled, and
they should not be regarded as zeros of the transfer function matrix �ε(s). That issue will be considered in more
detail when studying the properties of multivariable root loci in Section 1.5 and Remark 1.6.
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ε(s). This suggests using the mathematical tools of the theory of linear algebraic operators and
functional analysis for the study of linear MIMO systems (Strang 1976; Vulich 1967; Danford
and Schwarts 1962). It is known that internal, structural properties of linear algebraic operators
exhibit much more saliently, not in the natural, but in some other, specially chosen coordinate
systems (Porter 1966; Derusso et al. 1965; Gantmacher 1964). In particular, that refers to the
so-called canonical basis formed by the normalized (i.e. having unit length) characteristic
vectors of the matrix operator, with respect to which the latter has diagonal form with the
characteristic values (eigenvalues) on the principal diagonal. Since the wkr (s) elements of the
open-loop transfer matrix W(s) are scalar proper rational functions in complex variable s, the
eigenvalues qi (s) of W(s), i.e. the roots of the equation

det[q I − W (s)] = 0 (1.26)

are also functions of variable s. These complex functions qi (s) are called characteristic
transfer functions (CTF) of the open-loop MIMO system (MacFarlane and Belletrutti 1970;
Postlethwaite and MacFarlane 1979).10

If we assume, for the sake of simplicity, that all CTFs qi (s) (i = 1, 2, . . . , N ) are distinct,11

then the corresponding normalized eigenvectors ci (s) (|ci (s)| = 1) of W(s) are linearly inde-
pendent, and constitute the basis of the N-dimensional complex space CN (recall that ϕ(s),
f(s) and ε(s) belong to that space). We call that basis the canonical basis of the open-loop
MIMO system.

Having formed from ci (s), the modal matrix C(s) = [c1(s) c2(s) . . . cN (s)] [the latter is
nonsingular owing to the assumption of linear independency of ci (s)], we can represent the
matrix W(s) by the similarity transformation in the following form:

W (s) = C(s) diag{qi (s)}C−1(s), (1.27)

where diag{qi (s)}denotes the diagonal matrix with the elements qi (s) on the principal diagonal.
Before proceeding, let us consider briefly some mathematical notions and pre-requisites

which are inherent in complex Hilbert spaces and which are necessary for the further exposition.
The first of these notions is the scalar (or inner) product, which is written for two arbitrary
N-dimensional column vectors x and y with components xi and yi as <x, y>, and is defined as

< x, y > = x̃ T y = yT x̃ =
N∑

i=1

x̃i yi , (1.28)

where T is the symbol of transposition, and the wavy line above denotes the complex conju-
gation (Derusso et al. 1965). Based on Equation (1.28), we can represent the Euclidean norm
(length) of the vector x as

|x | = √
< x, x > (1.29)

10 We give here rather a simplified interpretation of characteristic transfer functions, which is quite enough for engi-
neering applications. In essence, the reader may assume that qi (s) are found for fixed values s = const, for which
W(s) reduces to a usual numerical matrix with complex elements (see also Remark 1.2).

11 When accomplishing an engineering design, this may always be achieved by arbitrary small perturbations of the
MIMO system parameters within the accuracy of their specifications.
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and, for real vectors x and y, we can define the angle θ between them by the equation

< x, y >= |x | |y| cos θ. (1.30)

In particular, two vectors x and y are said to be orthogonal if < x, y > = 0 and collinear if
< x, y > = ± |x | |y|. Note that the complex conjugation of components of x in Equation (1.28)
is needed to provide the coincidence of the usual norm and the norm specified by scalar product
for complex-valued vectors [Equation (1.29)]. In the mathematical and technical literature, one
can encounter a definition of scalar product in which the complex conjugate components of
the second, instead of the first, vector in Equation (1.28) are taken. This should not introduce
ambiguity, as, in principle, it is an equivalent definition of the scalar product. For our aims, it is
more convenient to introduce the scalar product in the form of Equation (1.28), and the reader
should remember this in what follows. Now, as the product < x, y > in complex space CN is not
always real-valued, in general, we are not able to introduce the notion of an angle between two
vectors x and y. Nevertheless, the conditions < x, y > = 0 and < x, y > = ± |x | |y| determine,
as before, orthogonality and collinearity of any two vectors, and these two notions turn out to
be as useful as in the real space.

Along with the notion of a basis in CN (as such a basis may serve any set of N linearly
independent vectors in CN ), we also need the notion of a dual (or reciprocal) basis, which is
defined as follows. Let the set of N normalized vectors ci constitute a basis of CN , i.e. any
vector y in CN may be represented as a linear combination of the form

y =
N∑

i=1

αi ci , (1.31)

where the αi scalars are the coordinates of y in the basis {c1, c2, . . . , cN }. Let us define a set
{c+

1 , c+
2 , . . . , c+

N } of N vectors such that

<ci , c+
j > = δi j (i, j = 1, 2, . . . , N ), (1.32)

where δi j is the symbol of Kronecker (δi j = 1 for i = j , and δi j = 0 for i �= j) (Derusso
et al. 1965). It is easy to show that the vectors c+

1 , c+
2 , . . . , c+

N in Equation (1.32) are linearly
independent and also constitute a basis in CN . That basis is said to be dual to the basis
{c1, c2, . . . , cN }. From the way of finding the dual basis [Equation (1.32)], where the axis
c+

i dual to ci must be orthogonal to all other axes ck (k �= i), it follows that orthonormal
bases always coincide with their dual bases. The major benefit of the dual basis is that the αi

coordinates of y in the basis {c1, c2, . . . , cN } in Equation (1.31) are expressed as12

αi = <c+
i , y > (1.33)

and this feature of the dual basis proves to be extremely useful when studying geometrical
properties of linear MIMO systems. Note that if we denote by C the matrix composed of the
normalized vectors {c1, c2, . . . , cN }, the rows of the inverse matrix C−1 are complex conjugate
to the reciprocal basis axes (given the initial basis, this is, in fact, a way to calculate numerically
the dual basis) (Derusso et al. 1965; Gasparyan 1976).

12 We suggest that the reader checks this as an exercise.
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The last notion, needed in the future, is based on the so-called dyadic designations (Porter
1966). To proceed, we have to impart some additional shading to what we mean by the symbols
< and > in Equation (1.28). In the following, we shall formally attribute the symbol > to a
column vector, i.e. the designation y >we shall consider identical to the designation y. Similarly,
the symbol < will be attributed to a complex conjugate row vector, i.e. the designation < x
will be regarded as equivalent to x̃ T . Then, preserving the usual definition of scalar product
[Equation (1.28)], we can impart a certain sense to the expression y >< x . Now, in accordance
with the conventional rules, multiplying the column vector y> by the complex conjugate row
vector < x yields a square matrix S:

S = y >< x . (1.34)

Multiplying that matrix by an arbitrary vector z (or by z>, which is the same) yields

v = Sz = (y >< x)z > = y > < x, z >︸ ︷︷ ︸
α

= αy. (1.35)

From Equation (1.35), it is clear that the range of values of S is one-dimensional, and is a linear
subspace of CN generated (spanned) by the vector y. In other words, the S matrix transforms
any vector z in CN to a vector which is always directed along y. Also, those vectors z that are
perpendicular to x are transformed to a zero vector (because, in that case, the scalar α =< x, z >

equals zero). The matrix S represented in Equation (1.34) is said to be a dyad of rank one.
Given a normalized basis {c1, c2, . . . , cN } of CN and a set {γ1, γ2, . . . , γN } of N linearly

independent (but not necessarily normalized) vectors, the matrix S represented as

S =
N∑

i=1

ci >< γi , (1.36)

i.e. as a sum of N dyads of rank one, is said to be a dyad of rank N. Its range of values is, obvi-
ously, the whole space CN . Among all possible dyads composed via the basis {c1, c2, . . . , cN }
[Equation (1.36)], the most significant is the dyad for which the vectors γ1, γ2, . . . , γN coincide
with the dual basis c+

1 , c+
2 , . . . , c+

N . It is easy to show, in that case, that the identity operator I
in CN may be represented through the dyads ci >< c+

i of rank one as a sum:

I =
N∑

i=1

ci >< c+
i . (1.37)

Further, which is far more important, if a square matrix A is a matrix of simple structure, i.e.
possesses the full set of N linearly independent eigenvectors ci , then it can be represented not
only by the similarity transformation, but also in the form of a spectral decomposition, as a
sum of N dyads:

A =
N∑

i=1

ci > λi < c+
i , (1.38)

where λi are the eigenvalues of the matrix A.



JWBK226-01 JWBK226-Gasparyan January 2, 2008 20:47 Char Count=

14 Canonical Representations and Stability Analysis of Linear MIMO Systems

Now, we have proceeded enough in the understanding of the geometrical structure of lin-
ear operators in finite-dimensional Hilbert spaces and can use the corresponding apparatus
for investigating properties of the open-loop MIMO system. Based on Equation (1.38) and
remembering that all CTFs qi (s) are assumed distinct,13 we can write down the open-loop
transfer matrix W(s) of the MIMO system in the form of the spectral decomposition:

W (s) =
N∑

i=1

ci (s) > qi (s) < c+
i (s). (1.39)

The spectral representation in Equation (1.39) permits a visual geometric interpretation
of the internal structure of the open-loop and, as will be seen later, closed-loop MIMO sys-
tems. The CTFs qi (s) may be regarded as transfer functions of some abstract, fictitious one-
dimensional ‘characteristic’ systems, in which each characteristic system ‘acts’ in CN along
one axis ci (s) of the open-loop MIMO system canonical basis. For any s, the vector f(s) is
represented, based on Equation (1.39) and Figure 1.1, as

f (s) = W (s)ε(s) =
[

N∑
i=1

ci (s) > qi (s) < c+
i (s)

]
ε(s) =

N∑
i=1

[qi (s)βi (s)]ci (s), (1.40)

where

βi (s) = <c+
i (s), ε(s)>, i = 1, 2, . . . , N (1.41)

are the projections of ε(s) on ci (s), i.e. as a linear combination of ‘responses’ of the open-loop
MIMO system along the canonical basis axes.

On the other hand, having Equation (1.37) for the identity operator I in CN , we are able to
write down the expansion of the output vector f(s) along the canonical axes in the form

f (s) = If(s) =
[

N∑
i=1

ci >< c+
i

]
f (s) =

N∑
i=1

αi (s)ci (s), (1.42)

where

αi (s) = <c+
i (s), f (s)>, i = 1, 2, . . . , N (1.43)

are the coordinates of f(s) along the axes ci (s). Comparing Equations (1.40)–(1.43) yields

αi (s) = qi (s)βi (s), i = 1, 2, . . . , N , (1.44)

from which we come to the conclusion that the projection αi (s) of the output vector f (s) on
any canonical basis axis ci (s) is equal to the corresponding projection βi (s) of the error vector
ε(s) multiplied by the CTF qi (s) of the one-dimensional characteristic system acting along that
very axis ci (s). If the error vector ε(s) is directed along one, say the kth, canonical basis axis,

13 The matrices of the simple structure can always be brought to diagonal form via the similarity transformation.
The assumption of distinct CTFs guarantees this possibility, but is not necessary. For example, normal matrices
with multiple eigenvalues can always be brought to diagonal form. More strictly, a square matrix can be brought
to diagonal form in a certain basis if the algebraic and geometric multiplicities of all eigenvalues coincide.
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Natural Basis Canonical Basis

q1(s)

q2(s)

qN(s)

Natural Basis

C−1(s) C (s)

Figure 1.3 Representation of the open-loop MIMO system via the similarity transformation.

i.e. if ε(s) = βk(s)ck(s), then, based on the properties of the dual basis [Equation (1.32)], all
βi (s) (i �= k) in Equation (1.41) are identically equal to zero and the output vector

f (s) = qk(s)βk(s)ck(s) (1.45)

is also directed along the same axis ck(s). In other words, the axes of the open-loop MIMO
system canonical basis determine those N directions in complex space CN along which the
system acts as a certain fictitious one-dimensional system, and only ‘stretches’ or ‘squeezes’
the input signals.14 The block diagrams in Figures 1.3 and 1.4, which represent in graphical
form Equations (1.27) and (1.39)–(1.44), schematically illustrate all these statements.

It must be noted that both forms of the canonical representation of transfer matrices – by
means of similarity transformation [Equation (1.27)] and dyadic notation [Equation (1.39)] –
are equivalent, and the reader should always remember this. The first representation seems
to be useful and convenient due to its compactness for some general derivations and proofs,
and the second one, possibly, gives the reader a better intuitive or physical feeling for the
geometrical structure and behaviour of the MIMO system.

We already have enough knowledge to gain a deeper insight into the notions of poles and
zeros of MIMO control systems. Based on Equation (1.27), the determinant of the open-loop
transfer matrix W (s) is equal to

detW (s) = Z (s)

P(s)
= det

[
C(s)diag{qi (s)}C−1(s)

]
= detC(s) det C−1(s)︸ ︷︷ ︸

I

det[diag{qi (s)] =
N∏

i=1

qi (s), (1.46)

14 It is worth noting here that we have not yet spoken about such important geometrical properties of the canonical
basis as orthogonality or skewness of axes; as we shall see in the next chapters, it is difficult to overestimate, from
the MIMO system performance viewpoint, the significance of these features.
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Natural Basis Canonical Basis

q1(s)

q2(s)

qN(s) cN(s)

Natural Basis

< c1  (s)+

< c2  (s)+

c1(s)

c2(s)

< cN  (s)+

Figure 1.4 Spectral representation of the open-loop MIMO system by means of dyads.

where it is taken into account that the product of determinants of a matrix and its inverse is
equal to unity, and the determinant of a diagonal matrix is equal to the product of diagonal
elements.

Thus, we have obtained that poles and zeros of the open-loop MIMO system coincide with
poles and zeros of all open-loop characteristic systems associated with the MIMO system.
Moreover, starting from Equation (1.15) and recalling that if a matrix is multiplied by a scalar,
then all eigenvalues of that matrix are multiplied by the same scalar, we come to the important
conclusion that the absolute zeros and poles of the open-loop MIMO system are common
poles and zeros of all CTFs qi (s). Further, if a complex number z is a local zero of rank k
(1 ≤ k ≤ N ), then that number must be the zero of any k CTFs qi (s). It is easy to ascertain
that at the local zero of rank k, the rank of W (s) is equal to N − k, since the rank of each dyad
in spectral representation [Equation (1.39)] is unity and each dyad projects complex space CN

onto one of the canonical basis axes. Therefore, if k terms in Equation (1.39) are zero, then the
remaining N − k terms define N − k basis axes, and the matrix W (s)|s=z itself is of rank N − k.
Eventually, we realize that evaluating zeros and poles of the open-loop MIMO system with the
help of Equations (1.12)–(1.14), i.e. based on the computation of the determinant det W (s),
may bring about the incorrect cancellation of poles and zeros of characteristic systems which,
in fact, act along different axes of the canonical basis.

In conclusion, note that, for many classes of MIMO systems widespread in practice, the
CTFs qi (s) can be expressed as a quotient of two polynomials Mi (s) and Di (s), i.e. in the form

qi (s) = Mi (s)

Di (s)
, i = 1, 2, . . . , N , (1.47)

where Mi (s) and Di (s) are defined analytically for any number N of separate channels. This fact
plays an extremely important role, as it allows us to rigorously select zeros and poles [the roots
of the equations Mi (s) = 0 and Di (s) = 0] of each separate one-dimensional characteristic
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system. We accentuate here that Equation (1.46) indicates only that the roots of zeros and
poles polynomials Z (s) and P(s) taken together are equal to zeros and poles of the CTFs qi (s).
Generally, we do not have any specific information (except for the conclusion concerning
absolute zeros and poles) about the distribution of the MIMO system poles and zeros among
individual characteristic systems. As for the above-mentioned prevailing classes of MIMO
systems, and to those classes belong the so-called uniform, circulant, anticirculant and some
other systems, we can immediately write down for their zeros and poles polynomials

Z (s) =
N∏

i=1

Mi (s) = 0, P(s) =
N∏

i=1

Di (s) = 0, (1.48)

which, as will be seen in the following, considerably simplifies the analysis of such systems.
Although representation of the CTFs qi (s) as a quotient of two polynomials [Equation

(1.47)] in the general case is, unfortunately, impossible, sometimes, we shall formally suppose
that the CTFs qi (s) are of the form in Equation (1.47). It will allow us, without encumbering
the presentation, to make a number of statements indicating a close relationship between the
stability and performance of SISO and MIMO systems.

1.2.3.2 Closed-loop MIMO systems

In this section, we bring to a logical completion the task of describing linear MIMO control
systems by means of the CTFs. Substituting the representation of the open-loop transfer matrix
W (s) via the similarity transformation [Equation (1.27)] into the complementary sensitivity
function matrix �(s) [Equation (1.3)] and the sensitivity function matrix �ε(s) [Equation
(1.4)], after a number of simple transformations, yields

�(s) = C(s)diag

{
qi (s)

1 + qi (s)

}
C−1(s), �ε(s) = C(s)diag

{
1

1 + qi (s)

}
C−1(s). (1.49)

Analogously, substituting the spectral decomposition in Equation (1.39) into Equations (1.3)
and (1.4) gives

�(s) =
N∑

i=1

ci (s) >
qi (s)

1 + qi (s)
< c+

i (s), �ε(s) =
N∑

i=1

ci (s) >
1

1 + qi (s)
< c+

i (s). (1.50)

The examination of these expressions enables us to draw the important conclusion that the
modal matrix C(s) and, consequently, the canonical basis of the closed-loop MIMO system
coincide with the modal matrix and canonical basis of the open-loop system. In other words,
introducing the unit negative feedback does not change the canonical basis of the system.
Moreover, if qi (s)(i = 1, 2, . . . , N ) are the CTFs of the open-loop MIMO system, then the
corresponding CTFs of the closed-loop MIMO system with respect to the output and error

�i (s) = qi (s)

1 + qi (s)
, �εi (s) = 1

1 + qi (s)
, i = 1, 2, . . . , N (1.51)

are related to qi (s) by the very same relationships as the usual transfer functions of open- and
closed-loop SISO feedback systems.
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As for the geometrical interpretation of the closed-loop MIMO system internal structure,
it is entirely inherited, based on Equations (1.50) and (1.39), from the open-loop system. In
particular, the output f (s) and error ε(s) vectors of the closed-loop system can be represented
as linear combinations of the system ‘responses’ along the canonical basis axes:

f (s) =
N∑

i=1

[
�i (s) < c+

i (s), ϕ(s) >
]

ci (s), ε(s) =
N∑

i=1

[
�εi (s) < c+

i (s), ϕ(s) >
]

ci (s)

(1.52)

where the CTFs �i (s) and �ε i (s) are defined by Equation (1.51). Analogously, if the input
vector ϕ(s) is directed along one of the canonical basis axes, only the corresponding closed-
loop characteristic system will take part in the MIMO system response, and the output and error
vectors will be directed along the same axis. All this is illustrated schematically in Figures 1.5
and 1.6, and the reader can compare these diagrams with those of the open-loop MIMO system
in Figures 1.3 and 1.4.

Before proceeding to the stability analysis of the general MIMO system of Figure 1.1,
let us summarize some results. We have ascertained, based on the theory of linear algebraic
operators, that a set of N one-dimensional so-called characteristic systems may be associated
with an N -dimensional linear MIMO system.

Each of the characteristic systems acts in CN along one specified direction – the canonical
basis axis – and, in CN , in all, there are, assuming no multiple CTFs, just N such linearly
independent directions. If we formally accept that the CTFs qi (s) may be represented as a
quotient of two polynomials in the form of Equation (1.47), and this is always possible for a
great number of practical multivariable systems, then, instead of Equation (1.49), we can write:

�(s) = C(s)diag

{
Mi (s)

Di (s) + Mi (s)

}
C−1(s), �ε(s) = C(s)diag

{
Di (s)

Di (s) + Mi (s)

}
C−1(s),

(1.53)

Natural Basis Canonical Basis Natural Basis

q1(s)

q2(s)

C −1(s)

qN(s)

C (s)

Figure 1.5 Representation of the closed-loop MIMO system via the similarity transformation.
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Natural Basis

c1(s)

q2(s) c2(s)

< c1  (s)+

< c2  (s)+

< cN  (s)+

Figure 1.6 Spectral representation of the closed-loop MIMO system by means of dyads.

from which it immediately ensues that the zeros of the complementary sensitivity function
matrix �(s) coincide with zeros of the open-loop characteristic systems, i.e. with the roots of
the equations Mi (s) = 0, and the zeros of the sensitivity function matrix �ε(s) coincide with
poles of the open-loop characteristic systems, i.e. with the roots of the equations Di (s) = 0,
where, in both cases, i = 1, 2, . . . , N . All this indicates a deep internal relationship between
dynamical and other properties of a real MIMO system and the corresponding properties of
N fictitious isolated SISO characteristic systems associated with the given MIMO system.
We thereby have a necessary basis for extending the fundamental principles of the classical
control theory to the multivariable case, and the rest of the textbook is devoted to that task. As
we shall see later, many results of the classical theory concerning linear and nonlinear SISO
feedback systems may indeed directly be generalized to the MIMO case (i.e. to N -channel
MIMO systems) in such a manner that if we assume N = 1, then the ‘multidimensional’
methods simply coincide with their conventional ‘one-dimensional’ counterparts. At the same
time, in the multivariable case, the structural features of MIMO systems are of considerable
interest and, in a number of cases, the mentioned features allow a reduction in the analysis and
design of a MIMO system to the analysis and design of a single SISO characteristic system,
regardless of the actual number N of separate channels.

1.2.4 Stability analysis of general MIMO systems

Earlier, considering the properties of the MIMO system zeros and poles, we used Equation
(1.24), which is basic for analyzing the stability of the closed-loop MIMO system. Let us write
that equation once again:

det[I + W (s)] = det[I + W (∞)]
Pcl(s)

P(s)
, (1.54)
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where P(s) and Pcl(s) are the characteristic polynomials of the open-loop and closed-loop
MIMO system. As follows from Equation (1.54), the poles of the closed-loop MIMO system,
i.e. the roots of the characteristic polynomial Pcl(s), coincide with zeros of the determinant of
the return difference matrix I + W (s). Therefore, for the stability of the linear MIMO system in
Figure 1.1, which, recall, is assumed controllable and observable, it is necessary and sufficient
that the roots of the equation

det[I + W (s)] = 0 (1.55)

lie in the open left half-plane of the complex plane (Postlethwaite and MacFarlane 1979). Fur-
ther, for simplicity, we shall call Equation (1.55) the characteristic equation of the closed-loop
MIMO system. Using the canonical representation of the transfer matrix W (s) via similarity
transformation [Equation (1.27)], Equation (1.55) may be reduced to the following form:

det
[
C(s)diag{1 + qi (s)}C−1(s)

] = 0, (1.56)

which immediately yields

det[I + W (s)] = det C(s) det C−1(s)︸ ︷︷ ︸
I

det[diag{1 + qi (s)}] =
N∏

i=1

[1 + qi (s)] = 0. (1.57)

Assuming that the CTFs qi (s) may be represented as a quotient of two polynomials Mi (s) and
Di (s) [Equation (1.47)], instead of Equation (1.57), we can also write

det[I + W (s)] =
N∏

i=1

[1 + qi (s)] =

N∏
i=1

[Di (s) + Mi (s)]

N∏
i=1

Di (s)

= 0. (1.58)

Equations (1.57) and (1.58) show that the characteristic equation of the N-dimensional closed-
loop MIMO system splits into N corresponding equations of the one-dimensional characteristic
systems

1 + qi (s) = 0, or Di (s) + Mi (s) = 0, i = 1, 2, . . . , N . (1.59)

This means that the complex plane of the closed-loop MIMO system roots can be regarded as
superpositions of N complex planes of the closed-loop characteristic systems roots.15 Hence,
for the stability of a linear MIMO system, it is necessary and sufficient that all closed-loop
characteristic systems be stable. Even if only one of the characteristic systems is on the stability
boundary or is unstable, the corresponding equation in Equation (1.59) will have roots on the
imaginary axis or in the right half-plane, and then, owing to Equations (1.57) and (1.58), just
the same roots will have the closed-loop MIMO system. And, vice versa, in the case of an
unstable closed-loop MIMO system, there always exists such an unstable characteristic system

15 More rigorously, in general, these roots lie on N different sheets of the Riemann surface (Postlethwaite and
MacFarlane 1979).
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whose right half-plane roots coincide with the corresponding roots of Equation (1.55). So, we
can state that the described approach enables replacing the stability analysis of an N-channel
linear MIMO system by the stability analysis of N SISO characteristic systems, or, in other
words, it reduces an N-dimensional task to N one-dimensional tasks.

At this point, before proceeding with our study of the linear MIMO system stability issues
and running, to a certain extent, ahead, note a specific and very significant feature of charac-
teristic systems, which has no analogues in the classical control theory. As the CTFs qi (s) are
transfer functions of abstract SISO systems with, in general, complex parameters, the location
of zeros and poles of each single open- and closed-loop characteristic system is not necessarily
symmetric with respect to the real axis of the complex plane, which takes place in the case
of usual SISO systems. At the same time, the entire set of the open- and closed-loop MIMO
system zeros and poles must be symmetric with respect to the real axis, as all coefficients of the
entries of W (s), �(s) and �ε(s) are real-valued numbers. This means that for any characteris-
tic system with a nonsymmetrical zeros and poles distribution, there always exists a ‘complex
conjugate’ characteristic system whose distribution of zeros and poles can be obtained from
the previous by mirror mapping with respect to the real axis.

Example 1.1 When introducing any theory, the well chosen examples are very important,
and it is difficult to overestimate the significance of such examples. According to a prominent
mathematician, (note, the mathematician!) I. M. Gelfand, ‘the theories come and go, but the
examples stay’. We shall try to explain various theoretical concepts with the help of different
examples, but some of the central examples in the textbook will be the indirect guidance
(tracking) systems of orbital astronomic telescopes. This is not only because the author worked
for many years in the area of development and manufacture of such systems. First of all,
this is because the diversity and ‘flexibility’ of structures and schemes of indirect guidance
systems allow us to visually and readily illustrate, by means of a few examples taken from the
practice systems, the very miscellaneous topics in the theory of linear and nonlinear MIMO
control systems. The kinematic scheme of an indirect guidance system of the telescope (i.e. of
the system in which guiding is accomplished with the help of two reference stars16) is depicted
in Figure 1.7. In such systems, the sensitivity axes of the measuring devices (in this case, the
stellar sensors) do not coincide with the telescope tracking axes (the axes of the gimbal mount).
As a result, in the system, there appear rigid cross-connections among the separate channels
(sometimes called kinematical), which depend on angles between the explored and reference
stars and on some construction factors. These cross-connections are constant for the given
mutual location of stars and they change only on passing to another explored star, for which a
new pair of suitable reference stars is usually chosen.

The expanded block diagram of that system, for the case of tracking with respect to the
telescope’s two transverse axes, is given in Figure 1.8.17 The matrix R of the rigid cross-
connections in Figure 1.8 has the form

R =
(

cos α1 sin α1

− sin α2 cos α2

)
, (1.60)

16 The reference stars are stars which are noticeably brighter than the surrounding stars and therefore may be used
for tracking purposes.

17 If, for solving scientific (in particular, astronomical) tasks, the tracking around the telescope optical axis is also
needed, in the system, the third channel also exists, generally cross-connected with the two previous channels
(Gasparyan 1986).
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X1 X2
Reference Star 1

Stellar Sensor 1

Stellar Sensor 2

Reference Star 2

Figure 1.7 Kinematic scheme of the indirect guidance system of the space telescope.

R

cos α1

−sin α2

sin α1

cos α2

W1(s)

W2(s)

Figure 1.8 Expanded block diagram of the indirect guidance system of Figure 1.7.

where constant angles α1 and α2 depend on the above-mentioned factors; W1(s) and W2(s) are
the transfer functions of separate channels of the system.

Note that for α1 = 0, α2 = 0, which geometrically corresponds to using the explored star
as a reference one, the matrix R [Equation (1.60)] becomes the unit matrix I , and the MIMO
system of Figure 1.8 splits into two independent channels. The above statements about the
distribution of the MIMO system zeros and poles are illustrated by the examples of a common
SISO system and the two-dimensional system of Figure 1.8 in Figure 1.9. In Figure 1.9, the
crosses and circles denote poles and zeros of the open-loop systems, and black squares denote
poles of the closed-loop systems. The transfer function of the open-loop SISO system is taken as

W (s) = 50(s + 3)

s(s + 5)(s + 10)
. (1.61)
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Figure 1.9 Typical distribution of zeros and poles of SISO and MIMO control systems. (a) One-

dimensional system (N = 1); (b) two-dimensional system (N = 2); (c) N = 2, the first characteristic

system; (d) N = 2, the second characteristic system.

As for the two-dimensional system, we assume that it has identical transfer functions in the
separate channels, which are the same as the transfer function in Equation (1.61), i.e. W1(s) =
W2(s) = W (s), and rigid cross-connections described by a numerical matrix R [Equation
(1.60)] (such MIMO systems, called uniform, are considered at length in the next section),
where α1 = 30◦, α2 = 20◦. The matrix R [Equation (1.60)] for these values of angles α1 and
α2 is equal to

R =
(

0.866 0.50

−0.342 0.94

)
. (1.62)

Note that in this example, the poles and zeros of the open-loop characteristic systems are
located symmetrically with respect to the real axes and coincide with the poles and zeros
of the transfer function W (s) [Equation (1.61)]. Nevertheless, the roots of each closed-loop
characteristic system are nonsymmetrical.

In principle, for the stability analysis of characteristic systems, any of the well known
stability criteria used for common SISO systems can be applied, after some modifications
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Figure 1.10 Characteristic gain loci of stable MIMO systems; (a) stable two-dimensional system; (b)

stable three-dimensional system. (a) N = 2, k = 2; (b) N = 3, k = 0.

(Ogata 1970; Kuo 1995). However, for practical applications, the most convenient is possibly
the Nyquist criterion, of which various generalizations to the multivariable case are given, for
example, in (Postlethwaite and MacFarlane 1979; Desoer and Wang 1980; Stevens 1981). For
the objectives of this book, we shall formulate that criterion, sacrificing to a certain extent the
mathematical rigour, in the following way. Define as the Nyquist plots (or the characteristic
gain loci) of the open-loop CTFs qi (s) (i = 1, 2, . . . , N ) the curves in the complex plane which
correspond to the CTFs qi ( jω) as angular frequency ω changes from −∞ to +∞.18 Then, if
the open-loop MIMO characteristic equation has k poles in the right half-plane, for the stabil-
ity of the closed-loop system, it is necessary and sufficient that the total sum of anticlockwise
encirclements of the critical point (−1, j0) by the characteristic gain loci qi ( jω) be equal to k.

If the open-loop MIMO system is stable, none of the qi ( jω) loci must encircle the point
(−1, j0). Note that in the formulation of the generalized Nyquist criterion, we speak about the
total sum of encirclements of (−1, j0), and no restrictions or conditions are imposed on the
number of encirclements of that point by each isolated qi ( jω) locus. The characteristic gain
loci of a stable two-dimensional system, which is unstable in the open-loop state and has, in
that state, two right half-plane poles, are shown in Figure 1.10(a). The gain loci of a stable
three-dimensional system, in the case of stable W (s), are depicted in Figure 1.10(b). The solid
lines in these plots correspond to the qi ( jω) loci for positive frequencies ω ≥ 0 and the dotted
lines to negative frequencies ω < 0.

One of the primary advantages of the above-stated Nyquist criterion is that it allows, just
as in the SISO case, judging about stability of the closed-loop MIMO system by frequency
characteristics, namely the characteristic gain loci qi ( jω) of the open-loop MIMO system.

18 Strictly speaking, the so-called Nyquist contour, which we have simplistically replaced by the imaginary axis, must
pass around from the right, moving along the semicircle of an infinitesimal radius, all poles and zeros of the open-
loop MIMO system, as well as the branch points, located on the imaginary axis (Postlethwaite and MacFarlane
1979).
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Figure 1.11 Gain and phase margins of SISO systems.

Besides, on substituting s = jω, the matrix W (s) becomes a usual numerical matrix W ( jω)
with complex entries, and finding the eigenvalues qi ( jω) of the latter for the fixed values
ω = ωk does not now present any difficulty. In particular, the modern application programs
and packages (for example, those in MATLAB) enable the user to calculate the eigenvalues of
complex-valued square matrices of practically any size, and, consequently, to create tools for
the computer-aided stability analysis of linear MIMO systems with practically any number N
of separate channels.

Note that on substituting s = − jω, the matrix W (− jω) is complex conjugate to the matrix
W (+ jω). Therefore, the eigenvalues qi (− jω) of W (− jω) are complex conjugate to those
of W (+ jω). This implies that the branches of loci qi ( jω) (i = 1, 2, . . . , N ) for negative
frequencies ω < 0 are the mirror mapping with respect to the real axis of a set of the qi ( jω)
loci branches for positive frequencies ω > 0 (generally, each of these loci may not possess the
indicated symmetry). That is why, in the analysis of the MIMO system stability, it is enough
to consider only positive frequencies ω ≥ 0. Accordingly, the formulation of the Nyquist
criterion is changed to a certain extent, and now it states that if the open-loop MIMO system
is unstable, then the closed-loop system will be stable, provided the total sum of anticlockwise
encirclements of the critical point (−1, j0) by all qi ( jω) loci is equal to k/2, where k is the
number of unstable poles of W (s).

The discussion of the issues related to the MIMO system stability analysis by means of the
generalized Nyquist criterion would be incomplete if we did not dwell on such classical notions
as gain and phase margins, which originated in the control theory on the basis of Nyquist
plots (Ogata 1970; Kuo 1995).19 For common SISO systems, these notions are clarified in
Figure 1.11.

The phase margin (PM) is defined as the angle between the real negative axis and the line
to the point at which W ( jω) intersects the circle of unit radius.20 The gain margin (GM)

19 Further, for brevity, we shall confine our presentation to systems with ‘usual’ W ( jω) loci. Therefore, we shall not
consider the conditionally stable systems, which have the ‘beak-shaped’ Nyquist plots, and the systems unstable
in the open-loop state. The conditionally stable systems become unstable on both increasing and decreasing the
open-loop gain K. For systems unstable in the open-loop state, the zero value K = 0 always belongs to the unstable
region, and the stable closed-loop system may become unstable on decreasing the gain K.

20 At that point, |W ( jωc)| = 1, and the corresponding frequency ω = ωc is called crossover frequency.
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is defined as the reciprocal to the magnitude |W ( jω)| at the point of intersection of W ( jω)
with the real negative axis [at that point, arg{W ( jω)} = −180◦], and is usually expressed in
decibels. For stable systems, both stability margins are reckoned positive. In fact, the phase
margin indicates which additional negative phase shift should be introduced in the open-loop
system at the crossover frequency ωc to bring the closed-loop system to the stability boundary.
Analogously, the gain margin is equal to the additional gain, which should be introduced in
the open-loop system to bring the closed-loop system to the stability boundary.

Recall that the ideal time delay element

WT D = exp{− jωτ }, (1.63)

has unitary magnitude at all frequencies, and introduces a negative linear phase shift −ωτ .
That allows us to define the critical delay as τcr = P M/ωc

21 and to explain visually the notions
of gain and phase margins with the help of the block diagram in Figure 1.11(b), in which the
entered conventional element Kcr exp{− jωτcr } illustrates the discussed notions.

Taking into account the significance of these notions in the classical control theory, it would
be natural to introduce analogous notions for MIMO systems. A great number of papers in the
scientific and technical literature are devoted to that issue, among which the works of Safonov
(1980, 1981), in which gain and phase margins of MIMO systems are introduced from the
position of the robustness theory, should be especially noted. As for us, we shall pursue here,
for us, the simpler and more natural way, based on the observation that the utilization of
the generalized Nyquist criterion to a MIMO system is equivalent, roughly speaking, to the
utilization of the classical Nyquist criterion to each of characteristic systems associated with
the MIMO system. As the gain and phase margins of each characteristic gain locus qi ( jω) may
readily be evaluated [just as shown in Figure 1.11(a)], then we can, in such a way, associate
two sets of N gain margins {G Mi } and N phase margins {P Mi } with an N-dimensional MIMO
system. Now, it seems quite logical to count as MIMO system stability margins the leasts of
values G Mi and P Mi (i = 1, 2, . . . , N ), i.e. to define the gain G M and phase G M margins of
a MIMO system as:

G M = min{G Mi }, P M = min{P Mi }. (1.64)

Here, however, the specific features of MIMO systems should be taken into account. First,
we should realize that the quantities G M and P M determined by Equation (1.64) may, in
general, correspond to different characteristic systems, which is evident from Figure 1.12.

Further, and far more importantly, on trying to build a matrix analogue to the block di-
agram in Figure 1.11, we have no right to introduce in the MIMO system a diagonal con-
ventional element diag{Kicr exp{− jωτicr }} with different critical gains Kicr and time delays
τicr , and must introduce a scalar matrix Kcr exp{− jωτcr }I , i.e. introduce the same elements
Kcr exp{− jωτcr } in all channels (Figure 1.13). This is because introducing a diagonal matrix
diag{Kicr exp{− jωτicr }} violates the canonical representation of W (s), since the multiplica-
tion of a diagonal matrix by a square matrix changes both the eigenvalues and the eigenvectors
of the latter. As for the multiplication of W ( jω) by a scalar matrix Kcr exp{− jωτcr }I , which
corresponds to the multiplication of W ( jω) by a scalar Kcr exp{− jωτcr }, the canonical basis

21 That quantity is sometimes called delay margin (Bosgra et al. 2004).
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Figure 1.12 MIMO system stability margins (N = 2).
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Figure 1.13 Definition of the MIMO system stability margins.

of the MIMO system does not change, and all CTFs qi ( jω) multiply by the same scalar.22 Only
in such a case will the changes in the coefficient Kcr bring about the proportional changes of
magnitudes of all characteristic gain loci qi ( jω), and changes in the time delay τcr bring about
the rotation about the origin of the complex plane of all qi ( jω) by the same angle. This pre-
serves the geometrical and physical sense of the above notions of the MIMO system gain and
phase margins as the least gain and phase margins of characteristic systems.

Hence, when using the quantities G M and P M [Equation (1.64)] as measures of the stability
margins, we should always remember which sense is given to these values; namely, they define
the gain and phase margins of the MIMO system only for simultaneous and identical changes
of gains and time delays in all channels. Note, finally, the evident fact that the MIMO system
stability analysis on the base of the generalized Nyquist criterion may be accomplished, as in
the SISO case, with the help of the logarithmic characteristics (the Bode diagrams) and the
Nichols plots.

Remark 1.1 Of course, the introduced notions of the MIMO system stability margins may
seem somewhat narrow from the point of view of their practical application for the MIMO
system analysis and design. Indeed, this does in fact happen in some situations, as we shall
see in the example given below. In these situations, we have to deal with the MIMO systems
that are in a certain sense not robust, i.e. in which even slight perturbations of the system
parameters may bring about significant changes in the dynamics, and even instability of the

22 This ensues from the well known in the theory of matrices rule of multiplication of a square matrix by a scalar
(Gantmacher 1964).
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Figure 1.14 Nyquist plots of ‘non-robust’ SISO systems.

system. Recall, however, that the notions of gain and phase margins are subjected to some
‘criticism’ (mainly by the specialists on the robustness theory), even in the case of SISO
systems. In Figure 1.14, the Nyquist plots of the SISO systems are shown, which, having
excellent gain and phase margins, are not robust nonetheless, because their plots are too close
to the critical point (−1, j0) (Bosgra et al. 2004). On the other hand, for common control
systems – and such systems are by far more numerous than the systems with the exotic
characteristics of Figure 1.14 (it would probably be very difficult, if possible at all, to achieve
such characteristics for real systems) – the gain and phase margins have been, and are now, quite
good, convenient and intuitively comprehensible notions, generally recognized by practicing
engineers. In this connection, the introduction of the analogous, that is having the same clear
and visual physical interpretation, characteristics for MIMO systems may be considered as a
quite grounded and necessary step, though those characteristics should be treated with certain
caution.

Example 1.2 Below, we consider the stability analysis of a general two-axis guidance system
of the telescope, for two different variants of the separate channel transfer functions and rigid
cross-connections described by the matrix in Equation (1.60). In the first variant, we have a
simple system with the following transfer functions:

W1(s) = 1

s
, W2(s) = 0.5

s + 0.2
(1.65)

The Nyquist plots of the CTFs q1( jω) and q2( jω) of the guidance system with transfer functions
as in Equation (1.65), for two different combinations of angles α1 and α2: α1 = 30◦, α2 = 20◦

andα1 = 30◦, α2 = −20◦, are shown in Figure 1.15. The inspection of these plots shows that the
system is stable for both combinations of α1 and α2, and the Nyquist plots of q1( jω) and q2( jω)
are quite close to the corresponding plots of the isolated separate channels [Equation (1.65)].

Consider now the same system with more complicated transfer functions of separate
channels:

W1(s) = 50(s + 3)

s(s + 5)(s + 10)
, W2(s) = 100

s(s + 2)(s + 4)(s + 8)
. (1.66)
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Figure 1.15 Stability analysis of the general two-dimensional guidance system with transfer functions

[Equation (1.65)] for different angles α1 and α2 (the Nyquist plots). (a) α1 = 30◦, α2 = 20◦; (b) α1 = 30◦,
α2 = −20◦.
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Figure 1.16 Stability analysis in the case of transfer functions [Equation (1.66)]. (a) α1 = 30◦, α2 =
20◦; (b) α1 = 60◦, α2 = 70◦.

The characteristic gain loci of that system for different angles α1 and α2 are shown in Figure
1.16. The plots in Figure 1.16 show that cross-connections may considerably affect the stability
of the guidance system, and even bring about instability (the case of α1 = 60◦, α2 = 70◦).

Example 1.3 As another example of the MIMO system stability analysis which illustrates the
need to exercise caution when estimating the stability margins on the base of Equation (1.64),
consider the celebrated example attributed usually to J. Doyle (Doyle and Stein 1981). As a
result of that example, many authors have drawn conclusions about the certain inefficiency,
not to say unreliability, of the approaches based on the characteristic gain loci method.
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Given the open-loop system with the transfer function matrix

W (s) = 1

(s + 1)(s + 2)

(
−47s + 2 56s

−42s 50s + 2

)
. (1.67)

In Doyle and Stein (1981), it is shown that this matrix can be represented in the form

W (s) =
(

7 −8

−6 7

) ⎛⎜⎜⎝
1

s + 1
0

0
2

s + 2

⎞⎟⎟⎠
(

7 8

6 7

)
, (1.68)

i.e. for this system, the CTFs q1(s) and q2(s) have, assuming the unit regulator K = I , the
form of the first order transfer functions:

q1(s) = 1

s + 1
, q2(s) = 2

s + 2
, (1.69)

which indicate an infinite gain margin, and the phase margin of 180◦. The loci q1( jω) and
q2( jω) of the system corresponding to Equation (1.69) are shown in Figure 1.17(a) and justify
that conclusion {though both these loci are identical in form, their frequency numberings along
the loci differ due to the different time constants of q1(s) and q2(s) [Equation (1.69)]}.

However, as established in Doyle and Stein (1981), introducing in the system the diagonal
static regulator of the form

K =
(

1.13 0

0 0.88

)
(1.70)

i.e. simultaneously increasing the gain of the first channel by 0.13 and decreasing that of
the second channel by 0.12, makes the closed-loop system unstable! The given example is
rather instructive and, from another point of view, it clearly discloses how unpredictable and
unexpected changes in the MIMO system’s characteristics may be, even in the case of slight
perturbations of their parameters.

This, at first sight, irrefutable demonstration that the stability margins calculated through the
CTFs may lead to an erroneous conclusion in fact demands more careful and deeper treatment.
We have already stated before that gain and phase margins [Equation (1.64)] are valid only for
simultaneous and identical changes in the separate channel gains. In this regard, the discussed
MIMO system indeed remains stable for arbitrary large but the same gains in separate channels,
since, in that case, the MIMO system modal decomposition is not violated and the canonical
basis is unchanged. However, if we multiply together the matrices W (s) [Equation (1.67)]
and K [Equation (1.70)], then the resulting canonical basis and the CTFs will be completely
different.23 The characteristic gain loci of the new perturbed system with regulator K [Equation
(1.70)] are depicted in Figure 1.17(b), from which it is quite clear that the MIMO system is
unstable and its new CTFs have nothing in common with those in Figure 1.17(a).

23 We shall return to this example in Example 1.13 and Chapter 2, with more detailed explanation.
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Figure 1.17 Stability analysis of a two-dimensional system [Equation (1.67)]. (a) Characteristic gain

loci in the case of the unit regulator K = I ; (b) characteristic gain loci of the system with the perturbed

regulator K [Equation (1.70)].

1.2.5 Singular value decomposition of transfer matrices

As we already know, to any N -dimensional linear MIMO system of simple structure corre-
spond N linearly independent ‘canonical’ directions (canonical basis axes) in complex space
CN , along which the MIMO system acts as a certain SISO system. The canonical bases of the
open- and closed-loop MIMO systems are the same. This feature is very remarkable, since it
assures that all transfer matrices W (s), �(s) and �ε(s) of the open- and closed-loop MIMO
systems are brought to diagonal form by a similarity transformation via a unique transfor-
mation (modal) matrix. Moreover, all CTFs of the closed- and open-loop one-dimensional
characteristic systems associated with the MIMO system are related in the canonical basis by
the very same expressions as usual transfer functions of common SISO systems. Thus, the
|qi (s)|, |qi (s)|/|1 + qi (s)| and 1/|1 + qi (s)| magnitudes of the corresponding CTFs give, for
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any fixed value of complex variable s, the ‘gain magnitude’ of the MIMO system along the
corresponding i th axis of the canonical basis.24

Together with the canonical basis axes, another set of directions in CN which are uniquely
defined by the MIMO system transfer matrices may be associated with a linear MIMO system.
These directions are no less (and many specialists on robust control quite soundly believe that
more) important for the understanding of the internal structure and performance of multivari-
able systems than the directions of the canonical basis axes. The matter concerns the so-called
singular value decomposition of the transfer function matrices.

Recall in brief that any square matrix A of order N × N allows decomposing in the form25

A = Udiag{σi }V ∗, (1.71)

where the asterisk ∗ denotes the operation of complex conjugation and transposition (from
here on, we call this operation the conjugation of a matrix); U and V are unitary matri-
ces, for which the inverse matrices coincide with conjugated (i.e. U−1 = U ∗, V −1 = V ∗ );
diag{σi } is the diagonal matrix of nonnegative real numbers,26 arranged in descending order, i.e.
σ1 ≥ σ2 ≥ . . . ≥ σN (Marcus and Minc 1992; Voevodin and Kuznetsov 1984).

Decomposition [Equation (1.71)] is said to be a singular value decomposition and numbers
σi are called the singular values of A. These numbers are equal to positive values of the square
roots taken of the eigenvalues of the Hermitian matrix AA∗ (or A∗ A).27 The columns of the
matrix U in Equation (1.71) constitute the orthonormal left (or output) singular basis of the
matrix A in CN and are the eigenvectors of the matrix AA∗. The columns of the matrix V
constitute, accordingly, the orthonormal right (or input) singular basis and are the eigenvectors
of the matrix A∗ A. Denoting the columns of U by ui and the columns of V by vi , Equation
(1.71) can be written down as a sum of N dyads of rank one:

A =
N∑

i=1

ui > σi < vi . (1.72)

From here, it is evident that A transforms the orthonormal right singular basis into a mutually
orthogonal set of vectors directed along the axes of the left singular basis, and real numbers σi

serve as ‘gains’ in the corresponding directions. This can also be written as follows:

Avi = σi ui , i = 1, 2, . . . , N , (1.73)

where it is more clearly accentuated that numbers σi relate different directions in CN .
The singular values of square matrices possess a number of features relating them to eigen-

values λi and determinants of matrices. Thus, in particular, a square matrix is nonsingular if

24 For arbitrary values of variable s with a nonzero real part, the listed magnitudes have no definite sense, but, when
considering the steady-state oscillations in stable MIMO systems, i.e. when we accept s = jω, they obtain a clear
and simple physical interpretation and may be viewed as ‘gains’ for the given frequency ω.

25 The singular value decomposition is applicable to any rectangular matrix, but, here, for simplicity, we consider
only the case of square matrices, which are interesting for us.

26 For zero singular values, which are, in principle, possible, see Remark 1.7.
27 A matrix A is said to be Hermitian if it coincides with its conjugate, i.e. if A = A∗. The eigenvalues of a Hermitian

matrix are always real and, for a Hermitian matrix B, written in the form B = AA∗, they are always nonnegative
(Marcus and Minc 1992).
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and only if all its singular values are nonzero. This ensues from the following, well known in
the theory of matrices rule:

|det A| =
N∏

i=1

σi (1.74)

from which, in addition, it follows (as det A = ∏N
i=1 λi ) that the product of the eigenvalues

magnitudes (or the magnitude of the eigenvalues product) is also equal to the product of the
singular values. Among the singular values, of primary interest are the largest and smallest
of them, where the largest number σmax is called the spectral norm of the matrix A, and is
usually denoted by ||A|| (Gantmacher 1964).28 This norm possesses the property that for any
two vectors x and y in CN , where y = Ax , the following inequality holds:

|y| ≤ ‖A‖ |x | , (1.75)

where the (Euclidian) norms of vectors x and y are defined by Equation (1.29). According to
the inequality in Equation (1.75), the spectral norm ||A|| may be interpreted as the maximum
‘gain’ of the matrix A with respect to the magnitude of the ‘input’ vectors x in CN . Analogously,
the least singular value σmin guarantees that the following inequality holds:

|y| ≥ σmin |x | , (1.76)

i.e. it gives the lower boundary of the A matrix gain (by magnitudes) for any vectors x .
Recalling that, by the definition of eigenvalues λi and eigenvectors ci , we have, for any i

(i = 1, 2, . . . , N ), the equality y = Aci = λi ci , it is easy to understand that the magnitudes
of all eigenvalues of any square matrix are bounded from above and below by singular values
σmax and σmin:

σmin ≤ |λi | ≤ σmax, i = 1, 2, . . . , N . (1.77)

All that has been stated about singular values and their relationship with eigenvalues may be
summarized as follows. With any square matrix A, there are related two orthonormal coordinate
systems (input and output singular bases) and one more, generally nonorthogonal, coordinate
system formed by the eigenvectors of the matrix A. The two specific axes of singular bases
give the directions of the largest and smallest of the A matrix ‘gains’, and these two directions
are always mutually orthogonal, both in the ‘input’ and in the ‘output’. In the directions of
the eigenvectors, the matrix A acts as scalar multipliers with intermediate, owing to Equation
(1.77), ‘gains’.

Now, we can readily use the introduced notions to transfer matrices W (s), �(s) and �ε(s)
of the MIMO system. Here, we emphasize immediately that, in the general case, as opposed
to the unique set of the canonical basis axes, all listed transfer matrices have their own pairs of
input and output singular bases, i.e. two distinct orthonormal coordinate systems are associated
with each matrix, as well as their own sets of singular values. Another essential feature of the
singular value decomposition of transfer matrices is that nothing can generally be said, for

28 We shall consider this matter in more detail in Chapter 2.
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example, about the relationship between the corresponding characteristics of the open-loop
and closed-loop MIMO system, and each transfer matrix must be considered individually and
independently of other matrices. Taking this into account, we shall consider only the case of
the transfer matrix �(s) with respect to the MIMO system output. That matrix can be expressed
by the singular value decomposition in the form

�(s) = [I + W (s)]−1W (s) = U�(s)diag{σ�i (s)}V�(s) =
N∑

i=1

u�i (s) >σ�i (s) < v�i (s),

(1.78)

where U�(s), V�(s) are the unitary matrices composed of the orthonormal vectors u�i (s)
and v�i (s); σ�i (s) are real positive singular values arranged in descending order, where the
subscripts in Equation (1.78) explicitly indicate that all these characteristics belong only to the
transfer matrix �(s).

The output singular basis of �(s) consists of the orthonormal eigenvectors u�i (s) of the
Hermitian matrix �(s)�∗(s), and the input singular basis consists of the eigenvectors v�i (s)
of �∗(s)�(s). The singular values σ�i (s) are square roots of the eigenvalues of �(s)�∗(s) [or
�∗(s)�(s)]. The largest singular value σ� max(s) is equal to the spectral norm ||�(s)|| of the
transfer matrix �(s) and defines the maximum gain with respect to the input vectors magnitude,
and the smallest singular value σ� min(s) yields the lower boundary of the gain. The axes of
the largest and the smallest ‘gains’ are always mutually orthogonal, both in the input and in
the output spaces. It is worth especially emphasizing that if the input vector ϕ(s) of the MIMO
system is directed along any one axis of the input singular basis, then, in forming the output
vector f (s), which is also directed along the corresponding axis of the output singular basis,
all N one-dimensional characteristic systems generally participate.

The singular value decomposition of transfer matrices does not allow judgment about the
system stability (due to the reality of singular values), but it is very important when analysing
the performance and especially the robustness of the system. We shall return to that point in
Chapter 2. Note finally that, in Section 1.4, we shall consider the so-called normal MIMO
systems, for which both input and output singular bases coincide with the canonical one. In
conclusion, we make some general remarks, which are quite important for proper comprehen-
sion of the essence of the presented material, as well as for the sensible assessment of those
assumptions and suppositions on which we rely.

Remark 1.2 In most textbooks and monographs on multivariable control, the open-loop
transfer matrix W (s) is usually represented as a series connection of the plant and the controller
(also frequently called the regulator, compensator, etc.). Moreover, in the practical tasks, the
matrix block diagram in Figure 1.1 may have much more complicated form and consist of
different matrix elements connected in series, in parallel or forming inner feedback loops.
In the mentioned cases, however, all such schemes can readily be brought, based upon the
well known rules of transformation of matrix block diagrams (Morozovski 1970), to the form
of Figure 1.1. We have intentionally chosen in this section such a structure, to emphasize
the significant fact that the CTFs and canonical basis depend on the resultant transfer matrix
W (s) of the open-loop MIMO system, and, in the general case, nothing can be said about
the relationship of the canonical representations of W (s) and those of the individual matrix
elements constituting the system. This circumstance seemingly explains the situation that in
the scientific and technical literature, there are actually no efficient engineering techniques
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presented for the MIMO systems design based on the CTFs method, and the latter is mainly
viewed as a sophisticated method applicable only for the MIMO systems stability analysis.

As for the singular value decomposition, here, we generally cannot even speak about analyt-
ical relationships between the corresponding decompositions of the open-loop and closed-loop
MIMO systems, which, in the context of the CTFs approach, are very simple and visual.

Remark 1.3 We have considered the principal ideas of the CTFs method in a somewhat
simplified fashion, sacrificing in many respects the mathematical rigour. As shown in Postleth-
waite and MacFarlane (1979), the CTFs, being the roots of Equation (1.26), generally belong
to the class of multi-valued algebraic functions and constitute one mathematical entity. The
branches of the characteristic gain loci are situated on different sheets of a Riemann surface,
and transition from one sheet to another is accomplished through the ‘cuts’ connecting the
point in infinity with the branch points of the algebraic function, at which two or more CTFs
are equal. The presence of these branch points explains many of the not quite usual features
of, say, root loci of multivariable systems, i.e. the features that are difficult or even impossible
to explain from the position of the classical control theory. At the same time, if, when solv-
ing practical engineering tasks, we neglect the behaviour of the CTFs in the neighborhood of
branch points, then, for any fixed value s = const not coinciding with the branch points and
poles of W (s), the latter may be viewed as a usual numerical matrix with complex entries.
Then, as was already noted in Section 1.2.3, the problem of finding the CTFs is simply reduced
to computing the eigenvalues of the matrix W (s).

It is also worth noting that in the case of two-dimensional systems which frequently occur
in practice, the roots of Equation (1.26), i.e. the CTFs of the open-loop system, can be written
in the analytical form

q1,2(s) = tr{W (s)}
2

±
√

tr{W (s)}2

4
− det W (s), (1.79)

where tr{W (s)} denotes the trace (the sum of diagonal elements) of W (s), from which it is
clear that, in general, the CTFs of the linear MIMO system cannot always be represented as a
quotient of two rational polynomials in s.29 If all CTFs could be represented as proper rational
functions in s, then many MIMO system analysis and design issues would be solved far more
simply and effectively.

Incidentally, the above-mentioned branch points are determined by equating the discrimi-
nant (the radical expression) in Equation (1.79) to zero.

Remark 1.4 The assumption of no repeated (multiple) CTFs of the matrix W (s) is not very
restrictive. First, in the following text, we shall consider some MIMO systems which have
multiple CTFs but, at the same time, are of simple structure and can be brought to diagonal
form. Further, as is known from the theory of matrices (Gantmacher 1964), in the case of
multiple eigenvalues, it is always possible to reduce a matrix in a specially chosen Jordan
basis to a Jordan canonical form, which can be viewed as the best approach to diagonal form,
and in which, with the multiple eigenvalues, are related Jordan blocks. In any Jordan block,
whose order is determined by the algebraic multiplicity of the given repeated eigenvalue, the
principal diagonal is formed of these identical eigenvalues. The first subdiagonal (immediately

29 On replacing W (s) by W (s)W ∗(s) in Equation (1.79), we obtain the analogous equation for calculating the singular
values of matrix W (s).
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above and to the right of the principal diagonal) consists of ones and zeros, in the proportions
determined by the algebraic and geometric multiplicities of eigenvalues.

Structurally, the Jordan blocks will determine, in the canonical representations of the MIMO
system transfer matrices in Figures 1.3–1.6, the blocks with identical elements in the direct
channels and one-sided unit connections from the lower channel to the upper one (if the
numbering of channels is from the top down). It is interesting to note here that the presence of
unit subdiagonals in the Jordan blocks does not alter the characteristic equation expressed via
the CTFs qi (s) [Equation (1.59)], i.e. does not affect the stability of the MIMO system.

Broadly speaking, the problem of multiple eigenvalues, as well as the adjacent problem of
determining the corresponding Jordan blocks, belongs to complicated problems of the theory
of matrices. However, for us, it represents more of a theoretical rather than a practical interest,
since the presence of multiple eigenvalues is, for the most part, the exception but not the rule (at
least for the general type of matrices). And, above all, in engineering practice, all linear models
are mathematical idealizations of real objects, in which all the model parameters are specified
with certain accuracy. Therefore, as was already noted in Section 1.2.3, we are always able to
choose the parameters of any MIMO system model, within the given specification accuracy,
in a way that excludes the presence of multiple roots. All this explains why the general MIMO
systems with repeated CTFs are not considered in the following.

Remark 1.5 It is not out of place to put, what is at first sight, a trivial question: what is a
multivariable control system? Formally, any set of N independent SISO systems, regarded as
an integrated unit, may serve as a paradigm of a MIMO system. However, such an approach
intuitively gives rise to some doubts about its appropriateness; in fact, these independent SISO
systems can readily be handled by means of conventional methods of the classical control
theory. Note that if we classify MIMO systems by the type of their transfer matrices, then
even the set of independent SISO systems may be divided into two classes – scalar MIMO
systems, i.e. a set of N identical SISO systems, and diagonal MIMO systems, consisting of
N different SISO subsystems. The next class of MIMO systems, from the point of view of
complexity, includes triangular systems, i.e. MIMO systems with zero entries above or below
the principal diagonal. Such systems do not differ much in complexity from the scalar or
diagonal systems, since the triangularity of the transfer matrices implies the presence in the
system of one-sided connections from the previous channels to the subsequent ones, or in the
reverse order. Such one-sided connections, which are equivalent to the external disturbances,
cannot affect the stability of the system. All listed systems have a common feature, namely
all their CTFs coincide with the transfer functions of direct channels of the open-loop MIMO
system [with the diagonal elements of W (s)]. From here, we come to the following rule: if
the determinant of the open-loop transfer matrix W(s) coincides with the product of diagonal
elements wi i (s) of that matrix, i.e. if

detW (s) =
N∏

i=1

wi i (s), (1.80)

then the cross-connections do not affect the stability of separate channels, and the stability of
the MIMO system can be investigated exploiting conventional methods of the classical control
theory.

Of course, this rule is heuristic, but if it holds, then we can reduce the system, from the
stability analysis viewpoint, to a set of N usual SISO systems, and thereby do not resort
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to more complicated techniques of the multivariable control theory. Incidentally, in practice,
when checking the condition in Equation (1.80), one can use a numerical matrix composed of
the gains of nonzero entries in W (s).

Proceeding in the same way, it would be possible to speak about block-scalar, block-diagonal
and block-triangular MIMO systems, which are structurally divided into a number of blocks.
To each of these blocks corresponds an individual set of cross-connected SISO systems. From
the stability viewpoint, all diagonal blocks of such MIMO systems are independent, and the
characteristic gain loci method may be applied to each of them. We will not, however, encumber
the following presentation with such systems. The interested reader will be able to extend,
without any difficulty, all of the above results to the case of block MIMO systems.

Note also that triangular systems represent a plain and simple example of MIMO systems,
for which the introduction of feedback does not alter the location of some closed-loop poles,
i.e. for which some of the open-loop system poles coincide with the closed-loop poles. This
concerns the poles of the nondiagonal elements of a triangular MIMO system.

Further, we shall mainly suppose that the condition in Equation (1.80) does not hold, which
is equivalent to irreducibility of the MIMO system characteristic equation (i.e. to impossibility
of representing it as a product of two or more equations of a lesser degree).

Remark 1.6 Recall in brief the main concepts concerning the representation of proper rational
matrices via the Smith-McMillan canonical form. Note immediately that this canonical form
is generally applicable to rectangular matrices, but we shall only consider the interesting case
for us of square matrices having normal rank N . As is well known, any square proper rational
transfer matrix W (s) of order N × N can be represented in the following canonical form
(Kailath 1980):

W (s) = H (s)diag

{
εi (s)

ψi (s)

}
M(s), (1.81)

where both square polynomial matrices H (s) and M(s) are unimodular, i.e. their determinants
do not depend on complex variable s and are equal to constant, nonzero values. The polynomials
εi (s) and ψi (s) in Equation (1.81) possess the property that each εi (s) divides all subsequent
εi+ j (s), and each ψi (s) divides all preceding ψi− j (s). Strictly speaking, the zeros and poles
polynomials N (s) and P(s) of the open-loop MIMO system, which we heuristically defined
in Section 1.2.2 via the determinant detW (s) [Equation (1.11)], must in fact be expressed by
polynomials εi (s) and ψi (s) in the form (Postlethwaite and MacFarlane 1979):

N (s) =
N∏

i=1

εi (s) = 0, P(s) =
N∏

i=1

ψi (s) = 0, (1.82)

The point is that when determining poles and zeros of the open-loop MIMO system by means
of the determinant in Equation (1.11), mutual cancellation of poles and zeros, which actually
correspond to different diagonal entries of the Smith-McMillan form [Equation (1.81)] (i.e.
correspond to different directions) and therefore are not to be cancelled, is not excluded. Only
in the case of no coincident roots of polynomials N (s) and P(s) in Equation (1.82) can we
avoid such situations.

There exists, however, another significant feature inherent only in multivariable systems,
which should be taken into account when dealing with them. Recall that the determinant of a
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square matrix A of order N × N represents an algebraic sum of N ! terms, where each term is
formed in such a way that it contains the product of N entries of A, taken one by one from each
row and column (Marcus and Minc 1992). If there are any zero entries in A, then it may turn
out that some nonzero entries of A will not be presented in the determinant det A. To explain
more clearly the possible consequence of such a situation, consider the following variants of
the transfer matrix W (s), for N = 3:

W (s) =

⎛⎜⎝w11(s) 0 0

w21(s) w22(s) w23(s)

w31(s) 0 w33(s)

⎞⎟⎠ , W (s) =

⎛⎜⎝w11(s) w12(s) 0

w21(s) w22(s) w23(s)

0 0 w33(s)

⎞⎟⎠ . (1.83)

It is easy to see that all nondiagonal scalar transfer functions are not presented in the determinant

of the first matrix W (s), and the transfer function w23(s) is not presented in the determinant
of the second matrix. This implies that the corresponding poles of nonzero transfer functions
will be absent in the poles polynomial P(s) determined by means of det W (s) [in Equation
(1.82), those poles are always present owing to the way of finding the polynomials ψi (s)]. The
simplest instance of such structures is the class of triangular MIMO systems discussed in the
previous remark.

Hence, in the case of zero entries in the open-loop transfer matrix W (s), it makes sense
to check whether all transfer functions of cross-connections are present in the expression for
the determinant detW (s), and, accordingly, in the poles polynomial P(s). The importance of
such a test lies in the fact that all poles of the ‘hidden’ transfer functions do not change on
closing the feedback loop, i.e. they become the poles of the closed-loop system (we shall always
suppose such poles are stable).

Remark 1.7 Considering the gain matrix of the MIMO system, or, more correctly, the open-
loop transfer matrix W (s) for s = 0, we should pay proper attention to another significant
aspect. Below, to present more visually the essence of the matter, we discuss a simplified
situation and assume that all zero poles of the open-loop MIMO system are absolute poles,
i.e. W (s) can be represented as

W (s) = 1

sr
W1(s), (1.84)

where the r integer defines the closed-loop system type.30

Recall that in Section 1.2.2, we set the requirement that the matrix W1(s) be nonsingular at
any absolute pole, i.e. be of rank N . Now, we approach this question from the position of the
CTFs method, and impose some additional restrictions on the ‘gain matrix’ W1(0). Since the
CTFs [Equation (1.84)] of the open-loop system can be represented in the form

qi (s) = 1

sr
q1i (s), i = 1, 2, . . . , N , (1.85)

it becomes clear that if the ‘gain’ of the i th CTF Ki = q1i (0) is real and equal to zero, which
corresponds to singularity of the matrix W1(0), this physically means breaking the feedback

30 See Chapter 2, in which the issue of the MIMO system type is considered in more detail.
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loop in the i th SISO characteristic system in Figures 1.5 and 1.6. Actually, this involves loss
of control along the i th axis of the MIMO system canonical basis. Further, if Ki = q1i (0) is
real and negative, then this implies the change from negative feedback to positive in the ith
characteristic system, which generally (but not necessarily) can also bring about nonoperability
of the overall MIMO system. Therefore, the case of negative q1i (0) requires especially careful
consideration.

Since the matrix W1(0) in Equation (1.84) is always real-valued, then, together with the
real coefficients Ki = q1i (0), the CTFs qi (s) may as well have (for s = 0) complex conjugate
pairs of coefficients Ki = αi + jβi , Ki+1 = αi − jβi , to which correspond two complex con-
jugate eigenvectors ci (0), ci+1(0) = c̃i (0) [columns of the modal matrix C(0)]. In such cases,
to understand the physical nature of the complex conjugate coefficients Ki and Ki+1, it is
worthwhile passing to the real-valued canonical form of the matrix W1(0). It can be shown
(Sobolev 1973) that by replacing in C(0) the complex conjugate columns ci (0) and ci+1(0) by
a pair of real ones, which are the real and complex parts of the replaced ones (this operation
yields a new real-valued transformation matrix T ), the expression

W1(0) = C(0)diag{Ki }C−1(0) (1.86)

can be reduced to a real-valued form

W1(0) = T �T −1. (1.87)

Here, the block-diagonal matrix � is composed as follows: all real coefficients Ki in the
diagonal matrix diag{Ki } in Equation (1.86) become the corresponding diagonal entries of the
matrix �, and the complex cells (

αi + jβi 0

0 αi − jβi

)
(1.88)

are replaced in � by real cells31 (
αi −βi

βi αi

)
. (1.89)

Now, it becomes evident that the complex conjugate ‘gains’ Ki and Ki+1 of the matrix W1(0)
physically correspond in the real-valued space to two interconnected characteristic systems
with the same gains αi in the direct channels and antisymmetrical cross-connections with the
coefficients βi .

Summarizing, the following conclusion can be drawn: to preserve the operability of the
MIMO system, all real parts of the characteristic system ‘gains’ Ki = q1i (0) (i = 1, 2, . . . , N )
must be nonzero. Otherwise, in some characteristic systems, breaking of the feedback loop
occurs. If the real parts of some coefficients q1i (0) are negative, which corresponds to replacing
the negative feedback by positive, then it can impose essential restrictions on the stability and
performance of the MIMO system.

31 We assume here, for simplicity, that the complex conjugate eigenvalues in Equation (1.84) are arranged in pairs.
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Note, finally, that since the product of singular values of any square matrix is equal to the
product of the magnitudes of its eigenvalues (see Section 1.2.4), the equality to zero of any
singular value of W (s) [or �(s)] also implies breaking the feedback loop in some characteristic
system.

Remark 1.8 Obviously, the theoretical statements of this section do not impose any re-
strictions or conditions on the number of separate channels of MIMO systems, and serve
for making up an intuitive insight into such significant concepts as poles and zeros, as well
as intrinsic geometrical and structural features of the systems in question. As a result, the
necessary foundation is created, based on which we can proceed to the issues of the MIMO
system performance analysis and design. Of course, everyone realizes that together with the
increase in the MIMO system dimension and/or that in the order of scalar transfer functions
forming the matrix W (s), the computational difficulties increase. And, here, it turns out that
within the frame of frequency-domain analysis and design methods for MIMO systems, the
considered approach actually does not impose any restrictions on the number of separate
channels, and on the order of individual transfer functions. Such well known issues in the
modern control theory as model reduction or approximation [these issues constitute an inte-
gral part of the state-of-the-art design methods due to a number of factors (Skogestad and
Postlethwaite 2005)] simply lose their significance, if not sense, when using the ideas and
concepts of the CTFs method! Recall that, in Section 1.2.4, it was indicated that the practi-
cal analysis of the MIMO system stability based on the generalized Nyquist criterion in fact
reduces to the computation of eigenvalues of complex numerical matrices of order N × N ,
which result by substituting s = jω into W (s). This is clear, since, for s = jω, all transfer
functions wkr (s) (k, r = 1, 2, . . . , N ) in W (s) become usual complex scalars, regardless of
the orders of their numerator and denominator polynomials, from which W ( jω) is composed.
Concerning the computation of eigenvalues, for example, the MATLAB software readily per-
forms it in a few seconds (or a few fractions of a second) for matrices whose order may be
of several tens and even hundreds – this is quite adequate for the existing needs in MIMO
systems practical design. In this respect, the CTFs method has an indisputable advantage
over the methods that are more or less based on the MIMO systems representation in state
space. Finally, another essential merit of the considered approach consists in its applicabil-
ity to the MIMO systems with time delays, i.e. the elements wkr (s) can contain transcen-
dental transfer functions exp{−τkr s}. Of course, here, the MIMO system transfer matrices
become ones with transcendental entries, and standard notions of poles and zeros lose their
sense. However, the generalized Nyquist criterion and the geometrical features of the MIMO
systems hold.

1.3 UNIFORM MIMO SYSTEMS

We proceed now to the study of some special types (or classes) of linear MIMO systems, which
possess, owing to their specific structures, quite peculiar features and characteristics. In various
technical applications, such as aerospace engineering, chemical industry and many others, the
so-called uniform MIMO systems (Sobolev 1973; Gasparyan 1976, 1986) very often occur.
The separate channels of uniform MIMO systems have identical transfer functions, and the
cross-connections are rigid, i.e. are characterized by a real-valued numerical matrix, or are
described, up to the values of gain, by a common (scalar) transfer function.
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1.3.1 Characteristic transfer functions and canonical representations of
uniform MIMO systems

The matrix block diagram of a linear uniform MIMO system is shown in Figure 1.18, where

w(s) = M(s)

D(s)
(1.90)

is the scalar transfer function of identical separate channels, which is a proper rational function
in complex variable s, and R is a numerical matrix of order N × N describing rigid cross-
connections.

It is easy to notice that the transfer matrix W (s) of the open-loop uniform system in
Figure 1.18

W (s) = w(s)R (1.91)

coincides, up to complex scalar multiplier w(s), with the numerical matrix of cross-connections
R. This leads to interesting structural and dynamic properties of uniform MIMO systems and
allows separating them into an individual class of multivariable control systems.

The comparison of Equation (1.91) with Equation (1.15) immediately shows that all poles
and zeros of the transfer function w(s) [Equation (1.13)] are absolute poles and zeros of the
open-loop uniform system, and, as a consequence, must be common poles and zeros of all
open-loop CTFs qi (s). Consider the canonical representations of the uniform MIMO system
transfer matrices. From the theory of matrices, we know that the multiplication of numerical
matrices by a scalar multiplier does not change the eigenvectors, and results in the multi-
plication of all eigenvalues by the same multiplier (Gantmacher 1964). Hence, if we denote
by λi (i = 1, 2, . . . , N ) the eigenvalues of R, which, by analogy with the assumptions made
when discussing general MIMO systems, we shall suppose distinct, and by C , the modal matrix
composed of the linearly independent normalized eigenvectors ci of R, then canonical represen-
tations [Equations (1.27) and (1.39)] of the open-loop uniform system have the following form:

W (s) = Cdiag{λiw(s)}C−1 (1.92)

W (s) =
N∑

i=1

ci > λiw(s) < c+
i , (1.93)

where c+
i are dual to ci . Note here that the eigenvalues λi of the real-valued matrix R can be real

or complex numbers, and the complex eigenvalues must always occur in complex conjugate
pairs (Gelfand 1966).

ϕ(s) ε(s)
R w(s)I

ƒ(s)

Figure 1.18 Matrix block diagram of a linear uniform MIMO system.
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Natural Basis Canonical Basis

λ1w(s)

λ2w(s)

λNw(s)

Natural Basis

C −1 C

Figure 1.19 Canonical representation of the open-loop uniform MIMO system via the similarity trans-

formation.

Based upon Equations (1.92) and (1.93), the following evident conclusions can be drawn.
First, the canonical basis of the linear uniform MIMO system is completely defined by the
numerical matrix of cross-connections R, and does not depend on the transfer function w(s)
of separate channels. As a consequence, that basis is constant, whereas in the general case, the
canonical basis of the MIMO system is a function in complex variable s. Secondly, all CTFs

qi (s) = λiw(s) = λi
M(s)

D(s)
, i = 1, 2, . . . , N (1.94)

coincide, up to constant ‘gains’ λi , with transfer function w(s) (Figure 1.19), i.e. we verify the
above conclusion that in the case of uniform systems, the poles and zeros of transfer function
w(s) are common poles and zeros of all CTFs qi (s).

The listed properties, especially the latter, enable us to bring very closely the methods
of investigating uniform systems to the corresponding classical methods for common SISO
systems, and the reader will comprehend that in the following sections.

It is easy to see that having the singular value decomposition of the real matrix R in the
form

R = Udiag{σRi }V T , (1.95)

where U and V are real orthogonal matrices (i.e. U−1 = U T and V −1 = V T ),32 for the corre-
sponding decomposition of the open-loop transfer matrix W (s) [Equation (1.91)], we have

W (s) = exp{arg w(s)}Udiag{σRi |w(s)|}V T , (1.96)

32 Recall that, for real matrices, the operations of conjugation and transposition coincide.
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where w(s) = |w(s)| exp{ j arg w(s)}, and from which it is obvious that for any s = const , the
singular values of W (s) are equal to the products of singular values σRi of R and the magnitude
of transfer function w(s). The left and right singular bases of the matrix W (s) coincide, up to
complex scalar multiplier exp{ j arg w(s)}, with the singular bases of the matrix R.33 Note also
that the ratio of the largest singular value of W (s) to the smallest one does not depend on w(s)
and is equal to the ratio of the corresponding singular values of R.

Taking into account Equations (1.92)–(1.94), we have, for the canonical representations of
the closed-loop uniform system, transfer matrices with respect to output and error:

�(s) = Cdiag

{
λiw(s)

1 + λiw(s)

}
C−1 =

N∑
i=1

ci >
λiw(s)

1 + λiw(s)
< c+

i (1.97)

�ε(s) = Cdiag

{
1

1 + λiw(s)

}
C−1 =

N∑
i=1

ci >
1

1 + λiw(s)
< c+

i . (1.98)

All that has been stated in the previous section about the geometrical interpretation of the
internal structure of general MIMO systems remains, naturally, valid, and also for uniform
systems. Unfortunately, for the closed-loop uniform system transfer matrices �(s) [Equation
(1.97)] and �ε(s) [Equation (1.98)], there is no well defined relationship between the singular
values and singular bases of these matrices, and the corresponding values and bases of the matrix
R, as it is in the case of the open-loop transfer matrix W (s). Moreover, the singular bases of the
matrices �(s) and �ε(s) depend generally on the transfer function w(s) of separate channels.
However, from the point of view of practical computing, this fact is not very burdensome and
just emphasizes the less intimate connections of the singular values, as compared with the
CTFs, with the open-loop and closed-loop MIMO system transfer matrices.

1.3.2 Stability analysis of uniform MIMO systems

The stability of the linear closed-loop uniform system is determined by the distribution of roots
of the characteristic equation

det [I + w(s)R] =
N∏

i=1

[1 + λiw(s)] = 0, (1.99)

which, apparently, is equivalent to a set of N equations

1 + λiw(s) = 0, i = 1, 2, . . . , N (1.100)

or, taking into account Equation (1.90), to a set of equations

D(s) + λi M(s) = 0, i = 1, 2, . . . , N (1.101)

coinciding with characteristic equations of the closed-loop one-dimensional characteristic
systems (Sobolev 1973; Gasparyan 1976).

33 That multiplier with the unity magnitude can be referred to either U or V.
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The fact that the CTFs qi (s) [Equation (1.94)] differ from the common transfer function
w(s) of separate channels only by numerical coefficients λi considerably simplifies the stability
analysis of uniform systems. Here, two formulations of the generalized Nyquist criterion are
possible, leading to different graphical techniques and procedures (for simplicity, we shall call
them the direct and inverse). The first of them (the ‘direct’ formulation) essentially coincides
with that presented in Section 1.2.4. The only difference is that for the stability of the closed-
loop uniform system, it is necessary that the sum of anticlockwise encirclements of the critical
point (−1, j0) by each characteristic gain locus (the Nyquist plot) λiw( jω), as the angular
frequency ω changes from −∞ to +∞, be equal to k0, where k0 is the number of the right
half-plane poles of transfer function w(s). If the characteristic gain loci λiw( jω) are plotted
only for positive frequencies ω ≥ 0, then the mentioned sum must be k0/2. According to this
formulation, N Nyquist plots of λiw( jω) are plotted in the complex plane. Each of them is
obtained from w( jω) by multiplying the magnitude of the latter by |λi |, and subsequently
rotating about the origin by angle arg λi . Next, the location of all Nyquist plots of λiw( jω)
with respect to the point (−1, j0) is analysed.

In accordance with the second ‘inverse’ formulation, Equation (1.100) should be rewritten
in the form

w(s) = − 1

λi
, i = 1, 2, . . . , N . (1.102)

In this case, in the complex plane, we have a single locus w( jω) (i.e. the Nyquist plot) of
identical separate channels and N critical points −1/λi . For the stability of the closed-loop
uniform system, it is necessary and sufficient that the Nyquist plot of w( jω) encircles each of
N points −1/λi in an anticlockwise direction k0 times (Sobolev 1973). In the case of stable
w(s), i.e. for k0 = 0, both variants of using the generalized Nyquist criterion are qualitatively
illustrated in Figure 1.20 for N = 4, in which the characteristic gain loci are plotted for positive
frequencies ω ≥ 0.

The simple form of CTFs of the open-loop uniform system makes it very convenient using
the logarithmical form of the Nyquist criterion, since the Bode magnitude and phase plots
of characteristic systems are obtained from the corresponding plots of transfer function w(s)
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Figure 1.20 Stability analysis of the uniform system with the help of the Nyquist criterion (N = 4).

(a) ‘direct’ form; (b) ‘inverse’ form.
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Figure 1.21 Stability analysis of the uniform system by means of the Bode diagram.

by simple shifts along the ordinate axis. The Bode magnitude plot Lm[w( jω)] is shifted by
magnitudes Lm[λi ] = 20 lg(|λi |), and the Bode phase plot �[w( jω)] is shifted by arg λi

(i = 1, 2, . . . , N ) (Figure 1.21).34 With respect to the shifted plots, the Nyquist criterion has
the standard form known from the classical control theory (Ogata 1970; Kuo 1995).

Example 1.4 Consider the two-axis indirect guidance system described in Example 1.1. Let
the transfer functions of both channels be identical, i.e. W1(s) = W2(s) = W0(s), and have the
form

W0(s) = 15000000000(s + 3)

s(s + 0.33)(s + 400)2(s + 500)
. (1.103)

With such transfer functions, the two-axis system in Figures 1.7 and 1.8 is uniform. Consider
two cases, with different combinations of angles α1 and α2: α1 = 40◦, α2 = 35◦ and α1 =
40◦, α2 = −35◦, i.e. the magnitudes of α1 and α2 in the second case do not change, but the
angle α2 has a negative sign. The matrix of cross-connections [Equation (1.60)]:

R =
(

cos α1 sin α1

− sin α2 cos α2

)
(1.104)

for the given combinations of α1 and α2 is

R+ =
(

0.766 0.643

−0.574 0.819

)
, R− =

(
0.766 0.643

0.574 0.819

)
, (1.105)

where the matrix R+ corresponds to the positive angle α2, and R− to the negative one. The
eigenvalues of R are defined by the following expression:

λ1,2 = cos α1 + cos α2

2
±

√
(cos α1 + cos α2)2

4
− cos(α1 − α2) (1.106)

34 Further, everywhere, Lm[·] and �[·] denote the Bode magnitude and phase plots of the corresponding transfer
functions.
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Figure 1.22 Stability analysis of the uniform guidance system (‘direct’ form). (a) α1 = 40◦, α2 = 35◦;

(b) α1 = 40◦, α2 = −35◦.

and, correspondingly, are equal to

λ1 = 0.7926+j0.6066, λ2 = 0.7926 − j0.6066, for R+, (1.107)

and

λ1 = 1.4004, λ2 = 0.1848, for R , (1.108)

i.e. in the case of positive angle α2, the eigenvalues are complex conjugate and, in the second
case, they are real. The Nyquist plots of the uniform guidance system with the given combina-
tions of α1 and α2 are shown in Figures 1.22 and 1.23, where Figure 1.22 corresponds to the
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Figure 1.23 Stability analysis of the uniform guidance system (‘inverse’ form). (a) α1 = 40◦, α2 = 35◦;

(b) α1 = 40◦, α2 = −35◦.
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first (‘direct’) formulation of the Nyquist criterion and Figure 1.23 to the second (‘inverse’)
formulation. These figures show that the stability of the guidance system depends considerably
on the sign of α2. For the positive value of α2 and complex conjugate eigenvalues [Equation
(1.106)], the system is unstable and, for the negative α2 and real eigenvalues, it is stable. That
fact is not a mandatory rule but, in practice, the complex conjugate eigenvalues of the matrix
R are usually more ‘dangerous’ from the stability viewpoint. In conclusion, we point out that
the gain and phase margins of the uniform guidance system for α2 = −35◦ are determined
by the first characteristic system (λ1 = 1.4004) and are equal, respectively, to G M = 3.16 dB
and PM = 15.36◦.

Example 1.5 The second example in this section can serve as a visual illustration that
the CTFs method allows not only the obtaining of quantitative data and estimates, but
also the drawing of qualitative conclusions about stability margins of MIMO systems. Con-
sider the same uniform guidance system as in the previous example, assuming angles α1 and
α2 are equal, i.e. α1 = α2 = α, and find the value of angle α for which the system reaches the
stability boundary.

Geometrically, the equal values of angles α1 and α2 mean that the ‘measurement’ coordinate
system OX1 X2, composed of the sensitivity axes of the stellar sensors, is orthogonal, and is
rotated by angle α with respect to the telescope-fixed orthogonal coordinate system (‘guidance’
coordinate system) OY1Y2 (Figure 1.24).

The matrix R [Equation (1.60)] in this case has the form

R =
(

cos α sin α

− sin α cos α

)
(1.109)

and is antisymmetrical (Gasparyan 1976) and, more significantly for us at this point, orthogonal,
i.e. det R = 1 and R−1 = RT (Bellman 1970). Eigenvalues [Equation (1.106)] of R have a
simple form and are expressed as

λ1,2 = cos α ± j sin α = exp{± jα} (1.110)

i.e. they are located on the unit circle and form angles ±α with the positive direction of the
real axis. For α = 0◦, the coordinate systems OX1 X2 and OY1Y2 in Figure 1.24 coincide, the
matrix R [Equation (1.109)] becomes the unit matrix I , and both eigenvalues λ1,2 [Equation
(1.110)] are equal to unity. Structurally, this means that the two-axis guidance system splits

X1

X2

Y1

Y2

α

α

Figure 1.24 Reciprocal location of the coordinate systems for α1 = α2 = α.
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Figure 1.25 Eigenvalues location on the unit circle.

into two independent channels. For α �= 0, there appear cross-connections, and eigenvalues
λ1,2 move from the point (+1, j0) in the opposite directions along the unit circle (Figure 1.25).
The CTFs q1( jω) and q2( jω) of the open-loop system are

q1( jω) = exp{ jα}W0( jω), q2( jω) = exp{− jα}W0( jω), (1.111)

i.e. the first characteristic gain locus q1( jω) is obtained from the Nyquist plot of W0( jω) by the
anticlockwise rotation of W0( jω) about the origin through the angle α, and the second locus
q2( jω) is obtained by the clockwise rotation of W0( jω) through the same angle. In the case
of ‘inverse’ formulation of the Nyquist criterion, graphical plotting is carried out on the plane
of the single Nyquist plot of W0( jω), where critical points −1/λ1,2 coincide with the point
(−1, j0) for α = 0◦ and, for α �= 0, they move along the unit circle, forming with the negative
real axis angles −α and +α. All this is illustrated in Figure 1.26, from which it is finally clear
that the critical value of angle α, for which the cross-connected guidance system reaches the
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Figure 1.26 Stability analysis of the guidance system for α1 = α2. (a) ‘direct’ form; (b) ‘inverse’ form.
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Figure 1.27 Bode diagram of the guidance system for α = 29.2368◦.

stability boundary, is equal to the phase margin of identical isolated separate channels of the
system. This inference is general for two-dimensional uniform systems with the orthogonal
matrix of cross-connections R [Equation (1.109)] and is valid for any transfer function W0(s)
of separate channels. For our system with transfer function W0( jω) [Equation (1.103)], the
phase margin of the separate channel is PM = 29.2368◦. Letting the angle α be equal to that
value, the guidance system is on the stability boundary. The Bode diagram given in Figure 1.27
verifies that conclusion. In this figure, the bold dot at the intersection of the line −180◦ with the
Bode phase plot of the second characteristic system is mapping of the point (−1, j0). Note
that the Bode magnitude plots of the CTFs q1( jω) and q2( jω) coincide with the corresponding
plot of W0( jω) (since |λ1| = |λ2| = 1), and the Bode phase plots of q1( jω) and q2( jω) are
obtained from the phase plot of W0( jω) by the parallel shifts ±α along the ordinate axis.

Thus, in the considered example, we have obtained not only the quantitative, but also the
qualitative information about the stability margins of the two-dimensional uniform system
with an orthogonal matrix of cross-connections. This confirms the effectiveness of approaches
based on the CTFs.

Remark 1.9 As we know, in the case of general linear MIMO systems, the CTFs are algebraic
functions and are situated on different sheets of a unique Riemann surface, and the transition
from one branch of the characteristic gain loci to another is related to the so-called branch
points.35 A natural question arises of whether the specific structural features of uniform MIMO
systems lead, from that point of view, to some peculiarities, if we take into account that
the CTFs of these systems have quite a simple form [Equation (1.105)] and can readily be
found analytically. To answer this question from the general position of the CTFs method, we
substitute the transfer matrix of the open-loop uniform system [Equation (1.102)] into Equation
(1.26), from which, after some elementary transformations, we obtain

det[q I − Cdiag{λiw(s)}C−1] = det[Cdiag{q − λiw(s)}C−1] =
N∏

i=1

[q − λiw(s)] = 0.

(1.112)

35 See Remark 1.3.
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This expression shows that Equation (1.26), the solution to which gives the CTFs of linear
MIMO systems, in the case of uniform systems, splits into N first-order equations, linear with
respect to q . Then, based on the general theory (Postlethwaite and MacFarlane 1979), we can
state that in the case of uniform systems, we have N isolated algebraic functions, and each of
them is situated on an individual one-sheeted Riemann surface. In other words, the CTFs of
uniform systems, being proper rational functions in complex variable s, do not have branch
points and thereby can be treated, not in the least disregarding the mathematical rigour, as a
set of N independent SISO systems.

Remark 1.10 The matrix block diagram of Figure 1.18 is, broadly speaking, typical for
uniform MIMO systems. At the same time, in different technical applications, systems hav-
ing far more complicated structures, with several contours of feedforward or/and feedback
connections occur; these systems may formally be viewed as uniform, since all their separate
channels are identical, and different blocks of cross-connections are described by some nu-
merical matrices (Sobolev 1973). For example, one such structure is depicted in Figure 1.28,
where R1 and R2 are numerical matrices, and w1(s) and w2(s) are scalar transfer functions.
Unfortunately, not all such MIMO systems with identical channels and several matrices of
rigid cross-connections can be referred to as uniform systems, and the point is that different
numerical matrices of cross-connections are generally brought to diagonal form in different
canonical bases. However, it is also possible to select among such MIMO systems those that
satisfy the uniformity requirements and can be studied on the base of the techniques developed
in this section. The fact is that, as is well known from the theory of matrices (Marcus and Minc
1992), different square matrices (in our case, R1 and R2) can be brought simultaneously to
diagonal form in a certain basis if they are commutative, i.e. R1 R2 = R2 R1.

From here, we have the following main rule determining when a MIMO system belongs to
the class of uniform systems:

A MIMO system is uniform if all separate channels of the system are identical, i.e. all dynamical
blocks constituting the system are described by some scalar transfer matrices, and all numerical
matrices of cross-connections are commutative.

The indicated condition of commutativity actually means that all matrix blocks of the uniform
MIMO system can be interchanged, and that condition reinforces the analogy between meth-
ods of study of uniform systems and common SISO systems. Accordingly, if the mentioned
condition is not satisfied, then the system must be regarded as a general MIMO system, and its
study can be accomplished only by the corresponding methods and computational procedures.

R1

R2

w1(s)I

w2(s)I

Figure 1.28 Definition of the notion ‘uniform MIMO system’.
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1.4 NORMAL MIMO SYSTEMS

So far, we have considered general and uniform MIMO systems, paying no special attention
to geometrical features or peculiarities of their canonical bases. In this section, we discuss
the so-called normal systems,36 which constitute a significant class of multivariable control
systems with individual attributes and characteristics inherent only to that class.

1.4.1 Canonical representations of normal MIMO systems

A linear MIMO system is said to be normal if the open-loop transfer matrix of the system is
normal, i.e. commutes with its conjugate (complex conjugate and transposed) matrix:

W (s)W ∗(s) = W ∗(s)W (s) (1.113)

It is easy to show that normality of W (s) implies normality of the closed-loop MIMO system
transfer matrices �(s) and �ε(s), and, vice versa, normality of �(s) or �ε(s) implies normality
of W (s). In other words, instead of Equation (1.113), we can write two equivalent conditions
of the MIMO system normality:

�(s)�∗(s) = �∗(s)�(s) (1.114)

and

�ε(s)�∗
ε(s) = �∗

ε(s)�ε(s). (1.115)

The primary, principal property of normal MIMO systems consists in the orthogonality
of their canonical bases composed of the normalized eigenvectors ci (s)(|ci (s)| = 1) of W (s).
Owing to the conditions in Equation (1.32), the dual basis of a normal MIMO system is also
orthogonal and identically coincides with the canonical basis (Derusso et al. 1965; Gasparyan
1976, 1986). As will be shown in the following chapters, all this predetermines a number of
remarkable features of normal MIMO systems, essentially distinguishing them from all other
types of MIMO systems.

Since the canonical basis of normal MIMO systems is orthonormal, the modal matrix C(s)
belongs to the class of unitary matrices for which C−1(s) = C∗(s), i.e. the inverse matrix
coincides with conjugate. From that, and taking into account the coincidence of the dual
and canonical bases (c+

i (s) = ci (s)), we obtain the following canonical representations of
the transfer matrices of normal MIMO systems via the similarity transformation and dyadic
designations:

W (s) = C(s)diag{qi (s)}C∗(s) =
N∑

i=1

ci (s) > qi (s) < ci (s) (1.116)

�(s) = C(s)diag

{
qi (s)

1 + qi (s)

}
C∗(s) =

N∑
i=1

ci (s) >
qi (s)

1 + qi (s)
< ci (s) (1.117)

�ε(s) = C(s)diag

{
1

1 + qi (s)

}
C∗(s) =

N∑
i=1

ci (s) >
1

1 + qi (s)
< ci (s). (1.118)

36 The term normal MIMO system originates from the theory of matrices (Bellman 1970; Gantmacher 1964).
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To normal systems belong circulant, anticirculant, simple symmetrical and antisymmetri-
cal MIMO systems (Gasparyan 1976, 1981, 1986), including two-dimensional systems with
symmetrical and antisymmetrical cross-connections (Barski 1966; Kazamarov et al. 1967;
Krassovski 1957) frequently occurring in various technical applications.

Consider now the singular value decomposition of the normal MIMO system. In Section
1.2.5, it was indicated that with each transfer matrix of the open- or closed-loop MIMO
system, there are two associated orthonormal bases called the left and right (or input and
output) singular bases of the MIMO system, as well as a set of N real numbers called the
singular values. Generally, each transfer matrix W (s), �(s) or �ε(s) has its own set of singular
bases and singular values, and there is no explicit relationship among the sets belonging to
different matrices. As was pointed out in Section 1.2.5, the left singular basis of a square
matrix A consists of eigenvectors of the Hermitian matrix AA∗, and the right singular basis
consists of eigenvectors of the Hermitian matrix A∗ A; the singular values of A are equal to
positive values of the square roots taken of the eigenvalues of AA∗ (or A∗ A). Let us compose
the corresponding Hermitian matrices for the transfer matrix W (s) of the open-loop normal
MIMO system. Taking into account that for unitary matrices, the inverse matrix coincides with
its conjugate yields

W (s)W ∗(s) = C(s)diag{qi (s)} C∗(s)C(s)︸ ︷︷ ︸
I

diag{q̃i (s)}C∗(s)

= C(s)diag{|qi (s)|2}C∗(s), (1.119)

from which we come to an extremely important conclusion that for the open-loop normal
system, the left and right singular bases coincide with each other and coincide with the
canonical basis, and singular values are equal to the magnitudes of the CTFs qi(s) of the open-
loop characteristic systems. Proceeding in the same manner, we find for the transfer matrices
�(s) and �ε(s) of the closed-loop normal system:

�(s)�∗(s) = C(s)diag

{∣∣∣∣ qi (s)

1 + qi (s)

∣∣∣∣2
}

C∗(s) (1.120)

�ε(s)�∗
ε(s) = C(s)diag

{
1

|1 + qi (s)|2
}

C∗(s). (1.121)

Hence, all singular bases of the closed-loop normal MIMO system coincide with the canonical
basis, and the singular values are equal to magnitudes of the corresponding transfer functions
of the closed-loop SISO characteristic systems. The spectral norms of the transfer matrices
W (s), �(s) and �ε(s) are equal to the largest of the CTFs magnitudes, i.e.

‖W (s)‖ = max
i

(|qi (s)|), ‖�(s)‖ = max
i

(∣∣∣∣ qi (s)

1 + qi (s)

∣∣∣∣) , ‖�ε(s)‖ = max
i

(
1

|1 + qi (s)|
)

.

(1.122)

Thus, in the case of the normal MIMO system, all singular bases coincide with the canonical
basis, and the singular values are directly expressed through the transfer functions of the
corresponding characteristic systems, i.e. here, we have a unified and visual internal geometrical
structure of the system.
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We proceed now to the case of normal uniform systems. We show first that the normality
condition of the uniform system is entirely determined by properties of the numerical matrix
of cross-connections R (Figure 1.18) and does not depend on the transfer function w(s) of
identical separate channels. Let the uniform system be normal. Then, from Equations (1.113)
and (1.91), taking into account the equality w(s)w∗(s) = |w(s)|2 and knowing that for real
matrices, the operations of conjugation and transposing are equivalent, instead of Equation
(1.113), we have

|w(s)|2 RRT = |w(s)|2 RT R. (1.123)

From here, canceling the common factor |w(s)|2 on both sides, we finally obtain the following
condition of normality of the uniform system:

RRT = RT R, (1.124)

which has the form of the condition of normality of the real matrix R (Gantmacher 1964), well
known in the theory of matrices. We will not write out the expressions for transfer matrices
of normal uniform systems – they evidently ensue from Equations (1.119)–(1.122), and the
reader is able to do it without difficulty on his own.

To normal systems belong the uniform systems with circulant and anticirculant, symmetrical
and antisymmetrical, as well as with orthogonal matrices of cross-connections, that is the types
of uniform systems described most in the scientific and technical literature (Gasparyan 1976,
1986). By antisymmetrical matrices, here, we mean, as it is accepted in the multivariable
control theory (Chorol et al. 1976), such matrices R that can be represented in the form

R = r I + R◦, (1.125)

where r is a scalar, and R◦ is a usual skew-symmetrical matrix (Gantmacher 1964) satisfying
the condition R◦ = −RT

◦ .37

In conclusion, note that in the case of normal MIMO systems, the Euclidian norms (‘lengths’)
of the input, output and error vectors are, by pairs, the same in both the natural and canonical
bases. This is explained by the fact that magnitudes of the vectors are invariant under the sim-
ilarity transformations via the unitary modal matrix C(s) (or C for uniform systems) (Derusso
et al. 1965).

1.4.2 Circulant MIMO systems

In the last part of this section, we consider two special subclasses of normal systems, namely
the circulant and anticirculant MIMO systems. The chief distinctive feature of these systems
is independence of their canonical bases from s. Generally, in contrast to normal uniform
systems, these systems can have different dynamical cross-connections between the separate
channels. Moreover, the class of normal uniform systems includes the corresponding subclasses

37 To such uniform systems belong the two-axis guidance system with the orthogonal (and, at the same time, anti-
symmetrical) matrix of cross-connections R [Equation (1.109)] discussed in Example 1.5.
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of systems which, by the structure of the numerical matrix of cross-connections, also belong
to circulant or anticirculant systems.

The distinctive feature of circulant MIMO systems is that their transfer matrices W (s), �(s)
and �ε(s)are circulant. Recall that in a circulant matrix, each subsequent row is obtained from
the preceding row by shifting all elements (except for the N th) by one position to the right; the
Nth element of the preceding row then becomes the first element of the following row (Davis
1979; Voevodin and Kuznetsov 1984). For the matrix W (s), this looks like this:

W (s) =

⎛⎜⎜⎜⎜⎜⎜⎝
w0(s) w1(s) w2(s) . . . . . . . wN−1(s)

wN−1(s) w0(s) w1(s) . . . . . . wN−2(s)

wN−2(s) wN−1(s) w0(s) . . . . . . wN−3(s)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w1(s) w2(s) w3(s) . . . . . . . w0(s)

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.126)

Each diagonal of a circulant matrix consists of the same elements, and the diagonals located at
the same distance from the lower left corner and from the principal diagonal consist of identical
elements.38 Physically, this means that in the circulant MIMO system, it is possible to single
out some groups of subsystems with identical transfer functions of all cross-connections, i.e.
having internal symmetry. The MIMO systems described by circulant matrices constitute a
significant class of multivariable control systems especially widespread in process control.
Industrial and other examples of circulant systems include cross-directional control of paper
machines if the edge effects are neglected, multizone crystal growth furnaces, dyes for plastic
films, burner furnaces, some gyroscopic platforms (Hovd and Skogestad 1992, 1994a; Chorol
et al. 1976; Sobolev 1973) and many others.

It is easy to see that any circulant matrix is completely defined by the first (or any other)
row. Using the designations w0(s), wi (s)(i = 1, 2, . . . , N − 1)39 [Equation (1.126)] for the
first row of the circulant matrix W (s), the latter can be represented in the matrix polynomial
form

W (s) = w0(s)I +
N−1∑
k=1

wk(s)U k, (1.127)

where I is the unit matrix and

U =

⎛⎜⎜⎜⎝
0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . . . .

1 0 0 · · · 0

⎞⎟⎟⎟⎠ (1.128)

is the orthogonal permutation matrix (Marcus and Minc 1992).40 Since the permutation matrix
U plays a crucial role in the theory of circulant MIMO systems, let us consider it at more

38 From the general positions of the theory of matrices, the circulant matrices belong to the so-called Toeplitz matrices
(Voevodin and Kuznetsov 1984).

39 These designations differ from those used before for describing general MIMO systems, but are more convenient
in this case.

40 In essence, the permutation matrix U can be regarded as the simplest circulant matrix.
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length. Like all orthogonal matrices (Gantmacher 1964), the matrix U satisfies the following
conditions: U−1 = U T , detU = −1 (the so-called improper orthogonality); all eigenvalues of
U have unit magnitudes. If we multiply U by a vector x , then the first component x1 becomes
the N th, the second component becomes the first, etc. On increasing the power of U , both
nonzero diagonals shift to the place of the next diagonal on the right, and the powers of U
satisfy the following conditions that can be readily checked by direct calculations:

U k = (U N−k)T = (U N−k)−1, U N = I, k = 1, 2, . . . , N − 1. (1.129)

The eigenvalues βi (i = 1, 2, . . . , N ) of the permutation matrix U are the roots of the charac-
teristic equation

det[β I − U ] = βN − 1 = 0 (1.130)

and, for any N , are expressed in the analytical form

βi = exp

{
j
2π (i − 1)

N

}
, i = 1, 2, . . . , N . (1.131)

Geometrically, the roots βi are situated in the complex plane at the vertices of a regular N -
sided polygon inscribed in the unit circle, and the first root β1 is always real and equal to unity
(Figure 1.29). The normalized eigenvectors ci of U have a very simple form (Bellman 1970):

ci = 1√
N

[
1 βi β2

i . . . .βN−1
i

]T
, i = 1, 2, . . . . , N . (1.132)

Note that since the permutation matrix U belongs to normal matrices, the modal matrix C of
U composed of ci [Equation (1.132)] is unitary, i.e. C−1 = C∗. It is worth emphasizing that all
components of the vectors ci [Equation (1.132)] have the same magnitudes, equal to 1/

√
N .

This fact plays an important role in analyzing self-oscillations in nonlinear circulant systems
(see Chapter 3).
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Figure 1.29 The eigenvalues of the permutation matrix U [Equation (1.128)]. (a) N = 2; (b) N = 3;

(c) N = 4.
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In the theory of matrices, it is proved that if a square matrix A is represented as the matrix
polynomial in some matrix B, then the eigenvalues of A are equal to the values of the corre-
sponding scalar polynomials that are obtained from the matrix polynomial by replacing B with
the eigenvalues of the latter. Also, the eigenvectors of the matrices A and B, corresponding to
the associated eigenvalues, coincide (Marcus and Minc 1992). Applying this to the circulant
matrix W (s) [Equation (1.127)] yields that the CTFs qi (s) can be represented, for any number
N of separate channels, in the analytical form

qi (s) = w0(s) +
N−1∑
k=1

wk(s) exp

{
j
2π (i − 1)

N
k

}
, i = 1, 2, . . . , N . (1.133)

Further, from the above statement concerning eigenvectors of matrix polynomials, it follows
that the canonical basis of the circulant matrix W (s), i.e. the canonical basis of the circulant
system (and, naturally, the modal matrix C), is inherited from the permutation matrix U
[Equation (1.128)].

The possibility of representing the CTFs qi (s) in analytical form for any N considerably
simplifies the study of circulant systems. It is interesting and important to note that canonical
bases of circulant systems do not depend on complex variable s and are the same for all
circulant systems with the same number of channels N , independently of the specific form of
the transfer functions w0(s) and wk(s)(k = 1, 2, . . . , N − 1).

Consider briefly the uniform circulant MIMO systems. It is easy to understand that for a
uniform system to be circulant, it is necessary and sufficient that the matrix of cross-connections
R be circulant. Denoting by r◦ and rk (k = 1, 2, . . . , N − 1) the elements of the first row of R,
we obtain for the matrix W (s) and the CTFs qi (s) of the circulant uniform system the following
expressions:

W (s) = w(s)[r◦ I +
N−1∑
k=1

rkU k] (1.134)

and

qi (s) =
[

r◦ +
N−1∑
k=1

rk exp

{
j
2π (i − 1)

N
k

}]
w(s), i = 1, 2, . . . , N , (1.135)

where w(s) is the scalar transfer function of identical separate channels. The canonical basis and
modal matrix of the circulant uniform system are also inherited, evidently, from the permutation
matrix U .

Circulant MIMO systems can be symmetrical and, for odd N , antisymmetrical. A circulant
system is said to be symmetrical if the open-loop transfer matrix W (s) [together with �(s)
and �ε(s)] is symmetrical, i.e. if the condition W (s) = W T (s) holds. In view of the structural
cyclicity of circulant matrices, for a circulant system to be symmetrical, it is enough that the
following equalities take place:

wk(s) = wN−k(s), k = 1, 2, . . . , N − 1. (1.136)
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1.4.2.1 Simple symmetrical systems

Among symmetrical circulant systems, the so-called simple symmetrical MIMO systems de-
mand special attention, for which the transfer functions of all cross-connections coincide
(Sobolev 1973; Gasparyan 1981, 1986; Hovd and Skogestad 1992, 1994a), i.e.

wk(s) = w1(s), k = 2, . . . , N − 1. (1.137)

A significant feature of simple symmetrical MIMO systems is that they have only two distinct
CTFs. Substituting Equation (1.137) into Equation (1.133) and carrying out some simple
transformations yields

q1(s) = w0(s) + (N − 1)w1(s) (1.138)

and

q2(s) = q3(s) = . . . . . . . = qN (s) = w0(s) − w1(s). (1.139)

Hence, in the case of simple symmetrical MIMO systems, there exist, independently of the
number of separate channels N , only two transfer functions of the characteristic systems
differing from each other. In multivariable control theory, the first function q1(s) [Equa-
tion (1.138)] is frequently called the transfer function of the average motion, and all the
others [Equation (1.139)] are called the transfer functions of the relative motions. These
terms have a simple explanation. Let the vectors y and x be related by a simple symmetrical
matrix W (s), i.e.

y = W (s)x (1.140)

or, in the expanded form,

yi = w0(s)xi + w1(s)
N∑

k=1
k �=i

xk, i = 1, 2, . . . , N . (1.141)

Let us introduce the so-called average scalar coordinates

ȳ = 1

N

N∑
k=1

yk, x̄ = 1

N

N∑
k=1

xk, (1.142)

having an obvious physical sense. Then, summing N equations [Equation (1.141)] term by
term and performing simple transformations, we obtain the relationship between the average
coordinates ȳ and x̄ in the form

ȳ = [w0(s) + (N − 1)w1(s)] x̄ . (1.143)

The comparison of this expression with Equation (1.138) completely explains the name for
q1(s): the transfer function of the average motion.
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Let us determine now the difference between any two (say, the r th and the kth) equations
in Equation (1.141). We obtain

yr − yk = [w0(s) − w1(s)](xr − xk). (1.144)

The comparison of this equation with Equation (1.139) shows that the transfer functions of the
relative motions relate to each other the differences between the output and input variables of
any two channels of the simple symmetrical system. Besides, if we introduce N − 1 relative
coordinates yr

k and xr
k for the components yk and xk (k = 2, . . . , N ), defining them as the

deviation of each component yk, xk from the corresponding average values of ȳ and x̄ : yr
k =

yk − ȳ, xr
k = xk − x̄ , then it is easy to show that these variables are also related by the CTFs

[Equation (1.139)]. In other words, the CTFs of relative motions can also be viewed as the
functions relating the deviations from the corresponding average motion of the output and
input variables of separate channels.

1.4.2.2 Antisymmetrical circulant systems

A circulant system with an odd number of separate channels N is called antisymmetrical if
elements of the first row of the transfer matrix W (s) satisfy the conditions:

wk(s) = −wN−k(s), k = 1, 2, . . . , N − 1 (1.145)

and the matrix W (s) can be represented in the form

W (s) = w0(s)I +
{

(N−1)/2∑
k=1

wk(s)[U k−(U k)−1]

}
︸ ︷︷ ︸

A

, (1.146)

where the matrix A is skew-symmetrical, i.e. A = −AT .
The CTFs qi (s) of antisymmetrical circulant systems have the form

qi (s) = w0(s) + j2

(N−1)/2∑
k=1

wk(s) sin

(
2π (i − 1)

N
k

)
, i = 1, 2, . . . , N (1.147)

and it is worth mentioning that for any odd N , the first CTF q1(s) always coincides with the
transfer function of direct channels w0(s). At last, note that if all transfer functions of cross-
connection are the same, i.e. together with the condition of ‘correct signs’ [Equation (1.145)],
the condition in Equation (1.137) holds, then such systems are called simple antisymmetrical
circulant systems. Simple antisymmetrical systems of odd order N are described by Equations
(1.145) and (1.147), assuming that wk(s) = w1(s) for all k = 2, . . . , N − 1.

In conclusion, circulant systems of even order N can be antisymmetrical only if the
transfer function wN/2(s) is identically equal to zero, which is unacceptable in most prac-
tical tasks. In particular, the above expressions do not allow describing such important in
practice systems as two-dimensional systems with identical channels and antisymmetrical
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cross-connections. In the case of an even number of channels, to study the simple antisym-
metrical systems, we must apply the theory of anticirculant MIMO systems discussed in the
next section.

Example 1.6 In Chorol et al. (1976), a three-axis stabilized platform in which the measure-
ments of angular velocities are accomplished by single-channel two-dimensional gyroscopic
devices with amplitude-phase modulation is considered. The open-loop transfer matrix of that
system has the form

W (s) = w(s)

⎛⎜⎝ w0(s) w1(s) −w1(s)

−w1(s) w0(s) w1(s)

w1(s) −w1(s) w0(s)

⎞⎟⎠ , (1.148)

where the scalar multiplier w(s) corresponds to the transfer functions of identical channels in
the system power part. As evident from Equation (1.148), the control system belongs to simple
antisymmetrical systems and can be handled by the above methods. Substituting the elements
of W (s) [Equation (1.148)] into Equation (1.147) immediately yields

q1(s) = w(s)w0(s), q2,3(s) = w(s)[w0(s) ± j
√

3w1(s)]. (1.149)

This completely agrees with the results developed in Chorol et al. (1976) based on the
complex coordinates and complex transfer functions method.

Example 1.7 For the last two to three decades, the so-called hexapods have found wide
application in various technical branches, such as active vibration isolation, control of the
secondary mirror for large telescopes, laboratory testing devices, etc. (Geng and Haynes 1994;
Pernechele et al. 1998; Joshi and Kim 2004, 2005). Physically, a hexapod consists of a movable
payload platform connected to the fixed base by six variable-length struts. The length of each
strut can be controlled independently by six linear actuators and sensors, to achieve independent
translational and rotational motions along the X-, Y- and Z-axes. The simplified kinematic
scheme of the hexapod is shown in Figure 1.30.

In general, hexapods provide six degrees of freedom to the platform. If each pair of struts
works synchronously to increase or decrease their length, then the hexapod has three degrees
of freedom. In view of the constructional symmetry of hexapods, the corresponding control
systems are described by the matrices of order 3 × 3 and 6 × 6, having the following form

Z

Y

X

Figure 1.30 The kinematics of a hexapod.
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(Joshi and Kim 2004):

WH3(s) =

⎛⎜⎝w0(s) w1(s) w1(s)

w1(s) w0(s) w1(s)

w1(s) w1(s) w0(s)

⎞⎟⎠ ,

WH6(s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0(s) w1(s) w1(s) w1(s) w1(s) w1(s)

w1(s) w0(s) w1(s) w1(s) w1(s) w1(s)

w1(s) w1(s) w0(s) w1(s) w1(s) w1(s)

w1(s) w1(s) w1(s) w0(s) w1(s) w1(s)

w1(s) w1(s) w1(s) w1(s) w0(s) w1(s)

w1(s) w1(s) w1(s) w1(s) w1(s) w0(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.150)

As we can see from Equation (1.150), the control systems for hexapods belong to simple
symmetrical systems. Let the transfer functions w0(s) and w1(s) in Equation (1.150) be

w0(s) = 1

s(0.2s + 1)
, w1(s) = 0.4

0.1s + 1
. (1.151)

Then, the CTFs of average motion [Equation (1.138)] are

q H3
1 (s) = w0(s) + 2w1(s) = 0.16s2 + 0.9s + 1

0.02s3 + 0.3s2 + s

q H6
1 (s) = w0(s) + 5w1(s) = 0.4s2 + 2.1s + 1

0.02s3 + 0.3s2 + s

(1.152)

and all the CTFs of relative motion associated with both matrices WH3(s) and WH6(s) are
identical and have the form [Equation (1.139)]

q2(s) = w0(s) − w1(s) = −0.08s2 − 0.3s + 1

0.02s3 + 0.3s2 + s
. (1.153)

The characteristic gain loci of the CTFs [Equations (1.152) and (1.153)] are shown in
Figure 1.31, from which it is evident that the stability of both systems is determined by
the CTFs of relative motion [Equation (1.153)] which do not depend on N and coincide for
all 2 ≤ i ≤ N . The identical gain and phase margins of the discussed systems are equal to
G M = 6.76 dB and P M = 53.92◦.

Example 1.8 As an example of a uniform circulant system, consider a hypothetic 16-channel
(N = 16) system with the transfer function of separate channels given by Equation (1.103),
in which we decrease the gain by a factor of 25, and with a circulant matrix of rigid cross-
connections R having the form

R = I + 0.6 U, (1.154)

where I is the unit matrix and U is the permutation matrix [Equation (1.128)] (both matrices
have order 16 × 16). Physically, such cross-connections mean that in each channel of the system
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Figure 1.31 Characteristic gain loci of the hexapods, for N = 3 and N = 6.

enters the signal from the next channel multiplied by 0.6, and in the last channel enters the
corresponding signal from the first channel. In other words, all channels of the given uniform
circulant system are connected anticlockwise by a ‘ring scheme’ with the factor of 0.6. The
characteristic gain loci of the system in the ‘direct’ and ‘inverse’ forms are given in Figure
1.32. These graphs show that the system is stable. Note that the indicated above decrease of
the gain by a factor of 25 was caused by the desire to obtain a stable system, since, for the
initial gain, the system would be unstable.
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1.4.3 Anticirculant MIMO systems

Below, we discuss a specific subclass of normal MIMO systems referred to as anticirculant 41

systems, i.e. systems with anticirculant transfer matrices W (s), �(s) and �ε(s). The major
distinction of anticirculant matrices, as compared with common circulant matrices, is that the
elements located on both sides of the principal diagonal have opposite signs. This means that
each subsequent row of an anticirculant matrix is obtained from the preceding row by shifting
all elements (except for the N th) by one position to the right; the Nth element of the preceding
row becomes the first element of the following, with an opposite sign. Thus, the transfer matrix
W (s) of the open-loop anticirculant system can be written as

W (s) =

⎛⎜⎜⎜⎜⎜⎜⎝
w0(s) w1(s) w2(s) . . . . . . . wN−1(s)

−wN−1(s) w0(s) w1(s) . . . . . . wN−2(s)

−wN−2(s) −wN−1(s) w0(s) . . . . . . wN−3(s)

. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−w1(s) −w2(s) −w3(s) . . . . . . . w0(s)

⎞⎟⎟⎟⎟⎟⎟⎠ (1.155)

We know that the simplest of circulant matrices is the permutation matrix U [Equation (1.128)],
and any circulant matrix can be represented as a matrix polynomial in U . In the case of
anticirculant matrices, the anticirculant permutation matrix plays a similar role, which we
denote by U−:

U− =

⎛⎜⎜⎜⎝
0 1 0 · · · 0

0 0 1 · · · 0

. . . . . . . . . . . . . . . . . .

−1 0 0 · · · 0

⎞⎟⎟⎟⎠ (1.156)

If we multiply U− by a vector x , then the second component x2 becomes the first, the third
becomes the second, etc.; the first component x1 becomes the N th, with the opposite sign. Like
U [Equation (1.128)], the matrix U− is orthogonal, i.e. satisfies the conditions U−1

− = U T
− ,

det U− = 1 (the proper orthogonality), and all eigenvalues of U− have unit magnitudes. On
increasing the power of U−, both nonzero diagonals shift to the place of the next diagonal on
the right; the powers of U− satisfy the following conditions:

U N−k
− = −(U k

−)T = −(U k
−)−1, U N

− = I, k = 1, 2, . . . , N − 1. (1.157)

The characteristic equation of U− [Equation (1.156)] is

det[β I − U−] = βN + 1 = 0. (1.158)

The roots βi of Equation (1.158) are

βi = exp

{
j
[2(i − 1) + 1]π

N

}
, i = 1, 2, . . . , N (1.159)

41 Seemingly, the term anticirculant matrix was introduced in Gasparyan (1981).
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Figure 1.33 The eigenvalues of the anticirculant permutation matrix U−. (a) N = 2; (b) N = 3;

(c) N = 4.

and, like the eigenvalues of the permutation matrix U [Equation (1.128)], are situated in the
complex plane at the vertices of a regular N -sided polygon inscribed in the unit circle. For
N = 2, 3, 4, this is illustrated in Figure 1.33 (it is interesting to compare this figure with
Figure 1.29). Recall that the first eigenvalue β1 of U is always real and equal to unity. Unlike
this, for even N , all eigenvalues of U− [Equation (1.156)] are complex conjugate numbers.42

The orthonormal eigenvectors ci of U− are expressed through the eigenvalues βi [Equation
(1.159)] by the same expressions [Equation (1.132)].

As follows from what has been stated, any anticirculant matrix in the form of Equation
(1.155) can be represented as a matrix polynomial in U− of degree (N − 1):

W (s) = w0(s)I +
N−1∑
k=1

wk(s)U k
−. (1.160)

For anticirculant MIMO systems of even order N , which are of primary interest to us, it is
usually more convenient to transform Equation (1.160) to another form:

W (s) = w0(s)I + wN/2(s)U N/2
− +

(N/2)−1∑
k=1

[wk(s)U k
− − wN−k(s)(U k

−)−1]. (1.161)

Based on the properties of matrix polynomials given in Section 1.4.2, the CTFs qi (s) of an
anticirculant system can be represented for any N in the analytical form

qi (s) = w0(s) +
N−1∑
k=1

wk(s) exp

{
j
[2(i − 1) + 1]π

N
k

}
, i = 1, 2, . . . , N . (1.162)

The modal matrix C and the orthonormal canonical basis of that system do not depend on
complex variable s and coincide with the modal matrix and canonical basis of the anticirculant
permutation matrix U−.

42 In the case of odd N and i = (N + 1)/2, the eigenvalue βi is always equal to minus one.
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From the practical viewpoint, the most significant are anticirculant systems with an even
number of channels N . The basic statement of this section, completely clarifying the necessity
of introducing the concept of anticirculant MIMO systems, can be formulated as follows:

If the number of separate channels N is even and the conditions

wk(s) = wN−k(s), k = 1, 2, . . . , N − 1 (1.163)

hold, then the anticirculant MIMO system is antisymmetrical.
Substituting Equation (1.163) in Equations (1.161) and (1.162) yields, for even-order anti-

symmetrical MIMO systems:

W (s) = w0(s)I +
{

wN/2(s)U N/2
− +

(N/2)−1∑
k=1

wk(s)[U k
− − (U k

−)−1]

}
(1.164)

and

qi (s) = w0(s) + j(−1)i+1wN/2(s) + 2 j
(N/2)−1∑

k=1

wk(s) sin

{
[2(i − 1) + 1]π

N
k

}
i = 1, 2, . . . , N , (1.165)

where the braces in Equation (1.164) encompass a skew-symmetrical matrix.
Hence, anticirculant matrices enable us to describe analytically a certain class of antisym-

metrical MIMO systems of even order, which was impossible by means of circulant matrices.
First of all, this concerns the simple antisymmetrical MIMO systems (and, naturally, the simple
antisymmetrical uniform systems) of even order, for which, in Equations (1.164) and (1.165),
wk(s) = w1(s) (k = 2, . . . N − 1) should be assumed. In the specific, but very important, case
of two-dimensional systems with antisymmetrical cross-connections, from Equation (1.165),
the well known expression follows (Krassovski 1957):43

q1,2(s) = w0(s) ± jw1(s). (1.166)

This indicates that two-dimensional antisymmetrical systems with constant parameters, studied
at great length by the method of complex coordinates and complex transfer functions, constitute
a specific case of even-order anticirculant MIMO systems. In Example 1.9, we shall return to
that issue in more detail.

Remark 1.11 As shown above, the CTFs qi (s) of circulant and anticirculant systems can be
written in analytical form for any number of separate channels N . From Equations (1.133)
and (1.162), it is evident that these CTFs can be represented, after reducing to a common
denominator, as a quotient of two rational polynomials in complex variable s. From Equations
(1.133) and (1.162), it ensues that for all qi (s) (i = 1, 2, . . . , N ), the denominator polynomials
are the same, have real coefficients and are equal to the product of denominator polynomials
of the elements of the first row of W (s). In other words, all poles of the CTFs qi (s) of circulant
or anticirculant systems are the same, and are absolute. As for the numerator polynomials of
the CTFs qi (s), they are generally different and have complex coefficients. The only exception
from the last rule constitutes simple symmetrical MIMO systems for which the numerator

43 Eigenvalues [Equation (1.110)] of the antisymmetrical matrix R [Equation (1.109)] of the uniform system in
Example 1.5 can be directly obtained from this expression.



JWBK226-01 JWBK226-Gasparyan January 2, 2008 20:47 Char Count=

Normal MIMO Systems 65

polynomials of qi (s) have real coefficients and N − 1 CTFs of relative motions [Equation
(1.139)] coincide. A common feature of circulant and anticirculant systems is that their or-
thonormal canonical bases do not depend on s and on the specific form of the transfer functions
w0(s) and wk(s) (k = 1, 2, . . . , N − 1), and coincide, respectively, with the canonical bases
of the permutation matrix U [Equation (1.128)] and the anticirculant permutation matrix U−
[Equation (1.156)].

Remark 1.12 In a sense, circulant and anticirculant systems are rather similar in their struc-
tural properties to normal uniform systems with orthogonal canonical bases, but the significant
feature of the former systems is the presence of dynamical cross-connections, which is ex-
cluded for uniform systems. At the same time, all that was stated in Remark 1.9 about the CTFs
of uniform systems is completely valid, taking into account the preceding remark, for circulant
and anticirculant systems, i.e. here, we also have N isolated, one-sheeted algebraic functions
not possessing any branch points. The last fact allows handling the CTFs qi (s) of the systems
in question, preserving the mathematical rigour, as a set of N -independent SISO systems.

Example 1.9 Below, we outline those significant practical tasks that have stimulated the
formation and evolution of the complex coordinates and complex transfer functions method,
and obtain the CTFs for an axially symmetrical spinning body.

As is well known, the angular motion of a rigid body about the principal axes of inertia is
described by Euler’s nonlinear dynamical equations (Goldstein 1959):

JX
dωx

dt
+ (JZ − JY ) ωzωy = Mx (1.167)

JY
dωy

dt
+ (JX − JZ ) ωxωz = My (1.168)

JZ
dωz

dt
+ (JX − JY ) ωxωy = Mz, (1.169)

where JX , JY and JZ denote the principal moments of inertia; ωx , ωy and ωz the angular
velocities; and Mx , My and Mz the external torques. Generally, these torques represent the
sum of control torques and disturbances, but, for simplicity, we shall assume them be control
torques.

In many technical applications, such as satellite spin stabilization, some guidance systems
of rockets and torpedoes, gyroscopic systems, etc. (Kazamarov et al. 1967), engineers have to
deal with an axially-symmetrical body spinning about the symmetry axis with constant angular
velocity (usually, that velocity is chosen high enough to impart the gyroscopic, i.e. stabilizing,
effect to the body). Assuming for certainty the symmetry axis to be the Z -axis, i.e. assuming
JX = JY = J , and denoting by � = const the constant angular velocity about that axis44 yields,
instead of Equation (1.168), a set of two equations about the transversal axes X and Y :

J
dωx

dt
+ aωy = Mx (1.170)

J
dωx

dt
− aωy = My, (1.171)

44 That velocity is imparted to the body at the beginning (at zero time), and, as a first approximation, can be accepted
as constant if Mz = 0, i.e. in the case of neglecting the influence of various external disturbances and applying no
control torques about the symmetry axis.
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Figure 1.34 Block diagrams of a spinning axially symmetrical body. (a) initial block diagram; (b)

equivalent block diagram with direct cross-connections.

where

a = (JZ − J )� = const. (1.172)

Hence, we obtain a set of two linear cross-connected differential equations with respect to the
angular velocities ωx and ωy , with the constant antisymmetrical cross-connections a [Equation
(1.172)]. If we pass to operator form, then the block diagram with inverse antisymmetrical
connections shown in Figure 1.34(a) corresponds to these equations. An equivalent block
diagram with direct cross-connections is given in Figure 1.34(b). This block diagram represents
the following matrix operator equation, which is the result of transformation of initial Equations
(1.170) and (1.171): [

ωx

ωy

]
= 1

J 2s2 + a2

(
Js a

−a Js

) [
Mx

My

]
. (1.173)

The specific pattern of the cross-terms in Equations (1.170), (1.171) and (1.173) has led to an
idea of using some duly chosen complex-valued coordinates instead of the system coordinates.
If we introduce the complex angular velocities and control torques:

ω̄ = ωx + jωy, M̄ = Mx + j My, (1.174)

then, multiplying Equation (1.171) by the imaginary unit j and adding to Equation (1.170)
yields

J
dω̄

dt
+ ja = M̄ (1.175)

or, in the operator form, ω̄ = Wc(s)M̄ , where the function

Wc(s) = 1

Js + ja
(1.176)

is called the complex transfer function (Krassovski 1957).
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Thus, the conversion to complex coordinates [Equation (1.174)] allows decreasing of twice
the order of initial Equations (1.170) and (1.171), although the resulting equation has complex
coefficients. At first, this approach was mainly used in the engineering mechanics and theory
of gyroscopes, and, afterwards, it was adopted in the control theory.45 It should be noted that
owing to complex coefficients, the complex transfer functions generally lose the symmetry
with respect to the ordinate axis in the plane of Bode diagrams, and distribution with respect
to the real axis in the plane of Nyquist plots – with respect to the real axis, as well as the
symmetry of poles and zeros.46

Apply now to Equation (1.173) the results of the present section, noticing that the system
is antisymmetrical. Based upon Equation (1.166), we immediately obtain

q1,2(s) = 1

J 2s2 + a2
(Js ± ja) = 1

Js ∓ ja
, (1.177)

i.e. one of the CTFs associated with the two-dimensional antisymmetrical system coincides
with the complex transfer function Wc(s) [Equation (1.176)]. This once more verifies the
conclusion that for systems with fixed parameters, the approach in terms of the CTFs embraces
as a special case many results of the complex coordinates and transfer functions method.47

Example 1.10 One of the classical instances of nonrobust MIMO systems is the two-
dimensional system discussed by J. K. Doyle and others (Doyle 1984; Packard and Doyle
1993). The transfer matrix of that system has the form

W (s) = 1

s2 + a2

(
s − a2 a(s + 1)

−a(s + 1) s − a2

)
︸ ︷︷ ︸

W1(s)

, a = 10 (1.178)

and is antisymmetrical. Introducing into this system the unit negative feedback and static
regulator K = diag{Ki } = I , we obtain a closed-loop system, both roots of which are equal
to −1. In Doyle (1984) and Packard and Doyle (1993), it is indicated that breaking by turns
one loop at a time, one can erroneously infer that the system has an infinite gain margin and a
phase margin of 90◦. However, simultaneously changing the unit gains in the separate channels
to K1 = 1.1 and K2 = 0.9 makes the system unstable! Consider now the system in Equation
(1.178) in terms of the CTFs. Note first that this system, being formally very similar to the
control system for the spinning axially-symmetrical body of Example 1.9, possesses rather
original features. Thus, despite the scalar multiplier 1/(s2 + a2) in Equation (1.178), the poles
p1,2 = ± ja of the latter are not the absolute poles of the open-loop system. This can readily be
checked by determining that the matrix W1(s) in Equation (1.178) is singular for s1,2 = ± ja
[this is due to the fact that the values s1,2 = ± ja are zeros of the matrix W1(s) belonging to

45 Seemingly, the first works in the feedback control theory on the complex coordinates and transfer functions method
belong to Krassovski (1957).

46 See also Section 1.1.4.
47 The complex coordinates and transfer functions method allows the united handling of two- and three-dimensional

antisymmetrical systems having single-channel alternating current sections with amplitude-phase modulation of
signals (Kazamarov et al. 1967). Strictly speaking, such systems are described by differential equations with
periodic coefficients.
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different CTFs and each of these zeros compensates one of the poles p1,2 = ± ja]. Besides, at
the zero frequency ω = 0, the eigenvalues of the matrix W (s) are

q1,2( j0) = −1 ± j
1

a
, (1.179)

which, in accordance with Remark 1.7, implies positive feedback. These features also appear
in the frequency characteristics. It is easy to show that the CTFs q1,2(s) of the system [Equation
(1.178)] are

q1(s) = 1 + ja

s − ja
, q2(s) = q̃1(s) = 1 − ja

s + ja
. (1.180)

The characteristic gain loci q1( jω) and q2( jω) shown in Figure 1.35(a) and (b), in which the
dashed lines correspond to q2( jω), do not encircle the critical point (−1, j0), i.e. the system is
stable. The enlarged area around the origin is shown in Figure 1.35(b), in which the bold dots
indicate the zero frequency ω = 0.48 These points are quite close to (−1, j0), which suggests
the need to study in detail their behaviour under small perturbations of gains of the static
regulator K .

If we denote the perturbations of gains by �K1 and �K2, then it can be shown that the
starting points q1,2( j0) of the characteristic gain loci are described by the expression

q1,2( j0) = −2 + �K1 + �K2

2
±

√
(2 + �K1 + �K2)2

4
− (1 + �K1)(1 + �K2)(a2 + 1)

a2
.

(1.181)

For zero perturbations �K1 = �K2 = 0, Equation (1.181) coincides, naturally, with Equation
(1.179). For nonzero but equal by magnitude and sign deviations �K1 = �K2 = �K , we have,
from Equation (1.181):

q1,2( j0) = (1 + �K )

(
−1 ± j

1

a

)
(1.182)

i.e. the starting points q1,2( j0) shift proportionally to perturbations �K , approaching or moving
away (depending on the sign of �K ) from the origin. Since, for identical perturbations �K ,
both loci q1( jω) and q2( jω) are multiplied by a real factor (1 + �K ), it is easy to understand
that the form of these loci does not change. This means that the system in Equation (1.178)
cannot become unstable under arbitrary large but identical �K1 and �K2. The picture changes
drastically if the perturbations �K1 and �K2 have different signs. Assuming, for simplicity,
that these perturbations are the same by magnitude, i.e. assuming in Equation (1.182) that
�K1 = −�K2 = �K , yields

q1,2( j0) = −1 ± j
1

a

√
(a2 + 1)�K 2 − 1, (1.183)

48 The characteristic gain loci q1( jω) and q2( jω) considered in the range −∞ ≤ ω ≤ +∞ are complex conjugate,
i.e. symmetrical with respect to the real axis.
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Figure 1.35 Characteristic gain loci of antisymmetrical system [Equation (1.178)]. (a) general view;

(b) area around the origin; (c) the CTFs q1( jω) and q2( jω) for �K1 = −�K2 = 0.15.

from which it is evident that for49

�K = 1√
a2 + 1

≈ 0.0995, (1.184)

both starting points of the characteristic gain loci q1( jω) and q2( jω) coincide with the critical
point (−1, j0). If we continue increasing �K by magnitude, the starting points move from
the critical point along the real axis in opposite directions; as a result, one of the characteristic

49 Equation (1.184) was obtained in (Skogestad and Postlethwaite 1995), based on the characteristic equation of the
closed-loop system.
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gain loci will necessarily encircle the point (−1, j0) and the system will become unstable.
The gain loci q1( jω) and q2( jω) in the area around the origin for �K1 = −�K2 = 0.15 are
shown in Figure 1.35(c), confirming that the locus q1( jω) encircles (−1, j0) [slightly larger
perturbations are taken here to obtain more visual results, as, for �K1 = −�K2 = 0.1, the
starting points of q1( jω) and q2( jω) actually merge with (−1, j0)]. It is interesting to note
that the shapes of the loci have essentially changed in the discussed case. Here, we have,
for −∞ ≤ ω ≤ +∞, one ‘large’ closed contour corresponding to q1( jω) and one ‘small’,
corresponding to q2( jω), i.e. now, the loci are not complex conjugate. The point is that for
different signs of �K1 and �K2, the system loses the property of antisymmetry and belongs
to the class of general MIMO systems.

1.4.4 Characteristic transfer functions of complex circulant and
anticirculant systems

The fact that the canonical basis of any circulant or anticirculant transfer matrix W (s) does not
depend on the specific form of its elements w0(s), wi (s) (i = 1, 2, . . . , N − 1) and coincides
with the orthogonal basis composed of the normalized eigenvectors of the permutation matrix
U [Equation (1.113)] or anticirculant permutation matrix U− [Equation (1.137)] plays a cru-
cial role in determining the CTFs of complex systems belonging to the discussed classes. In
Section 1.2, it was noted50 that if the block diagram of an open-loop general MIMO system
consists of different matrix elements connected in series, in parallel or forming inner feedback
loops, then, for determining the CTFs, it is necessary to find the resultant transfer matrix
W (s), based upon standard rules of matrix block diagram transformation (Morozovski 1970).
In such cases, nothing can be said about the relationship of the CTFs qi (s) of W (s) with the
corresponding CTFs of the separate matrices constituting W (s), since, in general, all these
elements are brought to diagonal form in different canonical bases.51

The situation is quite different for MIMO systems with circulant or anticirculant transfer
matrices. In the following, analyzing complex circulant and anticirculant systems, we assume
that all matrix elements constituting the open-loop system are circulant or anticirculant, i.e.
we exclude the situations in which the individual elements do not belong, but their sum,
product or any other combination belong, to the mentioned classes. Besides, since the structures
of the CTFs and eigenvectors (canonical basis axes) of circulant and anticirculant transfer
matrices are actually identical, we discuss only circulant systems. Consider, first, the series
connection of m matrix elements described by the circulant matrices Wk(s) (k = 1, 2, . . . , m)
[Figure 1.36(a)].

In accordance with the general rules (Morozovski 1970), the transfer matrix W (s) of such
a connection is equal to the product of transfer matrices of the individual elements arranged
in the reversed order

W (s) = Wm(s)Wm−1(s) . . . .W2(s)W1(s). (1.185)

Since the product of any number of circulant matrices yields a matrix of the same type
(Voevodin and Kuznetsov 1984), the matrix W (s) [Equation (1.185)] is circulant for any m.

50 See Remark 1.2.
51 All the indicated matrix blocks of a general MIMO system are brought to diagonal form in the same canonical

basis if all the corresponding transfer matrices are commutative (see also Remark 1.10).
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Figure 1.36 Basic structural connections of circulant elements. (a) series connection; (b) parallel con-

nection; (c) feedback connection.

Further, taking into account that each matrix Wk(s) in Equation (1.185) has the canonical
representation of the form

Wk(s) = Cdiag{qk
i (s)}C∗, (1.186)

where C is the unitary matrix formed by the eigenvectors ci of the permutation matrix U
[Equation (1.113)], and the same representation has the resultant matrix W (s), instead of
Equation (1.185), we can write

W (s) = Cdiag{qi (s)}C∗ = Cdiag{
m∏

k=1

qk
i (s)}C∗, (1.187)

from which there immediately follow N equalities

qi (s) =
m∏

k=1

qk
i (s), i = 1, 2, . . . . , N . (1.188)

Thus, the i th CTF qi (s) of the series connection of m circulant elements is equal to the product
of the corresponding ith CTFs of the individual elements. It should be emphasized that the
order of connection does not play any role, i.e. these matrix elements can be interchanged just
as in the case of usual scalar elements in SISO systems (Kuo 1995).



JWBK226-01 JWBK226-Gasparyan January 2, 2008 20:47 Char Count=

72 Canonical Representations and Stability Analysis of Linear MIMO Systems

Let us find out now the properties of the parallel connection of m circulant elements [Figure
1.36(b)]. In this case, the resultant matrix W (s) is also circulant and equal to the sum of the
individual matrices, i.e.

W (s) =
m∑

k=1

Wk(s). (1.189)

From Equation (1.189), taking into account that W (s) is circulant, we obtain

W (s) = Cdiag{qi (s)}C∗ = Cdiag

{
m∑

k=1

qk
i (s)

}
C∗ (1.190)

and

qi (s) =
m∑

k=1

qk
i (s), i = 1, 2, . . . . , N . (1.191)

Hence, the i th CTF qi (s) of the parallel connection of m circulant elements is equal to the sum
of the corresponding ith CTFs of the individual elements.

Consider, finally, the feedback connection of two circulant elements [Figure 1.36(c)], as-
suming for certainty the negative feedback. The transfer matrix W (s) of such a connection,
relating the input and output vectors x and y, is

W (s) = [I + W1(s)W2(s)]−1W1(s). (1.192)

Substituting the canonical representations in Equation (1.186) into this expression yields

W (s) = Cdiag{qi (s)}C∗ = Cdiag

{
q1

i (s)

1 + q1
i (s)q2

i (s)

}
C∗. (1.193)

From Equation (1.193), it is evident that the matrix W (s) is circulant (as it is brought to diagonal
form in the canonical basis of the permutation matrix U ), and the CTFs of W (s)

{qi (s)} = q1
i (s)

1 + q1
i (s)q2

i (s)
(1.194)

i = 1, 2, . . . , N

are expressed through the i th CTFs q1
i (s) and q2

i (s) of W1(s) and W2(s) by the same formulae
as usual SISO transfer functions in the case of nonunit negative feedback.

Now, it is clear that any arbitrary complex connection pattern of circulant elements forming
the open-loop MIMO system can be described by a certain resultant circulant matrix W (s). For
determining the CTFs qi (s) of the latter, we have to replace the matrix block diagram of the
open-loop circulant system with a scalar block diagram analogous by form, in which, instead
of the matrix elements Wk(s), the CTFs qk

i (s) are shown.52 The obtained block diagram can be

52 Recall that these CTFs can be found in analytical form for any number N of separate channels.
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handled in just the same way as a common diagram of a SISO system. It must be emphasized
once more that it is possible because all circulant (and anticirculant) matrices are brought to
diagonal form in the same canonical basis.

Example 1.11 Consider the three-axis gyrostabilized platform described in Chorol et al.
(1976), in which angular velocities are measured by special devices with amplitude-phase
modulation of signals. The expanded block diagram of the system is depicted in Figure 1.37.
If the reference voltage has a nonzero phase shift γ , then, among the system channels,
there appear direct antisymmetrical connections. Besides, the noncoincidence of the reso-
nance frequency in the measuring devices with the carrier frequency results in reverse an-
tisymmetrical connections with coefficients Kr . The corresponding matrix block diagram
of the gyrostabilized platform is shown in Figure 1.38 (Sobolev 1973), in which U de-
notes the permutation matrix of order 3 × 3. The inspection of that block diagram shows
that the system belongs to uniform antisymmetrical systems. Therefore, based on the results of

cos γ

cos γ

sin γ

−sin γ

1

1

1

Kr

−Kr

w(s)

w(s)

w(s)

cos γ

cos γ

sin γ

−sin γ

1

cos γ 1

Kr

−Kr

cos γ

sin γ

−sin γ

1

Kr

−Kr

Figure 1.37 Expanded block diagram of the three-axis gyrostabilized platform.
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cos γI

cos γI

sin γU KrU

−sin γU T −KrU T

I

I

w(s) I

Figure 1.38 Matrix block diagram of the gyrostabilized platform.
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cos γ

λrsin γ λrKr

−λr
−1sin γ −λr

−1Kr

1

1

w(s)

Figure 1.39 Block diagram of one-dimensional characteristic systems (i = 1, 2, 3).

Section 1.3,53 we can draw equivalent block diagrams of one-dimensional characteristic sys-
tems. For this purpose, we must replace all vector connections in Figure 1.38 with scalar
ones. Then, we must replace the permutation and unit matrices U and I with, respectively, the
eigenvalues λi and ones (Figure 1.39), where, based on Equation (1.131), the eigenvalues of
U are

λ1 = 1, λ2,3 = cos 120◦ ± j sin 120◦ = −0.5 ± j0.866. (1.195)

Note that in Figure 1.39, we take into account that the matrix U is orthogonal, i.e. its inverse
matrix coincides with the transposed, and that the eigenvalues of any matrix of simple structure
and of its inverse matrix are mutually inverse. As an exercise, the reader can check that the
CTFs of the open-loop characteristic systems determined by the block diagram in Figure 1.39
have the following form:

q1(s) = 2(cos γ − Kr sin γ )

1 + K 2
r

w(s),

q2,3(s) = 2[cos γ − Kr sin γ ± j0.866(sin γ + Kr cos γ )]

1 + K 2
r

w(s). (1.196)

1.5 MULTIVARIABLE ROOT LOCI

The root locus method proposed by Evans in 1948 is, together with the frequency-domain
approaches, one of the key and most effective methods of the linear SISO systems analysis

53 See Remark 1.10.
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and design (Evans 1948, 1950, 1954; Horowitz 1963; Krall 1970; Kuo 1995; Ogata 1970).
Based upon a number of simple graphical rules and procedures, the root locus technique allows
predicting, given the distribution of zeros and poles of an open-loop SISO system, the behaviour
of the roots of the closed-loop system, as the total gain (or any other parameter) changes
from zero to infinity. Simplicity and clearness of that method predetermined its exceptional
popularity among practising engineers, which, in turn, stimulated the strong interest of scientists
and researchers. Later, there appeared other variants of root locus techniques, such as the
logarithmical root locus method (Kuzovkov 1959; Glaria et al. 1994), the analytical method
of Bendrikov and Teodorchik (1964), Uderman’s method (1963), the method of generalized
root loci (Rimski 1969), etc.

With progress of the multivariable control theory, that topic became the object of re-
searchers’ close attention. Frequently, in this connection, systems with two inputs and out-
puts or some special classes of multivariable systems were considered. Thus, the proper-
ties of root loci of two- and three-dimensional systems with identical channels and rigid
antisymmetrical cross-connections were discussed in Bendrikov and Ogorodnikova (1967,
1968) and Fortescue (1976). The problem of general properties of multivariable root loci
(called also root trajectories) was studied at great length in Owens (1976), Shaked (1976),
Kouvaritakis and Shaked (1976), Postlethwaite and MacFarlane (1979), Hung and MacFar-
lane (1981), etc.54 Some specific features of multivariable root loci, having no analogues
in the one-dimensional case, were discovered and theoretically justified in Kouvaritakis and
Shaked (1976) and Kouvaritakis and Edmunds (1979) on the basis of state-space represen-
tation of MIMO systems. Thus, in these and some other works, it was established that the
root loci of MIMO systems may intersect or superimpose; in certain situations, the roots of
the MIMO system may move along some trajectory, and then change their movement to the
opposite direction along the same trajectory, etc. It was also shown that in the case of ‘in-
finite’ zeros, i.e. if the total number of poles exceeds the number of ‘finite’ zeros (which is
a usual situation), the MIMO system may have several groups of asymptotes (and not one
group, as in the SISO case) constituting the so-called Butterworth configuration (or pattern).55

Besides, generally, the centres (pivots) of these groups are not necessarily located on the
real axis.

The task of constructing multivariable root loci in terms of the CTFs was discussed in
the pioneering works of MacFarlane and Postlethwaite (1977, 1979). The theory of algebraic
functions and concept of Riemann surfaces used by them proved to be very fruitful. In particular,
this approach allowed establishing, with necessary mathematical rigour, the basic properties
(as well as explaining some ‘strange’ features) of multivariable root loci, attributing these
properties and features to the presence of branch points and to the location of root loci branches
on different sheets of a unique Riemann surface.

Unfortunately, many theoretical results of the cited works considerably yield in simplicity
to their classical counterparts. As a result, it is very difficult to apply them in practice. A
paradoxical situation has arisen. Many modern mathematical and application program packages
enable the user to find without difficulty the roots of closed-loop MIMO systems of, actually,
any dimension, as well as to draw the root loci corresponding to changes of any parameter of

54 Another essential and extensive branch of research concerns the asymptotic behavior of linear optimal systems
roots, as a scalar weight coefficient in the quadratic cost index changes from 0 to ∞ (Kwakernaak 1976; Shaked
and Kouvaritakis 1977; Kouvaritakis 1978).

55 An r -order Butterworth pattern consists of r straight, evenly spaced lines starting from a common centre (pivot), and
forming with positive direction of the real axis angles, equal to (2k + 1)180◦/r (k = 0, 1, . . . , r − 1) (Butterworth
1930).
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kI W(s)

Figure 1.40 Block diagram used for the study of multivariable root loci.

the system. On the other hand, the algorithmical procedures for finding the pivots of MIMO
systems asymptotes described, for example, in Kouvaritakis and Shaked (1976) considerably
exceed in complexity the mentioned straightforward procedures of finding the multivariable
root loci. This should not be interpreted as a call to reject research in that direction; we should
just clearly apprehend that theoretical results are needed, chiefly to explain, understand and
justify the character and behaviour of multivariable root loci, and not for immediate utilization
in numerical computations. It is worth noting that even in the case of SISO systems, an
engineer is now free from the burden of calculating root loci ‘by hand’. This task may readily
be solved using the application packages of many companies and firms. Thus, the function
rlocus available in The Control System Toolbox in MATLAB is destined for constructing the
root loci of SISO systems given the transfer function of the open-loop system. Similar functions
exist and in many other packages.

Concluding our introduction, note that, below, we consider properties of multivariable root
loci in the context of their relation to analogous properties of usual root loci known from the
classical control theory (Evans 1954; Horowitz 1963). At that, we base on the MIMO system
representation in terms of the CTFs. Therefore, many significant results demanding the state-
space representation of MIMO systems or using the mathematical apparatus that is beyond the
scope of this book are omitted or replaced by a heuristic interpretation from the standpoint of
the CTFs method.

1.5.1 Root loci of general MIMO systems

The matrix block diagram of a general linear MIMO system used for the study of multivariable
root loci is shown in Figure 1.40, in which W (s) is the transfer matrix of the open-loop system
of order N × N , I is the unit matrix and k is a real scalar multiplier.

The problem is to construct the root loci of the MIMO system as the ‘gain’ k changes
from zero to infinity.56 Recalling the common assumption of no repeated CTFs qi (s), the
characteristic equation of the closed-loop MIMO system can be represented as

det[I + kW (s)] =
N∏

i=1

[1 + kqi (s)] = 0, (1.197)

where it is taken into account that multiplication of a matrix by a scalar results in the multiplica-
tion of all the matrix eigenvalues by the same scalar. Evidently, Equation (1.197) is equivalent

56 For brevity, we consider only the case of positive k. The case of negative k is left for the reader as an exercise.
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to the following system of N equations:

1 + kqi (s) = 0 or kqi (s) = −1, i = 1, 2, . . . , N , (1.198)

from which it is clear that the roots of the closed-loop MIMO system must satisfy, for any
k = const and some i , the following two conditions:

|kqi (s)| = 1, arg qi (s) = ±(2r + 1)180◦, r = 0, 1, 2, . . . . (1.199)

In other words, the roots of the closed-loop MIMO system are those values of complex variable
s for which some CTFs qi (s) become real negative numbers.

An apparent similarity of conditions in Equation (1.199) to the corresponding condi-
tions for SISO systems (Evans 1954; Horowitz 1963) suggests that no essential problems
should arise in extending to the multivariable case the standard ‘one-dimensional’ root lo-
cus techniques. Unfortunately, everything is far from being so simple. As was indicated in
Section 1.2, in general, the CTFs of MIMO systems are algebraic functions located on differ-
ent sheets of a Riemann surface and constituting a unique mathematical entity. Based upon
Equation (1.46),

detW (s) = Z (s)

P(s)
=

N∏
i=1

qi (s), (1.200)

where Z (s) and P(s) are the zeros and poles polynomials of the open-loop MIMO system,
we know that zeros and poles of the open-loop system coincide with all zeros and poles
of all the CTFs qi (s).57 However, in the general case, we do not know how the zeros and
poles of the MIMO system are distributed among different characteristic systems, or, more
strictly, how these zeros and poles participate, taking into account the branch points, in forming
the branches of the root loci on different sheets of the Riemann surface. If we knew this
information, then, really, it would not be difficult to find the multivariable root loci based upon
Equations (1.197)–(1.199) and using common classical procedures. At the same time, based
upon Equations (1.197)–(1.200), we can draw some conclusions and formulate a number of
rules which, as was accentuated before, serve rather for the understanding of the properties
of multivariable root loci already constructed, by means of the computer aids, than for using
them for calculations ‘by hand’ (Gasparyan et al. 2006). We shall list these rules following the
order existing in the classical control theory (Evans 1954).

Rule 1: Number of root loci. The number of root loci is equal to the total number n of
poles of the open-loop MIMO system, i.e. to the degree n of the poles polynomial P(s); the
multivariable root loci are the combination of the set of root loci of the SISO characteristic
systems. This rule immediately follows from Equations (1.58) and (1.59), and does not require
any special comments.

Rule 2: Multivariable root loci are continuous curves. The root loci are continuous because
the roots of Equation (1.198) are continuous functions of k, i.e. the arbitrarily small changes of
k result in the arbitrary small displacements of any roots of these equations.58 The derivatives

57 Further, we shall assume that the poles polynomial P(s) is monic, i.e. its higher degree coefficient is 1.
58 See also Remark 1.6 concerning the roots of the closed-loop MIMO systems that do not change as the coefficient

k changes.



JWBK226-01 JWBK226-Gasparyan January 2, 2008 20:47 Char Count=

78 Canonical Representations and Stability Analysis of Linear MIMO Systems

of multivariable root loci are continuous everywhere except for the denumerable number of
the points at which the CTFs qi (s) become infinity, or their derivatives with respect to s are not
determined, or dqi (s)/ds = 0, or, finally, k = 0. This can be readily checked, differentiating
Equation (1.198) with respect to k, which yields

ds

dk
= − qi (s)

k(dqi (s)/ds)
. (1.201)

Note that, unlike the SISO case, in which the derivatives of root loci lose their continuity only at
the poles of the open-loop system or at the points of the loci intersections, in the multivariable
case, we have, in addition, the branch points, at which the branches of root loci pass from one
sheet of the Riemann surface to another. At these points, the values of some (two or more)
CTFs coincide. In the simplest case of two-dimensional systems, the branch points are those
values of s for which the CTFs q1(s) and q2(s) are equal. From Equation (1.79), it is evident
that these branch points are given by the expression

D(s) = tr{W (s)}2 − 4 detW (s) = 0, (1.202)

where D(s) [the radicand in Equation (1.79)] is called the discriminant of the algebraic function.
In the case of MIMO systems of an arbitrary dimension (N ≥ 3), the branch points are also
determined by equating to zero the discriminant; however, in the general case, simple analytical
expressions for D(s) do not exist (Bliss 1966; Postlethwaite and MacFarlane 1979).

Rule 3: Starting and ending points of multivariable root loci. The root loci commence at the
poles of the CTFs qi (s) (for k = 0) and terminate at the zeros of qi (s) (for k = ∞). The condition
k = 0 physically means breaking the feedback loop of the MIMO system, i.e. the roots of the
MIMO system must coincide with poles of the open-loop system and, owing to Equation
(1.200), with the set of all poles of the CTFs qi (s) (i = 1, 2, . . . , N ). If k tends to infinity,
then, to preserve the equality kqi (s) = −1, the CTFs qi (s) must tend to zero, i.e. the complex
variable s must tend to zeros of qi (s), or, taking into account Equation (1.200), to zeros of the
open-loop transfer matrix W (s). A significant feature of MIMO systems is that in the presence
of branch points, to the zeros of the i th CTF qi (s) generally can tend the root loci that begin
at the poles of the CTF qr (s)(r �= i) belonging to the adjacent sheets of the Riemann surface.

Rule 4: Number of the branches tending to infinity. If the i th CTF qi (s)has npi poles and nzi

zeros and there are no branch points, then, as k → ∞, those of the npi root locus branches of
the given CTF which do not tend to nzi finite zeros must tend to infinity, to preserve equality
[Equation (1.198)]. This implies that for each qi (s), we have ei = npi − nzi locus branches
tending to infinity and, in all, there are e = n − m such branches, where n and m are the
degrees of the poles and zeros polynomials P(s) and Z (s) in [Equation (1.200)].59 In the
presence of branch points, on the i th sheet of the Riemann surface can tend to infinity the locus
branches that begin at the poles of the CTFs belonging to the adjacent sheets of the Riemann
surface. In the latter case, the total number of the root loci approaching infinity, naturally, does
not change.

59 These root trajectories are frequently referred to as tending to infinite zeros of the MIMO system.
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Figure 1.41 A third-order group of asymptotes.

Rule 5: Angles and pivots of asymptotes of multivariable root loci. Unfortunately, in contrast
to SISO systems, in the case of MIMO systems, there are no simple formulae expressing the
angles and pivots of the root loci asymptotes through the poles and zeros of the open-loop
system. Therefore, we shall give here only some comments concerning the possible asymptotic
behaviour of multivariable root loci, explaining, as far as possible, that behaviour in terms of
the CTFs method. Since Rule 5 is a logical continuation of the preceding one, the presence of
branch points is also of great importance here. If the i th CTFs qi (s) is situated on a one-sheeted
(isolated) Riemann surface, i.e. it has no branch points, then, in principle, to find the pivot and
angles of the asymptotes of that CTF, one can use the expressions analogous to those well
known in the classical control theory (Evans 1954; Horowitz 1963).60 In the general case, i.e.
in the presence of branch points, the pivots and angles of asymptotes of the multivariable root
loci situated on the i th sheet of the Riemann surface and associated with the i th CTF qi (s)
depend also on the poles, zeros and ‘gains’ of the adjacent CTFs qr (s)(r �= i). It is possible,
however, to indicate some general patterns of relationship. In the MIMO system of order N ,
there may exist N groups of asymptotes constituting the Butterworth configuration, in which
each group corresponds to one of the CTFs qi (s) (i = 1, 2, . . . , N ) of the open-loop MIMO
system. The pivots of these groups can be situated both on the real axis and at the arbitrary
points of the complex plane, where all complex pivots must be complex conjugate in pairs.
The latter property ensues from the fact that the multivariable root loci as a whole must be
symmetrical with respect to the real axis.

A third-order group of asymptotes with a complex pivot at the point μ is schematically
depicted in Figure 1.41, in which the angles between the asymptotes are equal to 120◦. The
starting angle of the asymptotes θ depends on the specific characteristics of the MIMO system.
Another fundamental distinction of the multivariable root loci from the root loci of SISO
systems should be pointed out. In the one-dimensional case, if e = 1, i.e. if the number of
poles exceeds the number of zeros by one, then the corresponding asymptote always belongs
to the real axis and the ‘redundant’ pole61 pr tends to infinity remaining on that axis. In
the multivariable case, if any i th CTF qi (s) has the difference ei = npi − nzi = 1, then the
corresponding pole pr does not necessarily tend to infinity along the real axis, and its asymptote

60 We shall discuss such situations in the next two parts of this section.
61 This pole, naturally, can be only real.
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k→∞ j

pr

θ

Figure 1.42 A possible asymptote of a real pole of qi (s) for ei = 1.

may form with that axis a certain constant angle θ (Figure 1.42). In such situations, however,
there always exists a CTF qr (s)(r �= i) with the identical pole pr , but having a ‘complex
conjugate’ asymptote situated in the lower half-plane.

Rule 6: Sections of the real axis, belonging to multivariable root loci. In the SISO case, the
root trajectories coinciding with the finite or semi-infinite intervals of the real axis can be found
very easily – those are the sections of the real axis located to the left of the odd number of the
real-valued singular points62 of the open-loop transfer function (Evans 1954; Horowitz 1963).
To a certain extent, the sections of the multivariable root loci belonging to the real axis can
also be found relatively easily, but the main obstacle here is that there is a possibility that at
the same point of the real axis, there may exist more than one branch of the root loci. In other
words, in the multivariable case, we have to determine not only the real sections of the root
loci, but also their number in each section. As always, for the high-dimension MIMO systems,
this procedure is rather difficult. However, for the case of two-dimensional systems, we can,
following Yagle (1981), indicate some simple rules for finding the sought sections. For such
systems, based upon Equation (1.198), we have that the real values of complex variable s may
belong to the root loci if Equation (1.79), rewritten below,

q1,2(s) = tr{W (s)}
2

±
√

tr{W (s)}2

4
− detW (s) (1.203)

produces real and negative values for q1,2(s). As the open-loop transfer matrix W (s) [and,
consequently, the trace tr{W (s)} and the determinant detW (s)] always becomes a real-valued
numerical matrix for real values of s, then, from an inspection of Equation (1.203), it is easy to
determine under which conditions the CTFs q1,2(s) are real and negative. For this purpose, we
need to consider the possible values of the discriminant D(s) [Equation (1.202)]. Thus, for the
negative values detW (s) < 0, only one of the CTFs q1,2(s) [which corresponds to the minus
sign before the radical in Equation (1.203)] will be negative and, for that real value of s, we
have one branch of the root loci at the point s.

62 Here, and from now on, singular points means the poles and zeros.
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If detW (s) > 0, then, at the point s of the real axis, we may have either two or no branches.
For D(s) < 0, q1,2(s) [Equation (1.203)] are complex conjugate numbers and do not satisfy the
conditions of forming the roots of the closed-loop MIMO system [Equation (1.198)], i.e. the
real point s does not belong to the root loci. For D(s) > 0, we have to analyse two additional
conditions:

(a) if tr{W (s)} > 0, then none of the branches lies on the real axis at the point s, since both
values q1,2(s) [Equation (1.203)] will be positive;

(b) if tr{W (s)} < 0, then we have two branches of the root loci, since both values q1,2(s) will
be negative.

Finally, the zero value of the discriminant D(s) = 0 corresponds, as was stated above, to
the branch point, at which the CTFs q1,2(s) are equal, i.e. q1(s) = q2(s), and we have the
transition from one sheet of the Riemann surface to another. At that point, the direction of the
root trajectories along the real axis may change to the opposite.

In principle, there are similar rules for determining the number of real-valued branches of
the multivariable root loci for N > 2, under the additional restriction of no repeated real poles
and zeros of the open-loop MIMO system (Yagle 1981). We shall not dwell on them, as, for
an engineer, it is much simpler to construct directly the root loci of the investigated MIMO
system, rather than utilize the mentioned rules for finding the number of the root loci branches
at the various points of the real axis. In the next two sections, while discussing the root loci of
uniform as well as circulant and anticirculant MIMO systems, we shall give some quite simple
rules for determining the real branches of the root loci of the listed classes of MIMO systems,
which actually do not yield in simplicity to those in the SISO case.

Rule 7: Angles of departure and arrival of multivariable root loci. Here, we once again
encounter the situation already familiar to us from some of the preceding rules, namely that the
results existing in the literature are not very convenient for practical application (Shaked 1976)
and, with the programs for numerical computations of the multivariable root loci available,
the formulae for these angles play no role, since the angles of departure and arrival can be
found immediately on having constructed and plotted the trajectories. Historically, interest in
the angles of departure and arrival was most likely due to the absence of computer aids,63 when
the developer had to calculate the root loci of SISO systems with the help of a calculator or
a slide-rule, or by means of a special tool called the Spirule (very likely, many contemporary
readers are not even familiar with the latter device or the slide-rule) (Evans 1954).

Rule 8: Breakaway points of multivariable root loci. In the classical control theory, the term
breakaway point usually is used for the points at which two or more branches of the root loci
intersect (Evans 1954; Horowitz 1963). In the multivariable case, a significant and vital pecu-
liarity exists, which has already been mentioned above. Unlike the common SISO systems in
which we always have at the breakaway points a symmetrical picture of the ‘approaching’ and
‘leaving’ root trajectories (Figure 1.43), in the case of MIMO systems, two different situations
are possible. The first of them corresponds to the intersections of the root loci situated on one
sheet of the Riemann surface, related to the i th CTF qi (s), and is completely analogous to that
shown in Figure 1.43, i.e. all entering and leaving trajectories form a symmetrical picture. In

63 It is not excluded, of course, that in some tasks, knowledge of the departure and arrival angles can bring about
qualitative estimates about the investigated MIMO system, and therefore can present certain theoretical interest.
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Figure 1.43 The breakaway points of SISO systems. (a) l = 2; (b) l = 3; (c) l = 4 (l is the number

of trajectories).

the second situation, the picture is quite different; here, we have an apparent intersection of
the root trajectories in which the latter in fact belong to the different CTFs and are situated on
different sheets of the Riemann surface. In this case, the matter concerns not the approaching
and leaving root trajectories, but an apparent intersection of two different independent trajec-
tories, with arbitrary relative angles at the intersection point and with another character of the
continuation of the trajectories (each of them preserves the previous direction of its motion
after the intersection) (Figure 1.44).

The procedure of determining the breakaway points that are situated on the same, say the i th,
sheet of the Riemann surface is practically analogous to that known from the classical control
theory. Thus, if we have the intersection of two trajectories, then, at the point of intersection
s = so, the i th equation in Equation (1.198) must have two equal roots so, i.e. it can be expressed
in the form

1 + kqi (s) = (s − so)2 H (s) = 0. (1.204)

Therefore, at the point so, not only the expression [1 + kqi (s)] but also its derivative with
respect to s must be equal to zero, i.e. at that point, the condition dqi (s)/ds = 0 must also be
satisfied. Similarly, if trajectories of three roots of the i th characteristic system pass through
the point so, then the point s = so satisfies the corresponding equation in Equation (1.198)
and the first and the second derivatives of qi (s) with respect to s at the point so are equal to
zero. All this gives us analytical expressions for determining the breakaway points of the i th
characteristic system if, of course, we have an analytical expression of the CTFs qi (s) itself.

Rule 9: Intersection of the root loci with the imaginary axis. Just as in the SISO case (Evans
1954; Horowitz 1963), the intersections of multivariable root loci with the imaginary axis can

Figure 1.44 Intersections of the root loci of the CTFs situated on different sheets of a Riemann surface.
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be easily found with the help of frequency-domain techniques, such as Nyquist, Bode and
Nichols plots. Indeed, if we have, for instance, the Nyquist plots of the open-loop CTFs qi ( jω)
(i = 1, 2, . . . , N ), then the frequencies ω at the points of intersections, if any, of these plots
with the negative real axis64 determine the ordinates of the points at which the corresponding
branches of root loci intersect the imaginary axis. This follows from the fact that at the points
of intersection of qi ( jω) with the negative real axis, we have the equality arg qi ( jω) = ±180◦,
i.e. the phase condition of forming the roots of the closed-loop MIMO system [the second
condition in Equation (1.199)] is satisfied.

Rule 10: Sum and product of the MIMO system roots. In accordance with Viete’s theorem
(Derusso et al. 1965), the sum of the roots of a monic algebraic equation of order n is equal
to the coefficient of the term of degree n − 1 taken with the opposite sign, and the product
of the roots is equal to the absolute term multiplied by (−1)n . Based upon these properties,
it is possible to obtain some useful relationships between the sum and product of the roots
situated on the root loci of a MIMO system and the singular points of the transfer matrix W (s).
The characteristic equation of the MIMO system [Equation (1.197)] can be represented in the
following expanded form:

det[I + kW (s)] = 1 − ktr{W (s)} + . . . . + (−1)N k N detW (s) = 0, (1.205)

where the terms expressed through the sums of the principle minors of different orders [from the
second to the (N − 1)th] of W (s) are denoted by dots. After reducing to a common denominator,
this equation can be rewritten, taking into account Equation (1.200), in the form

P(s) − k P1(s) + . . . . + (−1)N k N Z (s) = 0, (1.206)

where P1(s) = P(s)tr{W (s)}, i.e. in the form of an equation of degree n with respect to s,
where n is the number of MIMO system poles. It is easy to understand that if the difference
between the orders of the numerator and denominator polynomials of all diagonal elements of
W (s) is greater than two, which is a very typical situation in practice, then the difference in the
orders of the poles polynomial P(s) and the polynomial P1(s) in Equation (1.206) will also
be greater than two. Therefore, the coefficient of the term of degree n − 1 in Equation (1.206)
is equal to the corresponding coefficient of the polynomial P(s) and does not depend on the
parameter k. This, in turn, implies that as k changes, the sum of the roots of the closed-loop
MIMO system must remain constant and equal to the sum of the poles of the open-loop system.
As a result, if some of the roots of the characteristic Equation (1.205) move in the complex
plane to the left, then some other roots of that equation must move to the right. Besides, the
product of the MIMO system poles, which is equal to the absolute term of Equation (1.206),
is proportional to k N and increases infinitely with adequate increasing of k. Consequently,
those branches of multivariable root loci that do not terminate at the finite zeros must tend to
infinity.

A straightforward extension of these statements to the case of individual characteristic
systems, the combination of the root loci of which constitutes the overall root loci of the MIMO
systems, is not so evident. If no branch points exist and the CTFs qi (s) can be represented as
a quotient of the two algebraic polynomials Mi (s) and Di (s) (we know that this is possible
for uniform, circulant and anticirculant systems), then, for those qi (s) for which the difference

64 The gain margins of the characteristic systems are determined at these points (see Section 1.1.4).
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between the numbers of poles and zeros exceeds two, i.e. ei = npi − nzi > 2, the sum of the
roots along the root loci of the given CTF is constant and does not depend on k. The reason is
that in the absence of branch points, the root loci of the corresponding CTFs lie on the isolated
one-sheeted surfaces. Then, this rule is a direct consequence of the same Viete’s theorem. If
ei > 2, then, instead of Equation (1.198), we can write

Di (s) + k Mi (s) = snpi + d1snpi −1 + (d2 + km0)snpi −2 + . . . . . . + (dnpi + kmnzi ) = 0,

(1.207)

where the d1 coefficient, taken with the opposite sign, is equal to the sum of all roots of that
equation, and is equal to the sum of all poles of the i th open-loop CTF. Since the coefficient
of the term of degree npi − 1 in Equation (1.207) does not depend on k, then, if some roots
on the i th sheet of the Riemann surface move to the right, the other roots must move to the
left, and their sum should be constant and equal to the sum of the poles of qi (s). Besides, the
product of the roots of Equation (1.207) increases with the increase in k, and, for dnpi = 0,
which is equivalent to the presence of zero poles in qi (s), this product is directly proportional
to the value of k. These properties are complete analogues of the corresponding properties of
the roots of common SISO systems (Evans 1954; Horowitz 1963).

In the presence of branch points, the picture becomes far more complicated. The chief
problem is that in this case, some trajectories pass from one sheet of the Riemann surface to
another. Therefore, as the coefficient k changes, there may be a change in the number of roots
on a certain sheet of the Riemann surface, with a corresponding change in the number of roots
on the adjacent sheet. This circumstance excludes generally the application to the individual
CTFs of the above-stated simple rules concerning behaviour of the root loci of the MIMO
systems taken as a whole.

In the classical control theory, one can find some other rules (Horowitz 1963), but we shall
restrict our discussion to the listed ones, since they are quite sufficient for understanding the
general features of multivariable root loci and their relationship with the root loci of common
SISO systems.

Remark 1.13 In Sections 1.2.2 and 1.2.3, the definition of the absolute poles and zeros, as
poles and zeros that are common to all CTFs qi (s) of the open-loop MIMO system was given.
From the above exposition, it ensues that from any absolute pole originate, taking into account
its multiplicity, exactly N branches of the root loci, and at any absolute zero terminate, taking
into account its multiplicity, exactly N branches of the root loci of the MIMO system; such
(generally, non-coincident) branches has each characteristic system. This can serve as another
equivalent definition of the absolute poles and zeros of MIMO systems.

Remark 1.14 In Remark 1.6, we indicated that in the presence of zero entries in the open-loop
transfer matrix W (s), the situations in which some transfer functions of the cross-connections
do not appear in the determinant detW (s) and their poles do not change on introducing the
feedback and become the poles of the closed-loop MIMO system are possible. These poles
represent the so-called degenerate branches of the multivariable root loci (Postlethwaite and
MacFarlane 1979), consisting of a set of isolated points that preserve their positions as the
coefficient k changes from zero to infinity.

Below, we give some specific examples which illustrate, on the one hand, the above-stated
general rules of behaviour of multivariable root loci and which show, on the other hand, how
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Figure 1.45 Root loci of the two-axis guidance system with transfer functions [Equation (1.65)]. (a)

α1 = 30◦, α2 = 20◦; (b) α1 = 30◦, α2 = −20◦.

difficult may be in some cases to predict, based upon the given open-loop transfer matrix W (s),
even the general character of the roots’ trajectories.

Example 1.12 Consider the two-axis general guidance system of Example 1.2. The root
loci of that system in the case of the transfer functions [Equation (1.65)] and for the same
two combinations of angles α1 and α2, as in Example 1.2: α1 = 30◦, α2 = 20◦ and α1 = 30◦,
α2 = −20◦, are shown in Figure 1.45. The crosses in Figure 1.45 denote the open-loop system
poles (p1 = 0, p2 = −0.2), the squares the closed-loop system roots (corresponding to k = 1)
and the triangles the branch points. The arrows show the directions of movements of the roots
as the coefficient k increases. As can be seen from these figures, we have two completely
different pictures of the root loci.

For α1 = 30◦, α2 = 20◦, when the eigenvalues of the cross-connections matrix R [Equation
(1.60)] are complex conjugate numbers, there is one branch point on the real axis at −0.2575.
For k = 0, the root trajectories begin at the indicated above poles of the open-loop system,
which are situated on the different sheets of the Riemann surface. As k increases, both poles
first shift along the real axis to the left. Then, when the left root reaches the branch point, it
passes to the adjacent sheet and begins moving in the opposite direction, towards the second
root. For k = 0.2039, both roots meet (notice, on the second sheet of the Riemann surface!) at
the point −0.2362, then depart from the real axis in opposite directions, and begin moving to
infinity along two asymptotes making angles ≈ ±17.85◦ with the negative real axis. For k = 1,
the closed-loop system has two complex conjugate poles: −0.768 ± j0.2755. Here, we have
encountered the specific feature of multivariable root loci, when some branches, beginning
their motion on one sheet of the Riemann surface, tend to infinity on the other sheet. This
confirms once more the fact that the CTFs constitute a unique mathematical entity and should
generally be considered a single whole.

For α1 = 30◦, α2 = −20◦, when the eigenvalues of R are real, the pattern of behaviour of
the closed-loop system roots drastically differs from that considered above. Here, there are
no branch points and the roots of each CTF move along the real axis, remaining on their own
sheet of the Riemann surface. The configuration of root loci for each CTF in this case is quite
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analogous to that of the root loci of the SISO systems, having one zero pole or one real negative
pole. For k = 1, this system has two real negative roots at the points −1.0764 and −0.4595.

Hence, depending on the specific forms of cross-connections and transfer functions of
MIMO systems, the root trajectories may have quite different characters, and it is very difficult
to predict the general behaviour of multivariable root loci. At the same time, if the root loci have
already been constructed, then it can be verified that they indeed obey the above-listed rules.

Let us proceed now to a system with more complicated transfer functions W1(s) and W2(s)
[Equation (1.66)]. The root loci of the systems for α1 = 0◦, α2 = 0◦, i.e. the root loci of the
isolated separate channels of the system, are given in Figure 1.46(a) and (b), which show that
as the coefficient k indefinitely increases, six branches of the root loci tend to infinity (two
branches in the first channel and four in the second).

The root loci of the cross-connected system for α1 = 30◦, α2 = 20◦, that is for complex
conjugate eigenvalues of the matrix R, are shown in Figure 1.46(c). The analysis of these root
loci gives the following picture. Since N = 2, we have two sheets of the Riemann surface.

On one of them, which we shall call the first, there are situated five poles of the CTF q1(s):
two zero poles p1

1,2 = 0 and three real poles:p1
3 = −2, p1

4 = −4, p1
5 = −8. On the second
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Figure 1.46 The root loci of the two-dimensional system [Equation (1.66)] for different combinations

of angles α1 and α2. (a) α1 = 0◦, α2 = 0◦ (the first channel); (b) α1 = 0◦, α2 = 0◦ (the second channel);

(c) α1 = 30◦, α2 = 20◦; (d) α1 = 30◦, α2 = −20◦.
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sheet, which corresponds to the CTF q2(s), there are two poles p2
1 = −5, p2

2 = −10 and one
zero z2

1 = −3. Three branch points exist in the complex plane, at s = −1.1545, −7.66 and
−7.954, denoted in Figure 1.46(c) by the small triangles. As k increases from the zero value,
the zero poles of the CTF q1(s) form two complex conjugate branches of the root loci and
move to the left; the root emerging from the pole p1

3 = −2 moves along the real axis to the
right, towards the roots that emerged from the origin.

The poles at points −4 and −5 first move to the left, and the poles at −8 and −10 move
to the right; thus, they are situated in pairs on the different sheets of the Riemann surface. For
k = 0.1151, the root on the first sheet, moving to the right from the pole p1

5 = −8, reaches
the branch point at −7.954, and, passing to the second sheet of the Riemann surface, begins
moving in the opposite direction, towards the root from the pole p2

2 = −10. For k = 0.1975,
both these real roots meet at the point −8.1622 and then go into the complex plane, making
angles ±90◦ with the real axis; thus, they form two branches of the root trajectories on the
second sheet of the Riemann surface which tend to infinity in parallel with the imaginary axis
(the second-order Butterworth pattern). The root of the first CTF, which emerged from the
pole p1

3 = −2, reaches, for k = 0.307, the branch point at −1.1545 and, passing to the second
sheet of the Riemann surface, begins moving in the opposite direction, towards the zero
z2

1 = −3.65 The two roots that emerged, on the first sheet, from the origin also change at that
moment the moving direction to the opposite, towards the right half-plane. For k = 0.3271, the
root of the second characteristic system, which emerged from the pole p2

1 = −5, reaches the
branch point at −7.66 and, after passing to the first sheet, begins moving to the right, towards
the root from −4. These two roots meet, for k = 0.9188, at the point −6.634 and, breaking
away from the real axis (and making with the latter the angles ±90◦), move in the first sheet
to the left, thereby forming with the two branches from the origin a fourth-order Butterworth
pattern.

It is interesting to note that in this example, we have encountered both variants of root loci
intersections; in Figure 1.46(c), we can see the root loci intersections on the same sheet (the
intersections on the real axis), as well as intersections of the branches situated on the different
sheets of the Riemann surface (the intersection of the two complex-valued branches). Note
also that the closed-loop system roots corresponding to k = 1 and marked in Figure 1.46(c) by
the squares indicate the system stability. This agrees with the results obtained in Example 1.2
by means of the generalized Nyquist criterion.

The root loci of the system for α1 = 30◦, α2 = −20◦, when the eigenvalues of the cross-
connection matrix R are real numbers, have quite another nature. These root loci are shown
in Figure 1.46(d) and, roughly speaking, can be viewed as the superposition of the root loci
of the isolated separate channels in Figure 1.46(a) and (b). In this case, there are no branch
points and therefore all trajectories remain within their own sheets of the Riemann surface.
However, the distribution of the poles of the CTFs q1(s) and q2(s) does not coincide with that
of the poles of transfer functions W1(s) and W2(s) [Equation (1.66)]. The inspection of the root
trajectories in Figure 1.46(d) shows that q1(s) and q2(s) can be represented, up to the values
of the real ‘gains’ K1 and K2, as

q1(s) = K1(s + 2)

s(s + 5)(s + 8)
, q2(s) = K2

s(s + 2)(s + 4)(s + 10)
. (1.208)

65 Note that in the case of rigid (static) cross-connections and a diagonal transfer matrix of the separate channels, the
zeros and poles of the open-loop MIMO system coincide with the zeros and poles of the separate channels.
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Figure 1.47 Root loci of the two-dimensional system of Example 1.3. (a) initial system; (b) varied

system.

Comparison of Equation (1.208) with Equation (1.66) shows that the distribution of poles and
zeros of q1(s) and q2(s) differs from that of W1(s) and W2(s) only by the fact that the poles
−10 and −8 have interchanged. Correspondingly, the pairs of the poles that form the complex
conjugate branches of the root loci in Figure 1.46(d) have changed.

Example 1.13 In Example 1.3, we discussed a peculiar two-dimensional system [Equation
(1.67)], which, having, at first sight, an infinite gain margin, becomes unstable under the
simultaneous additive increase of the first channel gain by 0.13 and decrease of the second
channel gain by 0.12. A question arises of how these changes affect the root loci of the system.
The root trajectories of the initial system are shown in Figure 1.47(a) and those of the varied
system with the diagonal regulator [Equation (1.70)] in Figure 1.47(b). The comparison of these
graphs confirms once more that the simultaneous change in the gains of separate channels,
but with opposite signs, results in drastic changes in the internal structure of the system. The
root loci of the initial system represent the combination of the root loci of two usual first-order
systems with the poles at −1 and −2, i.e. here, we have two real branches along which the
closed-loop system roots tend to −∞, remaining on their sheets of the Riemann surface.66

However, under the indicated variations of the gains, the picture completely changes. For
k = 0, both poles of the MIMO system belong to one CTF and are situated on one sheet
of the Riemann surface, at the points −1 and −2. As k increases, the closed-loop system
roots, emerging from these poles, move towards each other and (for k = 0.0144) meet at
the breakaway point s = −1.4346, where they depart from the real axis. Then, the complex
conjugate poles move along a circle to the right half-plane and meet (for k = 0.9284) on the real
axis at the point s = 2.7288. It should be accentuated that all these trajectories belong to one
sheet of the Riemann surface. After meeting on the real axes, the roots begin moving along that
axis in opposite directions, where the left root moves towards the branch point at s = 1.2916.
For k = 1.7191, the left root reaches the branch point, then passes to the second sheet of the
Riemann surface and, changing to the opposite moving direction, begins moving (like the root

66 In Figure 1.47(a), the root of the closed-loop first characteristic system coincides at point −2 with the pole of the
open-loop second characteristic system.
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remaining on the first sheet) in the positive direction of the real axis. All this is shown in Figure
1.47(b) by arrows. Note that the moving direction of both poles along the real axis to +∞
happens because the product of the roots must increase together with the increase in k (Rule 10).

Remark 1.15 In Example 1.13, we encountered an interesting situation in which, in the
presence of branch points, some CTFs may have no poles or zeros on their sheets of the
Riemann surface, but those sheets contain branches of multivariable root loci, starting from a
certain value of k.

In the classical control theory, there is one more rarely used rule called the shift of the root
loci starting points (Horowitz 1963). According to that rule, if we have found the roots of a
closed-loop SISO system which correspond to some value k = k0, then these roots may serve
as the poles of a certain new open-loop system, whose zeros coincide with the zeros of the
initial system. If the root loci of the new system are constructed as the new gain k ′ = k − k0

changes from zero to infinity, then these loci will be the continuation of the root loci of the
initial system, as k changes from 0 to k0. Or, similarly, the new root loci are part of the root loci
of the initial system as k changes from zero to infinity. In other words, the poles of the initial
system can always be replaced by a set of other poles that are situated at the corresponding
points of the root loci.

As applied to our situation, we can regard the root of the MIMO system which has appeared,
for some k = k0, through a branch point on the i th sheet of the Riemann surface as a fictitious
pole of a new CTF. Then, we can consider this sheet independently of all other sheets, assuming
that the new gain k ′ = k − k0 changes from zero to infinity. Such an approach may be useful
for understanding, to a certain extent, the properties of multivariable root loci within each sheet
of the Riemann surface.

Remark 1.16 The examination of the above examples allows us to draw another heuristic
conclusion about the branch points of multivariable root loci. With respect to the branches of
root loci, which begin on the given sheet of the Riemann surface, the branch points may be
regarded as some fictitious zeros to which the roots of the closed-loop characteristic systems
approach, obeying the general properties and features of the root loci. However, unlike the
actual finite or infinite zeros belonging to the same sheet, the roots of the closed-loop system
are ‘compensated’ (or ‘merged’) by the branch points for finite values of the gain k. The
reader can ascertain this conclusion by inspection of the root loci in Figures 1.46 and 1.47.
In particular, the behaviour of the root trajectories of the varied two-dimensional system in
Figure 1.47(b) immediately becomes apparent.

Hence, combining the last two remarks, we can say that from the ‘entrance’ side, each
branch point may be viewed as a fictitious zero to which one of the root trajectories of a
certain characteristic system approaches, obeying the customary rules. From the ‘exit’ side,
each branch point may be viewed as a fictitious pole from which one of the root trajectories of
some other characteristic system originates. It is of importance here that the ‘compensation’
of a pole on one sheet of the Riemann surface is accompanied by the ‘origination’ of a new
pole on another sheet, and all this occurs for some finite value of the parameter k.

1.5.2 Root loci of uniform systems

In Section 1.3, we pointed out that the structural features of uniform systems, i.e. MIMO
systems with identical channels and rigid cross-connections, enable us to bring very closely
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the methods of their investigation to the corresponding methods for usual SISO systems.
Largely, this concerns also the problem of constructing root loci of uniform systems. In fact,
that problem is reduced to the task of constructing N separate root loci of SISO characteristic
systems, and the rules of constructing these loci appear as a slight modification of the standard
rules known from the classical control theory (Evans 1954; Horowitz 1963).

As we know,67 the CTFs qi (s) = λiw(s) of uniform systems coincide, up to the constant
‘gains’ λi , with the transfer function of the separate channels w(s) = M(s)/D(s), where λi are
the eigenvalues of the cross-connections matrix R, and these eigenvalues can be either real or
in complex conjugate pairs. We also know that all poles and zeros of w(s) are absolute zeros
and poles of the open-loop uniform system and, as a result, are common to all qi (s). Besides,
the CTFs qi (s) do not have branch points and are situated on N isolated one-sheeted Riemann
surfaces. The latter means that the root loci of each characteristic system can be constructed
independently of the root loci of other characteristic systems, i.e. the task of finding the root
loci of uniform systems indeed reduces, as was mentioned above, to N independent one-
dimensional tasks (Gasparyan and Vardanyan 2007).

Let us rewrite Equation (1.173), taking into account the above comments, in the form

1 + kλiw(s) = D(s) + kλi M(s) = 0 or kλiw(s) = kλi
M(s)

D(s)
= −1, i = 1, 2, . . . , N .

(1.209)

The last of these equations may also be written down in the equivalent form

kw(s) = − 1

λi
= − 1

|λi | exp{− j arg λi }, (1.210)

from which we have somewhat different conditions of the formation of root trajectories in
comparison with Equation (1.174):

|kw(s)| = 1

|λi | , arg w(s) = ±(2r + 1)180◦ − arg λi , r = 0, 1, 2, . . . . (1.211)

From Equations (1.209)–(1.211), the following additional rules describing the properties of
the root loci of uniform systems immediately ensue.68

Rule 1: Number of branches of the root loci. The number of root trajectories of an N -
dimensional uniform system is equal to Nnps , where nps is the number of the absolute poles,
i.e. the number of the poles of w(s).

Rule 2: Starting and ending points of the root loci. For k = 0, the root trajectories begin at
the roots of the equation D(s) = 0, i.e. at the absolute poles, and terminate, for k = ∞, at the
roots of the equation M(s) = 0, i.e. at the absolute zeros of the uniform system. From each
absolute pole originate exactly N trajectories and, at any absolute zero, terminate exactly N
trajectories. In other words, the root loci of each of N characteristic systems begin at the poles
of the transfer function w(s) and terminate at its zeros.

67 See Equation (1.94).
68 For simplicity, we shall list these rules starting from number 1. The reader should remember that they are additional

to the general rules established in the previous section.
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Rule 3: Number of the root trajectories tending to infinity. The number of root trajectories
of each characteristic system tending to infinity as k increases indefinitely is equal to es =
nps − nzs , where nzs is the number of zeros of w(s) (the number of absolute zeros of the
uniform system). Respectively, the number of root trajectories of the uniform system tending
to infinity is equal to Nes .

Rule 4: Angles of the asymptotes of the root loci.69 It can be shown that the set of es approach-
ing infinity root trajectories of the i th characteristic system tend indefinitely to the Butterworth
pattern of order es , whose evenly spaced lines (the root trajectory asymptotes) make with the
positive direction of the real axis angles

γr = (2r + 1)180◦ + arg λi

es
, r = 0, 1, . . . , es − 1. (1.212)

As is evident from Equation (1.212), the angles of root trajectory asymptotes of the character-
istic systems with real-valued λi , i.e. with arg λi = 0, are equal to the angles of asymptotes of
a common SISO system with an open-loop transfer function w(s). Further, each Butterworth
pattern corresponding to a complex-valued λi is nonsymmetrical with respect to the real axis.
However, taking into account that all complex eigenvalues λi must occur in complex conjugate
pairs, for each such pattern, there exists a ‘complex conjugate’ pattern, which is obtained from
the first one by mirror mapping around the real axis.

Rule 5: Pivots of the asymptotes. It can also be shown that the pivots (centres) of the asymp-
totes of all characteristic systems are situated at the same point on the real axis and coincide
with the common centre of asymptotes Ac of isolated separate channels of the uniform system:

Ac =

nps∑
r=1

pr −
nzs∑
r=1

zr

nps − nzs
, (1.213)

where pr and zr denote the poles and zeros of the transfer function w(s).

Rule 6: Coincident symmetrical root trajectories. The root trajectories of the characteristic
systems corresponding to all real eigenvalues λi of R are symmetrical with respect to the
real axis, coincide with each other and coincide with the root trajectories of isolated separate
channels of the uniform system. This property becomes apparent if we consider the phase (the
second) condition in Equation (1.211), which, for real λi , i.e. for arg λi = 0, just transforms
into the analogous condition for common SISO systems with an open-loop transfer function
w(s). The location of the roots of the corresponding characteristic systems on these trajectories
is different and depends on the magnitudes |λi | .

Rule 7: Complex conjugate and coincident nonsymmetrical root loci. The root loci of the
characteristic systems with complex conjugate eigenvalues λi are nonsymmetrical with re-
spect to the real axis. All of these root loci can be obtained from each other by mirror

69 The proof of Rules 4 and 5 is left to the reader as an exercise.
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mapping around the real axis. All the root trajectories of a uniform system correspond-
ing to λi with the same argument arg λi but, possibly, with different magnitudes |λi | coin-
cide. This rule is a logical continuation of the preceding ones and follows from Equation
(1.212).

Rule 8: Sections of the real axis belonging to root loci. A uniform system can have root
trajectories coinciding with finite or semi-infinite sections of the real axis only in the presence
of real eigenvalues λi . In this case, such sections are those located to the left of the odd singular
points70 of w(s). This rule also ensues from the previous rules. Concerning the characteristic
systems with complex λi , such systems cannot have the root trajectories on the real axis. This
is evident from the conditions in Equation (1.210), which cannot be satisfied for complex λi

and real s, when the transfer function w(s) becomes real-valued.

Rule 9: Value of k. The value of the parameter k corresponding to any point s0 on the root
trajectories of the i th characteristic system can be found from Equation (1.211) and is equal
to k = 1/|λiw(s0)|.71

Hence, we have formulated a number of additional rules describing the properties of root
loci of uniform systems, which enable the engineer or researcher to construct those loci without
any difficulty. The reader might have realized that these rules are quite similar to the standard
rules of constructing root loci for usual SISO systems. Unlike general MIMO systems, in the
case of uniform systems, the root loci represent the combination of N root loci corresponding
to N isolated, i.e. having no branch points, characteristic systems. This statement, as well as the
fact that the CTFs qi (s) = λiw(s) of the discussed systems can be expressed analytically for
any number of channels N ,72 implies that the problem of construction of root loci for uniform
MIMO systems is practically solved.

Example 1.14 Consider the two-axis uniform guidance system of Example 1.4 with the gain
of the transfer function decreased by a factor of 10 [Equation (1.103)]. This decrease in the gain
is not essential at all, but it provides system stability for both combinations of angles α1 and
α2. The root loci of the system are shown in Figure 1.48, where the dashed lines represent the
asymptotes. The overall view of the root loci for α1 = 40◦ and α2 = 35◦, which corresponds
to complex conjugate eigenvalues λ1 and λ2 of the cross-connections matrix R (see Example
1.4), is given in Figure 1.48(a). The root trajectories of both characteristic systems, for the
above values of α1 and α2, are shown in Figure 1.48(b) and (c). As is evident from Figure
1.48(a)–(c), for complex conjugate eigenvalues of R, the root loci of the guidance system do
not have sections situated on the real axis, and the root loci and asymptotes of the characteristic
systems are nonsymmetrical with respect to the real axis and can be obtained from each other
by complex conjugation.

For α1 = 40◦ and α2 = −35◦, when the eigenvalues λ1 and λ2 are real, the root loci of the
two-dimensional guidance system coincide with the root loci of the isolated separate channels,
but we have here two identical, superimposed patterns of the root trajectories belonging to two
different characteristic systems [Figure 1.48(d)].

70 That is, if the total number of poles and zeros of w(s) to the left of the section is odd.
71 This rule may be rather useful for the development of interactive program packages intended for computer-aided

investigation of linear uniform systems.
72 Recall that modern application packages enable the user to calculate the eigenvalues of numerical matrices of, in

fact, any order.
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Figure 1.48 The root loci of the two-axis uniform guidance system of Example 1.4. (a) α1 = 40◦,
α2 = 35◦ (overall view); (b) α1 = 40◦, α2 = 35◦ (the first characteristic system); (c) α1 = 40◦, α2 = 35◦

(the second characteristic system); (d) α1 = 40◦, α2 = −35◦ (overall view).

1.5.3 Root loci of circulant and anticirculant systems

Internal structural characteristics and properties of circulant and anticirculant systems are so
much alike that we shall discuss only the root loci of circulant systems below, noting, at
the same time, some specific features inherent in anticirculant systems. The salient feature
of circulant systems is that root loci of their characteristic systems are situated, similarly to
uniform systems, on isolated one-sheeted Riemann surfaces, i.e. here, also, the problem of
constructing root loci splits, without any assumptions or simplifications, into N independent
one-dimensional tasks. Further, we know that the CTFs qi (s) of circulant systems can be
represented analytically for any number N of separate channels as proper rational functions
in complex variable s. The poles of all CTFs are absolute and equal to all poles of the first (or
any other) row elements of the open-loop transfer matrix W (s). As a result, their distribution
is symmetrical with respect to the real axis.73 Concerning the zeros of the CTFs, and these

73 We do not consider here the situations in which zeros of some other circulant transfer matrix can cancel some
absolute poles of a circulant system (see also Example 1.10, in which zeros of the CTFs cancel poles of the common
scalar multiplier, and the poles of the resulting CTFs are complex conjugate to each other). For simplicity, we shall
also assume that the circulant transfer matrix W (s) does not have any scalar multipliers (i.e. multipliers in the form
of scalar transfer functions), which originate absolute poles and zeros of circulant systems, common to all qi (s).
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zeros give the zeros of a circulant system, in the general case, they are roots of the polynomials
with complex-valued coefficients; therefore, their distribution for each characteristic system is
nonsymmetrical. At the same time, to any such nonsymmetrical location of zeros corresponds
a ‘complex conjugate’ location of zeros of some other characteristic system, resulting in the
symmetrical picture for all zeros of the circulant system. Finally, it is worth noting that the
number of zeros of all CTFs of the circulant system is the same, which ensues from the form
of the CTFs qi (s) [Equation (1.133)]. All this suggests that the properties of circulant systems’
root loci must be quite close to the corresponding properties of uniform systems. This is indeed
the case, but, here, there are some essential distinctions due to the presence of dynamical cross-
connections, or, in other words, due to the presence of N generally different transfer functions
in any row of the open-loop matrix W (s), whereas, in the case of uniform systems, we have
only one transfer function w(s).

If we denote by D(s) the identical denominator polynomials of all CTFs qi (s) of circulant
systems and by Mi (s) the numerator polynomials, i.e. if we represent the CTFs in the form
qi (s) = Mi (s)/D(s), then Equations (1.198) and (1.199) can be rewritten as

1 + kqi (s) = D(s) + k Mi (s) = 0 or kqi (s) = k
Mi (s)

D(s)
= −1. i = 1, 2, . . . , N

(1.214)

These conditions enable us to formulate some rules for constructing the root loci in a form
that allows for the specific structural features of circulant systems. We shall list these rules,
beginning, as in the previous section, from number 1.

Rule 1: Number of branches of the root loci. The number of root trajectories of an
N -dimensional circulant system is equal to Nnp0, where np0 is the number of absolute poles,
i.e. the number of all poles of the elements of the first row of W (s).

Rule 2: Starting and ending points of the root loci. For k = 0, the root trajectories of each
(say, the i th) characteristic system begin at the same roots of the equation D(s) = 0, i.e. at
the absolute poles, and terminate, for k = ∞, at the roots of the equation Mi (s) = 0. If we
denote by nz0 the same order of all polynomials Mi (s)(i = 1, 2, . . . , N ), then this implies that
nz0 root trajectories of each characteristic system approach, as k → ∞, nz0 finite zeros of the
corresponding CTF qi (s).

Rule 3: Number of root trajectories tending to infinity. The number of root trajectories of
each characteristic system tending to infinity (as k increases indefinitely) is the same and equal
to e0 = np0 − nz0. Respectively, the total number of root trajectories of a circulant system
tending to infinity is equal to Ne0.

Rule 4: Angles of root loci asymptotes. Let us represent qi (s) in the factored form:

qi (s) = Mi (s)

D(s)
=

K i
c

nz0∏
j=1

(
s − zi

j

)
np0∏
j=1

(s − p j )

, i = 1, 2, . . . , N , (1.215)
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where p j are the poles (they are the same for all i), zi
j the zeros and K i

c the ‘gains’ (generally

complex-valued) of the characteristic systems. It can be shown74 that the set of e0 approaching
infinity root trajectories of the i th characteristic system tend indefinitely to the Butterworth
pattern of order e0, whose evenly spaced lines (the root trajectory asymptotes) make, with the
positive direction of the real axis, angles equal to

γr = (2r + 1)180◦ + arg K i
c

e0

, r = 0, 1, . . . , e0 − 1. (1.216)

Comparison of Equation (1.216) with Equation (1.212) shows that the coefficients K i
c play

here the same role as the eigenvalues λi in the case of uniform systems, with all the geometrical
features indicated in Rule 4 of the previous section.

Rule 5: Pivots of the asymptotes. The pivot of the Butterworth pattern for the i th characteristic
system is located on the complex plane at the point

Aci =

np0∑
r=1

pr −
nz0∑
r=1

zi
r

np0 − nz0

, i = 1, 2, . . . , N (1.217)

where the designations are the same as in Equation (1.215).
Here, we have encountered an essential difference between the pivots of circulant and

uniform systems. In the case of uniform systems, the pivots of asymptotes for all characteristic
systems are at the same point on the real axis. For circulant systems, these pivots may be, in the
general case, complex-valued. This is because the complex zeros zi

j in Equation (1.217), being
generally the roots of the polynomials with complex coefficients, are not complex conjugate.
However, as the reader has most likely guessed, a complex conjugate pivot of some other
characteristic system with the complex conjugate numerator polynomial of the CTF always
corresponds to each complex pivot Aci . For the circulant systems of odd order N , the number
of such complex-valued pivots is equal to N − 1 and, for even order N , their number is N − 2.

It should be pointed out that all pivots of anticirculant systems of even order are complex.
This can be easily verified by examination of Figure 1.33, in which the eigenvalues of the
anticirculant permutation matrix U− [Equation (1.156)] for different values of N are shown.
For anticirculant systems of odd order N , one pivot on the real axis generated by the eigenvalue
β(N+1)/2 = −1 always exists. Finally, all pivots of simple symmetrical MIMO systems lie on
the real axis, since all the coefficients of their CTFs [Equations (1.138) and (1.139)] are real
numbers.

Rule 6: Symmetrical root trajectories. Let us consider the eigenvalue distribution of the
permutation matrix U [Equation (1.128)] (Figure 1.29). We know that, independently of order
N , the first eigenvalue β1 of U is always equal to unity. Further, for even N , the (1 + N/2)-
th eigenvalue β1+(N/2) is always equal to minus one. Therefore, all CTFs qi (s) generated by
these eigenvalues will have, owing to Equation (1.133), polynomials with real coefficients,
not only in the denominator, but also in the numerator. Correspondingly, the root loci of these
characteristic systems possess all the well known properties of the SISO systems’ root loci.

74 We address the proof of Rules 4 and 5 to the reader as an exercise.
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This concerns the symmetry of root trajectories with respect to the real axis, sections of the
root loci belonging to that axis, breakaway points, etc.

It is easy to understand that simple symmetrical MIMO systems, having for any N only two
distinct characteristic systems with real coefficients [Equations (1.138) and (1.139)], also have
the root loci completely analogous (considering each characteristic system separately) to root
loci of usual SISO systems. It is also easy to understand that anticirculant systems of even
order have only complex-valued CTFs, and therefore cannot have sections of the root loci on
the real axis. As for odd N (the case of no actual interest in practice), only one characteristic
system with real parameters exists.

The above simple rules reflect the specific character of the internal structure of circulant
and anticirculant systems. The new and very significant point here is that the pivots of the
root loci asymptotes are situated not only on the real axis, but can also be complex conjugate.
At the same time, taking into account that for the pivots and angles of asymptotes, we have
simple expressions [Equations (1.216) and (1.217)], as well as the fact that the CTFs qi (s) can
be expressed in analytical form for any number of channels N , the construction of root loci
for circulant and anticirculant systems can be carried out without any difficulty.

Example 1.15 As an example of MIMO systems having complex pivots of the root loci
asymptotes, consider a two-dimensional antisymmetrical system described by a transfer matrix

W (s) = 50

(s + 2)(s + 3)(s + 4)

⎛⎜⎜⎝
1

4

(s + 8)

− 4

(s + 8)
1

⎞⎟⎟⎠ . (1.218)

The CTFs q1,2(s) of that system are

q1,2(s) = 50(s + 8 ± j4)

(s + 2)(s + 3)(s + 4)(s + 8)
(1.219)

and have two complex-conjugate zeros at z1 = −8 − j4 and z2 = −8 + j4. The root loci of
the system are shown in Figure 1.49(a), from which it can be seen that the pivots are located
at the complex conjugate points Ac1 = −3 + j1.333 and Ac2 = −3 − j1.333 (these pivots
are marked in Figure 1.49 by small black circles). The nonsymmetrical root loci of each
characteristic system are presented in Figure 1.49(b) and (c).

Example 1.16 In the last example of this section, we return to a nonrobust antisymmetrical
system taken from Doyle (1984) and Packard and Doyle (1993) and discussed in Example 1.10.
This system is of interest to us, not only as an anticirculant system, but also as a system which
becomes, under slight perturbations of the parameters, a general MIMO system with rather
remarkable features. In the case of an ideal unit regulator K = diag{Ki } = I , the characteristic
equations of one-dimensional systems [Equation (1.180)] have, taking into account the ‘root
loci coefficient’ k, the form

s − ja + k(1 + ja) = 0,

s + ja + k(1 − ja) = 0.
(1.220)

It is easy to see that as k changes from zero to infinity, the trajectories of the roots of Equa-
tion (1.220) are straight lines, beginning at the poles p1,2 = ± ja of the open-loop system and
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Figure 1.49 The root loci of antisymmetrical system [Equation (1.218)]. (a) the overall view of the root

loci; (b) the first characteristic system; (c) the second characteristic system.

intersecting, for k = 1, at the point (–1, j0), at which both poles of the closed-loop system are lo-
cated [Figure 1.50(a)]. Note also that each trajectory in Figure 1.50(a) is situated on an isolated
one-sheeted Riemann surface. Assume, now, that the coefficients of the static regulator K have
been changed to new values K1 = 1.1 and K2 = 0.9. As was indicated in Example 1.10, with
these values of K1 and K2, the two-dimensional antisymmetrical system becomes an unstable
general MIMO system. This fact is completely confirmed by the root loci of the varied system
presented in Figure 1.50(b). As is evident from that figure, the root trajectories have drastically
changed. Now, because the system is not circulant, its root loci are situated on a two-sheeted
Riemann surface and have two branch points. For k = 0, both poles of the open-loop system
are situated on one (say, the first) sheet, i.e. they belong to the first characteristic system. As
k increases, the roots of the first characteristic system move in that sheet to the real axis and,
for k = 0.9087, meet at the breakaway point –0.9087 on that axis. As k increases further, both
these roots depart from the breakaway point in opposite directions and move along the real
axis towards the branch points (towards the fictitious zeros of the first characteristic system)
at s1 = −2.005 and s2 = +0.005 (notice that the second branch point is located in the right
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Figure 1.50 The root loci of the non-robust antisymmetrical system from Doyle (1984). (a) the root

trajectories of the ideal system (for K = I ); (b) the root trajectories of the varied system; (c) the root

trajectories of the varied system (the enlarged view); (d) the location of the roots of the varied system

(for k = 2).

half-plane). For k = 1, both roots simultaneously (!) reach the branch points75 and, as k in-
creases further, they pass to the second sheet of the Riemann surface. Thus, we have obtained
that for the nominal values K1 = 1.1 and K2 = 0.9 of the varied regulator (for k = 1), the roots
of the closed-loop system are equal to s1 = −2.005 and s2 = +0.005, i.e. one of the roots is
in the right half-plane and the system is unstable. However, as k increases further, the roots of
the system begin moving on the second sheet from the branch points (from the fictitious poles)
along the real axis towards each other, i.e. the ‘unstable’ right root begins moving in the oppo-
site direction towards the left half-plane, reaching the imaginary axis for k = 1.0099. Further,
for k = 1.1117, both roots meet on the second sheet of the Riemann surface at the breakaway
point −1.111776 and depart from the real axis into the complex plane along the asymptotes
that make, with the positive direction of the real axis, angles approximately equal to ±95.7◦.
All of this is illustrated in Figure 1.50(c) by arrows, where the solid arrows correspond to the
motion in the first sheet and the dashed arrows to that in the second sheet. For more clarity, the

75 The right root reaches the imaginary axes for k = 0.995.
76 The equality of the values of k at both breakaway points to the absolute values of these points abscissas –0.9087

and –1.1117 is not a misprint – it is obtained by calculations.
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Figure 1.51 The root loci of the SISO systems of Remark 1.17.

roots of the varied system for k = 2, which are equal to −2 ± j9.7959, are shown in Figure
1.50(d). Hence, under the varied parameters of the regulator, the discussed system is unstable
over a very small range of changes of k, from 0.995 to 1.0099, and this conclusion is obtained
by an inspection of the root loci in Figure 1.50.

Remark 1.17 In the scientific and technical literature, much attention is devoted to the
limitations on the stability and performance of MIMO systems imposed by the zeros situated
in the right half-plane (Skogestad and Postlethwaite 2005; Havre and Skogestad 1998). Having
the multivariable root loci plotted, these limitations can be understood and assessed adequately,
which allows (if needed) one to undertake the corresponding justified steps for diminishing
the influence of the right half-plane zeros (frequently called the RHP-zeros). In principle,
that problem is also inherent in the SISO case. As elementary examples, the root loci of
two simple SISO systems having one pole at the origin in the open-loop state are shown in
Figure 1.51(a) and (b). As is evident from these root loci, the closed-loop systems are stable for
any arbitrary large values of the gain k. However, introducing a RHP-zero into these systems
drastically changes the situation, and the systems become unstable under any arbitrary small
values of k [in Figure 1.51(c), this is illustrated for the system in Figure 1.51(a)]. Similar
examples can readily be given for the multivariable case. That can be done especially easily
for uniform systems with real eigenvalues of the cross-connections matrix, for which the root
loci of characteristic systems will qualitatively have, the transfer functions of the separate
channels being chosen correspondingly, just the same form as in Figure 1.51. Rather, the
problem here is that for general MIMO systems, as well as for circulant and anticirculant
systems, it is very difficult, based on the open-loop transfer matrix W (s), to judge the possible
location (and even just the presence) of the zeros77 in the right half-plane. As the location of
these RHP-zeros may be quite unexpected, it may take a great deal of effort for the researcher or
engineer to eliminate or diminish the inevitably negative influence of such zeros. To a certain
extent, this issue is somewhat simpler for circulant and anticirculant systems, in which the
system zeros coincide with the zeros of the CTFs, which can always be expressed analytically.
Finally, it should be noted that for general MIMO systems, the branch points located in the
right half-plane (see Figure 1.47) also impose similar limitations on the stability.

77 For uniform systems, these zeros always coincide with the zeros of the identical separate channels.


