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Introduction

This book is at heart about a fusion of ideas from medical statistics, clinical
epidemiology, decision analysis, and health economics. These are distinct aca-
demic disciplines, each with its own history and perspectives. Recently, though,
developments within these separate fields, together with political changes across
the developed world in attitudes to funding public services, have conspired to bring
particular strands of thought from each of these disciplines together in a fruitful
and compelling way. Before describing the contents of the book, we shall therefore
start with a look at these wider developments. This contextual background has two
purposes. It will give readers from each discipline an essential introduction to the
others, but it will also explain why this book has come about.

1.1 The rise of health economics

The last 20 years has witnessed an enormous change in how new medical technol-
ogy is deployed. Previously, clinicians were free to treat their patients in whatever
way seemed best. The perceived efficacy or treatments, taking account of course
the risk of adverse side effects, was the dominant factor. In countries with a cen-
tralised state-funded health service there were clearly budget constraints, which
could be realised through limits on the numbers of hospitals, doctors or nurses.
But the idea that health care itself should be rationed would not only have been
regarded as politically infeasible, but was rejected by the medical professions as a
threat to ‘clinical freedom’.

Clinical freedom, placing no limit on the costs of health care, is an open invita-
tion to pharmaceutical and medical device manufacturers to enter the market place
with a stream of genuinely new products and ‘me-too’ products. Eventually, both
nationalised and insurance-based health systems have had to find ways of curtailing
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2 INTRODUCTION

clinical freedom by considering not only the clinical efficacy of new procedures, but
also their economic implications. The numbers of economic evaluations has mush-
roomed accordingly, and in many countries including the UK, Netherlands, France
and Germany, the introduction of new clinical treatments as well as new screening
programmes is routinely accompanied by some form of economic analysis.

Economic analyses have been subdivided into cost-benefit, cost-effectiveness
and cost-utility analyses . All compare the costs of an intervention with the ‘out-
comes’. Cost-benefit considers benefits as seen by the recipients of the intervention,
and as they would be evaluated in cash terms. Cost-effectiveness studies compare
costs and ‘effects’ measured for example as the number of patients cured, or the
average weight-loss measured in kilograms. Cost utility is similar, but the ‘effects’
are measured in Quality Adjusted Life Years (QALYs) or Disability Adjusted Life
Years (DALYs). The output of all these forms of analysis tends to be a ratio mea-
sure of the additional costs of the intervention divided by the additional benefits,
effects, or utilities. In cost-effectiveness analysis this is called the Incremental
Cost-Effectiveness Ratio (ICER).

There is one particular form of economic analysis, net benefit analysis [1, 2],
that has had a major influence on the field. Its advent has opened the way for
many of the developments described in this book, but it also reveals a great deal
about how public attitudes have changed. Net Benefit analysis unifies the three
approaches by translating the utilities into their money ‘values’ using an exchange
rate λ, which is simply the money value attributed to the unit of health gain. If U

is the lifetime utility of some intervention and C its lifetime cost, the Net Benefit
is: Uλ − C. If we now agree to always use QALYs to represent the measure U ,
Net Benefit immediately becomes a very powerful decision-making tool:

• First, health planners can, in principle, evaluate any intervention on the same
level playing field: dialysis for end-stage renal disease, herceptin for breast
cancer, group counselling for smoking cessation, or newborn screening for
sickle cell disease.

• Secondly, planners can choose rationally between alternative treatment
strategies for the same condition by selecting the one with the highest net
benefit, S*:

NB(s) = U(s)λ − C(s)

S∗ = ArgMaxs(NB(s))
(1.1)

Here, the function ArgMaxs picks out the strategy s which yields the highest
Net Benefit.

• Finally there is its mathematical convenience. We avoid the difficulties asso-
ciated with ratios of costs and benefits/effects/utilities (for example, how does
one interpret a negative ICER?), and instead can deal with a single quantity,
Net Benefit, on a well-understood scale. This will become particularly useful
when we consider uncertainty (Section 1.2).
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Under this regime, health economic evaluation becomes a modelling exercise.
Based on the evidence available, a model of the disease process under each of the
interventions of interest, s, is constructed in order to arrive at values of U(s) and
C(s). We are left, in effect, with a decision analysis and we will shortly turn to
see how the methods routinely used in operations research can be used to carry
this out.

However, the legitimacy of this entire exercise (and indeed much of this book!)
rests on whether defensible values of λ and U can be arrived at. We would be
misleading readers who are unfamiliar with health economics if we were anything
but frank about the foundations that this book rests on. We shall summarise the
situation briefly.

To set λ a decision maker must answer a question that sounds very simple,
but which is in fact profoundly difficult: how much am I willing to pay to gain
one QALY for a single patient? One way to justify a range of figures is to con-
sider a wide selection of noncontroversial, accepted interventions, and to look at
the QALY gain, net of costs, that they appear to confer. Exercises of this sort [3]
offer a benchmark range of figures against which proposed new interventions can
be assessed. For many years, officials at the Department of Health (London, UK)
have considered that interventions that gain one QALY at a cost of £10 000 would
be ‘a bargain’, while those that cost over £30 000 would be ‘too expensive’, but
these figures were never made officially public. However, it is public knowledge
that the National Institute for Health and Clinical Excellence (NICE) in the UK,
uses a range of λ = £20 000–30 000 as a benchmark to decide whether new tech-
nologies should be adopted by the National Health Service. The fact that this is
openly known illustrates that, even if the British public are not yet aware that
their health is being valued this way, at least British policy makers have owned up
to what they are doing. Ten years ago, if these ideas were presented to a British
audience there would still be angry challenges from clinicians. Now, the reality
of health care rationing in this form is unlikely to raise any complaints. At the
same time, it is only fair to acknowledge that the entire basis for decision making
that this assumes is far from being accepted by all health economists. To some
extent the opposition is based on philosophical considerations underpinning health
economic theory [4]. The controversy is also fuelled by the considerable doubts
about how QALYs are measured [5]. It is important to recognise that patients,
clinicians, decision analysts, decision makers are, quite rightly, openly sceptical
about whether existing measures and methods really allow us to put treatments for
Alzheimer’s disease on the same basis as cancer drugs, or whether cancer treatment
can be in any way equated to newborn screening. But, in spite of these doubts,
decisions still have to be made, and if they cannot be made on a perfect basis, they
must be made on the best basis that current methods will permit. The attempt to
create the ‘level playing field’ may not have succeeded in flattening all the dips
and lumps in the grass – it may never do so. However, the commitment to the
aspiration may be more important than the success – or even the feasibility – of
its execution.
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1.2 Decision making under uncertainty

1.2.1 Deterministic models

Once the concept of Net Benefit is accepted, decision modelling in principle
becomes an essentially mechanical exercise. (Only in principle, as the question of
where the parameter values come from – a major focus of this book – is far from
simple.) The Net Benefit of each alternative strategy is calculated and the deci-
sion maker simply chooses the strategy with the highest net benefit. The nature of
the task can be made plain by a decision tree. The example in Figure 1.1 shows
a choice node between two strategies for managing a particular condition. The
choice node is depicted as a small square. Each strategy corresponds to a treat-
ment. Standard Treatment 1 has a probability p1 of success, new Treatment 2 has
probability p2. These probabilities would hopefully be based on evidence from
Randomised Controlled Trials (RCTs) (see Section 1.3). To complete the tree we
need only add the (lifetime) costs C1, C2 and QALYs attaching to treatment success
U+ and treatment failure U−.

Note the assumption that the QALYs attaching to each strategy are based solely
on the proportion of patients experiencing ‘success’, not on the treatment itself.
This assumption is not required.

NB1 = λ[p1U
+ + (1 − p1)U

−] − C1

NB2 = λ[p2U
+ + (1 − p2)U

−] − C2

(1.2)

Economic evaluation (Section 1.1) is concerned with a comparative analysis of
the available options. The critical measure is therefore the Incremental Net Benefit
(INB). This leads to an important simplification:

INB = NB2 − NB1

= λ[(p2 − p1)(U
+ − U−)] − (C2 − C1) (1.3)

= λ�p�U − �C

The INB of new Treatment 2 compared with standard Treatment 1 can be expressed
in terms of the difference �p in the probabilities of successful treatment, the
QALY difference �U between the success and failure outcomes, and the cost
difference �C . The ambitious data collection project required to identify the abso-
lute lifetime costs and lifetime QALYs under each treatment is reduced to the far
simpler – though still difficult – task of finding differences between the treatments.
The epidemiologist is therefore still in familiar territory. All the parameters can be
informed by controlled, i.e. comparative, studies. �p in particular can be informed
by an RCT. The decision now depends on whether INB is positive (NB2 is greater
than NB1, choose new Treatment 2) or not (choose standard Treatment 1).

It is worth noting that the results of the economic evaluation will depend on the
treatment difference on the absolute probability scale. This contrasts with the ratio
measures – Odds Ratio, Risk Ratio or Hazard Ratio – that are typically reported
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Treatment
1

Treatment
2

p1

p2

1−p2

1−p1

Success C1 U+

Success C2 U+

Failure
C2 U−

Failure C1 U−

BenefitsCosts

Figure 1.1 A simple decision tree with two treatment options, a binary (suc-
cess/failure) outcome, and costs C for each treatment and utilities U for each
outcome.

in RCTs, and the Log Odds Ratios (LORs), Log Risk Ratios and Log Hazard
Ratios commonly used in meta-analysis (see Section 1.3). The decision analyst is
therefore likely to need to map from the ratio quantities familiar from clinical epi-
demiology into the absolute quantities required for economic analysis. For example,
one will need to transform information on a LOR δ into information on p2 at a
specified p1:

δ = logit(p2)

logit(p1)

p2 = exp(logit(p1) + δ)

1 + exp(logit(p1) + δ)
(1.4)

�p = exp(logit(p1) + δ)

1 + exp(logit(p1) + δ)
− p1

Finally, then, substituting this expression for �p back into Equation (1.3), INB
emerges as a function of p1, δ,�U ,�C . Given values for these inputs, we can
derive values for p2, and then for �p, and finally for INB . This is illustrated
in Table 1.1. Given the inputs provided, the INB of Treatment 2 compared with
Treatment 1 is £4795. This is above zero, so Treatment 2 emerges as the optimal
strategy.

Figure 1.1 represents a particularly simple situation. In applications, the decision
trees downstream and upstream of the treatment can become far more extensive.
Frequently they may include a Markov model of disease progression (Chapter 10).
These consist of a series of states representing different stages of illness. Probability
or rate parameters describe the expected numbers of transitions from one state to
another in a given time period.
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Table 1.1 Deterministic decision analysis.

Parameter Symbol Value

Pr(success) on Treatment 1 p1 0.25

Log Odds Ratio δ 0.8

Pr(success) on Treatment 2 p2 = exp(logit(p1) + δ)

1 + exp(logit(p1) + δ)
0.425897

Difference in Pr(success) �p = p2 − p1 0.175897

QALY gain for successful
outcome

�U 2

Incremental cost Treatment 2 �C £4000

Monetary value of one QALY λ £25 000

Incremental Net Benefit INB = λ�p�U − �C £4794.838

1.2.2 Probabilistic decision modelling

The previous section laid out what has been called a deterministic decision model.
It takes no account of uncertainty in the parameter values. Of course, the analyst
is free to vary the input parameters to see whether this will reverse the sign of the
INB and thus change the decision. Perhaps the confidence intervals on the original
published parameter estimates, p1, δ,�U,�C , would be used to guide the choice
of input parameters in a deterministic sensitivity analysis . There are a number
of difficulties with the deterministic approach to analysing uncertainty [6]. First,
there are usually far too many parameters for one to try out all the combinations.
Secondly, the decision maker would usually like to know, in view of the uncertainty
in the input parameters, whether a decision based on INB is secure. A deterministic
procedure does not actually deliver a clear, interpretable metric. Finally, once we
admit uncertainty in parameters, a deterministic procedure may not even guarantee
to deliver the correct decision, as we will see below.

To take account of parameter uncertainty, each parameter is characterised by a
probability distribution. For example, the probability of success on standard treat-
ment p1 might be characterised as a Beta distribution (see Appendix 2), which
is the natural choice for probabilities. If it is based on a particular study where
10 successful outcomes were observed in 40 patients, a Beta(10,30) distribution
would be appropriate. Typically, information on p2 is introduced indirectly, via
the LOR δ, as shown in Equation (1.4), δ would be assigned a normal distribution
with a mean and variance taken from the meta-analysis. Table 1.2 sets out all the
parameters needed to define INB, together with their probability distributions.

Because INB is a function of these parameters, it now also has a probability
distribution. It can be shown that, under conditions of uncertainty, the optimal
decision is based on the expected net benefit . The expectation, of course, is over
the parameters p1, δ,�U,�C ; in other words, we must average the INB over
all the values of the input parameters. Writing INB as a function of parameters,
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the decision will be based on the expectation:

E[INB(p1, δ,�U ,�C)] (1.5)

The simplest way to carry out this integration is via Monte Carlo simulation.
Values are drawn from the distributions of each of the input parameters, and INB
is evaluated for each set of input parameter values. This is done thousands of times,
creating in numerical form a distribution of INB (Figure 1.2). The analyst can then
compute the mean of all these samples, to be used as an estimate of expected INB
(Equation (1.5)), and can also examine the variance and centiles.

Monte Carlo simulation has formed the basis for probabilistic decision analysis
[7, 8] for many years, as it has for modelling in general throughout the physi-
cal, biological and social sciences. It is important to note, however, that besides
providing us with an analysis of uncertainty , probabilistic analysis has the further
advantage that it gives a correct computation of expected INB under uncertainty,
namely Equation (1.5). A deterministic analysis is almost invariably based on the
mean values of the input parameters.

INB(E[p1], E[δ], E[�U ],�C) (1.6)

But the mean of a function of parameters (Equation (1.5)) is not necessarily equal to
the same function applied to the parameter means (Equation (1.6)). This ‘short-cut’
computation of the mean of a function of parameters is correct under certain special
circumstances: the function must be linear in all parameters (or multi-linear), and
the parameters must not be correlated. In this particular example these conditions
are not met. INB is linear in p1 and �U , but it is not linear in δ, as in evident from
Equation (1.4). In this example the expected INB from the probabilistic analysis is
£4871, nearly 2% higher than the deterministic analysis – not a huge amount, but
enough to illustrate the point.

We may also compute a probability that the optimal decision based on the
evidence inputs is the correct decision: this is simply the area to the right of the
point of neutrality, INB=0. In our example, this probability is 0.64. There is a 36%
chance therefore that the optimal decision is the wrong decision. This statement may
sound nonsensical to some: if so, imagine that if all uncertainty was eliminated, the

INB sample: 200 000

−5.0 × 104 0.0 5.00 × 104

0.0

Figure 1.2 Distribution of Incremental Net Benefit, based on 200 000 samples from
a Monte Carlo simulation.
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variance of INB would be zero, and the probability of making a ‘wrong’ decision
would be zero.

Deterministic sensitivity analysis tends to be used to answer the question ‘what
if this (these) parameter(s) took this (these) value(s)?’, but it fails to pay much
attention to how likely the various scenarios are. The probabilistic approach allows
us to take the extent of parameter uncertainty much more seriously. The uncertainty
in the input parameters is propagated faithfully through the model, to be faithfully
reflected in the uncertainty in the decision.

1.3 Evidence-based medicine

Evidence-Based Medicine (EBM) has taken the form of a ‘movement’. While
it would seem to be almost a truism that clinical practice should be based on
‘evidence’, the EBM movement has grown up alongside the ideas of systematic
review . The essential insight is that any review of the literature on, for example, the
effect of Treatment 2 compared with Treatment 1, must have a defined protocol ,
with a clear rationale for inclusion and exclusion of studies. The aim is to prevent
arbitrary selection of studies and put the process of deriving a summary estimate
of the treatment effect on an objective and repeatable basis. At the same time,
careful and thorough searching of literature would strengthen the summary estimate,
reducing uncertainty [9].

The EBM movement has also been concerned with grading the quality of evi-
dence. Direct RCT evidence on clinical end-points is graded as superior to evidence
from observational studies, or evidence of surrogate end-points, or indirect evidence
of various kinds. A ‘hierarchy of evidence’ has been established [10]. Further
quality assessment is undertaken within each the category of studies: for example,
studies of disease prevalence, or studies of diagnostic tests, are also graded on their
own specific quality criteria. In general, evidence of the highest grade available
is used.

EBM has been a response to the massive increase in the sheer volume of
evidence. Its insistence that every systematic review must have a clear method
governing study inclusion and exclusion, translates directly into the purposes of
this book. Putting it into our terms, there must be a clear method underlying the
selection of evidence to inform every model parameter. There can be no arbitrary
selection or exclusion of evidence. But, having said what we would share with
EBM, we must also be explicit about where we differ.

First, the position taken in this book tends to be more inclusive about evidence.
We would generally argue that evidence of different sorts should be ‘synthesised’,
that is statistically combined within a single coherent model. Methods for carrying
out this kind of synthesis are discussed in Chapters 7–10. While certain studies or
types of evidence may be definitely or potentially biased, we would see it as wrong
to treat them as totally irrelevant. Our preference would therefore be to include
them, but to explicitly account for and adjust biases (see Chapter 11). However,
the broader question of what evidence to include or exclude deserves much greater
discussion than we can give it in this book.
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Secondly, we would probably go further in the analysis of study-specific bias
than is typical in a Cochrane review. The desire to make systematic reviews repeat-
able and objective is worthy, but it has given rise to the unrealistic belief that the
review process and the construction of the summary measure can be mechanised to
the extent that any computer-literate person can do it. Our view is that no economic
analysis can be undertaken without considerable input from individuals with clinical
and epidemiological expertise in the relevant areas. The subjective element cannot
be eliminated. Indeed, there is no reason to eliminate it: instead – and in fact very
much in line with EBM core procedures – the analysis of study-specific bias, and
the elicitation of expert opinion could be put on a far more systematic basis [11].

A third, related, point of difference has to do with the concept of ‘summary
measure’. In Cochrane reviews, the summary measure tends to be seen as a ‘sum-
mary of the literature’, and meta-analysis is simply seen as a process that produces
it. Our view is, again, a little different because ‘summary of the literature’ does
not exactly capture what an economic assessment requires. The decision maker
has a specific target population and a specific protocol in mind. What the decision
analyst therefore requires is an estimate of, for example, the treatment effect in
this particular group with this specific protocol. Very possibly, there may be no
evidence that addresses this precise question, but there may be quite a lot of evi-
dence from possibly imperfect studies using similar protocols in similar patients.
The evidence synthesis task is then to take account of both internal biases, and the
possibility that the target parameter may differ from the parameters estimated in
the studies available. Input from knowledgeable experts and clinicians is obviously
essential. At the same time of course, meta-analysis is not just a procedure that is
applied to a bunch of studies to derive a summary: it is a set of statistical models.
Statisticians have a large toolbox for evaluating models, and we will be opening
this box regularly in Chapters 6 and 8–10. This introduces a statistical element to
decision modelling that most decision modellers will be unfamiliar with.

Finally, EBM has spawned evidence-based decision making and evidence-based
policy. In the UK, even government ministers make frequent reference to the ‘evi-
dence base’ in their response to each public health emergency that confronts them.
At first sight this seems wholly laudable. However, closer examination reveals a
belief that one can go directly from ‘evidence’ to decision. Our view would be that
the role of evidence is to inform a model . Even when the evidence appears to arise
from studies that seem to replicate exactly the decision question at hand, there is still
an implicit model that relates the historical evidence to what would be expected
to happen following a decision to be made in the future. In fact the expression
‘evidence-based modelling’ would not be out of place in the title of this book.

1.4 Bayesian statistics

The first defining feature of the Bayesian approach is the focus on parameter uncer-
tainty, or more generally how we can draw inferences about uncertain parameters
given the data, rather than what we can say about the likelihood of the data at
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specific values of the parameters. It is evident from the discussion of decision
making under uncertainty (Section 1.2) that the exercise this book is embarked
on is necessarily going to be a Bayesian exercise, and this has been widely
recognised [12, 13].

However, the way the example in Section 1.2 was presented is somewhat
ambiguous regarding the second major defining feature of Bayesian data analy-
sis, the updating of prior distributions with data to form posterior distributions (see
Chapter 2). The approach adopted in Section 1.2, which corresponds to what is
done in the vast majority of probabilistic decision models, makes no explicit men-
tion of prior distributions being updated to form posteriors. What has happened
is this: the evidence on each parameter has been summarised and characterised as
a distribution. This is followed by ‘forward’ Monte Carlo simulation from what
could be considered ‘informative priors’ (see Sections 3.5 and 8.1).

There is nothing inherently wrong with this, except that we are forced to treat
each parameter as an independent item. This severely limits the way evidence can
be used, and eventually would even limit which evidence can be used. A full
use of Bayesian methodology, providing us with posterior distributions, will allow
us to be much more flexible in our use of data. In particular, we will be able
to combine evidence on parameters, such as in Table 1.1, with indirect evidence,
and with evidence on complex functions of the parameters (Chapter 8–10). The
decision context actually requires a Bayesian posterior analysis just because this
is the only way to make sure that all available evidence will be included.

Until recently, Bayesian analysis, except in particularly simple circumstances,
was accessible only to those with considerable mathematical and computing skills.
The situation has dramatically changed with the recent the arrival of flexible
Markov Chain Monte Carlo (MCMC) software in the form of WinBUGS [14].
Models that previously would have presented intractable difficulties can be esti-
mated conveniently by users with relatively little mathematical knowledge. Even
so, we must warn readers that Bayesian estimation with WinBUGS requires a
degree of care and thought that goes beyond the use of standard frequentist soft-
ware. In the decision-making context of this book, however, MCMC methods have
the very obvious attraction of being simulation based. MCMC therefore allows us
to replace simulation from unrelated prior distributions by simulation from a joint
posterior parameter distribution. Immediately, we can now integrate the statisti-
cal estimation step with the calculation of net benefit in a single, one-step process
(Chapter 7). Furthermore rather than propagate evidence uncertainty ‘forward’ from
parameter distributions, we propagate it ‘back’ from data, onto parameters, then
forward through the decision model.

1.5 NICE

In England and Wales the National Institute for Health and Clinical Excellence
(NICE), has the responsibility to decide whether new interventions will be reim-
bursed by the National Health Service. NICE is one of many similar bodies
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worldwide though it was regarded by the World Health Organisation as pre-eminent
in 2003. The role of NICE is to ensure that new products and procedures are prop-
erly appraised before being introduced. The purpose is both to limit expenditure,
but, equally importantly to stop what had come to be called the ‘postcode lottery’,
by which the treatments that patients received simply depended on which hospital
they attended.

NICE’s procedures emphasise transparency. Because its decisions are scruti-
nised by manufacturers, clinicians’ professional organisations, and the Department
of Health – as well as being open to public inspection – transparency of method
is essential to maintain credibility and to create a process in which stakeholders
who may on occasions have fundamentally different objectives can nevertheless
participate and reach a degree of consensus. Once the specific decision question
is set, specifying the patient group, the new technology and the comparator tech-
nologies, manufacturers are invited to make submissions which include analyses of
the efficacy and cost-effectiveness of the products in question. Or, if multiple new
technologies are to be compared, a Technical Assessment Report is produced by
one of the academic units contracted to undertake this kind of work. This includes
an independent assessment of efficacy and cost-effectiveness, as well as a review
of previous cost-effectiveness analyses and of the manufacturers’ submission.

NICE methods guidelines [15] bring together all the key elements described
above: economic analyses are generally based on net benefit analysis; probabilis-
tic decision analysis is the expected primary analysis, and clear reasons must be
advanced if submissions depart from this; submissions adhere to the general prin-
ciples of ‘hierarchy of evidence’, with explicit protocols for the literature search
and study inclusion or exclusion. Many submissions include Bayesian evidence
synthesis with simulation from a posterior distribution in WinBUGS.

1.6 Structure of the book

Each chapter includes running worked examples, and ends with suggestions for
further reading, and exercises. The further reading suggestions are carefully selected
to lead readers into slightly more complex syntheses, as well as to provide a broader
exposure to the important issues which must be addressed in cost-effectiveness
modelling, but which we cannot cover in this book. The full WinBUGS code
for all the examples and exercises, as well as solutions, are available from the
publisher’s website www.wiley.com/go/decision_making_healthcare. Sections with
more advanced material, and more difficult exercises, are asterisked.

Chapter 2 introduces Bayesian reasoning and explains why it is suited to
decision modelling. It also provides an introduction into the practical use of the
WinBUGS software. Chapter 3 introduces deterministic and stochastic decision
models and how cost-effectiveness acceptability curves can be constructed.
Chapter 4 describes a Bayesian approach to fixed and then random effects meta-
analysis for pairs of treatments, which is then extended to meta-regression and the
use of baseline as a covariate in Chapter 5. Chapter 6 asks how users can evaluate



FURTHER READING 13

meta-analysis models, and what issues to consider when choosing between
Fixed and Random Effects models. Chapter 7 shows how the synthesis methods
developed this far can be embedded within cost-effectiveness analyses.

Chapters 8 and 9 take two different evidence structures in turn, epidemio-
logical models, then mixed and indirect treatment comparisons, and introduce
multi-parameter evidence synthesis techniques. These all involve simultaneous esti-
mation using ‘direct’ evidence on model parameters and ‘indirect’ evidence on
functions of model parameters. Chapter 10 introduces WinBUGS programming for
Markov models of disease progression. Chapter 11 takes on the challenge repre-
sented by data that is relevant, but potentially biased – such as observational studies
of treatment efficacy. Chapter 12 briefly describes Expected Value of Information
analysis, and gives some guidance on how this can be computed in the presence of
the complex correlations between parameters that are induced by multi-parameter
evidence synthesis.

The book includes a listing of all abbreviations used (Appendix 1), and a guide
to common distributions (Appendix 2).

1.7 Summary key points

Developments in several distinct fields have coalesced to create an environment
for the development of the methods described in this book.

• In health economics Net Benefit analysis has put health gains and costs on
the same basis, and creating an environment where Bayesian Expected Value
decision making can be carried out.

• Probabilistic decision modelling became the preferred way to evaluate
cost-effectiveness analyses, as it faithfully maps parameter uncertainty into
decision uncertainty, and correctly delivers Expected Net Benefit.

• EBM insists on a protocol for inclusion and exclusion of evidence in reviews
and summary measures, and has acted to generally raise awareness of issues
around the quality of evidence, and thus the uncertainty in estimates derived
from it.

• Simultaneously, the development of Bayesian MCMC methods has made
Bayesian data analysis routinely accessible, and dovetails exactly with the
growing popularity of probabilistic cost-effectiveness models.

1.8 Further reading

Statisticians seeking a more rounded idea of health economics could consult Hunink
et al. [16] or Briggs et al. [17] could be used as a good introduction to medical
decision modelling.
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Health economists and decision modellers interested in Bayesian statistics and
its implications are recommended Spiegelhalter et al. [18]. Standard textbooks on
Bayesian methods are: Berry [19], O’Hagan and Luce [20] and Lee [21].

The philosophy behind the Evidence-Based Movement is well captured in a
series of papers ‘Users Guide to the Medical Literature’ [10, 22–27]. The dominant
force in EBM methodology is the Cochrane Collaboration handbook [28]. For some
recent literature that raises more open questions about evidence inclusion, Cooper
et al. [29] can be consulted. A completely different approach to grading studies,
which is fully compatible with the approach taken in this book, can be found in
Turner et al. [11].

In line with its policy of complete transparency, all NICE guidelines and
guidance, as well as the vast majority of the submitted evidence, can be found
on the NICE website. Readers may find the methods guidelines of particular
interest [15].
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