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Basic Background in 3D
Object Processing

Guillaume Lavoué

1.1 3D Representation and Models

This chapter details the different 3D representation models, commonly used
in computer graphics and 3D modeling. We distinguish three main represen-
tation schemes: polygonal meshes; surface-based models, such as parametric,
implicit and subdivision surfaces; and volumetric models including primitive-
based models (superquadric, hyperquadric), voxel representation and con-
structive solid geometry. For each of these 3D representation schemes, we
analyze the advantages and drawbacks in terms of modeling, regarding dif-
ferent applications.

The point-based representation, which has been recently introduced in com-
puter graphics, is not within the scope of this book. Recent reviews can be
found in Kobbelt and Botsch (2004) and Alexa et al. (2004).

1.1.1 Basic Notions of 3D Object Representation

Now 3D objects are more complex to handle than other multimedia data, such
as audio signals or 2D images, since there exist many different representations
for such objects.
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6 Basic Background in 3D Object Processing

For instance, a 2D image has a unique and rather simple representation:
a 2D grid (n × n) composed of n2 elements (named pixels) each containing
a color value or a gray level. The different devices and techniques which
produce digital images (digital cameras, scanners, etc.) all provide the same
representation.

For 3D models there are different kinds of representation: an object can be
represented on a 3D grid like a digital image, or in 3D Euclidean space. In the
latter case, the object can be expressed by a single equation (like algebraic
implicit surfaces), by a set of facets representing its boundary surface or by
a set of mathematical surfaces.

The main difficulties with a 3D object are that:

• The different sources of 3D data (tomography, laser scanning) do not
produce the same representations.

• The different applications (computer-aided design, medical) do not con-
sider the same representations.

• Changing from one representation to another is quite complex and often
constitutes open problems.

Figure 1.1 illustrates several representations of the 3D object Bunny.
From a real-world object, a laser scanner produces a set of points in

3D space, each defined by its coordinates x, y and z. Figure 1.1(a) illus-
trates a cloud of points representing the object Bunny. This point-based
representation, provided by scanners, is not efficient for computing physi-
cal or geometrical properties or displaying on a screen. Indeed there are no
neighborhood relations between 3D points, neither is there any surface or
volumetric information. Therefore these representations are often converted
to polygonal meshes and particularly triangular meshes (see Figure 1.1(b)).
With this model, the object is represented by its boundary surface which is
composed of a set of planar faces (often triangles). More precisely, a polygo-
nal mesh contains a set of 3D points (the vertices) which are linked by edges
to form a set of polygonal facets. Many surface reconstruction techniques
exist to produce a triangular mesh starting from a cloud of points issuing
from a 3D scanner.

Polygonal meshes can represent open or closed surfaces from arbitrary
topology, with a precision that depends on the number of vertices and
facets. Intersection, collision detection or rendering algorithms are simple
and fast with this model, since manipulating planar faces (and particularly
triangles) is also simple (linear algebra). This rapidity is particularly useful
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Figure 1.1 Different representations of Bunny : (a) a cloud of points, (b) a triangular
mesh, (c) a set of parametric surfaces, (d) a set of voxels

for videogames. These benefits make this model the most widespread repre-
sentation for 3D objects.

However, polygonal meshes have some limitations. This model is intrinsi-
cally discrete since the number of vertices and facets depends on the expected
precision, thus a high precision can lead to a huge amount of data. More-
over, the definition of the shape is very local and thus applying a global
deformation or manually creating a shape facet by facet is quite difficult.

The need for a 3D model adapted for modeling and conception has led to
the appearance of parametric surfaces. This family of 3D surfaces (including
Bézier, B-spline and NURBS surfaces) is particularly used for computer-
aided design (CAD), manufacturing (CAM) and engineering (CAE). This
model enables mathematically exact surfaces to be defined contrary to polyg-
onal meshes which only represent an approximation. Since these surfaces are
defined on a parametric domain, they cannot represent a shape with arbitrary
topology, hence a 3D object is often represented by a patchwork of parametric
surfaces. For instance, Bunny from Figure 1.1 is modeled with 153 bicubic
B-spline patches.
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These surfaces have very strong tangential and curvature continuity prop-
erties that make them quite useful for design. Moreover, they are mathe-
matically complete and allow modeling of a large variety of shapes. Since
they are defined only by a few sets of control points, instead of a dense set
of vertices, they are also much more compact than polygonal meshes. The
main drawback is that they are more complex to manipulate than a set of
triangles.

Polygonal meshes and parametric surfaces are boundary representations
(BREP) since they model an object only by its boundary. Several domains
(especially medical imaging) need the interior data of a 3D object and thus
consider a volumetric model and particularly the discrete representation. This
model does not represent the 3D object in Euclidean space, but in a 3D grid
similar to the 2D image representation. Each element of the grid is a voxel
(short for volumetric pixel). Thus the object is represented by the set of
voxels constituting its volume. A voxel can contain a boolean value (in the
object or outside the object) or other information like local densities. Medical
devices (RMI for instance) often produce such volumetric data to describe
the interior of an organ. Figure 1.1(d) illustrates the voxelized Bunny, in a
50 × 50 × 50 grid.

1.1.2 Polygonal Meshes

A 3D polygonal mesh is defined by a set of plane polygons (see Figure 1.2).
Thus, such a model contains three kinds of elements: vertices, edges and
faces (the most used are triangles). Additional attributes can be attached to
the vertices, such as normal vectors, color or texture information. A polygonal
mesh consists of two kinds of information: the geometry and the connectivity.
The geometry describes the position of the vertices in 3D space and the
connectivity describes how to connect these positions, i.e. the relationship
between the mesh elements. These relations specify, for each face, the edges
and vertices which compose it, and for each vertex, the incident edges and
faces. The valence of a vertex is the number of its incident edges and the
degree of a face is its number of edges (see Figure 1.2). A polygonal mesh
is called manifold if each of its edges belongs to one or two faces (one in
the case of a border). Manifold meshes present strong geometrical properties,
and thus are considered in almost all the existing mesh compression methods.
A manifold mesh is associated with its Euler–Poincaré characteristic χ :

χ = v − e + f (1.1)
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Figure 1.2 Polygonal mesh example (2560 vertices, 2562 faces, 5120 edges), illustrating
the valence of a vertex and the degree of a face

with v, e and f , respectively, the numbers of vertices, edges and faces of
the mesh. The Euler–Poincaré characteristic is related to the genus of the
corresponding surface, according to the following equation:

g = 2c − b − χ

2
(1.2)

where c is the number of connected components and b the number of borders.
The genus of a surface describes its topological complexity; it corresponds to
the maximum number of closed curves, without common points, which can
be traced inside this surface without disconnecting it (i.e. the complement
to these curves remains connected). Basically the genus is the number of
handles of the mesh; a sphere and a torus are respectively of genuses 0
and 1. Figure 1.3 illustrates a genus-65 model.

The polygonal mesh model is by far the most popular in computer graphics
and 3D modeling. Its algebraic simplicity (linear algebra) largely facilitates
algorithms of intersection, collision detection or rendering. Moreover, polyg-
onal meshes have a high capacity of description; indeed any complex object
of arbitrary topology can be modeled by a polygonal mesh, provided there
is enough memory space available. Finally, many techniques generate a
polygonal mesh starting from other geometrical models (parametric surfaces,
implicit surfaces, discrete models, etc.). This model representation largely
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Figure 1.3 Example of a genus-65 3D mesh (8830 vertices, 17919 faces). Courtesy of
SensAble technologies by the AIM@SHAPE Shape Repository

dominates the various 3D interchange formats, such as VRML and MPEG-4
(2002).

Nevertheless this model has several limitations: it is a discrete represen-
tation, because it depends on the targeted scale. Indeed, a polygonal mesh
only possesses a C0 continuity, and thus cannot represent exactly a smooth
surface, only an approximation whose precision (linked to the number of
polygons) depends on the targeted scale and application (rendering, collision
detection, etc.). Consequently, this model can become quite heavy in terms
of the amount of data if the expected precision is high, or if the object to be
represented is complex.

The standard mesh format (used in the VRML standard, for instance) is
as follows. The geometry is represented by a list of coordinates indexed
over the vertices and the connectivity is described by the list of faces, each
of them being represented by a cyclic list of indices of its incident ver-
tices. Figure 1.4 illustrates this standard representation. The file contains the
coordinates of the vertices V0, V1, V2, V3, V4, V5 (the geometry) and for
each face F0, F1, F2, F3, the indices of the corresponding vertices (the
connectivity).

Although this coding method offers the advantage of simplicity, encoded
data are very redundant since vertices and edges are referred to several times.
In the binary format, for a triangular mesh, each of the three coordinates of
each vertex is basically encoded by a float (4 bytes) and for each face, each
of the three vertex indices is encoded by an integer (4 bytes). If ns is the
number of vertices and nf the number of faces, then the size of the file
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Figure 1.4 Example of standard representation for a simple mesh, containing six vertices
and four faces

is (nf + ns) × 4 × 3 bytes. For a regular mesh, for which nf ≈ 2 × ns , we
have to encode 3 × 4 × 3 = 36 bytes (or 288 bits) per vertex.

1.1.3 Surface-based Models

In this class of representation, a 3D object is represented by its boundary,
defined by one or more pieces of a surface. We detail here the three main
representation schemes comprising this family: parametric surfaces, implicit
surfaces and subdivision surfaces. Polygonal meshes also belong to this class
of representation, but due to its predominance in computer graphics, we have
devoted a whole section to its description.

Parametric surfaces

Description

The parametric representation of a 3D surface defines each point S(η, µ) of
the surface by the following equation:

S(η, µ) =

 fx(η, µ)

fy(η, µ)

fz(η, µ)


 (1.3)

η and µ are the two parametric variables, and fx , fy and fz are functions
from R

2 in R.
Parametric models represent a large family of surfaces. The most com-

mon are the Bézier surfaces and their extensions, B-spline and NURBS
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(Non-Uniform Rational B-Spline) surfaces, which are particularly popular
in CAD and CAM.

Pierre Bézier introduced parametric surfaces in the field of CAD in 1972
(Bézier 1972). Bézier curves and surfaces are characterized by a set of control
points, which defines an n × m grid. The linear combination of these control
points, following the two directions η and µ, provides all the surface points
S(η, µ):

S(η, µ) =
n∑

i=1

m∑
j=1

Pi,jB
n
i (η)Bm

j (µ) (1.4)

where Pi,j are the control points, and Bk
i (t) = Ci

kt
i(1 − t)k−i the Bern-

stein polynomials (with t ∈ [0, 1]), which represent the blending functions.
Figure 1.5 illustrates a bicubic Bézier surface, defined on a 4 × 4 grid of con-
trol points. Although they have strong continuity properties, these surfaces
have two major drawbacks:

• No local control is possible, i.e. the displacement of a control point involves
modifications on the whole surface.

• The polynomial degree increases with the number of control points. Thus
it is computationally expensive to handle complex control polyhedra.

The necessity to eliminate these drawbacks has led to the creation of a
new model: B-spline curves and surfaces. The formulation is quite similar to
Bézier surfaces, with different blending functions. Bernstein polynomials are

Figure 1.5 Bicubic Bézier surface (16 control points) and isoparametric curves
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replaced by the B-spline functions. Considering k and l (k ≤ n and l ≤ m),
the respective degrees of the surface in the two directions η and µ, the
formulation is:

S(η, µ) =
n∑

i=1

m∑
j=1

Pi,jN
k
i (η)Nl

j (µ) (1.5)

Nk
i (t) is the B-spline basis function, of degree k, recursively defined by:

Nk
i (t) = (t − ti)N

k−1
i (t)

ti+k − ti
+ (ti+k+1 − t)Nk−1

i+1 (t)

ti+k+1 − ti+1
(1.6)

with:

N0
i (t) = 1 if t ∈ [ti , ti+1[ (1.7)

N0
i (t) = 0 otherwise (1.8)

A B-spline surface is thus a continuous, piecewise polynomial surface
defined like the union of surface patches of fixed degrees (k and l) connected
according to the blending B-spline functions. Vectors t0, t1, . . . , tn+k+1 and
t0, t1, . . . , tm+l+1 are called the node vectors and form monotonous increasing
floating values lists which represent the positions of the beginning and end of
the compact supports of the blending functions. In other words, they define
which proportions of each patch are present in the B-spline surface. If the
nodes are uniformly spaced, the B-spline is said to be uniform. Figure 1.6
details this mechanism for 2D curves: a B-spline segment (analogous to a
surface patch) is illustrated on the left while a B-spline curve made up of
three B-spline segments is shown on the right.

Figure 1.6 B-spline curves
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B-spline curves and surfaces have many benefits, compared with Bézier
ones. They permit local control: the displacement of a control point involves
modifications on a delimited region of the surface (depending on degrees k

and l). Moreover, the complexity and the size of the control polyhedron do
not influence the degree and thus the calculation complexity of the polyno-
mials. Finally k and l control the order of B-spline functions, therefore for
the same set of control points, the resulting surface can more or less match
the control polyhedron.

The next logical step is the NURBS model. These surfaces are a gener-
alization of B-splines. A weight wij is associated with each control point.
This coefficient is a tension parameter: increasing the weight of a control
point pulls the surface toward that control point. NURBS models enable the
definition of not only natural quadrics (such as spheres, cylinders, etc.) but
also surfaces having sharp edges. For more details on parametric surfaces,
interested readers are invited to consult the book by Farin (1993).

Evaluation

The representational power of parametric surfaces is really strong, especially
in the case of NURBS. Further, this model has been included in the VRML
(dedicated to the Internet) and MPEG-4 (2002) standards and in various 3D
CAD exchange formats (IGES, STEP, etc.).

The benefits of these surfaces are numerous: they are mathematically com-
plete and therefore easy to sample or to digitize into voxels, triangles, etc.
Moreover, they do not depend on a scale factor (unlike discrete models like
meshes or voxels). Lastly, they have strong continuity properties (particularly
useful for design), and are much more compact in terms of amount of data
than the polygonal mesh model.

However, parametric models are not as widely used as polygonal meshes,
for various reasons: they remain quite complex to manipulate, and the algo-
rithms of collision detection and intersection are quite difficult to imple-
ment. Finding intersection points between two NURBS (or B-spline) surfaces
amounts to solving a complex mathematical problem (Krishnan and Manocha
1997) whereas this operation is commonplace for polygonal meshes. Also,
these surfaces are defined on parametric grids, which makes them difficult to
fit to an object with arbitrary topology. Thus, a whole object is often com-
posed of several NURBS patches, associated with trimming curves which
do not yet have a real standardization and which increase the volume of
data.
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Implicit surfaces

Description

Consider an implicit surface S as the zero set of a function f from R
3 in R.

The set of points P = (x, y, z) of the surface S defined by the function f

verifies:
f (x, y, z) = 0 (1.9)

Common shapes are often defined in such manner, for instance a straight
line ax + by + cz + d = 0 or a sphere x2 + y2 + z2 − r2 = 0.

Thanks to this formulation, the main property of this model is to give
directly the relation between the surface and every point of the 3D space.
Hence, this model defines not only a surface but also a solid; indeed the
sign of the function f specifies a whole partition of the 3D space. A point
P = (x, y, z) is such that:

• f (x, y, z) > 0 is outside the implicit surface;
• f (x, y, z) < 0 is inside the implicit surface;
• f (x, y, z) = 0 is on the implicit surface.

Implicit surfaces can be classified into two principal categories: algebraic
and non-algebraic. A surface is algebraic if f is a polynomial. Figure 1.7
depicts such a surface. Superquadrics and hyperquadrics belong to this class,
and are described in section 1.1.4.

Since algebraic surfaces are quite complex to manipulate, another formula-
tion (non-algebraic) for implicit surfaces has been developed. The main idea

Figure 1.7 Implicit surface associated to the algebraic equation x4 − 5x2 + y4−
5y2 + z4 − 5z2 + 11.8 = 0
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is to represent an object by a set of particles. Each particle is represented by
its center (a point of the 3D space) and a potential function �(r) decreasing
with the distance r to the center. If the scene is composed with n particles,
the value of the global potential function �g for a point P of the 3D space
is defined by:

�g =
n∑

i=1

�i(ri) (1.10)

with ri the distance from P to the center of the ith particle. The summa-
tion of the potential functions is a sort of generalization of union operators
and enables the blending of different particles. Corresponding isosurfaces
(surfaces corresponding to a constant value for �g) then allow modeling of
arbitrary (even complex) shapes.

The first author to propose such a model was Blinn (1982), who introduced
the blob objects defined by a Gaussian potential function �(r) = be−ar2

.
Figure 1.8 illustrates the blending of two blobs associated with different
distances.

The main drawback of Blinn’s model is its global definition; indeed the
potential function � is not bounded. Thus other potential functions have
been introduced (Murakami and Ichihara 1986; Nishimura et al. 1985; Wyvill
et al. 1986) which permit bounding of the blob influence in order to speed
up calculations.

This model was improved and generalized by replacing the center of the
particles by some more complex primitives like segments or faces, in order
to create skeleton-based implicit surfaces. The potential field value gener-
ated by an element of the skeleton, for a point P of the 3D space, is then
defined by a potential function �(r), with r the distance from P to the

Figure 1.8 Unions of two blobs at different distances
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skeleton (Bloomenthal and Wyvill 1990). However, this modeling technique
can produce artifacts or discontinuities, particularly for a non-convex skele-
ton (when the radius of curvature of the skeleton is smaller than the radius of
influence of the potential function, for instance). Thus a new class of skeleton-
based implicit surfaces was introduced, based on the principle of convolution
(Bloomenthal and Shoemake 1991). These surfaces are now defined by using
integrals of the potential field along the skeleton elements. Numerous authors
are developing more and more complex and effective implicit models: Wyvill
et al. (1999) introduced the BlobTree which organizes the elements of the
skeleton in a hierarchical graph structure, in which nodes represent blending
operations, boolean operations or deformations. This model was extended
by Barbier et al. (2005) who introduced levels of detail. In the same way,
Angelidis and Cani (2002) and Hornus et al. (2003) presented a multireso-
lution implicit model, based on convolution along a skeleton represented by
subdivision curves.

Evaluation

Through their different representations (algebraic, particles, skeletons),
implicit surfaces offer real modeling power from the more intuitive (blobs,
skeletons) to the more mathematical (algebraic surfaces). Arbitrary topolo-
gies can also be modeled (provided that there is no boundary or sharp edge).
Moreover, these surfaces make the algorithms of intersection, belonging or
blending particularly simple. Deformation and animation algorithms are also
easily facilitated, hence implicit surfaces are especially used in the medical
field, for the modeling of body parts. Further this model is particularly com-
pact. In the case of a sphere, for example, the implicit formulation is quite
simple: (x − cx)

2 + (y − cy)
2 + (z − cz)

2 − r2 = 0.
However, sampling and distance calculations are quite difficult to han-

dle. Contrary to the parametric models, points of the implicit surfaces are
not directly calculable. Thus, triangulate surfaces require quite complex algo-
rithms like the marching cubes (Lorensen and Cline 1987) or the more recent
marching triangles (Akkouche and Galin 2001). In spite of a relatively high
representational power, due particularly to the recent non-algebraic implicit
modeling techniques (Angelidis and Cani 2002; Barbier et al. 2005; Bloo-
menthal and Shoemake 1991; Bloomenthal and Wyvill 1990; Hornus et al.
2003; Muraki 1991), implicit surfaces are especially adapted for organic
modeling, and cannot represent mechanical or CAD objects because of the



18 Basic Background in 3D Object Processing

difficulty of representing planes or sharp edges. Concerning algebraic sur-
faces, there is no possible local control, or local deformations.

Subdivision surfaces

Description

The basic idea of subdivision is to define a smooth shape from a coarse poly-
hedron by repeatedly and infinitely adding new vertices and edges according
to certain subdivision rules. Figure 1.9 illustrates this subdivision mecha-
nism for a 2D curve. Figure 1.9(a) shows four points connected by segments
(the control polygon), while Figure 1.9(b) shows the polygonal curve after a
refinement step: three points have been added and the old points have been
displaced. By repeating this refinement several times, the polygonal curve
takes on the appearance of a smooth curve. Continuity properties of the limit
curve depend on the subdivision rules. Similarly, an example of a subdivi-
sion surface is presented in Figure 1.10. At each iteration, each quadrangle
is divided into four, new points are thus inserted and the old ones are dis-
placed. After several subdivision iterations, the surface seems smooth (see
Figure 1.10(d)).

The main difficulty is to find subdivision rules which lead to certain good
properties such as calculation simplicity, local control, continuity and pleas-
ant visual aspect. In the case of the subdivision curve presented in Figure 1.9,
the polygonal curve is firstly linearly subdivided (i.e. new points are added
in the middle of the segments), and then each point Pi is replaced by a linear
combination of itself and its direct neighbors Pi−1 and Pi+1, following the
smoothing mask:

P ′
i = 1

4
(P ′

i−1 + 2Pi + P ′
i+1) (1.11)

With these rules, the limit curve corresponds to a uniform cubic B-spline
(see Figure 1.9).

Figure 1.9 Example of a subdivision curve: (a) control polygon, (b, c) two refinement
steps, (d) limit curve
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Figure 1.10 Example of a subdivision surface: (a) control polyhedron, (b, c) two refine-
ment steps, (d) limit surface

Doo and Sabin (1978) and Catmull and Clark (1978) (see Figure 1.10)
were the first authors to introduce subdivision surface rules. Their schemes
respectively generalized biquadratic and bicubic tensor product B-splines
(Farin 1993). Today, many subdivision schemes have been developed, based
on quadrilateral (Kobbelt 1996; Peters and Reif 1997) or triangular meshes
(Loop 1987; Zorin et al. 1996). Recently, Stam and Loop (2003) and Schaefer
and Warren (2005) have introduced subdivision schemes for mixed quad/
triangle polyhedra. Moreover, special rules have been introduced by Hoppe
et al. (1994) to handle sharp edges (i.e. to preserve the sharpness of a given
control edge). A subdivision scheme can be described by:

• A topological component: Every subdivision scheme changes the connec-
tivity of the polyhedron, by adding/removing vertices or flipping edges.
Then we can classify them into two main categories: primal schemes
which do not remove old vertices, and dual schemes which remove them.

• A geometric component: The displacement of the vertices can be seen as
a smoothing operation on the input polyhedron. Considering this operation,
subdivision schemes can also be split into two main classes: interpolating
schemes which do not modify the position of the old vertices, and non-
interpolating schemes which change the position of both old and new
vertices.
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Table 1.1 Classification of principal subdivision schemes

Primal Triangles Quadrangles Dual (quadrangles)

Non-interpolating Loop (C2) Catmull–Clark (C2) Doo–Sabin (C1)

(Loop 1987) (Catmull and Clark
1978)

(Doo and Sabin 1978)
Midedge (C1)

(Peters and Reif
1997)

Interpolating Butterfly (C1) Kobbelt (C1)

(Zorin et al. 1996) (Kobbelt 1996)

π

Figure 1.11 Smoothing masks for Loop subdivision rules: (a) standard vertex, (b) sharp
vertex

Hence, we can classify existing subdivision schemes. This classification is
detailed in Table 1.1.

A subdivision scheme is generally described by smoothing masks.
Figure 1.11 illustrates the different masks associated with the Loop (Loop
1987) subdivision rules which apply on triangular meshes. We consider the
subdivision scheme as being composed of two distinct steps: a linear subdi-
vision (a vertex is added at the middle of each edge), and then a smoothing
(each vertex is replaced by a linear combination of itself and its direct neigh-
bors). Smoothing coefficients are presented in Figure 1.11(a) with ne the
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valence of the considered vertex. Special rules were introduced by Hoppe
et al. (1994) for handling sharp and boundary edges. Figure 1.11(b) illustrates
the smoothing coefficients for vertices shared by two sharp edges.

For more details about subdivision surfaces, the reader may refer to the
book by Warren and Weimer (2002).

Evaluation

Subdivision surfaces offer many benefits. Firstly they can be generated from
arbitrary meshes (arbitrary topology), which implies no need for trimming
curves (which are necessary for NURBS surfaces, defined on parametric
rectangles). Secondly, the majority of existing subdivision schemes are really
easy to implement and linear in complexity. Further, they can be generated
at any level of detail, by iterative subdivision of the control mesh, according
to the terminal capacity for instance. Local control is possible (which is not
the case for algebraic implicit surfaces) with the possibility of creating and
preserving sharp features. Most of the existing schemes produce at least C1

continuous (except around sharp edges, of course) limit surfaces. Lastly, it
is an extremely compact model since a smooth surface is represented by
a coarse control mesh (thus no need to encode node vectors or trimming
curves as for the NURBS). For all these reasons, subdivision surfaces are
now widely used in computer graphics and 3D imaging, and particularly in
the fields of animation, reconstruction and CAD, and have been integrated
into the MPEG-4 standard (MPEG-4 2002).

One of the main drawbacks of subdivision is the lack of parametric for-
mulations. Thus they cannot be directly evaluated at any points. Moreover,
the control mesh has to be adapted to the considered rules (based on quads
or triangles). Also, for certain subdivision schemes, the continuity properties
are not as strong as for parametric surfaces, particularly around extraordinary
points (vertices of the mesh having a non-regular valence).

1.1.4 Volumetric Representation

Primitive-based models

These models decompose a complex 3D object into a set of simple ones,
called primitives, which are then combined using different operations. These
primitives are generally arranged in a graph that allows a structural model-
ing of the object, particularly useful for indexing and recognition purposes.
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Several types of primitives exist: generalized cylinders (Binford 1971; Ponce
et al. 1989; Zeroug and Nevatia 1996), geons (Biederman 1985; Nguyen and
Levine 1996), superquadrics (Barr 1981), supershapes (Gielis et al. 2003),
hyperquadrics (Han et al. 1993) and other implicit polynomial models (Keren
et al. 1994). These models can be classified in two main categories: quan-
titative models having a real representational power (superquadrics, hyper-
quadrics, implicit polynomials) and qualitative models which have a sym-
bolic and structural representation purpose (geons, generalized cylinders).
The objective of this chapter is to present true modeling techniques, thus
we will only detail quantitative models and more particularly superquadric
models and their extensions of supershapes and hyperquadrics, implicit poly-
nomial models having already been detailed in Section 1.1.3.

Superquadrics

Superquadrics were introduced by Barr (1981) in the early 1980s. They are
an extension of quadrics: two additional parameters were introduced, ε1 and
ε2, which control the latitudinal and longitudinal curvatures. These primitives
have the specificity to possess both implicit and parametric formulations. The
most commonly used ones are superellipsoids, defined as follows.

Parametric formulation:

S(η, µ) =

 a1 cosε1(η) cosε2(µ)

a2 cosε1(η) sinε2(µ)

a3 sinε1(η)


 ; −π

2
≤ η ≤ π

2
, −π ≤ µ ≤ π (1.12)

Implicit formulation:

F(x, y, z) = 1 −
[(

x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

] ε2
ε1

+
(

z

a3

) 2
ε1

(1.13)

Parameters a1, a2, a3 control the size of the superellipsoid while ε1 and ε2

control its curvature. Figure 1.12 illustrates some examples of superellipsoids
associated to different ε1 and ε2 values. Hence, with only five parameters,
this model yields the representation of a quite broad range of shapes such as
cubes, cylinders, octahedra or ellipsoids. Barr (1981) has also defined two
other classes of superquadric, namely supertoroid and superhyperboloid, with
one or two sheets, but their use remains marginal.



3D Representation and Models 23

Figure 1.12 Superellipsoid examples and associated ε1 and ε2 values. Data Courtesy
of L Chevalier

Superquadrics, and more particularly superellipsoids, have a high repre-
sentational power relative to their small number of parameters; the model is
extremely compact. The fact of having both implicit and parametric formu-
lations is also quite interesting, and enables the model to be adapted to the
application. Indeed, intersection or blending algorithms are easy to handle
using the implicit equation while the parametric formula facilitates sampling
or meshing. These surfaces are quite popular in computer graphics (Jaklic
and Solina 2003; Jaklic et al. 2000; Montiel et al. 1998).

In spite of a rather high representational power considering the extremely
small number of parameters, it still remains much lower than those of surface-
based models (parametric, implicit, subdivision). Indeed it is quite difficult
to perfectly model an arbitrary object even by considering a whole graph of
superquadrics. Thus, many authors have introduced deformation techniques
in order to increase the flexibility of this model, and particularly to reduce
its heavy symmetry constraints.

Barr (1984) proposes a set of global deformations: torsion, folding, etc.
Terzopoulos and Metaxas (1991) add local deformation coefficients. Bar-
dinet et al. (1994) consider control-point-based deformations and Zhou and
Kambhamettu (2001) replace the exponents ε1 and ε2 by functions depending
on latitudinal and longitudinal angles. Blanc and Schlick (1996) introduce
a new model, ratioquadrics, in which the exponential functions are replaced
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by numerically simpler ones. Lastly, DeCarlo and Metaxas (1998) propose
blending operations between superquadrics.

Supershapes

Supershapes were recently introduced by Gielis et al. (2003). Supershapes
can be considered as a generalization of superquadrics, allowing the modeling
of asymmetrical shapes. Like superquadrics, they have both parametric and
implicit formulations.

Parametric formulation:

S(η, µ) =

 r1(µ)r2(η) cos(η) cos(µ)

r1(µ)r2(η) cos(µ) sin(µ)

r2(η) sin(η)


 ; −π

2
≤ η ≤ π

2
, −π ≤ µ ≤ π

(1.14)
Implicit formulation:

F(x, y, z) = 1 − x2 + y2 + r2
1 (µ)z2

r2
1 (µ)z2r2

2 (η)z2
(1.15)

with

r(µ) = 1

n1

√
1

a
cos

(mµ

4

)n2

+ 1

b
sin

(mµ

4

)n3
(1.16)

n1, n2 and n3 are three shape coefficients and the term mµ/4 allows a rational
or irrational number of symmetry, while a and b control the size of the shape.
Figure 1.13 illustrates some examples of supershapes.

Figure 1.13 Supershape examples. (From the work of Fougerolle et al. (2006)). Repro-
duced with kind permission of Springer Science and Business Media
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Figure 1.14 Combination of several deformed supershapes (left) and corresponding
constructed mesh (right) by the algorithm of Fougerolle et al. (2005). Reproduced by
permission of IEEE

This model is very recent and exhibits a higher representational power than
superquadrics (by breaking the symmetry constraints) while keeping the same
benefits of both implicit and parametric formulations. Several authors have
investigated the use of combinations of deformed supershapes to represent
more and more complex 3D models. Figure 1.14 illustrates a mechanical
model composed with 9 supershapes associated with boolean operations.
Fougerolle et al. (2005) introduced a recent algorithm to accurately polygo-
nize such supershape combinations, and proposed a new formulation for the
implicit representation (Fougerolle et al. 2006).

Hyperquadrics

Hyperquadrics (Vaerman et al. 1997) are a generalization of superquadrics,
they enable the representation of a higher variety of shapes and do not have
symmetry constraints. However, they are more complex to handle and, con-
trary to superquadrics, they only have an implicit formulation (Fougerolle
et al. 2006):

∑
i

Si + e
∑

j Sj = 0 (1.17)

where S is a superquadric equation.
Although hyperquadrics have a higher representational power than

superquadrics, their use remains marginal. Their high complexity and the lack
of parametric formulations make them of limited interest. Like superquadrics,
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Figure 1.15 Hybrid hyperquadrics, introduced by Cohen and Cohen (1996). Reprinted
from Cohen and Cohen, 1996, with permission from Elsevier

these primitives are used especially for organic part reconstruction and
simulation in the medical field. The difficulty in controlling the shape has led
researchers to introduce local deformations; thus, Cohen and Cohen (1996)
introduced the hybrid hyperquadrics, by adding an exponential term to the
equation. Examples of their model are illustrated in Figure 1.15.

Constructive solid geometry (CSG)

Description

This model represents a 3D object by a set of linear transformations and
boolean operations (union, intersection, difference) applied on elementary
primitives (sphere, torus, cone, cubes). Thus the object is represented by a
tree (called a constructive tree), with a primitive associated with each leaf and
an operator associated with each non-terminal node. Figure 1.16 illustrates
such a model.

Evaluation

Constructive solid geometry is only used in CAD to represent mechanical
parts. The model is extremely compact and permits representation of the
whole modeling process. However, this model is very hard to display, and
involves discontinuity problems at the joints between primitives. Moreover,
there is no associated standard format, and from one piece of CAD software to
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Figure 1.16 Constructive representation of a 3D object

another, operators and primitives are not the same. Further, the geometrical
and physical properties are quite complex to calculate. Lastly, the inverse
problem of constructing a CSG tree from a set of 3D data (3D point cloud,
or 3D mesh) is almost impossible to handle.

Discrete model

Description

This model decomposes the 3D space into volume elements (called vox-
els). Thus a 3D object is represented by the set of voxels constituting (or
intersecting) its volume. An example of a discrete 3D object is illustrated in
Figure 1.17.

Evaluation

This discrete model is quite simple to construct and facilitates boolean oper-
ations and calculation of physical properties. Moreover, several authors have
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Figure 1.17 Discrete representation of the 3D object Al. Courtesy of I Sivignon

generalized differential operators to such models (Coeurjolly and Klette 2004;
Flin et al. 2005). This representation is used particularly in the medical field,
since it comes directly from tomographic reconstruction.

However, this model is very expensive in terms of memory and gives only
an approximation of the 3D object (arising from its discrete nature) according
to a certain level of precision. Moreover, algorithms of ray tracing, meshing
or surface or planes extraction are quite complex problems (Kobbelt et al.
2001; Sivignon et al. 2004). Figure 1.17 illustrates digital planes retrieved
using the algorithm from Sivignon et al. (2004) (where a color is used to
represent a plane).

1.2 3D Data Source

There are several ways to produce 3D content, but basically we can distin-
guish two principal classes:

• The acquisition, which reproduces a real-world object, like a camera for
2D images.

• The manual creation, using specific software, similar to a painting of 2D
images.
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1.2.1 Acquisition

The main objective is to create a 3D object which reproduces a given real-
world object, like a photograph represents a real-world image. There are
mainly two classes of technologies: those which analyse and reconstruct the
surface of the object (e.g. 3D scanner) and those which reconstruct its volume
(e.g. tomography).

3D scanner

A 3D scanner works like a camera, but instead of collecting color informa-
tion about a surface, it collects distance information. Basically, each scan
produces a picture where each pixel contains the distance to the surface; this
picture is called a depth (or range) image. Usually to analyze properly a
complex 3D object, multiple scans (i.e. range images) from different direc-
tions are necessary. These range images are then merged together to produce
a cloud of points representing the surface (see Figure 1.1(a)). This operation
is called registration or alignment (Salvi et al . 2007) and consists of bring-
ing the range images, coming from different directions, within the same 3D
coordinate system. Figure 1.18 illustrates examples of registration.

There are several types of 3D scanners:

• Laser scanners emit a beam toward the object and detect its reflection.
There are basically two technologies. The time-of-flight (or laser range-
finder) scanner measures the time taken by the beam to be reflected by the
target and returned to the sender and then deduces the distance according
to the speed of light. This technology is not quite precise but can operate

Figure 1.18 Examples of registration of two range images: correct (left) and incorrect
(right). Reproduced from Salvi et al . 2007.
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Figure 1.19 Triangular mesh of the north of Corsica, reconstructed according to a digital
elevation model. Courtesy of DISI by the AIM@SHAPE Shape repository

over very long distances and thus is particularly suitable for measuring
large scenes. For example, with this technique, the NASA Shuttle Radar
Topographic Mission provides digital elevation models for over 80 % of
the globe; Figure 1.19 illustrates a triangular mesh of the north of Corsica,
reconstructed according to a digital elevation model. The other technology
is the triangulation scanner which emits a beam toward the object and
uses a camera to analyze the location of the laser dot on the object. The
laser dot, the camera and the laser emitter form a triangle which locates
very precisely the corresponding 3D point (accuracy of several microme-
ters). However, such a technique is limited to a depth of several meters.
Figure 1.20 illustrates the laser scanning of the head of Michelangelo’s
David and the corresponding 3D model, from the Digital Michelangelo
Project (Levoy et al . 2000).

• Contact scanners (or coordinate measuring machines) use a small arm
(automatic or manual) to touch the 3D object and record the corresponding
3D points. However, such a technique can damage the object (because of
the contact) and is much slower than laser scanners.

There are also some systems that are able to digitize a 3D model without laser
scanning or contact, but only with several cameras using stereo reconstruction
techniques. Hence two images of the same object, associated with adapted
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Figure 1.20 Scanning of the head of Michelangelo’s David with a triangulation laser
scanner (left) and corresponding 3D model (right). Reproduced from the Digital Michelan-
gelo Project (Levoy et al . 2000), Stanford University, Copyright  Marc Levoy – Paul
Debevec

lighting conditions, are able to reconstruct the 3D geometry, under some
shape constraints.

Scanning technology is particularly used for:

• Cultural heritage (see Figure 1.20), to preserve in digital form historical
pieces or sites.

• Reverse engineering, which basically consists of scanning a mechanical
part for instance and then reconstructing the corresponding CAD model
(typically a set of parametric surfaces).

• Geographic information science, where the objective is to model 3D geo-
graphical information, like terrain models (see Figure 1.19), for applica-
tions in cartography or spatial planning.

Tomography

Tomography is a technique that consists of reconstructing the volume of a 3D
object from a set of external measures which often involve emitting a cer-
tain signal through the object toward a sensor and analyzing the response. The
nature of the retrieved volumetric data depends on the nature of the signal and
of the sensors. For instance, the computed axial tomography scanner (or CT
scan) measures the ability of the material to absorb X-rays; this scanner sends
X-ray beams through the object, and a sensor measures their residual intensity.
Similarly echography measures the acoustic impedance of a material by mea-
suring the attenuation of ultrasound sent through the object. Another example
is the nuclear magnetic resonance imaging (MRI) scanner which measures the
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Figure 1.21 A 3D magnetic resonance image of the head, vertical cross-section, and the
result after segmentation. The brain 3D model is Courtesy of INRIA by the AIM@SHAPE
Shape repository

proton density and structure of a material. The object is placed in a powerful
magnetic field. The hydrogen nuclei are excited and then relax by emitting an
electromagnetic pulse which is measured by a sensor. Lastly, positron emis-
sion tomography (PET) works by measuring the radioactive emission of a tracer
injected in the object (or the body) for analysis.

The tomography technology produces an image of the considered physical
measures (X-ray absorption, ultra sound response, etc.) which has to be
converted to 3D data by a mathematical reconstruction process. Unlike 3D
laser scanners, the tomography technology does not provide a cloud of points
but a volumetric model in the form of a 3D grid where each element contains
a kind of density value or other information. To be properly utilized, these
data often have to be segmented to obtain a 3D binary grid or a polygonal or
tetrahedral mesh representing a specific part. Figure 1.21 illustrates a section
of a 3D MRI image and the segmentation result.

Tomography technologies mostly concern medical imagery, where analyz-
ing the interior of an organ is critical to detect eventual diseases or pilot
surgical operations. Another application of tomography is in geophysics to
analyze some aspects of the Earth.

1.2.2 Manual Creation

A 3D content can be obtained by reproducing a real-world object (acquisition,
see previous section), but can also be created manually by designers using
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Figure 1.22 Examples of hand-designed 3D objects. Left: CAD object from a Laguna
car. Right: Little girl from a 3D modeler (Software Amira)

specific software. Their are two principal types of software: CAD software
and 3D modelers.

CAD software

CAD software helps engineers or architects to design industrial objects,
machinery, manufactured content, buildings, etc. This software is based
mostly on parametric surfaces and can produce 3D content to a very high
precision since this content is then used for manufacturing the real object.
An example of a CAD model composed with parametric surfaces is given in
Figure 1.22 (left); the boundaries between parametric surfaces are indicated
by the solid lines.

3D modelers

Whereas CAD software aims at designing high-precision technical objects,
3D modelers are rather adapted to produce artistic 3D content and 3D anima-
tions. The main applications are videogames and 3D movies. Most 3D mod-
elers are based on a polygonal mesh representation since this model is highly
adapted for rendering or simple operations like collision detection etc. Texture
and color information are often added to the model (see Figure 1.22, right).

1.2.3 3D Object Databases

A critical issue in the design of new algorithms and evaluation of their perfor-
mance is the presence of open 3D object databases. However, only a few 3D
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databases exist presently. Recently, the AIM@SHAPE Shape Repository was
created within the Network of Excellence project AIM@SHAPE (Advanced
and Innovative Models And Tools for the development of Semantic-based
systems for Handling, Acquiring, and Processing knowledge Embedded in
multidimensional digital objects, 2004–2007). This repository contains a col-
lection of digitally scanned 3D shapes (3D meshes, range images, volumetric
models) and offers some interesting functionalities like multiresolution for-
mats. Another example is the Princeton Shape Benchmark which was created
specifically to compare 3D indexing methods, hence the objects are classified
into several classes. Lastly, some other databases exist for specific 3D face
applications: namely, the 3DRMA database at the Signal and Image Center
(SIC) at the Royal Military Academy of Belgium, and the database of the
University of Notre Dame (UND) in the United States.

1.3 3D Quality Concepts

Compression, or even watermarking, can introduce degradations of the visual
quality of a 3D object. Since the ultimate application of these processes is
often to be seen by human beings, the need for efficient tools to measure the
loss of quality or the visual differences between 3D objects is critical.

Some geometric measures exist between 3D objects, such as the Hausdorff
distance, where e(p, M) represents the distance from a point p of the 3D
space to a 3D object M:

e(p, M) = min{p′∈M} d(p, p′) (1.18)

with d the Euclidean distance between points p and p′. Then the asymmetric
Hausdorff distance between two 3D objects M and M ′ is:

Ha(M, M ′) = max{p∈M} e(p, M ′) (1.19)

The symmetric Hausdorff distance is then defined as follows:

Hs(M, M ′) = max
{
Ha(M, M ′), Ha(M

′, M)
}

(1.20)

The Hausdorff distance is based on an L∞ norm. Other distances exist
based on L1 or L2 norms; for example, the mean distance (L1) is defined as
follows:

DL1(M, M ′) = 1

Area(M)

∫
M

e(p, M ′)dM (1.21)
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These geometric distances are available in many software packages (Aspert
et al. 2002; Cignoni et al. 1998), especially for polygonal meshes, but are
not well matched with visual human perception. This perceptual gap was
investigated a great deal in the field of image processing.

1.3.1 Existing 2D Perceptual Metrics

A review of existing 2D perceptual metrics can be found in Eckert and
Bradley (1998). Basically there are two different approaches: computational
and ad hoc.

Computational metrics, like the visible difference predictor (VDP) of
Daly (1993), consist of complex numerical models taking into account psy-
chophysical and physiological evidence. These models often rely on the same
perceptual attributes (Eckert and Bradley 1998):

• The contrast sensitivity function (CSF) which defines the contrast at which
frequency components become just visible.

• The channel decomposition, claiming that human vision consists of several
channels selective to spatial frequency and to orientation.

• The masking effect which defines the fact that a signal can be masked by
the presence of another signal with similar frequency or orientation.

These attributes lead to filtering operations (according to the CSF), filter bank
decomposition, error normalization (masking effect) and error summation
across frequency bands and space (usually using the Minkowski metric).

Ad hoc metrics consider simpler mathematical measures, intuitively relat-
ing to visual perception and/or introducing penalties for specific artifacts. A
typical example is the work of Marziliano et al. (2004) which aims at detect-
ing and quantifying blocking and ringing artifacts of JPEG compression.

Recently, Wang et al. (2004) introduced an alternative framework for
image quality assessment which does not rely on a summation of kinds
of perceptual errors, but on the degradation of the structural information.

1.3.2 Existing 3D Perceptual Metrics

Transposing complex computational metrics from 2D images to 3D objects
is quite difficult, and to the best of our knowledge was only investigated
by Ferwerda et al. (1997). They proposed a masking model, extending the
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Daly VDP, which demonstrates how surface texture can mask the polygonal
tessellation.

Most of the work on 3D perceptual distances has focused on three spe-
cific applications: realistic rendering, mesh simplification and evaluation of
specific processes (compression or watermarking).

The objective of perceptually driven rendering is to determine, according
to the location of the observer, which level of detail (LoD) to use to satisfy
frame rate and image quality requirements. In fact these methods are based
on 2D image perceptual models described in the previous section. Reddy
(1996, 2001) analyzed the frequency content in several pre-rendered images
to determine the best LoD. In a different way, Bolin and Meyer (1998) and
more recently Farrugia and Peroche (2004) used perceptual models to opti-
mize the sampling for ray tracing algorithms. Most of these works concern
off line rendering. Luebke and Erikson (1997), Luebke and Hallen (2001)
and Dumont et al. (2003) presented view-dependent simplification algorithms
for real-time rendering, based on the worst cases of imperceptible contrast
and spatial frequency changes. Williams et al. (2003) extended the work of
Luebke et al . to textured objects. Although the existing work on realistic ren-
dering is based mostly on 2D image metrics, several authors have considered
some kinds of 3D metrics, namely Tian and AlRegib (2004) and Pan et al.
(2005). Their metrics rely respectively on geometry and texture deviations
(Tian and AlRegib 2004) and on texture and mesh resolutions (Pan et al.
2005).

Some real 3D metrics (ad hoc) are used to control mesh simplification algo-
rithms, which consist of reducing the number of vertices while preserving the
visual appearance. Kim et al. (2002) stated that human vision is sensitive to
curvature changes and proposed a discrete differential error metric (DDEM),
which is basically the following, between two vertices v and v′:

DDEM(v, v′) = Q(v, v′) + T (v, v′) + C(v, v′) (1.22)

with Q a quadratic distance, T a normal vector difference and C a discrete
curvature difference. In a different way, Howlett et al . (2005) pilot their sim-
plification algorithm so as to emphasize visually salient features, determined
by an eye tracking system. Lee et al. (2005) followed a similar approach but
automatically extract the saliency from the input mesh by computing kinds
of multiresolution curvature maps.

Recently several authors have investigated the use of perceptual metrics
(ad hoc) for the evaluation of specific applications. Karni and Gotsman
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(2000), in order to evaluate properly their compression algorithm, intro-
duced the geometric Laplacian (GL), which measures the smoothness of
a vertex v:

GL(v) = v −
∑

i∈n(v) l−1
i vi∑

i∈n(v) l−1
i

(1.23)

where n(v) is the set of indices of the neighbors of v, and li the Euclidean
distance from v to vi . GL(v) represents the difference vector between v and
its new position after a Laplacian smoothing step. Thus it represents a mea-
sure of smoothness: the lower it is, the smoother is the surface around v.
Using this Geometric Laplacian, Karni and Gotsman introduced a perceptual
metric between two meshes X and Y , with the same connectivity, containing
n vertices:

GLD(X, Y ) = 1

2n

(
n−1∑
i=0

∥∥vx
i − v

y

i

∥∥ +
n−1∑
i=0

∥∥GL(vx
i ) − GL(v

y

i )
∥∥)

(1.24)

where vx
i and v

y

i are the respective ith vertices from X and Y . In the same
way, Drelie Gelasca et al. (2005) proposed a new metric based on global
roughness variation, to measure the perceptual quality of a watermarked
mesh. They define the roughness as the variance of the difference between
a 3D model and its smoothed version, similar to the geometric Laplacian of
Karni and Gotsman (2000). Corsini et al. (2005) presented a similar rough-
ness-based measure. Rondao-Alface et al. (2005) presented two other metrics
to benchmark watermarking schemes, one based on a measure of distortion
between several 2D views, and the other based on the distortion of energy
calculated using 2D parameterization of the meshes. Finally Lavoué et al.
(2006) introduced a structural distortion measure which reflects the visual
similarity between two meshes in a general-purpose context: the MSDM
(3D Mesh Structural Distortion Measure).

1.3.3 A Perceptual Measure Example

The MSDM, from Lavoué et al. (2006), follows the concept of structural
similarity recently introduced for 2D image quality assessment by Wang
et al. (2004). This measure, which aims at reflecting the perceptual simi-
larity between two 3D objects, is based on curvature analysis (mean, stan-
dard deviation, covariance) on local windows of the meshes. The authors
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Figure 1.23 (a) Zoom on the original Venus object, (b) high noise (maximum
deviation = 0.012) on smooth regions (MOS = 8.8, MSDM = 0.64, DL1 = 0.16), (c)
high noise on the whole object (MOS = 9.4, MSDM = 0.70, DL1 = 0.26), (d) high
smoothing (30 iterations) on the whole object (MOS = 8.1, MSDM = 0.58, DL1 = 0.25)

have evaluated their metric through a subjective experiment: a test corpus
was created, containing distorted versions (issuing from noise addition and
smoothing operations) of several 3D objects. Examples of distortions are
provided in Figure 1.23 for the Venus 3D model. Then a pool of human
observers were asked to rate the visual similarity of these versions with the
corresponding original objects. Thus each object of this corpus is associated
with a mean opinion score (MOS) reflecting its subjective similarity, from
0 (identical to the original) to 10 (very different), to the original model and
an MSDM distance value (∈ [0, 1]). A cumulative Gaussian psychometric
curve is then used to provide a nonlinear mapping between the objective and
subjective scores.

Figure 1.24 Subjective MOS vs. MSDM metric and the root mean square distance
(DL2) for 42 test objects
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Figure 1.23 provides a first intuitive example: the noised object in (b) is
associated with a higher MOS than the smoothed object in (d) (8.8 vs. 8.1).
That seems intuitively normal since the smoothed model appears visually
less distorted than the noised one. The MSDM reflects well this subjective
opinion since, for (b), it is also higher than for (d) (0.64 vs. 0.58). On the
contrary, the geometric mean distance (see Equation (1.21)) does not reflect
this subjective opinion at all (0.16 vs. 0.25).

Figure 1.24 presents results of the psychometric curve fitting (cumulative
Gaussian) between subjective and objective scores (root mean square distance
(L2) and MSDM). The correlation (Spearman) is better for MSDM (83 % vs.
43 %) which predicts well the subjective scores (MOS).

1.4 Summary

Technological advances in the fields of telecommunications, computer graph-
ics and multimedia during the last decade have contributed to the evolution of
digital data being manipulated, visualized and transmitted over the Internet.
Nowadays, 3D data constitute the new emerging multimedia content.

However, 3D objects are more complex to handle than other multimedia
data, such as audio signals or 2D images, since there are many different
representations for such objects.

Three representation schemes are mainly used:

• Polygonal mesh: with this model, the object is represented by its boundary
surface which is composed of a set of planar faces. Basically a polygonal
mesh contains a set of 3D points (vertices) which are linked by edges to
form a set of polygonal facets.

• Parametric surface: this family of 3D surfaces (including Bézier, B-spline
and NURBS surfaces) is used particularly for computer-aided design (CAD).
This model enables us to define mathematically exact surfaces, contrary to
polygonal meshes which only represent an approximation.

• Discrete representation: this model does not represent the 3D object in
Euclidean space, but in a 3D grid similar to the 2D image representation.
Each element of the grid is a voxel (for volumetric pixel). Thus the object
is represented by the set of voxels constituting its volume.

Several other representation models exist (implicit surface, subdivision
surface, superquadric, CSG, etc.), but their utilization concerns more specific
domains.
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This 3D content comes from two main sources:

• The acquisition, using a 3D scanner or tomography for instance, which
reproduces a real-world object, like a camera does for a 2D image.

• The manual creation , using specific software, similar to a painting of a
2D image.

The 3D models are subject to a wide variety of processing operations
such as compression, simplification, watermarking or indexing, which may
introduce some geometric artifacts on the shape. The main issue is to max-
imize the compression/simplification ratio or the watermark strength while
minimizing these visual degradations.

In this context the need for efficient tools to measure the loss of quality or
the visual difference between 3D objects becomes critical. However, classical
metrics based on geometric differences like the Hausdorff distance do not
match well with human visual perception. This perceptual gap has just started
to be investigated for 3D models.
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