
&CHAPTER 1

Physics of Bulk Solids

In this text we will be discussing the physics and chemistry of nanostructures. The
materials used to form these structures generally have bulk properties that become
modified when their sizes are reduced to the nanorange; the present chapter presents
background material on bulk properties of this type. Much of what is discussed here
can be found in a standard text on solid-state physics.1–4

1.1. STRUCTURE

1.1.1. Size Dependence of Properties

Many properties of solids depend on the size range over which they are measured.
Microscopic details become averaged when investigating bulk materials. At the
macro- or large-scale range ordinarily studied in traditional fields of physics such
as mechanics, electricity and magnetism, and optics, the sizes of the objects under
study range from millimeters to kilometers. The properties that we associate with
these materials are averaged properties, such as the density and elastic moduli in
mechanics, the resistivity and magnetization in electricity and magnetism, and the
dielectric constant in optics. When measurements are made in the micrometer or nano-
meter range many properties of materials change, such as mechanical, ferroelectric,
and ferromagnetic properties. The aim of the present book is to examine character-
istics of solids at the next lower level of size, namely, the nanoscale level, perhaps
from 1 to 100 nm. Below this there is the atomic scale near 0.1 nm, followed by
the nuclear scale near a femtometer (10215 m). In order to understand properties at
the nanoscale it is necessary to know something about the corresponding properties
at the macroscopic and mesoscopic scales, and the present chapter aims to provide
some of this background.

Many important nanostructures are composed of the group IV elements Si or Ge,
types III–V semiconducting compounds such as GaAs or types II–VI semiconduct-
ing materials such as CdS, so these semiconductor materials will be used to illustrate
some of the bulk properties that become modified when their dimensions are reduced
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to the nanometer range. These Roman numerals IV, III, V, and, so on refer to columns
of the periodic table. Tabulations of various bulk properties of these semiconductors
are found in Appendix B.

1.1.2. Crystal Structures

Most solids are crystalline with their atoms arranged on sites of a regular lattice struc-
ture. They possess “long-range order” because this regularity extends throughout the
entire crystal. In contrast to this amorphous materials such as glass and wax lack long-
range order, but they have “short-range order,” which means that the local environ-
ment of each atom is similar to that of other equivalent atoms, but this regularity
does not persist over appreciable distances. In other words, each atom of a particular
type might have, for example, six nearest neighbors, and these neighboring atoms
might be at positions that approximate an octahedral configuration. Liquids also
have short-range order, but lack long-range order, and this short-range order is under-
going continual rearrangements as a result of Brownian motion. Gases lack both long-
range and short-range order. Their constituent molecules undergo rapid translational
motion in all directions, so the disorder is continually rearranging at a rapid rate.

Figure 1.1 shows the five regular arrangements of lattice points that can occur in two
dimensions, namely, the square (a), primitive rectangular (b), centered rectangular (c),
hexagonal (d), and oblique (e) kinds. These arrangements are called Bravais lattices.
The general or oblique Bravais lattice has two unequal lattice constants a = b and an
arbitrary angle u between them. For the perpendicular case when u ¼ 908, the lattice
becomes rectangular, and if in addition a ¼ b, the lattice is called square. For the
special case a ¼ b and u ¼ 608, the lattice is hexagonal, formed from equilateral
triangles. Each lattice has a unit cell, indicated in the figures, which can replicate
throughout the plane and generate the lattice.

A crystal structure is formed by associating with a lattice a regular arrangement of
atoms or molecules. Figure 1.2 presents a two-dimensional crystal structure based on
a primitive rectangular lattice containing two diatomic molecules A–B in each unit
cell. A single unit cell can generate the overall lattice.

In three dimensions there are three lattice constants, a, b, and c, and three angles: a
between b and c, b between a and c, and g between lattice constants a and b. There
are 14 Bravais lattices, ranging from the lowest symmetry triclinic type in which
all three lattice constants and all three angles differ from each other (a = b = c

Figure 1.1. The five Bravais lattices that occur in two dimensions, with the unit cells indi-
cated: (a) square; (b) primitive rectangular; (c) centered rectangular; (d) hexagonal; (e) oblique.
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and a = b= g), to the highest-symmetry cubic case in which all the lattice constants
are equal and all the angles are 908 (a ¼ b ¼ c and a ¼ b¼ g ¼ 908). There are three
Bravais lattices in the cubic system: a primitive or simple cubic (sc) lattice in which
the atoms occupy the eight apices of the cubic unit cell, as shown in Fig. 1.3a; a body-
centered cubic (bcc) lattice with lattice points occupied at the apices and in the center
of the unit cell, as indicated in Fig. 1.3b; and a face-centered cubic (fcc) Bravais
lattice with atoms at the apices and in the centers of the faces, as shown in Fig. 1.3c.

In two dimensions the most efficient way to pack identical circles (or spheres) is
the equilateral triangle arrangement shown in Fig. 1.4a, corresponding to the hexago-
nal Bravais lattice of Fig. 1.1d. A second hexagonal layer of spheres can be positioned
on top of the first to form the most efficient packing of two layers, illustrated in
Fig. 1.4b. For efficient packing, the third layer can be placed either above the first
layer with an atom at the location indicated by T or in the third possible arrangement
with an atom above the position marked by X on the figure. In the first case a hexa-
gonal lattice structure called hexagonal close-packed (hcp) is generated, and in the
second case a fcc lattice results. The former is easy to identify in a unit cell, but
the latter is not so easy to visualize while looking at a unit cell since the close-
packed planes are oriented perpendicular to the [111] direction.

In three dimensions the unit cell of the fcc structure is the cube shown in Fig. 1.3c,
which has a side (i.e., lattice constant) a and volume a3. It has six face-centered
atoms, each shared by two unit cells, and eight apical atoms, each shared by eight
unit cells, corresponding to a total of four for this individual unit cell. Nearest

Figure 1.2. Sketch of a two-dimensional crystal structure based on a primitive rectangular
lattice containing two diatomic molecules A–B in each unit cell.

Figure 1.3. Unit cells of the three cubic Bravais lattices: (a) simple cubic (sc); (b) body-
centered cubic (bcc); (c) and face-centered cubic (fcc).
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neighbors are a distance a/(2)1/2 apart, so the atomic radius is defined as one-half of
this value, namely, rA ¼ a/2(2)1/2. Since there are four atoms per unit cell the volume
density is rV ¼ 4/a3. Each spherical atom has the individual volume 4p rA

3 /3, so the
packing fraction or percentage of the unit cell volume occupied by the atoms is
p/3(2)1/2 ¼ 0.7406. Figure 1.5 illustrates an alternate way to present the unit cell
of the fcc lattice. There are one atom in the center, and there are 12 atoms at the
edges. Each edge atom is shared by four unit cells so it counts as one-fourth of
this particular cell, and the centrally located atom is not shared, corresponding to
the expected total of four for this particular unit cell.

If only the 13 atoms shown in Fig. 1.5 are present, then the configuration constitutes
the nanoparticle displayed in Fig. 1.6; this is discussed in the next section. This nano-
particle may be assumed to consist of three layers of two-dimensional close-packed
planes perpendicular to its body diagonal or [111] axis, as indicated in Fig. 1.7.

Figure 1.4. Close packing of spheres on a flat surface (a) for a monolayer and (b) with a second
layer added. The circles of the second layer are drawn smaller for clarity. The location of an octa-
hedral site is indicated by X, and the position of a tetrahedral site is designated by T in (b).

Figure 1.5. Face-centered cubic unit cell showing the 12 nearest-neighbor atoms that surround
the atom (darkened circle) in the center.
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Figure 1.6. A 13-atom nanoparticle set in its fcc unit cell, showing the shape of the 14-sided
polyhedron associated with the nanoparticle. The three open circles at the upper right corre-
spond to the top layer, the six solid circles plus the atom (not pictured) in the center of the
cube constitute the middle hexagonal layer, and the open circle at the lower left corner of
the cube is one of the three atoms at the bottom layer of the cluster.

Figure 1.7. A 13-atom nanocluster set in its fcc centered cubic unit cell, delineating the planar
configurations of the 13 included atoms. The 7-atom (darkened circles) plane in the center lies
between the 3-atom (unshaded circles) plane at the upper right and the 3-atom partly hidden
plane at the rear. Figure 1.6 provides a similar perspective.

1.1. STRUCTURE 5



There is a centrally located seven-atom close-packed plane (blackened circles),
sandwiched between a pair of three-atom close-packed planes (unshaded circles).
Two of the three atoms of the lower such plane are obscured from view on the
figure. The distance between adjacent planes is one-third of the length (3)1/2 a of
the body diagonal, or a/(3)1/2. The apex of the cube along this body diagonal is
the distance a=2(3)1=2 above the upper close-packed (three-atom) plane, and it is the
position of an octahedral site equidistant between two close-packed planes. The
atom configurations presented in Fig. 1.7 provide an easy way to visualize the relation-
ships between fcc close-packed planes.

In the three-dimensional arrangements of close-packed spheres there are spaces or
sites between the spheres where smaller atoms can reside. These sites exist between
pairs of close-packed layers, so they are independent of the manner in which a third
layer is added. In other words, they are the same for fcc and hcp lattices.

The point marked by X on Fig. 1.4b is called an octahedral site since it is
equidistant from the three spheres O below it, and from the three spheres O above
it, and these six nearest neighbors constitute the apices of an imaginary octahedron.
An atom A at this site has the local coordination AO6. The radius aoct of this octa-
hedral site is

aoct ¼
1
4

(2 � (2)1=2)a ¼ ((2)1=2 � 1)a0 ¼ 0:41411a0 (1:1)

where a is the lattice constant and a0 is the sphere radius. The number of octahedral
sites is equal to the number of spheres. There are also smaller sites called tetrahedral
sites, labeled T on the figure that are equally distant from four nearest-neighbor
spheres, one below and three above, corresponding to AO4 for the local coordination.
These four spheres define an imaginary tetrahedron surrounding an atom A located at
the site. This is a smaller site since its radius aT is

aT ¼ 1
4

((3)1=2 � (2)1=2)a ¼ [(3=2)1=2 � 1]a0 ¼ 0:2247a0 (1:2)

There are twice as many tetrahedral sites as spheres in the structure. Many diatomic
oxides and sulfides such as MgO, MgS, MnO, and MnS possess larger oxygen
or sulfur anions in a perfect fcc arrangement with the smaller metal cations
located at octahedral sites. This is an NaCl lattice, where we use the term anion
for a negative ion (e.g., Cl2), and cation for a positive ion (e.g., Naþ). The
mineral spinel MgAl2O4 has a face-centered arrangement of divalent oxygens
O22 (radius 0.132 nm) with the Al3þ ions (radius 0.051 nm) occupying one-half
of the octahedral sites and Mg2þ (radius 0.066 nm) located in one-eighth of the
tetrahedral sites in a regular manner. In some spinels the oxygens deviate somewhat
from a perfect fcc arrangement by moving slightly toward or away from the tetra-
hedral sites.
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1.1.3. Face-Centered Cubic Nanoparticles

Most metals in the solid-state form close-packed lattices; thus Ag, Al, Au, Co, Cu, Pb,
Pt, and Rh, as well as the rare gases Ne, Ar, Kr, and Xe, are fcc, and Mg, Nd, Os, Re,
Ru, Y, and Zn are hcp. Some other metallic atoms crystallize in the more loosely
packed bcc lattice, and a few such as Cr, Li, and Sr crystallize in all three structure
types, depending on the temperature. An atom in each of the two close-packed lattices
has 12 nearest neighbors. Figure 1.5 shows the 12 neighbors that surround an atom
(darkened circle) located in the center of a cube for a fcc lattice. In Fig. 1.7 we
show a redrawn version of the fcc unit cell of Fig. 1.6 that clarifies the layered struc-
ture of the atoms. The topmost layer is an equilateral triangle of atoms (open circles);
the next layer below is a regular hexagon of atoms (blackened circles); and the bottom
layer, another equilateral triangle of open circle atoms, is mostly hidden from view.
These 13 atoms constitute the smallest theoretical nanoparticle for an fcc lattice.
More precisely it should probably be called a nanocluster. Figure 1.6 shows the
14-sided polyhedron, called a dekatessarahedron, that is generated by connecting
the nearest-neighbor atoms. This polyhedron has six square faces and eight equilateral
triangle faces. Figure 1.8 shows this polyhedron viewed from the [111] or top direc-
tion with the coordinate axis perpendicular to each side indicted. The square sides are
perpendicular to the x axis [100], the y axis [010], and the z axis [001], respectively,
and the triangular faces are perpendicular to the indicated body diagonal directions.
Figure 1.7 clarifies the layering scheme by connecting atoms only within two-
dimensional close-packed layers. The three open circles in the triangular layer of
Fig. 1.7 are the three atoms in the top layer of Fig. 1.8. Likewise, the seven darkened

Figure 1.8. Perspective along the [111] direction of the faces or facets of the 13-atom fcc
nanoparticle of Fig. 1.6. The three visible square faces are perpendicular to the x direction
[100], the y direction [010], and the z direction [001], respectively. The four equilateral triangle
faces are perpendicular to body diagonal directions, as indicated.
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circles, including the atom in the center of the cube of Fig. 1.7, constitute the periph-
ery of Fig. 1.8.

To construct the next-larger 55-atom fcc nanoparticle, a layer of 30 atoms is added
around the three layers of Fig. 1.7, and six-atom triangular arrays are added to the
top and bottom, as explained in Appendix C. The process is repeated to form the
higher-level nanoparticles with the magic numbers of atoms listed in Table 1.1. A
perspective sketch of the atoms on the surfaces of the 147-atom nanoparticle
viewed along the [111] axis is provided in Fig. 1.9, with the crystallographic
planes labeled by their indices. There are six square faces with square planar arrays
of 16 atoms each, and eight equilateral triangle faces with planar hcp arrays of
10 atoms each. The atoms on all of these triangular and square faces have the
nearest-neighbor separation a/21/2, where a is the lattice constant. Larger fcc nano-
particles with magic numbers 309, 561, . . . of atoms have analogous arrays of atoms
on their faces, with the numbers of surface atoms involved in each case listed in
Table C.1. The numbers of atoms in the various planes of these nanoparticles are
tabulated in Table C.2. The nanoparticles pictured in Fig. 3.18 (Fig. 4.15 of first
edition), and in Fig. 2.13 (Fig. 3.13 of the first edition) clearly display both the
planar square and the planar hexagonal arrays of atoms corresponding to those on
the faces of Fig. 1.9.

TABLE 1.1. Diameter, Total Number of Atoms, Number on Surface, and Percentage on
Surface of Rare Gas or Metallic Nanoparticles with FCC Close-Packed Structures and a
Structural Magic Number of Atomsa

Shell Diameter Total Number Number on Surface Percentage on Surface

1 d 1 1 100
2 3d 13 12 92.3
3 5d 55 42 76.4
4 7d 147 92 62.6
5 9d 309 162 52.4
6 11d 561 252 44.9
7 13d 923 362 39.2
8 13d 1415 492 34.8
9 17d 2057 642 31.2
10 19d 2869 812 28.3
11 21d 3871 1002 25.9
12 23d 5083 1212 23.8
25 49d 4.90 � 104 5.76 � 103 11.7
50 99d 4.04 � 105 2.40 � 104 5.9
75 149d 1.38 � 106 5.48 � 104 4.0
100 199d 3.28 � 106 9.80 � 104 3.0

aThe diameters d in nanometers for some representative fcc atoms are Ag 0.289, Al 0.286, Ar 0.372, Au
0.288, Cu 0.256, Fe 0.254, Kr 0.404, Pb 0.350, and Pd 0.275.
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1.1.4. Large Face-Centered Cubic Nanoparticles

Larger fcc nanoparticles with the same polyhedral shape are obtained by adding more
planes or layers, and the sequence of numbers in the resulting particles, N ¼

1,13,55,147,309, . . . , listed in Table 1.1, are called structural magic numbers. For
n layers the number of atoms N in this fcc nanoparticle is given by the formula

N ¼ (1=3)[10n3 � 15n2 þ 11n � 3] (1:3)

and the number of atoms on the surface Nsurf is

Nsurf ¼ 10n2 � 20n þ 12 (1:4)

Equation (1.3) is valid for all n, but Eq. (1.4) is valid only for n . 1. For each value of
n Table 1.1 lists the number of atoms on the surface, as well as the percentage of
atoms on the surface. The table also lists the diameter of the each nanoparticle,
which is given by the expression (2n 2 1)d, where d is the distance between the
centers of nearest-neighbor atoms and d ¼ a/(2),1/2, where a is the lattice constant.

Purely metallic fcc nanoparticles such as Au55 tend to be very reactive and have
short lifetimes. They can be ligand-stabilized by adding atomic groups between
their atoms and on their surfaces. The Au55 nanoparticle has been studied in the
ligand-stabilized form Au55(PPh3)12Cl6, which has the diameter of �1.4 nm,
where PPh3 is an organic group. Further examples are the magic number nanoparti-
cles Pt309(1,10-phenantroline)36O30, and Pd561(1,10-phenantroline)36O200.

The magic numbers that we have been discussing are called structural magic
numbers because they arise from minimum-volume, maximum-density nanoparticles

Figure 1.9. Arrays of atoms on triangular and square faces of the 147-atom fcc nanoparticle.
The directions perpendicular to each face are indicated.
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that approximate a spherical shape, and have close-packed structures characteristic of
a bulk solid. These magic numbers take no account of the electronic structure of the
constituent atoms in the nanoparticle. Sometimes the predominant factor in determin-
ing the minimum-energy structure of small nanoparticles is the interactions between
the valence electrons of the constituent atoms with an averaged molecular potential,
so that the electrons occupy orbital levels associated with this potential. Atomic
cluster configurations in which these electrons fill closed shells are especially
stable, and constitute electronic magic numbers. Their atomic structures differ from
the fcc arrangement, as will be discussed in Section 3.2.

When mass spectra were recorded for sodium nanoparticles NaN it was found that
mass peaks corresponding to the first 15 electronic magic numbers N ¼ 3,9,20,36,61,
. . . were observed for cluster sizes up to N ¼ 1220 atoms (n ¼ 15), and fcc structural
magic numbers starting with N ¼ 1415 for n ¼ 8 were observed for larger sizes.5,6

The mass spectral data are plotted versus the cube root of the number of atoms
N1/3 on Fig. 1.10, and it is clear that the lines from both sets of magic numbers
are approximately equally spaced, with the spacing between the structural magic
numbers about 2.6 times that between the electronic ones. This result is evidence
that small clusters tend to satisfy electronic criteria, and large structures tend to be
structurally determined.

1.1.5. Tetrahedrally Bonded Semiconductor Structures

Types III–V and II–VI binary semiconducting compounds, such as GaAs and ZnS,
respectively, crystallize with one atom situated on a fcc sublattice at positions 000,
1
2

1
2 0, 1

2 0 1
2, and 0 1

2
1
2, and the other atom on a second fcc sublattice displaced from

the first by the amount 1
4

1
4

1
4 along the body diagonal, as shown in Fig. 1.11b. This is

called the zinc blende or ZnS structure. It is clear from the figure that each Zn atom
(white sphere) is centered in a tetrahedron of S atoms (black spheres), and likewise
each S has four similarly situated Zn nearest neighbors. The small half-sized,
dashed-line cube delineates one such tetrahedron. The same structure would result if
the Zn and S atoms were interchanged. Figure 1.12 presents a more realistic sketch
of the unit cell of ZnS with the small zinc atoms centered in the tetrahedral sites of

Figure 1.10. Dependence of the observed mass spectra lines from NaN nanoparticles on the
cube root N1/3 of the number of atoms N in the cluster. The lines are labeled with the index
n of their respective electronic and structural magic numbers. [Adapted from T. P. Martin,
T. Bergmann, H. Gohlich, and T. Lange, Chem. Phys. Lett. 172, 209 (1990).]
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the larger sulfur atoms. In contrast to this arrangement, the atoms in the semiconductor
gallium arsenide have comparable radii rGa ¼ 0.122 nm and rAs ¼ 0.124 nm, and the
lattice constant a ¼ 0.565 nm is close to the value 4(rGa þ rAs)/(3)1/2 ¼ 0.568 nm, as
expected, where data were used from Tables B.1 and B.2 (of Appendix B).

Figure 1.11. Unit cell of the diamond structure (a) containing only one type of atom, and cor-
responding unit cell of the zinc blende structure (b) containing two atom types. The rods rep-
resent the tetrahedral bonds between nearest-neighbor atoms. The small dashed-line cube in (b)
delineates a tetrahedron. (From G. Burns, Solid State Physics, Academic Press, Boston, 1985,
p. 148.)

Figure 1.12. Packing of larger sulfur atoms and smaller zinc atoms in the zinc blende (ZnS)
structure. Each atom is centered in a tetrahedron of the other atom type. (From R. W. G.
Wyckoff, Crystal Structures, Vol. 1, Wiley, New York, 1963, p. 109.)
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The elements Si and Ge crystallize in this same structure, in which the Si (or Ge)
atoms occupy all the sites on the two sublattices, so there are eight identical atoms in
the unit cell. This atom arrangement, sketched in Fig. 1.11a, is called the “diamond
structure.” Both Si and Ge have a valence of 4, so from bonding considerations it is
appropriate for each to be bound to four other atoms in the shape of a regular tetrahedron.

In Table B.1 we see the lattice constants a listed for various compounds with the
zinc blende structure, and Table B.2 provides the crystal radii of their monatomic lat-
tices in which the atoms are uncharged, as well as the ionic radii for ionic compounds
in which the atoms are charged. We see from Table B.2 that the negative anions are
considerably larger than the positive cations, in accordance with the sketch of the unit
cell presented in Fig. 1.12, and this size differential is greater for the III–V com-
pounds than for II–VI compounds. However, these size changes for the negative
and positive ions tend to balance each other so that the III–V compounds have the
same range of lattice constants as do the II–VI compounds, with Si and Ge also in
this range. Table B.4 gives the molecular masses, and Table B.5 gives the densities
of these semiconductors. The three tables, Tables B.1, B.4, and B.5, show a regular
progression in the values as one goes from left to right in a particular row, and as one
goes from top to bottom in a particular column. This occurs because of the systematic
increase in the size of the atoms in each group with increasing atomic number, as
indicted in Table B.2.

There are two simple models for representing these AC binary compound struc-
tures. For an ionic model the lattice An2Cnþ consists of a fcc arrangement of the
large anions An2 with the small cations Cnþ located in the tetrahedral sites
of the anion fcc lattice. If the anions touch each other, their radii has the value r ¼
a/2(2)1/2, where a is the lattice parameter, and the radius aT of the tetrahedral site
rtetr ¼ 0.2247 a is given by Eq. (1.2). This is the case for the very small Al3þ

cation in the AlSb structure. In all other cases the cations in Table B.2 are too
large to fit in the tetrahedral site, so they push the larger anions further apart, and
the latter no longer touch each other, in accordance with Fig. 1.12. In a covalent
model for the structure consisting of neutral atoms A and C the atom sizes are com-
parable, as the data in Table B.2 indicate, and the structure resembles that of Si or Ge.
Comparing these two models, we note that the distance between atom A at lattice pos-
ition 000 and its nearest neighbor C at position 1

4
1
4

1
4 is equal to 1

4 (3)1=2a, and in
Table B.3 we compare this crystallographically evaluated distance with the sums of
radii of ions An2, Cnþ from the ionic model, and with the sums of radii of neutral
atoms A and C of the covalent model using the data of Table B.2. We see from
the results in Table B.3 that neither model fits the data in all cases, but the neutral
atom covalent model is closer to agreement, especially for ZnS, GaAs, and CdS.
For comparison purposes we also list corresponding data for several alkali halides
NaCl, KBr, and RbI, and alkaline-earth chalcogenides CaS and SrSe, which also
crystallize in the cubic rock salt or NaCl structure. We see that all of these compounds
fit the ionic model very well. In these compounds each atom type forms a fcc lattice,
with the atoms of one fcc lattice located at octahedral sites of the other lattice. The
octahedral site has the radius roct ¼ 0.41411 a0 given by Eq. (1.1), which is larger
than the tetrahedral one, rtetr ¼ 0.2247 a, of Eq. (1.2).
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Since the alkali halide and alkaline-earth chalcogenide compounds fit the ionic
model so well, it is significant that neither model fits the structures of the semicon-
ductor compounds. The extent to which the semiconductor crystals exhibit ionic or
covalent bonding is not clear from crystallographic data. If the wavefunction describ-
ing the bonding is written in the form

C ¼ acovccov þ aioncion (1:5)

where the coefficients of the covalent and ionic wavefunction components are
normalized

acov
2 þ aion

2 ¼ 1 (1:6)

then acov
2 is the fractional covalency and aion

2 is the fractional ionicity of the bond. A
chapter in a recent book by Karl Boer7 tabulates the effective charges e� associated
with various II–VI and III–V semiconducting compounds, and this effective charge
is related to the fractional covalency by the expression

acov
2 ¼ 8 � N þ e�

8
(1:7)

where N ¼ 2 for II–VI and N ¼ 3 for III–V compounds. The fractional charges all
lie in the range from 0.43 to 0.49 for the compounds under consideration. Using the
e� tabulations in the Boer book and Eq. (1.7), we obtain the fractional covalencies of
acov

2 � 0:81 for all the II–VI compounds, and acov
2 � 0:68 for all the III–V com-

pounds listed in Tables B.1, B.4, B.5, and so on. These values are consistent with
the better fit of the covalent model to the crystallographic data for these compounds.

We conclude this section with some observations that will be of use in later chap-
ters. Table B.1 shows that the typical compound GaAs has the lattice constant a ¼

0.565 nm, so the volume of its unit cell is 0.180 nm3, corresponding to about 22 of
each atom type per cubic nanometer. The distances between atomic layers in the
[100], [110], and [111] directions are, respectively, a/2 ¼ 0.28 nm, a/(2)1/2 ¼

0.40 nm, and a/(3)1/2 ¼ 0.33 nm, for GaAs. The various III–V semiconducting
compounds under discussion form mixed crystals over broad concentration ranges,
as do the group of II–VI compounds. In a mixed crystal of the type InxGa12xAs,
it is ordinarily safe to assume that Vegard’s law is valid, whereby the lattice constant
a scales linearly with the concentration parameter x. As a result, we have the follow-
ing relationships

a(x) ¼ a(GaAs) þ [a(InAs) � a(GaAs)]x

¼ 0:565 þ 0:039x (1:8)

where 0 , x , 1. In the corresponding expression for the mixed semiconductor
AlxGa12xAs the term �0.003x replaces the term þ0.039x, so the fraction of lattice
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mismatch 2jaAlAs 2 aGaAsj/(aAlAs þ aGaAs) ¼ 0.0054 ¼ 0.54% for this system is
quite minimal compared to that 2jaInAs 2 aGaAsj/(aInAs þ aGaAs) ¼ 0.066 ¼ 6.6%
of the InxGa12xAs system, as calculated from Eq. (1.8). Table B.1 of Appendix B
gives the lattice constants a for various III–V and II–VI semiconductors with the
zinc blende structure.

1.1.6. Lattice Vibrations

We have discussed atoms in a crystal as residing at particular lattice sites, but in
reality they undergo continuous fluctuations in the neighborhood of their regular pos-
itions in the lattice. These fluctuations arise from the heat or thermal energy in the
lattice, and become more pronounced at higher temperatures. Since the atoms are
bound together by chemical bonds, the movement of one atom about its site
causes the neighboring atoms to respond to this motion. The chemical bonds act
like springs that stretch and compress repeatedly during the oscillatory motion. The
result is that many atoms vibrate in unison, and this collective motion spreads
throughout the crystal. Every type of lattice has its own characteristic modes or fre-
quencies of vibration called normal modes, and the overall collective vibrational
motion of the lattice is a combination or superposition of many, many normal
modes. For a diatomic lattice like GaAs, there are low-frequency modes called acous-
tic modes, in which the heavy and light atoms tend to vibrate in phase or in unison
with each other, and high-frequency modes called optical modes, in which they
tend to vibrate out of phase.

A simple model for analyzing these vibratory modes is a linear chain of alternating
atoms with a large mass M and a small mass m joined to each other by springs (�) as
follows:

� m � M � m � M � m � M � m � M �

When one of the springs stretches or compresses by an amount Dx, a force is
exerted on the adjacent masses with the magnitude C Dx, where C is the spring con-
stant. As the various springs stretch and compress in step with each other, longitudi-
nal modes of vibration take place in which the motion of each atom is along the string
direction. Each such normal mode has a particular frequency v and a wavevector k ¼

2p/l, where l is the wavelength, and the energy E associated with the mode is given
by E ¼h�v. There are also transverse normal modes in which the atoms vibrate back
and forth in directions perpendicular to the line of atoms. Figure 1.13 shows the
dependence of v on k for the low-frequency acoustic and the high-frequency
optical longitudinal modes. We see that the acoustic branch continually increases
in frequency v with increasing wavenumber k, and the optical branch continuously
decreases in frequency. The two branches have respective limiting frequencies
given by (2C/M )1/2 and (2C/m)1/2, with an energy gap between them at the edge
of the Brillouin zone kmax ¼ p/a, where a is the distance between atoms m and M
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at equilibrium. The Brillouin zone is a unit cell in wavenumber or reciprocal space, as
will be explained in Section 1.3.2 later in this chapter. The optical branch vibrational
frequencies are in the infrared region of the spectrum, generally with frequencies in
the range from 1012 to 3 � 1014 Hz, and the acoustic branch frequencies are much
lower. In three dimensions the situation is more complicated, and there are longitudi-
nal acoustic (LA), transverse acoustic (TA), longitudinal optical (LO), and transverse
optical (TO) modes.

The atoms in molecules also undergo vibratory motion, and a molecule containing
N atoms has 3N 2 6 normal modes of vibration. Particular molecular groups such as
hydroxyl 22OH, amino 22NH2, and nitro 22NO2 have characteristic normal modes
that can be used to detect their presence in molecules and solids.

The atomic vibrations that we have been discussing correspond to standing waves.
This vibrational motion can also produce traveling waves in which localized regions
of vibratory atomic motion travel through the lattice. Examples of such traveling
waves are sound moving through the air, or seismic waves that start at the epicenter
of an earthquake and travel thousands of miles to reach a seismograph detector that
records the earthquake event many minutes later. Localized traveling waves of atomic
vibrations in solids, called phonons, are quantized with the energy h�v ¼ hn, where
n ¼ v/2p is the frequency of vibration of the wave. Phonons play an important
role in the physics of the solid state.

Figure 1.13. Dependence of the longitudinal normal-mode vibrational frequency v on the
wavenumber k ¼ 2p/l for a linear diatomic chain of atoms with alternating masses m , M
having an equilibrium spacing a, and connected by bonds with spring constant C. [From
C. P. Poole, Jr., The Physics Handbook, Wiley, New York, 1998, p. 53.)
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1.2. SURFACES OF CRYSTALS

1.2.1. Surface Characteristics

When we consider the bulk properties of macroscopic crystals, the surface layers play
a negligible role. If a simple cubic crystal in the shape of a cube contains 1024 atoms,
then each face of the cube will contain 1016 atoms, for a total of 6 � 1016 on the
surface. This is less than one atom in 107 on the surface, so the bulk is not appreciably
affected by the presence of the surface. On the other hand, when we consider particles
in the nanoscale range of dimensions, the percentage of the atoms on the surface can
be large. We see from Table 1.1 that an aluminum nanoparticle with a diameter
49d ¼ 14.0 nm contains 4.9 � 104 atoms, 11.7% of which are on the surface. The
largest aluminum nanoparticle listed in the table has a diameter of 56.9 nm and con-
tains 3.28 million atoms, 3% of which are on the surface. As a result, the surface can
influence the bulk properties. The same is true of thin films with nanometer thick-
nesses. For example, consider a fcc thin film consisting of 100 close-packed layers
(the [111] axis is perpendicular to the surface). Such a film made of copper would
be 21 nm thick. Since there is both a top surface and a bottom surface, it follows
that 2% of the atoms are in a surface layer.

We have been discussing surface layers as if they are identical to the layers in the
bulk, and this is seldom the case. Within the crystal the bonding orbitals of all the
atoms are satisfied, and each type of atom is in the same environment as its counter-
parts. In contrast to this, the surface atoms have dangling bonds that are not satisfied,
and this deficiency of chemical bonding can be characterized quantitatively by a
surface energy per unit area. This surface energy results from the work that must
be done to cleave the crystal and break the dangling surface bonds while forming
the surface. Sometimes a surface atom reconstruction takes place to lower this
surface energy. For example, the [111] surface of a silicon (or germanium) crystal
consists of a hexagonal array of Si atoms, each of which, shown unshaded, has a
single vertical dangling bond indicated by a dot in Fig. 1.14. Each surface atom on
the figure is bonded to three Si atoms shown shaded in the layer below the surface.
The energy is lowered by the surface reconstruction illustrated in Fig. 1.15, in
which surface atoms move together and bond to each other in pairs to accommodate
and satisfy the broken dangling bonds. Another phenomenon that sometimes takes
place is surface structure relaxation in which the outer layer of atoms moves slightly
toward or a short distance away from the layer below. Contraction takes place with
most metal surfaces. The silicon [111] surface layer illustrated in Figs. 1.14 and
1.15 contracts by about 25%, and the three interlayer spacings further below compen-
sate for this by expanding between 1% and 5%.

Other phenomena can occur at the surface. Sometimes there are steps on the
surface beyond which a new layer has been added. Various types of defects can
occur, such as added atoms in an irregular manner, or missing atoms at lattice
sites. Surface atoms can bond together in ways that differ from those in the bulk,
as took place in the reconstruction pictured in Fig. 1.15. Occasionally surface
atoms will undergo a two-dimensional phase transition.
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1.2.2. Surface Energy

Work must be done to cut a crystal into two pieces that expose a pair of new crystal
faces or facets. The energy required to bring about this cleavage, called the surface
energy, is proportional to the density of the various types of chemical bonds that
are cut and transformed into dangling bonds. In the case of fcc crystals, each large
atom has 12 large atom nearest neighbors to which it can be bonded. Each
medium-sized atom in an octahedral site is bonded to six surrounding large atoms,
and each small atom in a tetrahedral site is bonded to four large atoms. Which
bonds break depends on the particular crystallographic plane where the cleavage
occurs.

If the surface contains a density ri of atoms of type i, each with ni dangling bonds
of energy 21i, then the surface energy density g or energy per unit area is given by the
following sum over the atom types

g ¼ Srini1i (1:9)

where the factor of 2 takes into account the fact that the energy associated with a dan-
gling bond is half of the corresponding chemical bond energy. If all of the atoms are

Figure 1.14. Sketch of the first two [111] outermost layers of the zinc blende structure
showing unshaded sulfur atoms on the surface with vertical dangling bonds denoted by
dots, and shaded zinc atoms one layer below the surface.
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identical as in the fcc and hcp lattices discussed above, this expression reduces to

g ¼ rn1 (1:10)

In the next few sections we will evaluate this surface energy density for several
special cases.

1.2.3. Face-Centered Cubic Surface Layers

We have been discussing how surface layers become modified relative to bulk layers
in a crystal. Since many nanoparticles and nanofilms have a fcc structure, it will be
instructive to consider the arrangement of the atoms on the surfaces of fcc cubic
solids that are cleaved along particular crystallographic planes. Consider a solid
with large atoms close-packed so that they touch all 12 nearest neighbors, and with
the octahedral sites filled with medium-sized atoms in contact with their 6 nearest
neighbors, and the tetrahedral sites occupied by small atoms in contact with their 4

Figure 1.15. Sketch of the surface configuration of Fig. 1.14 after it has undergone a recon-
structuring process during which surface sulfur atoms bond together in pairs.
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nearest neighbors. The radii of these three types of atoms have the following values
from Eqs. (1.1) and (1.2)

rL ¼ 0:7072a (1:11a)

rOh ¼ 0:4142a (1:11b)

rT ¼ 0:2247a (1:11c)

where a is the lattice constant. Figure 1.16 shows an example of the octahedral sites
occupied by smaller atoms, as happens in the NaCl structure. The zinc blende struc-
ture of Fig. 1.11 has half of the tetrahedral sites and none of the octahedral sites occu-
pied. It is clear from these figures that some of the octahedral sites lie on the surface of
the unit cell, while all of the tetrahedral ones are inside it. If the crystal is cleaved to
expose the [100] face, it is evident from Fig. 1.16 that the surface will contain 50%
larger and 50% smaller atoms, the latter occupying the octahedral sites of the former,
as shown in Fig. 1.17 (i.e., 4 small half-atoms þ 1 large atom þ 4 large quarter-
atoms). The [110] face displayed in Fig. 1.18 contains all three types of atoms.
This can be seen by comparison with Figs. 1.11b and 1.16. The upper two tetra-
hedrally coordinated atoms on Fig. 1.18 are shaded to indicate that they are absent
in the zinc blende structure. The [111] plane displayed in Fig. 1.4a contains only
the main large atoms since none of the tetrahedral or octahedral sites are in this
plane, as can be deduced from the positions of these sites specified in Fig. 1.4b.

Figure 1.16. Unit cell consisting of fcc atoms (large circles) with the octahedral holes
occupied by smaller atoms (small circles).
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There are several special cases that can be clarified from the analysis above. If all
of the atoms are of the same size and only octahedral sites are occupied, then the
lattice reduces to a simple cubic one with the lattice constant a/2, and a unit cell
one-eighth of the size. Since nanoparticles are rarely simple cubic, we will not
discuss this case further. An important special case is when none of these extra
sites are occupied so only the large atoms are present. This is the situation that

Figure 1.17. The [100] surface plane of the structure depicted in Fig. 1.16.

Figure 1.18. The [110] surface plane of a fcc structure formed by large atoms with the octa-
hedral sites occupied by medium-sized atoms and the tetrahedral sites occupied by small atoms.
The upper two small atoms shown shaded as well as the three medium-sized atoms are absent in
the zinc blende structure.
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corresponds to the fcc nanoparticles discussed in Section 1.1.3. The [100] face shown
in Fig. 1.17 with the surface unit cell area a2 contains two atoms, one entire atom in
the center and four-quarters of an atom in the corners, so the atom density on the
surface is 2/a2 (the smaller atoms in the figure are now absent). The center atom
has four nearest neighbors inside the crystal face below it, four neighbors alongside
it in the face, and four missing nearest neighbors above so four of its chemical
bonds have been cut, and are now dangling bonds. This means that the number of
dangling bonds per unit area is 8/a2, and the surface energy density from
Eq. (1.10) is g ¼ 81/a2. By similar reasoning, the [110] face unit cell shown in
Fig. 1.18 with the surface unit cell area (2)1/2a2 contains two atoms, so the atom
density on the surface is (2)1/2/a2. Each surface atom is bonded to five atoms
below it and to two surface atoms, so it has five dangling bonds, for a dangling
bond density of 5(2)1/2/a2, and a surface energy density g of 5(2)1/21/a2. The
[111] surface sketched in Fig. 1.19 is a little more complex to analyze.
The rhombic unit cell outlined in the figure contains one atom and has the area
(3)1/2a2/4. Each atom is bonded to three atoms below and six in the surface, so there
are three dangling bonds, for a dangling bond density of 4(3)1/2/a2, and a surface
energy density g of 4(3)1/21/a2. These results are gathered together in Table 1.2.

1.2.4. Surfaces of Zinc Blende and Diamond Structures

The remaining structure that is of interest is the diamond structure depicted in
Fig. 1.11. This consists of a set of fcc atoms together with a second set occupying
half of the tetrahedral holes of the first set, as was discussed above. We will
discuss surfaces of ZnS crystals in which the small zinc atoms reside in the tetrahedral

Figure 1.19. Surface unit cell of the close-packed lattice sketched in Fig. 1.4a.
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sites of the dominant fcc sulfur lattice. The atom locations in various faces can be
deduced from Figs. 1.11b and 1.12.

Figure 1.17, with the smaller octahedral site atoms omitted, depicts the [001]
surface, which corresponds to the top face of the cubic unit cell in Figs. 1.11b and
1.12. The atom density of this face is 2/a2, the same as in the simple fcc case dis-
cussed above. It is clear from Fig. 1.11b that each surface atom has two dangling
bonds, so the dangling bond density is 4/a2. Figure 1.18 sketches the [110]
surface, which contains four large edge and apex S atoms of the surface unit cell,
plus two smaller interior Zn atoms depicted by small open circles in the lower part
of Fig. 1.18. In this figure the medium-sized octahedral site atoms and the shaded
small tetrahedral site atoms are absent, so there are four atoms per surface unit cell
of area (2)1/2a2. It is clear from Fig. 1.11b that each atom has two bonds within
the surface and one below it, so there is one dangling bond per atom, for a dangling
bond density of 2(2)1/2/a2. For simplicity we presume a surface energy density
2(2)1/2a2, assuming that the dangling bond energy 1i of the zinc and sulfur atoms
has the same value 1, which is really not the case. Figure 1.14 depicts the atoms
associated with the [111] plane. The unshaded circles represent the atoms on the
surface, and the shaded circles correspond to the first layer below the surface.
Either type could be sulfur, and the other one would be zinc. The atom density is
4/(3)1/2a2 as in the fcc cubic case discussed above. The dots centered in the open
circles denote dangling bonds, one such bond per atom, directed upward perpendicu-
lar to the surface. Hence the dangling bond density is 4/(3)1/2a2.

We showed above how the energy of the atoms close to the [111] face of a
diamond or zinc blende crystal can decrease by a reconstruction in which the
atoms rearrange to a lattice with a bimolecular unit cell formed from the pairs of
atoms depicted in Fig. 1.15. These surface atoms bond in pairs so that there are no
dangling bonds remain and the energy is lowered. In some cases the spacing
between layers slightly varies between the surface and the bulk, with the layers
near the surface undergoing an expansion outward or a contraction inward. In
Fig. 1.14 the atoms with upward-directed bonds formed the surface. If the layer
below had formed the surface, then each surface atom would have had three dangling
bonds, a higher-energy situation, which is therefore unlikely to occur. Surfaces tend
to form which minimize the density of dangling bonds.

TABLE 1.2. Atom Density, Number of Bonds Broken per Atom, and Surface Energy
Density for Various Facets or Surfaces of FCC centered cubic and diamond structuresa

Structure and Facet Atom Density Bonds per Atom Surface-energy Density

Fcc [100] 2/a2 4 81/a2

Fcc [110] (2)1/2/a2 5 5(2)1/2 1/a2

Fcc [111] 4/a2 3 4(3)1/2 1/a2

Diamond [100] 2/a2 2 41/a2

Diamond [110] 2(2)1/2/a2 1 2(2)1/2 1/a2

Diamond [111] 4/a2 1 41/(3)1/2a2

aKey: a¼ lattice constant; 1 ¼ surface energy per dangling chemical bond.
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Sometimes silicon forms a crystal with the external shape of an octahedron which
has eight [111] faces that minimize the surface energy. On other occasions the octa-
hedron is truncated in the manner illustrated in Fig. 1.20 since a truncated configur-
ation has a lower surface energy for the same volume of crystal.

A favorable technique for studying surface structure is low-energy electron diffrac-
tion (LEED). Another technique is reflection high-energy electron diffraction
(RHEED) carried out at grazing incidence. These techniques are discussed in
Chapter 2.

1.2.5. Adsorption of Gases

Since surfaces generally have dangling bonds, they can be chemically very reactive.
Owing to this reactivity, they readily adsorb gases in contact with them. Adsorbed
molecules are held in place on the surface by a binding energy DHads called the
heat of adsorption. When chemical bonding takes place between surface atoms
and adsorbed atoms or molecules, the phenomenon is called chemisorption. This
bonding can be of either a covalent or an ionic type. If a much weaker van der
Waals type of bonding occurs the phenomenon is referred to as physisorption. It is
customary to call the process physisorption when the heat of adsorption is less
than �10 kcal/mol, and to label it chemisorption when the heat of adsorption
exceeds 10 kcal/mol. For example, H2 and O2 molecules chemisorb on molybdenum
with DHads values of 40 kcal/mol and 172 kcal/mol, respectively.

The surface of a solid can be considered as the outermost layer of atoms plus the
region between 0.5 and 1.5 nm above and below it. This includes the bonding elec-
trons on the inside and the dangling bonds on the outside. We are talking about an

Figure 1.20. Truncated octahedron. For a fcc crystal the atoms on the square faces have a
square lattice configuration, and the atoms on the hexagon shaped faces have a hexagonal
close packed coniiguration. (From G. Burns, Solid State Physics, Academic Press, Orlando,
FL, 1985, p. 676.)
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atomically clean surface, one exposed to an ultrahigh vacuum, and which contains no
adsorbed atoms or molecules. An ultrahigh vacuum is one in which the pressure is
less than 1028 Pa (,7.5 � 10211 torr). When a molecule from the surrounding
gas strikes the surface, there is a probability S called the sticking coefficient that it
will stick to the surface, that is, that it will be adsorbed. In a standard vacuum of
1026 torr it will take surrounding gas molecules with a sticking coefficient S ¼ 1
about one second to build up a monolayer, whereas at 10210 torr the monolayer
buildup time is much longer than an hour.

Figure 1.21. (a) Calculated potential energy and charge density as a function of z for metallic
sodium. The Naþ ion cores of the last two atomic layers are indicated by brackets. [From J. A.
Applebaum and D. R. Hamann, Phys. Rev. B6, 2166 (1972)]. (b) Calculated electron density
near the surface of metallic Na, where rs ¼ 2 Å is close to the Na value rs ¼ 2.08 Å. [From
N. D. Lang and W. Kohn, Phys. Rev. B1, 4555 (1970). See also G. Burns (cited in
Fig. 1.20 legend), p. 703.]
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1.2.6. Electronic Structure of a Surface

The formation of a surface by cleaving a crystal in an ultrahigh vacuum can lead to a
rearrangement of the electrons on the atoms that constitute the surface layer. We will
discuss the case of a metallic surface. A double layer of charge forms because the
center of gravity of the conduction electron charge differs from the center of
gravity of the atomic nuclei. The charge density and potential energy at a [001]
surface of sodium, which is fcc, vary with the distance perpendicular to the surface
in the manner shown in Fig. 1.21a. The calculated electron density varies
with this distance in the manner shown in Fig. 1.21b. The calculations were
carried out for two values rs ¼ 2 Å and rs ¼ 5 Å of the equivalent electron radius
(radius of average spherical volume occupied by a conduction electron), where rs

equals 2.08 Å and 1.41 Å for Na and Cu, respectively.
An important surface-related property of a metal is its workfunction w, which is

the energy required to remove an electron from the surface and place it an infinite dis-
tance away. The workfunction for polycrystalline sodium is 2.75 eV. When sodium is
chemisorbed on the surface of another metal the workfunction varies with the surface
coverage in the manner shown on Fig. 1.22. The figure shows calculations carried for
sodium and for cesium chemisorbed on an aluminum substrate. As the coverage
increases, the workfunction initially drops from its initial value for a bare aluminum
surface, reaches a minimum, and then rises to the value of w corresponding to that of
the covering metal Na or Cs. The observed effect occurs because the adsorbed alkali
atom Na loses an electron to the aluminum and becomes a positive ion or cation Naþ.
The result is the creation of a dipole double layer with a polarity opposite that of the
initial bare aluminum surface, so the magnitude of the net dipole moment density
decreases, and w also decreases.

Figure 1.22. Calculated workfunction versus Na and Cs surface coverage for rs ¼ 2 Å, which
is close to the value for aluminum. [From N. D. Lang, Phys. Rev. B4, 4234 (1971).]
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1.2.7. Surface Quantum Well

A quantum well is a three-dimensional structure in which two dimensions are large,
perhaps a centimeter or a millimeter, and the third is in the nanometer range. The
surface of a solid, with or without the presence of a layer of adsorbed gas molecules,
may be regarded as a quantum well. It has a regular structure, its lateral dimensions
are macroscopic, and its thickness is several nanometers. It has characteristic charge
and potential energy distributions, as discussed above. Quantum wells are discussed
in Chapter 9.

1.3. ENERGY BANDS

1.3.1. Insulators, Semiconductors, and Conductors

When a solid is formed, the energy levels of the atoms broaden and form bands with
forbidden gaps between them. The electrons can have energy values that exist within
one of the bands, but cannot have energies corresponding to values in the gaps
between the bands. The lower-energy bands due to the inner atomic levels are nar-
rower and are all full of electrons, so they do not contribute to the electronic properties
of a material. They are not shown in the figures. The outer or valence electrons that
bind the crystal together occupy a valence band, which, for an insulating material, is
full of electrons that cannot move since they are fixed in position in chemical bonds.
There are no delocalized electrons to carry current, so the material is an insulator. The
conduction band is far above the valence band in energy, as shown in Fig. 1.23a, so it
is not thermally accessible, and remains essentially empty. In other words, the heat
content of the insulating material at room temperature T ¼ 300 K is not sufficient
to raise an appreciable number of electrons from the valence band to the conduction
band, so the number in the conduction band is negligible. Another way to express this
is to say that the value of the gap energy Eg far exceeds the value kBT of the thermal
energy, where kB is Boltzmann’s constant.

Figure 1.23. Energy bands of (a) an insulator, (b) an intrinsic semiconductor, and (c) a con-
ductor. The crosshatching indicates the presence of electrons in the bands.
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For a semiconductor, the gap between the valence and conduction bands is much
less, as shown in Fig. 1.23b, so Eg is closer to the thermal energy kBT, and the heat
content of the material at room temperature can bring about the thermal excitation of
some electrons from the valence band to the conduction band where they carry
current. The density of electrons reaching the conduction band by this thermal exci-
tation process is relatively low, but by no means negligible, so the electrical conduc-
tivity is small; hence the name semiconducting. A material of this type is called an
intrinsic semiconductor. A semiconductor can be doped with donor atoms that
donate electrons to the conduction band where they can carry current. The material
can also be doped with acceptor atoms that obtain electrons from the valence band
and leave behind positive charges called holes which can also carry current. The
energy levels of these donors and acceptors lie in the energy gap, as shown in
Fig. 1.24. The former produces N type, that is, negative charge or electron conduc-
tivity, and the latter produces P type, that is, positive charge or hole conductivity,
as will be clarified in Section 1.4.1. These two types of conductivity in semiconduc-
tors are temperature dependent, as is the intrinsic semiconductivity.

A conductor is a material with a full valence band, and a conduction band partly full
with delocalized conduction electrons that are efficient in carrying electric current. The
positively charged metal ions at the lattice sites have given up their electrons to the
conduction band, and constitute a background of positive charge for the delocalized
electrons. Figure 1.23c shows the energy bands for this case. In actual crystals the
energy bands are much more complicated than is suggested by the sketches of
Fig. 1.23, with the bands depending on the direction in the lattice, as we shall see below.

1.3.2. Reciprocal Space

In Section 1.1.2 we discussed the structures of different types of crystals in ordinary
or coordinate space. These provided us with the positions of the atoms in the lattice.
To treat the motion of conduction electrons, it is necessary to consider a different type

Figure 1.24. Sketch of the forbidden energy gap showing acceptor levels the typical distance
DA above the top of the valence band, donor levels the typical distance DD below the bottom of
the conduction band, and deep-trap levels nearer to the center of the gap. The value of the
thermal energy kBT is indicated on the right.
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of space, which is mathematically called a dual space relative to the coordinate space.
This dual or reciprocal space arises in quantum mechanics, and a brief qualitative
description of this space is presented here.

The basic relationship between the frequency f ¼ v/2p, the wavelength l, and the
velocity v of a wave is lf ¼ v. It is convenient to define the wavevector k ¼ 2p/l to
give f ¼ (k/2p)v. For a matter wave, or the wave associated with conduction elec-
trons, the momentum p ¼ mv of an electron of mass m is given by p ¼ (h/2p)k,
where Planck’s constant h is a universal constant of physics. Sometimes a reduced
Planck’s constant h� ¼ h/2p is used, where p ¼ h�k. Thus, for this simple case the
momentum is proportional to the wavevector k, and k is inversely proportional to
the wavelength with the units of reciprocal length, or reciprocal meters. We can
define a reciprocal space called k-space to describe the motion of electrons.

If a one-dimensional crystal has a lattice constant a and a length that we take to be
L ¼ 10a, then the atoms will be present along a line at positions x ¼ 0,a,2a,3a, . . .,
10a ¼ L. The corresponding wavevector k will assume the values k ¼ 2p/L, 4p/L,
6p/L, . . ., 20p/L ¼ 2p/a. We see that the smallest value of k is 2p/L and the largest
value is 2p/a. The unit cell in this one-dimensional coordinate space has length a,
and the important characteristic cell in reciprocal space, called the Brillouin zone,
has the value 2p/a. The electron sites within the Brillouin zone are at the reciprocal
lattice points k ¼ 2pn/L, where for our example n ¼ 1,2,3,. . .,10, and k ¼ 2p/a at
the Brillouin zone boundary where n ¼ 10.

For a rectangular direct lattice in two dimensions with coordinates x and y, and
lattice constants a and b, the reciprocal space is also two-dimensional with the wave-
vectors kx and ky. By analogy with the direct lattice case, the Brillouin zone in this
two-dimensional reciprocal space has length 2p/a and width 2p/b, as sketched in
Fig. 1.25. The extension to three dimensions is straightforward. It is important to
keep in mind that kx is proportional to the momentum px of the conduction electron
in the x direction, and similarly for the relationship between ky and py.

1.3.3. Energy Bands and Gaps of Semiconductors

The electrical, optical, and other properties of semiconductors depend strongly on
how the energy of the delocalized electrons involves the wavevector k in reciprocal
or k-space, with the electron momentum p given by p ¼ mv ¼ h�k, as explained

Figure 1.25. Sketch of (a) unit cell in two-dimensional x,y coordinate space; (b) correspond-
ing Brillouin zone in kx,ky reciprocal space for a rectangular Bravais lattice.
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above. We will consider three-dimensional crystals; in particular, we are interested in
the properties of the III–V and the II–VI semiconducting compounds that have a
cubic structure, so their three lattice constants are the same, namely, a ¼ b ¼ c.
The electron motion expressed in the coordinates kx,ky,kz of reciprocal space takes
place in the Brillouin zone, and the shape of this zone for these cubic compounds
is shown in Fig. 1.26. Points of high symmetry in the Brillouin zone are designated
by capital (uppercase) Greek or Roman letters, as indicated.

The energy bands depend on the position in the Brillouin zone, and Fig. 1.27 pre-
sents these bands for the intrinsic (i.e., undoped) III–V compound GaAs. The figure
plots energy versus the wavevector k in the following Brillouin zone directions: along
D from point G to X, along L from G to L, along S from G to K, and along the path
between points X and K. These points and paths are indicated in the sketch of the
Brillouin zone in Fig. 1.30. We see from Fig. 1.27 that the various bands have pro-
minent maxima and minima at the centerpoint G of the Brillouin zone. The energy
gap or region where no band appears extends from the zero of energy at point G8

to point G6 directly above the gap at the energy Eg ¼ 1.35 eV. The bands below
point G8 constitute the valence band, and those above point G6 form the conduction
band. Hence G6 is the lowest-energy point of the conduction band, and G8 is the
highest point of the valence band.

At absolute zero all of the energy bands below the gap are filled with electrons,
and all the bands above the gap are empty, so at T ¼ 0 K the material is an insulator.
At room temperature the gap is sufficiently small so that some electrons are thermally
excited from the valence band to the conduction band, and these relatively few
excited electrons gather in the region of the conduction band immediately above
its minimum at G6, a region that is referred to as a “valley.” These electrons carry
some electric current; hence the material is a semiconductor. Gallium arsenide is
called a direct-bandgap semiconductor because the top of the valence band and
the bottom of the conduction band are both at the same centerpoint (G) in the

Figure 1.26. Brillouin zone of the gallium arsenide and zinc blende semiconductors showing
the high-symmetry points G, K, L, U, W, and X, and the high-symmetry lines D, L, S, Q, S, and
Z. (From G. Burns, Solid State Physics, Academic Press, Boston, 1985, p. 302.)
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Brillouin zone, as is clear from Fig. 1.27. Electrons in the valence band at point G8

can become thermally excited to point G6 in the conduction band with no change
in the wavevector k. The compounds GaAs, GaSb, InP, InAs, and InSb and all the
II–VI compounds included in Table B.6 have direct gaps. In some semiconductors
such as Si and Ge the position of the top of the valence band in the Brillouin zone
differs from the bottom of the conduction band, and these are called indirect-gap
semiconductors.

Figure 1.28 depicts the situation at point G of a direct-gap semiconductor on an
expanded scale, at temperatures above absolute zero, with energy bands approxi-
mated by parabolas. The conduction band valley at G6 is shown occupied by electrons
up to the Fermi level, which is defined as the energy of the highest occupied state. The
excited electrons leave behind empty states near the top of the valence band, and these
act like positive charges called holes in an otherwise full valence band. These hole
levels exist above the energy 2EF0 0, as indicated in Fig. 1.28. Since an intrinsic or
undoped semiconductor has just as many holes in the valence band as it has electrons
in the conduction band, the corresponding volumes filled with these electrons and
holes in k-space are equal to each other. These electrons and holes are the charge car-
riers of current, and the temperature dependence of their concentrations in GaAs, Si,
and Ge is given in Fig. 1.29.

Figure 1.27. Band structure of the semiconductor GaAs calculated by the pseudopotential
method. (From M. L. Cohen and J. Chelikowsky, Electronic Structure and Electronic
Properties of Semiconductors, 2nd ed., Springer-Verlag, Solid State Science series, Vol. 75,
Springer, Berlin, 1989, p. 65.)
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Figure 1.28. Sketch of the lower valence band and the upper conduction band of a semicon-
ductor approximated by parabolas. The region in the valence band containing holes and that in
the conduction band containing electrons are crosshatched. The Fermi energies EF and EF0 0

mark the highest occupied level of the conduction band and the lowest unoccupied level of
the valence band, respectively. The zero of energy is taken as the top of the valence band,
and the direct-bandgap energy Eg is indicated.

Figure 1.29. Temperature dependencies of the intrinsic carrier density of the semiconductors
Ge, Si, and GaAs. (From G. Burns, Solid State Physics, Academic Press, Boston, 1985, p. 315.)
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Figure 1.30. Band structure plots of the energy bands of the indirect-gap semiconductors Si
and Ge. The bandgap (absence of bands) lies slightly above the Fermi energy E ¼ 0 on
both figures, with the conduction band above and the valence band below the gap. The
figure shows that the lowest point or bottom of the conduction band of Ge is at the energy
E ¼ 0.6 at the symmetry point L (labeled L6

þ), and for Si it is 85% of the way along the direc-
tion D1 from G15 to X1. It is clear from Fig. 1.27 that the bottom of the conduction band of the
direct-gap semiconductor GaAs is at the symmetry point G6, The top of the valence band is at
the centerpoint G of the Brillouin zone for all three materials. (From M. L. Cohen and J.
Chelikowsky, Electronic Structure and Electronic Properties of Semiconductors, 2nd ed.,
Springer-Verlag, Solid State Science series, Vol. 75, Springer, Berlin, 1989, pp. 53, 64.)
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In every semiconductor listed in Table B.6, including Si and Ge, the top of its
valence band is located at the center of the Brillouin zone, but in the indirect-
bandgap semiconductors Si, Ge, AlAs, AlSb, and GaP the lowest valley of their con-
duction bands appears at different locations in k-space and at point G. This is shown
in Fig. 1.30 for the indirect-bandgap materials Si and Ge. We see from Fig. 1.30 that
the conduction band of Ge is minimum at point L, which is in the middle of the hex-
agonal face of the Brillouin zone along the L or [111] direction depicted in Fig. 1.26.
The Brillouin zone has eight such faces, with each point L shared by two zones, so the
zone actually contains only four of these points proper to it, and we say that the valley
degeneracy for Ge is 4. The semiconductor Si exhibits a lowest conduction band
minimum along the D or [001] direction about 85% of the way to point X, as
shown in Fig. 1.30. The corresponding valley of the compound GaP, not shown,
also is located along D about 92% of the way to X. We see from Fig. 1.26 that
there are six such D lines in the Brillouin zone, so this valley degeneracy is 6.
Associated with each of the valleys that we have been discussing, at point L for Ge
and along direction D for Si, there is a three-dimensional constant-energy surface
in the shape of an ellipsoid that encloses the conduction electrons in the correspond-
ing valleys, and these ellipsoids are sketched in Figs. 1.31a and 1.31b for Ge and Si,
respectively.

Some interesting experiments such as cyclotron resonance have been carried out
to map the configuration of these ellipsoid-type constant-energy surfaces. In a
cyclotron resonance experiment conduction electrons are induced to move along

Figure 1.31. Ellipsoidal constant energy surfaces in the conduction band of germanium (a)
and silicon (b). The constant-energy surfaces of Ge are aligned along symmetry direction L

and centered at symmetry point L. As a result, they lie half inside (solid lines) and half
outside (dashed lines) the first Brillouin zone, so this zone contains the equivalent of four com-
plete energy surfaces. The surfaces of Si lie along the six symmetry directions D (i.e., along
+kx, +ky, +kz), and are centered 85% of the way from the centerpoint G to symmetry
point X. All six of them lie entirely within the Brillouin zone, as shown. Figure 1.26 shows
the positions of symmetry points G, L, and X, and of symmetry lines D and L, in the
Brillouin zone. (From G. Burns, Solid State Physics, Academic Press, Boston, 1985, p. 313.)
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constant-energy surfaces at a velocity that always remains perpendicular to an applied
magnetic field direction. By utilizing various orientations of applied magnetic fields
relative to the ellipsoid, the electrons at the surface execute a variety of orbits, and by
measuring the trajectories of these orbits, we can delineate the shape of the energy
surface.

Table B.6 lists values of the energy gap Eg for types III–V and II–VI semicon-
ductors at room temperature (left-hand value) and in several cases it also lists the
value at absolute zero temperature (right-hand value). Table B.7 gives the temperature
and pressure dependences, dEg/dT and dEg/dP, respectively, of the gap at room
temperature.

1.3.4. Effective Mass

The kinetic energy of a conduction electron moving at a velocity v in a semiconductor
is found to have the value 1

2 m�v2 ¼ p2=2m�, where p ¼ m�v is the momentum, and
often the mass m� in these expressions differs from the electron’s fundamental or rest
mass value m0, which is a universal constant, so it is called an effective mass. This is
analogous to the case of the kinetic energy of an object of mass m moving at a velo-
city v through a liquid. Its effective mass is reduced by the volume of the displaced
liquid, and hence its measurable kinetic energy has a value lower than 1

2 mv2.
On a simple one-dimensional model the energy E of a conduction electron has a

quadratic dependence on the wavevector k ¼ p/h through the expression

E ¼ h� 2k2=2m� (1:12)

The first derivative of this expression provides the velocity v

1
h�

dE

dk
¼ hk

m� ¼ v (1:13)

and the second derivative provides the effective mass m�

1

h� 2

d2E

dk2
¼ 1

m� (1:14)

which, as we said above, differs in general from the free-electron mass m0. These
equations are rather trivial for the simple parabolic energy expression (1.12), but
we see from the energy bands of Figs. 1.27 and 1.30 that the actual dependence of
the energy E on k is much more complex than Eq. (1.12) indicates. This equation
(1.14) is a general definition of the effective mass m�, and the wavevector k
dependence of m� can be evaluated from the band structure plots by carrying out
the differentiations. We see from a comparison of the slopes near the conduction
band minimum and the valence band maximum of GaAs at point G on Fig. 1.27
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(see also Fig. 1.28) that the upper electron bands have steeper slopes and hence lighter
masses than do the lower hole bands with more gradual slopes.

1.3.5. Fermi Surfaces

At very low temperatures electrons fill the energy bands of solids up to the Fermi
energy EF, and the bands are empty for energies that exceed EF. In three-dimensional
k-space the set of values of kx,ky,kz that satisfy the equation h� 2(kx

2 þ ky
2þ kz

2)=2m ¼
EF form the Fermi surface. All kx,ky,kz energy states that lie below this surface are
full, and the states above the surface are empty. The Fermi surface encloses all the
electrons in the conduction band that carry electric current. In the good conductors
copper and silver the conduction electron density is 8.5 � 1022 and 5.86 � 1022 elec-
trons/cm3, respectively. From another viewpoint, the Fermi surface of a good
conductor can fill the entire Brillouin zone. In the intrinsic semiconductors GaAs,
Si, and Ge the carrier density at room temperature from Fig. 1.29 is approximately
106, 1010, and 1013 carriers/cm3, respectively, many orders of magnitude below
that of metals, and semiconductors are seldom doped to concentrations above 1019

centers/cm3. An intrinsic semiconductor is one with a full valence band and an
empty conduction band at absolute zero of temperature. As we saw above, at
ambient temperatures some electrons are thermally excited to the bottom of the con-
duction band, and an equal number of empty sites or holes are left behind near the top
of the valence band. This means that only a small percentage of the Brillouin zone
contains electrons in the conduction band, and the number of holes in the valence
band is correspondingly small. In a one-dimensional representation this reflects the
electron and hole occupancies depicted in Fig. 1.28.

If the conduction band minimum is at point G in the center of the Brillouin zone, as
is the case with GaAs, then the Fermi surface will be very close to a sphere since the
symmetry is cubic, and to a good approximation we can assume a quadratic depen-
dence of the energy on the wavevector k, corresponding to Eq. (1.12). Therefore the
Fermi surface in k-space is a small sphere given by the standard equation for a sphere

EF ¼ Eg þ
h� 2

2me
(kx

2 þ ky
2 þ kz

2)F ¼ Eg þ
h� 2

2me
k2

F (1:15)

where EF is the Fermi energy and the electron mass me relative to the free-electron
mass has the values given in Table B.8 for various direct-gap semiconductors.
Equations (1.15) are valid for direct-gap materials where the conduction band
minimum is at point G. In all the semiconductor materials under consideration the
valence band maxima are located at the Brillouin zone centerpoint G.

The situation for the conduction electron Fermi surface is more complicated for
indirect gap semiconductors. We mentioned above that Si and GaP exhibit conduc-
tion band minima along the D direction of the Brillouin zone, and the corresponding
six ellipsoidal energy surfaces are sketched in Fig. 1.31a. The longitudinal and
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transverse effective masses, mL and mT, respectively, have the following values

mL

m0
¼ 0:92

mT

m0
¼ 0:19 for Si (1:16a)

mL

m0
¼ 7:25

mT

m0
¼ 0:21 for GaP (1:16b)

for these two indirect-gap semiconductors. Germanium has its band minimum at points
L of the Brillouin zone sketched in Fig. 1.26, and its Fermi surface is the set of ellipsoids
centered at paints L with their axes along the L or [111] directions, as shown in
Fig. 1.31a. The longitudinal and transverse effective masses for these ellipsoids in
Ge are mL /m0 ¼ 1.58 and mT/m0 ¼ 0.081, respectively. Cyclotron resonance
techniques together with the application of stress to the samples can be used to
determine these effective masses for the indirect-bandgap semiconductors.

1.4. LOCALIZED PARTICLES

1.4.1. Donors, Acceptors, and Deep Traps

When an atom in column V of the periodic table, such as P, As, or Sb, which has five
electrons in its outer or valence electron shell, is a substitutional impurity in Si, it uses
four of these electrons to satisfy the valence requirements of the four nearest-neighbor
silicons, and the one remaining electron remains weakly bound. The atom easily
donates or passes on this electron to the conduction band, so it is called a donor,
and the electron is called a donor electron. This occurs because the donor energy
levels lie in the forbidden region close to the conduction band edge by the amount
DEd relative to the thermal energy value kBT, as indicated in Fig. 1.24. A Si atom sub-
stituting for Ga plays the role of a donor in GaAs, Al substituting for Zn in ZnSe serves
as a donor, and so on. The conductivity that is associated with the flow of electric
current carried by these conduction band electrons is called N-type.

An atom from column III atom such as Al or Ga, called an acceptor atom, which
has three electrons in its valence shell can serve as a substitutional defect in Si, and
in this role it requires four valence electrons to bond with the tetrahedron of nearest-
neighbor Si atoms. To accomplish this it draws or accepts an electron from the
valence band, leaving behind a hole at the top of this band. The conductivity
corresponding to electric current carried by the movement of these holes is called
P-type. The transfer of an electron to Si occurs easily because the energy levels of
the acceptor atoms are in the forbidden gap slightly above the valence band edge
by the amount DEA, which is small relative to kBT, as indicated in Fig. 1.24. In
other words, the excitation energies needed to ionize the donors and to add electrons
to the acceptors are much less than the thermal energy at room temperature T ¼ 300 K
(i.e., DED, DEA � kBT ), so virtually all donors are positively ionized and virtually all
acceptors are negatively ionized at room temperature.
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The donor and acceptor atoms that we have been discussing are known as “shallow
centers,” that is, shallow traps of electrons or holes, because their excitation energies
are much less than that of the bandgap (DED, DEA � Eg). There are other centers
with energy levels that lie deep within the forbidden gap, often closer to its center
than to the top or bottom, in contrast to the case with shallow donors and acceptors.
Since generally Eg 	 kBT, these traps are not extensively ionized, and the energies
involved in exciting or ionizing them are not small. Examples of deep centers are
defects associated with broken bonds, or strain involving displacements of atoms.

1.4.2. Mobility

Another important parameter of a semiconductor is the mobility m or charge carrier
drift velocity v per unit electric field E, given by the expression m ¼ jvj/E. This par-
ameter is defined as positive for both electrons and holes. Table B.9 lists the mobi-
lities me and mh for electrons and holes, respectively, in the semiconductors under
consideration. The electrical conductivity s is the sum of contributions from the con-
centrations of electrons n and of holes p in accordance with the expression

s ¼ (neme þ pemh) (1:17)

where e is the electronic charge. The mobilities have a weak power-law temperature
dependence Tn, and the pronounced T dependence of the conductivity is due princi-
pally to the dependence of the electron and hole concentrations on the temperature. In
doped semiconductors this generally arises mainly from the Boltzmann factor
exp(2Ei/kBT ) associated with the ionization energies Ei of the donors or acceptors.
Typical ionization energies for donors and acceptors in Si and Ge listed in Table B.10
range from 0.0096 to 0.16 eV, which is much less than the bandgap energies 1.12 eV
and 0.67 eV of Si and Ge, respectively. Figure 1.24 shows the locations of donor and
acceptor levels on an energy band plot, and makes clear that their respective ioniz-
ation energies are much less than Eg. The thermal energy kBT ¼ 0.026 eV at room
temperature (T ¼ 300 K) is often comparable to the ionization energies. In intrinsic
or undoped materials the main contribution is from the exponential factor
exp(2Eg/2 kBT ) in the following expression from the law of mass action

ni ¼ pi ¼ 2K
kBT

2ph� 2

� �3=2

(memh)3=4 exp
�Eg

2kBT
(1:18)

where K is a constant and the intrinsic concentrations of electrons ni and holes pi are
equal to each other because the thermal excitation of ni electrons to the conduction
band leaves behind the same number pi of holes in the valence band, that is, ni ¼ pi.
We see that the expression (1.18) contains the product memh of the effective
masses me and mh of the electrons and holes, respectively, and the ratios me/m0

and mh/m0 of these effective masses to the free-electron mass m0 are presented in
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Table B.8. These effective masses strongly influence the properties of excitons to be
discussed next.

1.4.3. Excitons

An ordinary negative electron and a positive electron, called a positron, situated a dis-
tance r apart in free space experience an attractive Coulomb force, which has the value
2e2/4p10r2, where e is their charge and 10 is the dielectric constant of free space. A
quantum-mechanical calculation shows that the electron and positron interact to form
an atom called positronium, which has bound state energies given by the Rydberg
formula introduced by Niels Bohr in 1913 to explain the hydrogen atom

E ¼ � e2

8p10a0n2
¼ � 6:8

n2
eV (1:19)

where a0 is the Bohr radius given by a0 ¼ 4p10h� 2/m0e2 ¼ 0.0529 nm, m0 is the
free-electron (and positron) mass, and the quantum number n takes on the values
n ¼ 1,2,3, . . . ,4. For the lowest-energy or ground state, which has n ¼ 1, the
energy is 6.8 V, which is exactly half the ground-state energy of a hydrogen atom,
since the effective mass of the bound electron–positron pair is half that of the
bound electron–proton pair in the hydrogen atom. Figure 1.32 shows the energy

Figure 1.32. The first few energy levels in the Rydberg series of a hydrogen atom (a), posi-
tronium (b), and a typical exciton (c).
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levels of positronium as a function of the quantum number n. This set of energy levels
is often referred to as a Rydberg series. The continuum at the top of the figure is the
region of positive energies where the electron and the hole are so far away from each
other that the Coulomb interaction no longer has an appreciable effect, and the energy
is all of the kinetic type, 1/2(mv2) ¼ p2/2m, or energy of motion, where v is the vel-
ocity and p ¼ mv is the momentum.

The analog of positronium in a solid such as a semiconductor is the bound state of
an electron–hole pair called an exciton. For a semiconductor the electron is in the
conduction band and the hole is in the valence band. The electron and hole both
have effective masses me and mh, respectively, which are less than that m0 of a free
electron, so the reduced mass mR is given by mR ¼ memh/(me þ mh). When the
electron effective mass is appreciably less than the hole effective mass, me�mh,
the relationship between them is conveniently written in the form

mR ¼ me

1 þ (me=mh)
(1:20)

which shows that for this case mR becomes comparable to the electron mass. For
example, if me/mh ¼ 0.2, then m� ¼ 0.83 me. A comparison of the data in
Table B.8 shows that this situation is typical for GaAs-type semiconductors. We
also see from Table B.12 that the relative dielectric constant 1/10 has the range of
values 5.6 , 1/10 , 15.7 for these materials, where 10 is the dielectric constant of
free space. Both of these factors have the effect of decreasing the exciton energy
Eex from that of positronium, and as a result this energy is given by

Eex ¼ m�=m0

(1=10)2

e2

4p10a0n2
¼ 13:6 m�=m0

(1=10)2n2
eV (1:21)

as shown plotted in Fig. 1.32. These same two factors also increase the effective Bohr
radius of the electron orbit, and it becomes

aeff ¼
1=10

m�=m0
a0 ¼ 0:05291=10

m�=m0
nm (1:22)

Using the GaAs electron effective mass and the heavy-hole effective mass values
from Table B.8, Eq. (1.22) gives m�/m0 ¼ 0.058. Utilizing the dielectric constant
value from Table B.11, we obtain, using Eqs. (1.21 and (1.22), for GaAs

E0 ¼ 4:5 meV, aeff ¼ 12:0 nm (1:23)

where E0 is the ground-state (n ¼ 1) energy. This demonstrates that an exciton
extends over quite a few atoms of the lattice, and its radius in GaAs is comparable
with the dimensions of a typical nanostructure. An exciton has the properties of a
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particle; it is mobile and able to move around the lattice. It also exhibits characteristic
optical spectra. Figure 1.32 plots the energy levels for an exciton with the ground-
state energy E0 ¼ 18 meV.

Technically speaking, the exciton that we have just discussed is a weakly bound
electron–hole pair called a Mott–Wannier exciton. A strongly or tightly bound
exciton, called a Frenkel exciton, is similar to a longlived excited state of an atom
or molecule. It is also mobile, and can move around the lattice by the transfer of
the excitation or excited-state charge between adjacent atoms or molecules. Almost
all the excitons encountered in semiconductors and in nanostructures are of the
Mott–Wannier type, except in organic nanocrystals, where they are Frenkel excitons.

PROBLEMS

1.1. Find the volume and the surface area of the cuboctahedron sketched in Fig. 1.6.

1.2. Consider a nanofilm formed from the two-dimensional close-packed lattice of
Fig. 1.4. The smallest n ¼ 1 nanofilm is, of course, one atom, and the n ¼ 2
one is the seven-atom (N ¼ 7) structure sketched on the left side of Fig. C.1
of Appendix C. The number of atoms around the edge is given by Nedge¼

6(n 2 1) valid for n . 1, in analogy with Eq. (1.4). Make accurate sketches
of the n ¼ 3, n ¼ 4, and n ¼ 5 planar nanoparticles, and prepare the analog of
Table 1.3 for this two-dimensional case for n values ranging from 1 to 5.

1.3. Evaluate the coefficients A, B, and C of the equation N ¼ An2 þ Bn þ C for the
number of atoms in a two-dimensional nanoparticle.

1.4. Find the distances between [111] planes of the zinc blende lattice in terms of the
cubic unit cell dimension a for the following cases: (a) two nearest sulfur planes,
(b) two nearest zinc planes, and (c) adjacent S and Zn planes. Why are there two
answers for case (c)?

1.5. Consider three fcc nanoparticles containing approximately 1000 atoms: one in
the shape of an octahedron, one in the shape of a cube, and one in the shape
of the structure depicted in Fig. 1.9. Which has the largest, and which has the
smallest value of surface energy per unit volume? What are their values?

1.6. A two-dimensional close packed lattice of circular atoms is illustrated in
Fig. 1.4a. What is the radius of the interstitial sites of this lattice, and how
numerous are they compared to the atoms?

1.7. A square of side a has zero-dimensional apices, four one-dimensional edges, and
one two-dimensional face. If the square is projected out into the third dimension
and the vertices of the two squares are connected with straight lines of length a, the
resulting three-dimensional cube has 8 vertices, 12 edges, and 6 faces. Consider
projecting the cube out into a fourth dimension and connecting the respective ver-
tices with straight lines of length a, to form a four-dimensional “cube” called a
tesseract. How many apices, edges, faces, and cubes does the tesseract have?
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