
STATIONS ALONG THE WAY

¢ Installing Python

¢ Interacting with the Python console

¢ Building a program that greets the user

¢ Getting basic text input from the user

¢ Building a string variable with an appropriate name

¢ Outputting the value of a string variable to the user

¢ Creating subsets of a string with slicing

¢ Using string interpolation to create complex output

Writing Your
First Program

1
CHAPTER

04_068229 ch01.qxp 12/22/06 9:41 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

Enter the
Station

Questions
1. Why is game programming useful?

2. How can game programming prepare you for more “serious” programming study?

3. Why is Python a good language for beginning programmers?

4. What is an interpreted language?

5. What are the advantages and disadvantages of an interpreted language?

6. How do you write the most basic Python program?

7. What is a variable?

8. How do you do basic input and output?

9. How do you name a variable appropriately?

10. How do you modify a string?

11. How do you incorporate variables into output?

Chapter 1: Writing Your First Program2

04_068229 ch01.qxp 12/22/06 9:41 PM Page 2

Why Use Python? 3

You Can Learn a Lot by Writing Games
Welcome to Game Programming: The L Line. Over the course of this book, you will
learn how to write computer games. You’ll learn all the major skills of a game pro-
grammer, including how to plan programs, write code, fix mistakes, and manage
complicated data.

If you have never written any kind of computer program before, gaming is a great way
to start. Learning programming doesn’t have to be boring. You’ll have a lot of fun
because you’re going to be building the most interesting kind of program. Game pro-
gramming provides all the same challenges as other kinds of programming, but games
are also visual and interactive. Many programmers were drawn to computers because
of games. Learning to program games is even more fun than playing them because
you can totally create your own world. Don’t worry, though. Even though this book
concentrates on games, the skills you learn will translate very well to the more tradi-
tional kinds of programming. At the end of this book, you’ll be a game programmer,
but you’ll also be a programmer.

If you’ve done some programming but you want to learn how to write games, you’ll
also like this book. A lot of books out there can teach you the mechanics of how to get
images on a screen or plot out storyboards, but very few really teach you how to think
like a game programmer — and that’s my goal. When you imagine a game, I want you
to know how to sketch out the relevant ideas, know what kinds of programming con-
structs you’ll need, and have the ability to put your thoughts on the screen in working
code. Those are the skills you’ll learn in this book. You’ll learn some Python, pygame,
SDL, and maybe even get a refresher in some basic math and physics.

This book is really about only one thing — writing games. You’ll start writing your
first game in this chapter, and you’ll keep writing games throughout the book. You’ll
learn how to make text-based games, racing games, arcade games, and even games
that involve somewhat sophisticated physics and motion models. There might be some
math and theory stuff interspersed, but don’t expect a dry textbook. I will tell you
about math or physics when it’s the solution to a problem, but never for the sake of
talking about theory.

Why Use Python?
This book is more about game programming in general than any specific language.
When you know how to program games, you can adapt the skills learned here to other
languages without too much trouble. In this book, I teach game development by using

04_068229 ch01.qxp 12/22/06 9:41 PM Page 3

a language called Python, as well as a specific extension of Python called pygame.
You have a number of good reasons to use these tools:

Python is freely available. The Python programming language was invented by
Guido van Rossum in the early 1990s. He has generously given away the lan-
guage to anyone who wants it. You don’t have to buy Python at all. (Technically,
in fact, you can’t buy it.) A full version of Python is available for download
from this book’s companion Web site (www.wiley.com/go/thelline).
When you look at the prices for other programming environments with similar
game-development capabilities (Adobe/Macromedia Flash and Microsoft
VB.NET come to mind), free looks pretty good. If you add some of the power-
ful free editing tools and libraries that come with Python, it’s even better. Cost is
no barrier to programming in Python.

Python is platform-independent. Python works great on a wide variety of
computer environments. In this book, I’m assuming you’re using Windows, but
Python works well on all the primary operating systems in current use, includ-
ing Mac OS, UNIX, and Linux. The pygame library used for the graphics and
games is based on another standard called SDL (Simple DirectMedia Layer),
which also works on a wide variety of computers. You can rest assured that your
games will run on many types of computers.

Transfer
Chapter 4 describes the relationship between pygame and SDL.

Python is easy to learn. One of the original design goals for Python was to make
it relatively easy for newcomers to learn. This goal has been largely realized.
Python has a reasonably clean syntax (that is, rules of grammar and punctua-
tion) that is not nearly as difficult to learn as many other languages. Writing
programming code is still an exacting discipline, but Python does a lot of things
automatically for you and makes writing code more straightforward than a lot of
other programming languages. For example, many popular programming lan-
guages use at least one special character (a semicolon or a brace) at the end of
every single line of code. Python uses a different approach, which makes the
code easier for beginners to read and write.

Python is powerful. Just because the language is relatively easy, that doesn’t
mean it’s a slouch. Straight Python can do some pretty impressive things.
When you attach it to the pygame library (as you will do for most of this book),
Python can make some very impressive games. For comparison purposes, most
games written in Flash run at 12 to 20 frames per second. Python games typically

Chapter 1: Writing Your First Program4

04_068229 ch01.qxp 12/22/06 9:41 PM Page 4

run at 30 to 50 frames per second. Although Python itself isn’t an exceptionally
fast language — compared to compiled languages, such as C — the technique
you learn here relies on the very fast SDL library to do most of the heavy lifting.
Python also incorporates all the tools needed for many sophisticated techniques,
including sprites, data structures, and collision detection.

Transfer
You learn about sprites starting in Chapter 6. You learn about
how data is organized beginning in Chapter 2. Collision detection

is covered in Chapter 6.

Python is extensible. A lot of great add-on packages are available, and they can
extend Python’s basic capabilities. In the first section of this book, you will get
your hands dirty with the basic version of the Python language. To get to the
graphical stuff, you rely on one of Python’s best features; the language was
designed so people can easily add their own extensions to it, and many people
have added wonderful new tools and libraries. The pygame library in particular
is a wonderful way to add powerful graphics capabilities to Python. I point out
this library and several others as they come up. Of course, I provide all the
libraries on the Web site, too, so you can install them for yourself.

The Python concepts transfer well to other languages. Although most com-
mercial games are not written in Python, a good number are — or they use
Python as an extension language. Even if you don’t end up writing Python
games for a living, the basic ideas you learn in this book transfer very well to
many other game-development environments.

Installing and Starting Python 5

Installing and Starting Python
Python is pretty easy to install, as programming languages go. In this book, I use ver-
sion 2.4.2 and 2.5. You can find the Windows Python installer on the companion Web
site for this book, or you can go to Python’s main page at www.python.org and
download the latest version for your operating system.

Information Kiosk
Python is a vibrant, changing language. During the time this book
was developed, two more minor releases of Python occurred.

I’ve tested the code with 2.4.4, and everything works fine. Any later ver-
sion of Python should also be fine. Please be sure you’re using at least 2.4
or later to ensure all the code in this book works properly.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 5

Installing Python
Install Python to your hard drive by using the standard installation method. The entire
language installation weighs in at only 9MB (which is pretty small, considering what
it does). After you install it, several new elements appear on the Programs menu, as
shown in Figure 1-1.

Figure 1-1: The standard version of Python comes with several interesting programs.

The programs that come with Python are pretty handy in their own right. The docu-
mentation server (Module Docs) and online help (Python Manuals) both offer a lot of
help. Feel free to look at them, but don’t get too overwhelmed. There’s a lot of informa-
tion in the documentation that you don’t need at first. I show you how to use various
documentation features as you need them.

Starting the engine
You can start Python in a couple ways. The simplest is to use the command-line tool,
which displays a screen that looks like Figure 1-2. From the Start menu, find the
Python group, and choose Python (Command Line).

Figure 1-2: It isn’t pretty, but it’s a good place to start.

If you run the standard Python program from the Windows Start menu, you automati-
cally find yourself at the command-line console for Python. In the Macintosh and
Linux environments, the process is slightly different:

Chapter 1: Writing Your First Program6

04_068229 ch01.qxp 12/22/06 9:41 PM Page 6

1. Find the command-line console for your operating system.

In most versions of Linux you can right-click the desktop and open a terminal
window from the resulting menu.

On the Mac, open the Terminal program in Applications/Utilities.

2. Type python and press Enter.

You’ll know you’re in the Python environment when you see a screen that looks
something like what you see in Figure 1-2. (Each version of Python is slightly
different, but they’re all similar.)

All versions of Python include this very basic environment, called the interactive
mode. Although it’s nothing to look at, the Python console is surprisingly powerful.
Python is an example of an interpreted language, which means the programming lan-
guage is running as you type instructions into it. You can actually type in commands,
and Python will respond interactively. For example, type print “hi, there!” and see
what happens. You should get a screen like the one in Figure 1-3.

Figure 1-3: Python is greeting you!

Python is even useful in this very basic mode. Try it out by doing some simple math
problems:

1. Type some sort of arithmetic (4 + 3, for example) after the >>> symbol.

2. Press Enter and look at the results.

3. To venture into “higher math,” use the asterisk (*) for multiplication and
the forward slash (/) for division.

4. Finish by trying more complex math, including parentheses.

Figure 1-4 shows the answer for (8 * 4 / 3) + 2. You aren’t even halfway through the
first chapter, and you’ve already got something useful!

Installing and Starting Python 7

04_068229 ch01.qxp 12/22/06 9:41 PM Page 7

Figure 1-4: Python is a handy calculator.

Information Kiosk
You won’t always use the command line to work interactively
with Python, because it’s a lot easier to type your code into

files that are saved on the hard drive. (You learn how to do that later in this
chapter.) Still, you’ll often find yourself returning to a command-line tool to
run little snippets of code in real time so you can see what they do. The
interactive capabilities of Python’s command console are a nice feature
that most modern languages don’t have.

Storing information in variables
Python allows you to store information and retrieve it later. To see how this works, do
the following:

1. Type the following code on the command line (the >>> symbol will already
be there):

>>> answer = 5 + 3

2. Retrieve the answer by typing in this code:

>>> print answer

Chapter 1: Writing Your First Program8

Step Into the Real World
Who’s Running What Out There? I’m assuming that most readers use Microsoft
Windows as the primary operating system for their computers, but you can write

(and run) Python on most other popular operating systems. If you’re using a Mac OS X or Linux
machine, there’s a good chance you already have Python installed. You can find out by going to
a command-line console and typing python. If you see a message about Python, you’re in luck.
If you use the Mac OS, check out MacPython at www.python.org/download/mac.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 8

When you enter the first line (answer = 5 + 3), nothing seems to happen, as
shown in Figure 1-5.

Figure 1-5: This command stores information but doesn’t display it yet.

Python still calculated the math problem 5 + 3, but rather than having it print out the
result, you told it to store the answer in a special element called answer. Python
automatically created a place in the computer’s memory, named it answer, and put
this value into that place.

After Python prints the answer (print answer), you can see from Figure 1-6 that
something interesting has happened.

Figure 1-6: Now Python prints the results.

You might be surprised that Python prints the number 8 rather than the word answer.
Quote signs are the secret. If you tell Python to print something inside quotes (such as
“Hello, there!”), it will print that literal value. If you don’t use quotes, Python
looks for a place in memory with that name, and prints the resulting value.

These named memory spaces are called variables. The ability to store and retrieve
information from the computer’s memory is one of the key elements in computer
programming.

Installing and Starting Python 9

04_068229 ch01.qxp 12/22/06 9:41 PM Page 9

Information Kiosk
When you see a line like answer = 3 + 5, train yourself to
read it like this: “answer gets three plus five.” In Python (and

many other languages), the equals sign doesn’t always mean equality. In
other words, it isn’t necessarily saying that answer is equal to 3 + 5.
Instead, the equals sign is used to indicate assignment. In other words,
“find the result of the calculation 3 + 5 and store that result in a variable
called answer.”

Transfer
In Chapter 3, you’ll learn how to test for equality.

Introducing IDLE
The basic Windows and Linux installations of Python come with another nice tool for
writing Python programs called IDLE. IDLE is a somewhat farfetched acronym for
Interactive DeveLopment Environment. (I guess if you’re smart enough to make your
own programming language, you can capitalize any letter you want.)

The IDLE environment is featured in Figure 1-7.

Figure 1-7: IDLE is a little easier on the eyes than the command-line console.

Chapter 1: Writing Your First Program10

04_068229 ch01.qxp 12/22/06 9:41 PM Page 10

IDLE has some nice features that make it an attractive tool for building Python
programs. It acts like an interactive text editor that understands Python syntax.
To illustrate, try this out:

1. Start IDLE as you start any program in your operating system.

You can run it from the Start menu in Windows, by double-clicking the
IDLE icon, or by typing idle into your operating system’s command-line
console.

2. Notice the standard prompt.

When Python is waiting for you to do something, it presents a standard >>>
symbol. You saw this same symbol when you ran the more primitive console
version of Python.

3. Look at the menus.

Unlike the standard Python console, IDLE features menus with various com-
mands on them. Don’t worry if you don’t know what these mean yet. Notice
there is a Help menu. That will probably come in handy soon.

4. Type in a command.

Try typing the following line into the IDLE console:

print (“hi there”)

It’s important that you type exactly what you see here, including the parentheses
and the quotes, or Python will not respond correctly.

5. Press Enter to tell Python to execute the command.

IDLE will respond much like the command line did, printing out “hi there.”

Installing and Starting Python 11

Step Into the Real World
IDLE is an example of an Integrated Debugging Environment (IDE,) which is just a
fancy term for a text editor optimized to work with a programming language. You can

use any text editor you want to make Python programs, but IDLE (or any other IDE meant to work
with Python) will make the job easier. IDLE is usually packaged with the Windows and Linux ver-
sions of Python. If you are using the MacPython environment, there is an IDE called (cleverly
enough) pythonIDE, which does pretty much the same thing as IDLE. If you don’t have IDLE or
another IDE, you can still do everything. Simply write your programs in a text editor and use
python filename.py from the command line to run the program. Use python without any
filename to run Python in interactive mode.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 11

6. Notice that the color changes.

You’ll see something interesting when you type commands into IDLE. The word
print automatically appears in red, and the text “hi there” will be colored
green. This happens because IDLE recognizes print as a built-in command,
and “hi there” as the thing it should print. This feature is called syntax
highlighting. It can make things much easier on you as you write your code.

IDLE features a number of other interesting tools that I’ll point out as you continue
your travels.

Storing your code in a file
It’s convenient to write commands in interactive mode, but you’ll soon want to write
programs that are more than one command long. Python allows you to write a whole
slew of commands in a text file and run them all at one time. IDLE has a built-in text
editor that is perfect for storing all your commands. To use it, follow these steps:

1. Open a new window.

From the File menu, choose the New Window command. Figure 1-8 shows the
original IDLE window with a new window on top.

Figure 1-8: IDLE after opening a new file window.

Chapter 1: Writing Your First Program12

04_068229 ch01.qxp 12/22/06 9:41 PM Page 12

2. See how the new editor window is different.

The new window looks a lot like the original, but there are some subtle differ-
ences. First, note that the new window is blank. It does not have the >>> prompt
you see when you run Python in interactive mode. Also, the menu items are
slightly different. This second window is a special text editor used for writing
Python commands.

3. Enter a command into the window.

Type the following command into the new window:

print “Hello, World! “

When you press the Enter key, you might be surprised. In the standard IDLE
window, everything happens interactively. As soon as you type a command,
Python immediately responds, but when you use IDLE as a text editor, nothing
seems to happen. The editor is letting you enter a command (or a series of
commands), but the editor does not execute the commands until you tell it to.
Writing commands in this way is a lot like writing a recipe. You’re writing down
the steps, but you aren’t actually cooking (executing the commands) yet.

4. Save your file.

Use the Save command from the File menu to save your masterpiece as
Hello.py.

Information Kiosk
It’s important that you use the .py extension, because that’s
how your computer knows that the text file you’re saving is

actually a Python program and not some other text file (like a shopping list
or something).

5. Run your program.

From the Run menu, select the Run Module command (or just press F5) to run
your program. You should get a screen that looks like Figure 1-9:

Installing and Starting Python 13

Step Into the Real World
IDLE is the only editor you need to write all the programs in this book. However, you
don’t have to use it. You can actually write Python code in any text editor you wish,

as long as it saves code in plain text format. (Word processors do not do this well because they
write documents in specialized formats that the Python interpreter cannot need. Word proces-
sors also emphasize special formatting and layout features that are meaningless for a program-
ming editor.) For now, stick with IDLE if you can, because you already have it, and it does plenty.
As the programs get more complicated, you might want to use a more complex editor. I’ll
describe one such editor (called SPE) later on in Chapter 5.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 13

Figure 1-9: Now the program is running!

When you run a program from the editor screen, Python takes all the commands from
the file and executes them all at once. For these early programs, you’ll see the results
in the main IDLE screen. Later on, your programs will build their own output window.

Information Kiosk
If you use another text editor (one that doesn’t have a “run
Python” command), be sure to save the file with a .py extension.

If you double-click on the file, the operating system can usually run it by asso-
ciating it with the Python interpreter. However, I don’t recommend you do it this
way at first, because the program will disappear as soon as it finishes, and
you won’t be able to see it. If you cannot use IDLE (because you’re working
in Linux, for example), go to the command line and run your program directly
from the command console by entering the following: python Hello.py.

Chapter 1: Writing Your First Program14

Writing Your First Interactive Game
It’s pretty interesting to print something to the screen, but it’d be even better if you
could make a program that acts a little more like a game. Check the Cheese Shop
game shown in Figure 1-10 for a silly example.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 14

Figure 1-10: There’s not much cheese at this cheese shop.

Take a look at all of the following code. Notice that it is almost English-like. Even
though you may not understand everything immediately, Python code is pretty
straightforward, and you’ll probably be able to guess what’s going on. Still, I’ll
explain every single part of this program after you look it over.

Here is the code for the cheeseShop.py program:

“””Cheese Shop
cheeseShop.py
demonstrate comments
raw input,
and string variables
from Game Programming - L-line
Andy Harris
4/10/06
“””

#tell the user something
print “Welcome to the cheese shop!”

#get information from the user
cheeseType = raw_input(“What kind of cheese would you like? “)

#we don’t have that kind...
print “Sorry, We’re all out of”
print cheeseType

Writing Your First Interactive Game 15

04_068229 ch01.qxp 12/22/06 9:41 PM Page 15

This program shows some important new ideas: documentation strings, comments,
input, and output. Don’t worry. None if it is all that hard to understand.

Using docstrings to document your code
Take a close look at the first few lines of the cheeseShop.py program. They begin
and end with a triple double-quote symbol (“””). This special combination indicates
multiple lines of text. If you have several lines of text embedded inside the triple
double-quotes at the beginning of the program, this text will be used as online help
for the program. Each program should begin with at least the same kind of informa-
tion I indicated for the cheeseShop.py program:

The name of the program

The filename where the program is stored

The author’s name

The date the program was written or modified

What the program does

This special documentation is called a docstring. Although Python ignores the infor-
mation in this text block, it is very useful for human programmers. There’s also an
important system called pydoc that uses these documentation values to automatically
build online help for your programs. Once programs get long and complicated, you
will really appreciate your habit of good documentation. You’ll be amazed at how
little you understand a program you wrote after only a couple of weeks have passed.
However, when you develop good documentation habits, your programs will be read-
ily understandable because you’ll leave reminders to yourself or other programmers
about what the code is and does.

Building comments
The next line of code is also ignored!

Chapter 1: Writing Your First Program16

Step Into the Real World
The name of the Python language is a tribute to the British comedy troupe Monty
Python. The cheeseShop.py program is inspired by one of their more famous

skits. If you’re going to program in this language, you may have to get some old episodes from
the library. For some strange reason, computer programmers tend to love the odd humor of this
group. I have to admit, I’m a big fan of them myself. You might just see another reference to
them as we go on . . . The cheeseShop.py program welcomes the user and asks what type of
cheese he would like. Regardless of the cheese requested, the program politely informs the
user that no such cheese is available.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 16

#tell the user something

This command begins with a pound sign (#). Inside your code, you can add more com-
ments by beginning a line with this symbol. In this first program, I added a comment to
explain every single line of code. As you get more sophisticated, you won’t need that
many comments. It’s still a great idea to sprinkle comments into your code when you
write something clever. (Clever code means you won’t understand it in a couple weeks.)

Printing output to the screen
After taking care of documentation strings and comments, we get to a line that actu-
ally does something:

print “Welcome to the cheese shop!”

You’ve actually used the print command a couple times already. This command does
what it says: It prints something to the screen. The text inside the quotation marks is
the stuff that Python will print out. Commands in Python (or any other programming
language) are sometimes called statements. Some statements (such as print) accept
some value to work with. This value is often called the argument, so the argument of
the print statement above is “Welcome to the cheese shop!”

Watch Your Step
You must use the standard quote symbols in Python. Word
processors love to put in “smart quotes,” which have different

symbols for the beginning and end of a quote. (Look at the preceding sen-
tence for an example of smart quotes.) Python will be confused by these
characters. To avoid this headache, simply don’t use a word processor to
write your programming code. IDLE or another plain-text editor will produce
the kind of text you need.

Writing Your First Interactive Game 17

Step Into the Real World
Documentation is a Part of Python One of the fine traditions of Python is how
well the code is documented. Most programming languages have completely sepa-

rate Help systems. When you install the language, you must also install Help files so you will
know how everything works. The Help system in these languages is not always completely up to
date, because the Help system is often updated months after changes are made to the under-
lying code. In Python, the Help system is built directly into the code, so if you have a chunk of
Python code, you already have the relevant documentation. When you write your own programs,
you have an obligation to continue that tradition by placing appropriate documentation inside
your programs, as I have done in the cheeseShop.py program.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 17

When Python interprets the print command, it will print out whatever text is inside
the quote symbols. If you don’t use quote signs, Python expects the name of a vari-
able, and it will print out the value of that variable. More on that in a moment.

Getting input from the user
The next line of our cheeseShop.py program is really interesting:

cheeseType = raw_input(“What kind of cheese would you like? “)

The raw_input() function allows you to get input from the user. The function
requires a prompt — in this case, a question that Python asks the user: “What kind
of cheese would you like?” The program then stops and lets the user type a
value into the command console. When the user presses Enter, whatever he or she
typed is transferred to the cheeseType variable.

Transfer
In this chapter you’re learning how to use functions that come
with Python, but in Chapter 3 you learn how to create and use

your own functions.

Information Kiosk
If you’ve already programmed in other languages, you might be
surprised that you don’t have to create or declare a variable

explicitly. When you refer to the cheeseType variable, Python automatically
creates the variable and figures out what type it should be. Python supports
a feature called Implicit Variable Declaration — which means that simply
mentioning a variable creates it. The good news is it is very easy to create
a variable in Python. There is some bad news: If you misspell a variable
name, Python just assumes you wanted to create a new variable. Also, Python
guesses about what type of data you intend the variable to hold — and it
sometimes guesses wrong.

Creating a variable
Variables — those handy places to put things — are one of the most important parts
of computer programming in any language. You will create a lot of variables as you
become a programmer. It’s a good idea to learn how variables should be named,
because you get to name a lot of things in programming. Variable names should
follow these basic rules:

Be descriptive. A variable’s name should indicate what the variable means.
The cheeseType variable used in this example is well-named because it is
clear that this variable is supposed to hold a type of cheese. R or p are not good

Chapter 1: Writing Your First Program18

04_068229 ch01.qxp 12/22/06 9:41 PM Page 18

variable names, because it’s hard to say exactly what they mean. Generally your
variable names should be long enough to clearly indicate their meaning.

Use single words. Variable names cannot contain spaces. If you want to make a
variable name out of two different words (such as cheese type), you have two
main choices: You can use the underscore character (_), as in cheese_type,
or you can use what’s called “mixed case,” as in cheeseType. Note that only
the T in Type is capitalized. Throughout this book, I use mixed case to create
variable names.

Be case-sensitive. CHEESETYPE, cheeseType, and ChEeSeTyPe are three
totally different variables as far as Python is concerned. Python is a case-sensitive
language — meaning you can’t get sloppy about when you use uppercase and
lowercase characters in your variables or commands. It’s best to stick with
mixed-case to avoid problems.

Be manageable. Variable names should be long enough to be readable,
but not so long that you can no longer type them. For example,
variableThatHoldsTheNameOfATypeOfCheese is too long a variable
name. You’ll have trouble spelling it correctly, and it will annoy you.

Information Kiosk
The raw_input() function has another powerful use. If you’ve
tried running your programs by double-clicking them from

Windows, you’ll find they close immediately after completion. Put the follow-
ing code at the end of your program to make it wait long enough to read:

raw_input(“press Enter to continue”)

This command prints out the prompt, and then it waits. In this case, it
doesn’t bother to save the result to a variable, because you don’t really
care what the user typed. You’re just waiting for a press on the Enter key to
know the user is finished. You won’t need this trick if you test your code
within IDLE, but it can be handy.

Printing the results
The last two lines of code print both a text literal value and the value of the variable
cheeseType:

#we don’t have that kind...
print “Sorry, We’re all out of”
print cheeseType

Figure 1-11 illustrates how this code prints the two different kinds of values.

Writing Your First Interactive Game 19

04_068229 ch01.qxp 12/22/06 9:41 PM Page 19

Figure 1-11: The program prints a literal value and a variable.

When Python encounters a phrase inside quotes, it prints that phrase exactly (which
is why such a value is called a literal). The first print statement is that kind of com-
mand, so Python simply prints its value.

The second print statement doesn’t have quotes, so Python looks for a variable
named cheeseType. If it can find such a variable, it prints the corresponding value.

Watch Your Step
When asked to print a word with no quotes, Python looks for a
variable with that name and prints the value of that variable. If

no such variable exists, Python will quietly create an empty variable. Be
very careful with your spelling, because if you misspell a variable name,
Python will complain and the program won’t run.

Chapter 1: Writing Your First Program20

Introducing String Variables
Many of the variables you encounter in this book contain text. These variables are
called string variables, because the way each character’s data was stored in contiguous
cells reminded the early programmers of beads on a string. It’s oddly poetic, and the

04_068229 ch01.qxp 12/22/06 9:41 PM Page 20

term has stuck. Now that you’re an official programmer, you should start referring to
text as “string data.” People will be impressed with your intellectual prowess.

Building a basic string
Begin experimenting with string values by typing this command into the console.

1. Type a string assignment into the console:

playerName = “Princess Oogieboogie”

Python automatically creates a variable called playerName. Since
“Princess Oogieboogie” is a text value, playerName is magically made
into a string variable, and it can do all the things that strings can do in Python.

2. Print out the value of the string:

>>> print playerName
Princess OoogieBoogie

Information Kiosk
It’s not really magic, of course. Python is an example of a
dynamically typed language, which means that the programmer

doesn’t have to explicitly say what kind of data goes into a variable. The
language guesses for you. If you know anything about computers, you
know sometimes it guesses wrong. Don’t worry. I’ll show you how to recog-
nize and prevent such problems as you move along.

Using string methods
Python supports a special form of programming called object-oriented programming
(OOP). This kind of programming describes various things as objects. Strings are the
first objects you encounter, but there are many more. You will actually build objects
as the primary actors in your arcade games. (You’ll get there soon, I promise.) Objects
are nice, because they already know how to do things. To demonstrate, try this little
exercise:

1. Create a string variable. Type the following in interactive mode (that is,
using the command line or IDLE’s own interactive mode, but not the text
editor — you want this code to execute immediately):

>>> king = “Arthur”

2. Print the uppercase version of the variable. Type this line into the console:

>>> print king.upper()
ARTHUR

Introducing String Variables 21

04_068229 ch01.qxp 12/22/06 9:41 PM Page 21

Python prints ARTHUR (all in uppercase). When you assigned a text value to the
variable king, you created a string variable. String variables come with all kinds of
cool capabilities, called methods. The upper() method makes a new version of the
string all in uppercase. Note that king.upper() doesn’t change the underlying
value of the king variable. It simply returns a version of king formatted all in
uppercase.

Transfer
For more information on IDLE and how to debug in it, turn to
Chapter 2.

Examining other string capabilities
String variables have lots of other cool methods. To learn some of what a string can
do, try out these steps:

1. Ask Python for help. Go back to the Python console and type

help(“str”)

2. Read all about strings. Python responds with a huge amount of informa-
tion, as shown in Figure 1-12.

Information Kiosk
You don’t have to understand all these methods now. It’s good
to know that they are there, and you can find them if you need

them. The much more important lesson here is how the help() function
works. You use the help() function with any Python object or command
to find out lots of useful information about that object.

Chapter 1: Writing Your First Program22

Step Into the Real World
Methods Are Things that Objects Can Do. If you had a monkey object, you
might expect it to have methods like dance(), screech(), and throwBanana().

Method names usually end in parentheses, as I have done here. The great thing about using
objects is you don’t have to understand how the method works. If you have a monkey, you can
make it throw bananas by invoking the monkey.throwBanana() method. Likewise, you can
get the uppercase version of a string called king by invoking king.upper().

04_068229 ch01.qxp 12/22/06 9:41 PM Page 22

Figure 1-12: Here are some of the things string objects can do.

Building a name game with string manipulation
For an example of the power of Python strings, look at the following nameGame
code. It uses a number of the string methods you saw when you asked Python what
strings can do.

“”” nameGame.py
illustrate basic string functions
Andy Harris
3/15/06”””

userName = raw_input(“Please tell me your name: “)
print “I will shout your name: “, userName.upper()
print “Now all in lowercase: “, userName.lower()
print “How about inverting the case? “, userName.swapcase()
numChars = len(userName)
print “Your name has”, numChars, “characters”
print “Now I’ll pronounce your name like a cartoon character:”
userName = userName.upper()
userName = userName.replace(“R”, “W”)
userName = userName.title()
print userName

Introducing String Variables 23

04_068229 ch01.qxp 12/22/06 9:41 PM Page 23

The nameGame.py code produces the output shown in Figure 1-13.

Figure 1-13: Python allows you to change strings in interesting ways.

Choosing your string methods
To build the name game, I simply looked at the various string methods and played
around with them to see what I could do. Python has some fun string-manipulation
commands. Table 1-1 lists the ones I used in this program.

Table 1-1 Selected String Methods

String Method Description

stringName.upper() Converts stringName into all uppercase

stringName.lower() Converts stringName into all lowercase

stringName.swapcase() Converts uppercase to lowercase, lowercase
to uppercase

Chapter 1: Writing Your First Program24

04_068229 ch01.qxp 12/22/06 9:41 PM Page 24

String Method Description

stringName.replace(old, new) Looks in the string for the value old and
replaces it with the value new

stringName.title() Capitalizes each word in the string

len(string) Returns the length of the string

Information Kiosk
There are many more string methods available. I demonstrate
more as they come up, but don’t feel like you have to memorize

them. You can always look up the details in the online help. The important
thing is to know the kinds of methods that are available so you’ll know to
look them up when the time comes.

Determining the length of the name
Sometimes you might want to know the number of characters in a phrase. The len()
function can be used for this.

numChars = len(userName)
print “Your name has”, numChars, “characters”

Information Kiosk
The len() function is technically a method, even though it
works somewhat differently from the other methods. The actual

method is __len__(). Python allows methods defined like this to be
treated as functions, so you can use numChars = len(userName) to
retrieve the length of userName and store it into the variable numChars.

Making the cartoon version
The last few lines of the name game are a little bit interesting. See if you can figure
out what I did, and why:

userName = userName.upper()
userName = userName.replace(“R”, “W”)
userName = userName.title()

The main thing I wanted to do here was simulate cartoon speech by replacing R with
W. I didn’t want to worry about replacing both upper- and lowercase R values, so I did
something sneaky. (Perhaps I’m a wascally wabbit.) Here’s how to convert the name
to a cartoon format:

1. Make an uppercase version of userName with the userName.upper()
method.

Introducing String Variables 25

04_068229 ch01.qxp 12/22/06 9:41 PM Page 25

2. Assign the uppercase value back to userName.

The userName.upper() construct makes a new string that is the uppercase
version of userName, but it doesn’t directly change userName. If I really
want userName to change (and I do in this case), I need to assign the con-
verted value back to userName using the equal-sign assignment operation.
Remember, most string methods don’t change the original string. If you want
to modify the string, you have to assign the results of the method back to the
original variable.

3. Replace all Rs with Ws.

The replace() method is a perfect tool for this. Since I converted the string
to uppercase, I don’t have to test for both uppercase and lowercase “r” because
all “r”s are uppercase. Once again, I need to copy the value back to userName.

4. Convert userName to title case. (Title case capitalizes the first letter of
each word.)

I converted username to uppercase for convenience, but now userName
needs to go back into a more readable format. Title case capitalizes only the
first letter in the word, which is how names are usually formatted.

Slicing strings
There’s one more important thing to know about string variables (at least for now).
You can cut them up to get new smaller strings. The Salami Slicer program
(salamiSlice.py) illustrates how this works:

“”” salamiSlice.py
salami slicer
demonstrates string slicing
3/20/06 “””

print “GUIDE:”
print “0 1 2 3 4 5 6”
print “|s|a|l|a|m|i|”
print

meat = “salami”
print “meat[2:5]”, meat[2:5]
print “meat[:3]”, meat[:3]
print “meat[2:]”, meat[2:]
print “meat[-3:]”, meat[-3:]
print “meat[1]”, meat[1]

Figure 1-14 shows the output of the slicing program.

Chapter 1: Writing Your First Program26

04_068229 ch01.qxp 12/22/06 9:41 PM Page 26

Figure 1-14: You can slice a string a lot of different ways.

Look carefully at the guide in Figure 1-14; it shows several positions in the string.
In Python strings, character positions are best thought of as occurring between the
characters. Slot 0 happens before the first character, 1 is between the first and second
character, and so on. If you want to return a small part of a string, you can make a
slice of the program, using square braces ([]) to indicate a starting point and an
ending point. An example is a lot better than a lot of words, so imagine (as in the
salamiSlicer.py program) you have a variable called meat that contains the
value “salami”. Try this experiment to re-create the effect of the salamiSlicer.
py program in your console:

1. Create a meat variable.

Start by making meat contain the value “salami” — just type the following
into the Python or IDLE console:

>>> meat = “salami”

Of course, you can make any variable you want, but to make sense of this mini-
tutorial, go along with my examples first and then change them around later,
just to make sure you know what’s going on.

Introducing String Variables 27

04_068229 ch01.qxp 12/22/06 9:41 PM Page 27

2. Get a slice of salami.

Type meat[2:5] into the console to see how Python slices up the string.

The program takes a slice of the value “salami” between slots 2 and 5. Look
at the guide printed in Figure 1-14 to see that slot 2 occurs between the first “a”
and the “l” in “salami.” (Remember, these character slots occur between letters.)
Slot 5 is the position between the “m” and the “i” in “salami.” So the slice
meat[2:5] returns the value ‘lam’ when meat contains the value ‘salami’.
If meat contained the value ‘chicken’, meat[2:5] would be ‘ick’.

3. Get the first three characters.

The command meat[:3] uses a special trick in string slicing. If you leave out
the first value, Python assumes you’re starting at the beginning of the text, so
meat[:3] is the same as meat[0:3]. When meat is “salami,” meat[:3] is
‘sal’. You can also think of meat[:3] as the first three letters of meat.

4. Get characters starting from any slot and going to the end of the word.

If you leave out the second value in the slicing operation, Python assumes you
mean the end of the word. So, if you say meat[2:], Python returns the values
from slot 2 to the end of the word. If meat is “salami,” meat[2:] means
“take a slice from position 2 to the end of the word,” and Python returns the
value ‘lami’.

5. Get the last few characters of a word.

You can use negative values in a slice; Python will count from the end of the
string, rather than from the beginning. This is really handy when you want the
last few letters of a string. The expression meat[-3:] means “take a slice that
begins three characters from the end of the string and goes to the last character
of the string.” meat[-3:] will return ‘ami’ if meat is “salami.” Negative
slots generally count from right to left.

6. Get a specific character.

If you give only one value in the square braces, Python assumes you are talking
about the letter immediately to the right of the given slot. meat[4] is correctly
interpreted as “the character between slots 4 and 5.”

Watch Your Step
Some people like to think of a single-value slice as indicating
character position, but I think this is confusing to beginners. It

isn’t exactly correct to say that meat[4] means “the fourth character in
the meat variable.” If meat contains the value ‘salami’, then meat[4]
is indeed “m” — but if I asked you to tell me the fourth character in the
word “salami,” you probably wouldn’t say “m,” because “m” is actually the
fifth character in the word. The confusion stems from the fact that Python
begins counting with zero. By Python’s reasoning, “s” is not character 1,
but character 0! It’s much better to think of these character positions as
the slots between letters.

Chapter 1: Writing Your First Program28

04_068229 ch01.qxp 12/22/06 9:41 PM Page 28

Watch Your Step
You might think you could indicate the end of the string using -0,
but it doesn’t work.

meat[-0] is ‘s’

This is because mathematically, there is no such thing as negative zero.
Zero is zero, regardless of the sign you put in front of it. Just use nothing
to indicate the end of the string, as I do in the example.

Interpolating text
Most of your programs so far have consisted of getting information from the user,
manipulating that information, and sending it back to the user. Your output often con-
sists of a mixture of text and variables, which can be confusing. It’s even worse when
you mix numeric and non-numeric values together, because you can’t concatenate
strings with numbers. Python offers an elegant solution called variable interpolation.
(It’s another one of those fancy words for an easy idea. Try to work it into your next
social conversation.) Figure 1-15 shows a silly program that calculates a user’s age in
decades. I ran it a few times so you can see various outputs.

Figure 1-15: I don’t actually know when you’d need your age in decades . . .

Introducing String Variables 29

04_068229 ch01.qxp 12/22/06 9:41 PM Page 29

Read through the code, and you’ll see how handy variable interpolation can be.

“”” interpolation.py
demonstrates variable interpolation
“””

name = raw_input(“Hi, what’s your name? “)

prompt = “How old are you, %s? “ % name

age = raw_input(prompt)
age = int(age)

decades = age / 10.0
print decades

print “%s is %d years old.” % (name, age)
print “That is %.2f decades.” % decades

The program uses variable interpolation several different ways:

Build a prompt using the name variable. The first example of variable inter-
polation comes in this line:

prompt = “How old are you, %s? “ % name

Notice the special placeholder %s. This symbol means “put a string here.” It
allows me to continue writing the prompt without worrying about exactly what
string value will go into the place held by the %s symbol. The next percent sign
(%) indicates a value is coming up. Finally, name is the variable. When this line
executes, Python builds a new string. When it sees the %s symbol, it looks for a
string after the second % and places the value of that variable directly into the
prompt string.

Information Kiosk
It isn’t absolutely necessary to build the prompt in a separate
string as I did here. I could have combined the string interpola-

tion into the raw_input statement like this:

age = raw_input(“How old are you, %s? “ % name)

It’s generally better to do only one job per line when you’re starting out.
When you get more comfortable with these ideas, you can combine them.

Interpolate two variables into one string. The next interpolation statement is a
little different:

print “%s is %d years old.” % (name, age)

Chapter 1: Writing Your First Program30

04_068229 ch01.qxp 12/22/06 9:41 PM Page 30

The string inside has two symbols in it. The %s symbol represents a string. The %d
indicates a decimal value (a base-10 integer) will be placed there. Since this
string now expects two values (a string and a number), I feed it two variables.
The name variable contains a string value and the age variable contains an integer.

Note that you must place the variables inside parentheses and separate them
with commas if you have more than one. This type of structure is called a tuple.
Tuples are values inside parentheses, separated by commas.

Watch Your Step
Make sure you supply enough values for your format string, or
you will get an error.

Determine the formatting of floating-point values. One of the neatest things
about variable interpolation is the control you have over the output. Floating-
point numbers often cause problems because they can have many digits after the
decimal point, but you may wish to display only a few. Look at how I solved
this problem in the next line:

print “That is %.2f decades.” % decades

The decades variable is a floating-point value.

Transfer
I divided age by the floating-point value 10.0 to produce a
float response. Check Chapter 2 for more information on

this process.

If you use %f in the format string, you are indicating that you will place a floating-
point value in the output, but you don’t indicate the length of that value. Usually
you’ll want to constrain the output to a reasonable length when you print floating-
point values, because they can be difficult to read. By specifying %.2f, I am telling
Python to print out a floating-point value with two places after the decimal point.
The value is automatically rounded, using the standard algorithm.

Introducing String Variables 31

Step Into the Real World
Many other programming languages provide some variation of variable interpolation,
but they are all a little different. Python’s version is really nice for a couple of rea-

sons. First, it’s pretty easy to use and understand. Also, it automatically converts values to
strings and builds a nice string output. It also supports some advanced features when you use
a more sophisticated data structure.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 31

Chapter 1: Writing Your First Program32

argument: The part of a statement that Python will operate on. For example, in a
print statement, the text that will actually be printed to the screen is the argument.

comment: A comment is a specially marked element in a program that is ignored
by Python. Comments are useful for explaining what you’re trying to accomplish.

compiled language: In compiled languages, the code is translated completely into
a machine-readable format before it runs. In general, compiled languages provide
faster-running programs, but interpreted languages can be more flexible.

console: A text-based interface. You can interact with Python at the DOS or UNIX
shells in a console mode. When you use IDLE, you are also presented with a spe-
cial console interface. The print command and raw_input() function are
used to interact with the user through the console.

docstring: A special text value that occurs at the beginning of a Python program
(and in some other places that will be described in later chapters). Docstrings are
used to create the automatic documentation for the program, and they are usually
a multi-line string. In this book, docstring values will all begin and end with the
triple quote character.

IDLE (Interactive DeveLopment Environment): A basic-but-powerful text editor and
Python environment that ships with most versions of Python. Note that Eric Idle
was a member of the Monty Python comedy troupe. I don’t know whether there is
a CLEESE or GILLIAM editor, but there should be.

interactive mode: A special way of interacting directly with the Python environment.
When you use the interactive mode, you type commands directly into Python rather
than storing them in a text file. Interactive mode is useful for quick code checks
and accessing the online help system.

interpreted language: An interpreted language is one translated from a human-like
dialect into machine-readable code in real time. Programs written in an interpreted
language cannot run unless the user also has the interpreter program installed on
the same system. Interpreted languages can be slow, but the programmer can
interact with them in real time. The primary alternative to an interpreted language
is a compiled language (such as C and C++).

method: Something an object knows how to do. For example, Python’s built-in
string object has a method to convert to uppercase (string.upper()).

object-oriented programming (OOP): A form of programming that allows the pro-
grammer to organize code in objects much like those in the real world. Most built-
in Python elements (lists, variables, and so on) are objects.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 32

Tokens 33

pygame: A module that adds game-programming functionality to Python. The pygame
library will be introduced more thoroughly beginning in Chapter 4.

Python: An interpreted programming language designed to be powerful yet easy for
beginners.

SDL (Simple DirectMedia Layer): A reasonably universal graphics package. The
pygame library is a special Python adaptation of the SDL graphics library.

slicing: Using the square brace ([]) operators to extract a subset of a string or list.

statement: A command or line of code in a programming language.

string: A variable containing text.

string interpolation: A technique for embedding variables into a string for easy
formatting.

syntax: A programming language’s rules of grammar and punctuation.

tuple: Values inside parentheses, separated by commas. The elements of a tuple
cannot be changed.

variable: A variable is a reference to a specific place in a computer’s memory
meant to store information. Each variable has a name and a value.

continued

Command Arguments Description Example

print value value: what will be Prints something to the print “Hi there”
printed to the screen console. A value can

be text in quotes or a
variable name.

variable = variable: what Prompts for a user username = raw_
raw_input(prompt) receives the entered response (usually text input(“What is

value, in this case encased in quotes) and your name”)
prompt (a question stores the response in
to ask the user) a variable.

04_068229 ch01.qxp 12/22/06 9:41 PM Page 33

Practice Exam
1. Describe three ways game programming is useful for beginning programmers.

__

__

__

2. Describe three reasons to use Python as a first game programming language.

__

__

__

3. Which is the best description of a variable in Python?

A) A place to hold numbers but not text data.

B) A named place in memory to hold information.

C) A command without an argument.

D) Python doesn’t have variables. It uses constants instead.

4. Which of the following is the best name for a variable to hold a person’s
shoe size?

A) ss

B) thePersonsShoeSize

C) 7 1/2 wide

D) shoeSize

5. What’s the best way to read the code result = 5 + 7?

__

__

__

34

04_068229 ch01.qxp 12/22/06 9:41 PM Page 34

6. Why might you use IDLE for writing your Python programs?

__

__

__

7. Why should your programs begin with a docstring?

__

__

__

8. Why are comments used in Python?

__

__

__

9. How does the print statement work?

__

__

__

10. True or false (and explain why): The print statement prints quoted text
differently than arguments without quotes.

__

__

__

11. If the raw_input() function is used for input, why does it output some-
thing to the screen?

__

__

__

35

04_068229 ch01.qxp 12/22/06 9:41 PM Page 35

12. Write a program that asks the user’s name and then responds with a cus-
tomized greeting. For example, if the user’s name is “Elizabeth,” the program
says “Hi, Elizabeth!”

__

__

__

13. What is an object method?

A) Something that happens to an object

B) A characteristic of an object

C) An attribute

D) Something an object can do

14. Name some methods of the string object.

__

__

__

15. Describe the result of the following code:

var = “programming”
print var[3:7]

A) ‘gram’

B) ‘prog’

C) ‘programming’

D) ‘GRAM’

16. What is the primary purpose of string slicing?

__

__

__

36

04_068229 ch01.qxp 12/22/06 9:41 PM Page 36

