
Chapter 1

Introduction: Enabling
Large-Scale Computational
Science—Motivations,
Requirements, and Challenges

Manish Parashar and Xiaolin Li

1.1 MOTIVATION

The exponential growth in computing, networking, and storage technologies has
ushered in unprecedented opportunities for parallel and distributed computing
research and applications. In the meantime, emerging large-scale adaptive scientific
and engineering applications are requiring an increasing amount of computing and
storage resources to provide new insights into complex systems. Furthermore, dynam-
ically adaptive techniques are being widely used to address the intrinsic heterogeneity
and high dynamism of the phenomena modeled by these applications. Adaptive tech-
niques have been applied to real-world applications in a variety of scientific and
engineering disciplines, including computational fluid dynamics, subsurface and oil
reservoir simulations, astronomy, relativity, and weather modeling. The increasing
complexity, dynamism, and heterogeneity of these applications, coupled with simi-
larly complex and heterogeneous parallel and distributed computing systems, have
led to the development and deployment of advanced computational infrastructures
that provide programming, execution, and runtime management support for such
large-scale adaptive implementations. The objective of this book is to investigate the

Advanced Computational Infrastructures For Parallel and Distributed Adaptive Applications. Edited by
Manish Parashar and Xiaolin Li
Copyright © 2010 John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L



2 Chapter 1 Introduction: Enabling Large-Scale Computational Science

state of the art in the design, architectures, and implementations of such advanced
computational infrastructures and the applications they support.

1.2 REQUIREMENTS AND CHALLENGES

Compared to numerical techniques based on static uniform discretization, adaptive
techniques, for example, structured adaptive mesh refinement (SAMR), can yield
highly advantageous ratios for cost/accuracy by adaptively concentrating computa-
tional effort and resources on appropriate regions of the domain at runtime. Large-
scale parallel implementations of such adaptive applications have the potential for
accurately modeling complex physical phenomena and providing dramatic insights.
However, due to the dynamism and space–time heterogeneity, the scalable parallel
implementation remains a significant challenge. Specifically, these adaptive applica-
tions are inherently dynamic because the physical phenomena being modeled and
the corresponding adaptive computational domain change as the simulation evolves.
Further, adaptation naturally leads to a computational domain that is spatially hetero-
geneous, that is, different regions in the computational domain and different levels of
refinements have different computational and communication requirements. Finally,
the adaptive algorithms require periodically regridding the computational domain,
which causes regions of refinement to be created/deleted/moved to match the physics
being modeled, that is, it exhibits temporal heterogeneity.

For example, parallel implementations of SAMR applications typically partition
the adaptive grid hierarchy across available processors, and each processor operates
on its local portions of this domain in parallel. The overall performance of parallel
SAMR applications is thus limited by the ability to partition the underlying grid
hierarchies at runtime to expose all inherent parallelism, minimize communication
and synchronization overheads, and balance load.

Furthermore, communication overheads of parallel SAMR applications primarily
consist of four components: (1) interlevel communications, defined between compo-
nent grids at different levels of the grid hierarchy and consist of prolongations (coarse
to fine transfer and interpolation) and restrictions (fine to coarse transfer and inter-
polation); (2) intralevel communications, required to update the grid elements along
the boundaries of local portions of a distributed component grid, consisting of near-
neighbor exchanges; (3) synchronization cost, which occurs when the load is not
balanced among processors; and (4) data migration cost, which occurs between two
successive regridding and remapping steps.

1.3 A TAXONOMY FOR ADAPTIVE APPLICATIONS
AND MANAGEMENT STRATEGIES

To provide an overview of the applications and management strategies presented in
this book, we develop a simple taxonomy that is based on the characteristics of the
applications and application-level partitioners. This taxonomy, shown in Tables 1.1
and 1.2, decouples the classification of applications and their partitioners. This not



1.3 A Taxonomy for Adaptive Applications and Management Strategies 3

Table 1.1 Classification of Application Characteristics

Application characteristics Categories

Execution Computation intensive, communication intensive, IO intensive
Activity Dynamic (localized adaptivity, scattered adaptivity), static
Granularity Fine grained, coarse grained, indivisible
Dependency Independent, workflow, hybrid

only provides a better understanding of both aspects but also implicitly indicates that
different partitioners can be potentially applied to address different application char-
acteristics. The SAMR application is used to illustrate the taxonomy in the discussion
below.

In Table 1.1, applications are characterized based on their execution behavior,
activity, granularity, and dependency. The execution behavior can be computation
intensive, communication intensive, or IO intensive [1, 2]. For example, most SAMR
applications are computation intensive, belonging to high-performance scientific
computing category. Due to deep levels of adaptive refinements, SAMR applica-
tions can also be communication intensive. In some cases, when dealing with large
amounts of data, SAMR applications can fall into IO-intensive category. Experiments
show that during the entire course of execution, SAMR applications may run in differ-
ent execution modes as the simulated physical phenomena evolve [1, 2]. Application
activities are classified as dynamic or static. Many embarrassingly parallel appli-
cations belong to the static application category, for example, parallel geometrical
transformations of images and Monte Carlo simulations [3]. SAMR applications, on
the other hand, are dynamic in nature because of their dynamic adaptivity. The dy-
namic behavior of SAMR applications may demonstrate localized adaptivity pattern
or scattered adaptivity pattern in different execution phases. From the perspective
of divisibility, some applications are fine grained [4], some are coarse grained [5],
while others are not divisible at all [6, 7]. Workloads in the divisible load schedul-
ing class are assumed to be homogeneous and arbitrarily divisible in the sense that
each portion of the load can be independently processed on any processor on the net-
work. Coarse-grained divisible applications typically involve dependencies among
subtasks. Indivisible tasks are atomic and cannot be further divided into smaller sub-
tasks and have to be completely processed on a single processor. SAMR applications
can fall into the fine-grained or coarse-grained divisible categories. When the under-
lying physical domain being modeled exhibits more homogeneity, the load associated
with this domain belongs to the fine-grained divisible category. However, when the
physical domain exhibits scattered heterogeneity with deep refinements, the load may
be classified as coarse-grained divisible. Note that SAMR applications involve iter-
ative operations and frequent communications and obviously cannot be considered
as embarrassingly parallel. The last criterion in the table is dependency. Independent
applications are common in the divisible load scheduling category, such as parallel
low-level image processing and distributed database query processing [4]. Workflow



4 Chapter 1 Introduction: Enabling Large-Scale Computational Science

Table 1.2 Classification of Application Partitioners

Partitioner characteristics Categories

Organization Static single partitioner, adaptive single partitioner
(meta-partitioner), adaptive hierarchical multiple partitioner

Decomposition Data decomposition (domain based, patch based, hybrid),
functional decomposition

Partitioning method Binary dissection, multilevel, SFC based, and others
Operations Dynamic Repartitioning policy (periodic, event driven), system

sensitive
Static

applications are composed of several modules or subtasks that must run in order,
for example, data-driven parallel applications, scientific simulations, and visualiza-
tion applications. In the case of SAMR applications, although load partitions can
be processed independently, they need communications iteratively. If dynamic load
balancing strategies are adopted, repartitioning may result in load movement or
process migration, thus exhibiting a hybrid dependency.

As shown in Table 1.2, application-level partitioners/schedulers are classified
with respect to their organization, decomposition method, and operations. The orga-
nization of partitioners falls into three categories: static single partitioner, adaptive
single partitioner, and adaptive multiple partitioner. In the case of static single parti-
tioning approaches, one predefined partitioning and repartitioning strategy is adopted
throughout the entire life cycle of the applications. However, in the case of adaptive
single partitioner approaches, also termed meta-partitioner in the literature [2], the
most appropriate partitioning routine is selected based on the runtime behavior of
the applications. Adaptive multiple partitioner approaches not only select appropriate
partitioning strategies based on the runtime state of the application but also apply
multiple partitioners simultaneously to local relatively homogeneous regions of the
domain based on the local requirements.

Decomposition methods can be classified as data decomposition and functional
decomposition. Functional decomposition exploits functional parallelism by dividing
problems into a series of subtasks. Pipelining techniques can often be used to speed
up applications with limited functional parallelism. Data decomposition is commonly
applied to achieve data parallelism for applications that require the same operations
to be performed on different data elements, for example, SPMD (single program
multiple data) applications.

In the case of SAMR applications, data decomposition methods can be further
classified as patch based and domain based. Patch-based decomposition methods
make partitioning decisions for each patch at different refinement levels indepen-
dently [8–10]. Patch-based techniques result in well-balanced load distribution as
long as each patch is sufficiently large. Since the workload is balanced for each patch,
an implicit feature of this scheme is that it does not need redistribution when a patch



1.4 A Conceptual Architecture for Computational Infrastructures 5

is deleted at runtime. However, the scheme does not preserve locality and can result
in considerable communication overheads. Moreover, these communications may
lead to serializing of the computation and severe performance bottleneck. Interlevel
communications occur during restriction and prolongation data transfer operations
between parent–children (coarser–finer) patches.

In contrast, domain-based approaches partition the physical domain rather than
the individual patches at each refinement level [9, 10]. A subdomain includes all
patches on all refinement levels in that region. Domain-based schemes maintain the
parent–child locality while striving to balance overall workload distribution. As a
result, these techniques substantially eliminate interlevel communication overheads
and the associated communication bottleneck. However, strict domain-based parti-
tioning may result in a considerable load imbalance when the application has deep
refinements on very narrow regions with strongly localized features. In these cases,
hybrid schemes that combine patch-based and domain-based techniques are required.

1.4 A CONCEPTUAL ARCHITECTURE FOR
COMPUTATIONAL INFRASTRUCTURES

The functionality of a computational infrastructure includes partitioning applications
at runtime and distributing each partition to available resources to efficiently utilize
resources and minimize the execution time of applications. Figure 1.1 presents an
illustrative conceptual architecture for such an infrastructure as a middleware system

Figure 1.1 An illustrative conceptual architecture for computational infrastructures.



6 Chapter 1 Introduction: Enabling Large-Scale Computational Science

that bridges the gap between applications and operating systems and provides efficient
runtime support, including monitoring, dynamic partitioning, resource allocation, co-
ordination, load balancing, and runtime adaptation. In the figure, the illustrative input
application is a combustion simulation of hydrogen–air mixture with three initial
ignition spots. The infrastructure monitors the runtime states of applications and
resources, analyzes requirements, and delivers a plan for partitioning, scheduling,
and executing the application on parallel and distributed systems to maximize their
performance, efficiency, and utilization. In case of such dynamically adaptive appli-
cations, the system should also address the dynamism and space–time heterogeneity
in applications.

1.5 OVERVIEW OF THE BOOK

The objective of this book is to investigate the state of the art in the design, architec-
tures, and implementations of such advanced computational infrastructures and the
applications they support. The book is organized in three separate parts. Part I, Adap-
tive Applications in Science and Engineering, focuses on high-performance adaptive
scientific applications and includes chapters that describe high-impact, real-world
application scenarios. The goal of this part of the book is to motivate the need for ad-
vanced computational engines as well as outline their requirements. Part II, Adaptive
Computational Infrastructures, includes chapters describing popular and widely used
adaptive computational infrastructures. Part III, Dynamic Partitioning and Adaptive
Runtime Management Frameworks, focuses on the more specific partitioning and
runtime management schemes underlying these computational toolkits.

We do hope that it will lead to new insights into the underlying concepts and
issues, current approaches and research efforts, and outstanding challenges of the
field and will inspire further research in this promising area.

REFERENCES

1. S. Chandra, J. Steensland, M. Parashar, and J. Cummings. An experimental study of adaptive appli-
cation sensitive partitioning strategies for SAMR applications. In 2nd Los Alamos Computer Science
Institute Symposium (also Best Research Poster at Supercomputing Conference 2001), 2001.

2. J. Steensland, M. Thune, S. Chandra, and M. Parashar. Towards an adaptive meta-partitioner for
parallel SAMR applications. In IASTED PDCS 2000, 2000.

3. B. Wilkinson and M. Allen. Parallel Programming: Techniques and Applications Using Networked
Workstations and Parallel Computers, 1st edition. Pearson Education, 1999.

4. B. Veeravalli, D. Ghose, V. Mani, and T.G. Robertazzi. Scheduling Divisible Loads in Parallel and
Distributed Systems. IEEE Computer Society Press, Los Alamitos, CA, 1996.

5. G. Allen, T. Dramlitsch, I. Foster, N.T. Karonis, M. Ripeanu, E. Seidel, and B. Toonen. Supporting
efficient execution in heterogeneous distributed computing environments with cactus and globus. In
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (CDROM), Denver, CO, 2001,
p. 52.

6. S. Bokhari. Assignment Problems in Parallel and Distributed Computing. Kluwer Academic Publish-
ers, Boston, MA, 1987.



References 7

7. B.A. Shirazi, A.R. Hurson, and K.M. Kavi. Scheduling and Load Balancing in Parallel and Distributed
Systems. IEEE Computer Society Press, Los Alamitos, CA, 1995.

8. S. Kohn. SAMRAI: structured adaptive mesh refinement applications infrastructure. Technical report,
Lawrence Livermore National Laboratory, 1999.

9. M. Parashar and J. Browne. On partitioning dynamic adaptive grid hierarchies. In 29th Annual Hawaii
International Conference on System Sciences, 1996, pp. 604–613.

10. J. Steensland. Efficient partitioning of structured dynamic grid hierarchies. PhD thesis, Uppsala
University, 2002.




