
1 Number Systems and Binary Codes

1.1 INTRODUCTION

In conventional arithmetic, a number system based on ten units (0 to 9) is used. However,

arithmetic and logic circuits used in computers and other digital systems operate with only

0’s and 1’s because it is very difficult to design circuits that require ten distinct states. The

number system with the basic symbols 0 and 1 is called binary. Although digital systems

use binary numbers for their internal operations, communication with the external world

has to be done in decimal systems. In order to simplify the communication, every decimal

number may be represented by a unique sequence of binary digits; this is known as binary

encoding. In this chapter we discuss number systems in general and the binary system in

particular. In addition, we consider the octal and hexadecimal number systems and fixed-

and floating-point representation of numbers. The chapter ends with a discussion on

weighted and nonweighted binary encoding of decimal digits.

1.2 DECIMAL NUMBERS

The invention of decimal number systems has been the most important factor in the devel-

opment of science and technology. The term decimal comes from the Latin word for “ten.”

The decimal number system uses positional number representation, which means that the

value of each digit is determined by its position in a number.

The base (also called radix) of a number system is the number of symbols that the

system contains. The decimal system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; in

other words it has a base of 10. Each position in the decimal system is 10 times more

significant than the previous position. For example, consider the four-digit number 2725:

Notice that the 2 in the 103 position has a different value than the 2 in the 101 position. The

value of a decimal number is determined by multiplying each digit of the number by the

1

Principles of Modern Digital Design, by Parag K. Lala
Copyright # 2007 John Wiley & Sons, Inc.

CO
PYRIG

HTED
 M

ATERIA
L

value of the position in which the digit appears and then adding the products. Thus the

number 2725 is interpreted as

2� 1000þ 7� 100þ 2� 10þ 5� 1 ¼ 2000þ 700þ 20þ 5

that is, two thousand seven hundred twenty-five. In this case, 5 is the least significant digit

(LSD) and the leftmost 2 is the most significant digit (MSD).

In general, in a number system with a base or radix r, the digits used are from 0 to r 2 1.

The number can be represented as

N ¼ anr n þ an�1r n�1 þ � � � þ a1r1 þ a0r0 (1:1)

where, for n ¼ 0, 1, 2, 3, . . . ,

r ¼ base or radix of the number system

a ¼ number of digits having values between 0 and r � 1

Thus, for the number 2725, a3 ¼ 2, a2 ¼ 7, a1 ¼ 2, and a0 ¼ 5. Equation (1.1) is valid

for all integers. For numbers between 0 and 1 (i.e., fractions), the following equation holds:

N ¼ a�1r�1 þ a�2r�2 þ � � � þ a�nþ1r�nþ1 þ a�nr�n (1:2)

Thus for the decimal fraction 0.8125,

N ¼ 0:8000þ 0:0100þ 0:0020þ 0:0005

¼ 8� 10�1 þ 2� 10�2 þ 1� 10�3 þ 8� 10�4

¼ a�1 � 10�1 þ a�2 � 10�2 þ a�3 � 10�3 þ a�4 � 10�4

where

a�1 ¼ 8

a�2 ¼ 1

a�3 ¼ 2

a�1 ¼ 5

1.3 BINARY NUMBERS

The binary numbers has a radix of 2. As r ¼ 2, only two digits are needed, and these are 0

and 1. A binary digit, 0 or 1, is called a bit. Like the decimal system, binary is a positional

system, except that each bit position corresponds to a power of 2 instead of a power of 10.

In digital systems, the binary number system and other number systems closely related to it

are used almost exclusively. However, people are accustomed to using the decimal number

system; hence digital systems must often provide conversion between decimal and binary

numbers. The decimal value of a binary number can be formed by multiplying each power

of 2 by either 1 or 0, and adding the values together.

2 NUMBER SYSTEMS AND BINARY CODES

Example 1.1 Let us find the decimal equivalent of the binary number 101010.

N ¼ 101010

¼ 1� 25 þ 0� 24 þ 1� 23 þ 0� 22 þ 1� 21 þ 0� 20 (using Eq: (1:1))

¼ 32þ 0þ 8þ 0þ 2þ 0

¼ 42

An alternative method of converting from binary to decimal begins with the leftmost bit

and works down to the rightmost bit. It starts with a sum of 0. At each step the current

sum is multiplied by 2, and the next digit to the right is added to it.

Example 1.2 The conversion of 11010101 to decimal would use the following steps:

The reverse process, the conversion of decimal to binary, may be made by first decom-

posing the given decimal number into two numbers—one corresponding to the positional

value just lower than the original decimal number and a remainder. Then the remainder is

decomposed into two numbers: a positional value just equal to or lower than itself and a

new remainder. The process is repeated until the remainder is 0. The binary number is

derived by recording 1 in the positions corresponding to the numbers whose summation

equals the decimal value.

Example 1.3 Let us consider the conversion of decimal number 426 to binary:

426 ¼ 256þ 170

¼ 256þ 128þ 42

¼ 256þ 128þ 32þ 10

¼ 256þ 128þ 32þ 8þ 2

28 27 25 23 21

Thus 42610 ¼ 1101010102 (the subscript indicates the value of the radix).

1.3 BINARY NUMBERS 3

An alternative method for converting a decimal number to binary is based on successive

division of the decimal number by the radix number 2. The remainders of the divisions,

when written in reverse order (with the first remainder on the right), yield the binary equiv-

alent to the decimal number. The process is illustrated below by converting 35310 to

binary,

353

2
¼ 176, remainder 1

176

2
¼ 88, remainder 0

88

2
¼ 44, remainder 0

44

2
¼ 22, remainder 0

22

2
¼ 11, remainder 0

11

2
¼ 5, remainder 1

5

2
¼ 2, remainder 1

2

2
¼ 1, remainder 0

1

2
¼ 0, remainder 1

Thus 35310 ¼ 1011000012.

So far we have only considered whole numbers. Fractional numbers may be converted

in a similar manner.

Example 1.4 Let us convert the fractional binary number 0.101011 to decimal. Using

Eq. (1.2), we find

N ¼ 0:101011

¼ 1� 2�1 þ 0� 2�2 þ 1� 2�3 þ 0� 2�4 þ 1� 2�5 þ 1� 2�6

where a21 ¼ 1, a22 ¼ 0, a23 ¼ 1, a24 ¼ 0, a25 ¼ 1, a26 ¼ 1.

Thus

N ¼ 0:101011

¼
1

2
þ

1

8
þ

1

32
þ

1

64
¼ 0:671875

A decimal fraction can be converted to binary by successively multiplying it by 2; the

integral (whole number) part of each product, 0 or 1, is retained as the binary fraction.

4 NUMBER SYSTEMS AND BINARY CODES

Example 1.5 Derive the binary equivalent of the decimal fraction 0.203125. Successive

multiplication of the fraction by 2 results in

0:203125

a�1 ¼ 0

2

0:406250

a�2 ¼ 0

2

0:812500

a�3 ¼ 1

2

0:625000

a�4 ¼ 1

2

0:250000

a�5 ¼ 0

2

0:500000

a�6 ¼ 1

2

0:000000

Thus the binary equivalent of 0.20312510 is 0.0011012. The multiplication by 2 is con-

tinued until the decimal number is exhausted (as in the example) or the desired accuracy

is achieved. Accuracy suffers considerably if the conversion process is stopped too

soon. For example, if we stop after the fourth step, then we are assuming 0.0011 is

approximately equal to 0.20315, whereas it is actually equal to 0.1875, an error of

about 7.7%.

1.3.1 Basic Binary Arithmetic

Arithmetic operations using binary numbers are far simpler than the corresponding

operations using decimal numbers due to the very elementary rules of addition and

multiplication. The rules of binary addition are

0þ 0 ¼ 0

0þ 1 ¼ 1

1þ 0 ¼ 1

1þ 1 ¼ 0 (carry 1)

As in decimal addition, the least significant bits of the addend and the augend are added

first. The result is the sum, possibly including a carry. The carry bit is added to the sum

of the digits of the next column. The process continues until the bits of the most significant

column are summed.

Example 1.6 Let us consider the addition of the decimal numbers 27 and 28 in binary.

Decimal Binary

27 11011 Addend

þ 28 þ 11100 Augend

55 110111 Sum

11000 Carry

1.3 BINARY NUMBERS 5

To verify that the sum is correct, we convert 110111 to decimal:

1� 25 þ 1� 24 þ 0� 23 þ 1� 22 þ 1� 21 þ 1� 20

¼ 32þ 16þ 0þ 4þ 2þ 1

¼ 55

Example 1.7 Let us add �11 to �19 in binary. Since the addend and the augend are

negative, the sum will be negative.

Decimal Binary

19 10011

11 01011

30 11110 Sum

00011 Carry

In all digital systems, the circuitry used for performing binary addition handles two

numbers at a time. When more than two numbers have to be added, the first two are

added, then the resulting sum is added to the third number, and so on.

Binary subtraction is carried out by following the same method as in the decimal

system. Each digit in the subtrahend is deducted from the corresponding digit in the

minuend to obtain the difference. When the minuend digit is less than the subtrahend

digit, then the radix number (i.e., 2) is added to the minuend, and a borrow 1 is added

to the next subtrahend digit. The rules applied to the binary subtraction are

0� 0 ¼ 0

0� 1 ¼ 1 (borrow 1)

1� 0 ¼ 1

1� 1 ¼ 0

Example 1.8 Let us consider the subtraction of 2110 from 2710 in binary:

Decimal Binary

27 11011 Minuend

� 21 � 10101 Subtrahend

6 00110 Difference

00100 Borrow

It can easily be verified that the difference 001102 corresponds to decimal 6.

Example 1.9 Let us subtract 2210 from 1710. In this case, the subtrahend is greater than

the minuend. Therefore the result will be negative.

Decimal Binary

17 10001

� 22 � 10110

� 5 � 00101 Difference

00001 Borrow

6 NUMBER SYSTEMS AND BINARY CODES

Binary multiplication is performed in the same way as decimal multiplication, by mul-

tiplying, then shifting one place to the left, and finally adding the partial products. Since

the multiplier can only be 0 or 1, the partial product is either zero or equal to the multi-

plicand. The rules of multiplication are

0 · 0 ¼ 0

0 · 1 ¼ 0

1 · 0 ¼ 0

1 · 1 ¼ 1

Example 1.10 Let us consider the multiplication of the decimal numbers 67 by 13 in

binary:

Decimal Binary

67 1000011 Multiplicand

� 13 1101 Multiplier

871 1000011 First partial product

0000000 Second partial product

1000011 Third partial product

1000011 Fourth partial product

1101100111 Final product

Example 1.11 Let us multiply 13.5 by 3.25.

Decimal Binary

13:5 1101:10 Multiplicand

� 3:25 11:01 Multiplier

43:875 110110 First partial product

000000 Second partial product

110110 Third partial product

110110 Fourth partial product

101011:1110 Final product

The decimal equivalent of the final product is 43þ 0.50þ 0.25þ 0.125 ¼ 43.875.

The process of binary division is very similar to standard decimal division. However,

division is simpler in binary because when one checks to see how many times the divisor

fits into the dividend, there are only two possibilities, 0 or 1.

Example 1.12 Let us consider the division of 101110 (4610) by 111 (710)

0001 Quotient

Divisor 111 j 101110 Dividend

0111

100

Since the divisor, 111, is greater than the first three bits of the dividend, the first three

quotient bits are 0. The divisor is less than the first four bits of the dividend; therefore

1.3 BINARY NUMBERS 7

the division is possible, and the fourth quotient bit is 1. The difference is less than the

divisor, so we bring down the net bit of the dividend:

00011

111 j 101110

0111

1001

111

10

The difference is less than the divisor, so the next bit of the dividend is brought down:

000110

111 j 101110

0111

1001

111

100 Remainder

In this case the dividend is less than the divisor; hence the next quotient bit is 0 and the

division is complete. The decimal conversion yields 46/7 ¼ 6 with remainder 4, which

is correct.

The methods we discussed to perform addition, subtraction, multiplication, and division

are equivalents of the same operations in decimal. In digital systems, all arithmetic operations

are carried out in modified forms; in fact, they use only addition as their basic operation.

1.4 OCTAL NUMBERS

Digital systems operate only on binary numbers. Since binary numbers are often very long,

two shorthand notations, octal and hexadecimal, are used for representing large binary

numbers. The octal number system uses a base or radix of 8; thus it has digits from 0 to

r 2 1, or 8 2 1, or 7. As in the decimal and binary systems, the positional value of each

digit in a sequence of numbers is definitely fixed. Each position in an octal number is a

power of 8, and each position is 8 times more significant than the previous position.

The number 3758 in the octal system therefore means

3� 82 þ 7� 81 þ 5� 80 ¼ 192þ 56þ 5

¼ 25310

Example 1.13 Let us determine the decimal equivalent of the octal number 14.3.

14:3g ¼ 1� 81 þ 4� 80 þ 3� 8�1

¼ 8þ 4þ 0:375

¼ 12:375

The method for converting a decimal number to an octal number is similar to that used

for converting a decimal number to binary (Section 1.2), except that the decimal number is

successively divided by 8 rather than 2.

8 NUMBER SYSTEMS AND BINARY CODES

Example 1.14 Let us determine the octal equivalent of the decimal number 278.

278

8
¼ 34, remainder 6

34

8
¼ 4, remainder 2

4

8
¼ 0, remainder 4

Thus 27810 ¼ 4268.

Decimal fractions can be converted to octal by progressively multiplying by 8; the inte-

gral part of each product is retained as the octal fraction. For example, 0.65110 is converted

to octal as follows:

0:651

8

5 0:208

8

1 0:664

8

5 0:312

8

2 0:496

8

3 0:968

etc.

According to Eq. (1.2), a21 ¼ 5, a22 ¼ 1, a23 ¼ 5, a24 ¼ 2, and a25 ¼ 3; hence

0.65110 ¼ 0.515238. More octal digits will result in more accuracy.

A useful relationship exists between binary and octal numbers. The number of bits

required to represent an octal digit is three. For example, octal 7 can be represented by

binary 111. Thus, if each octal digit is written as a group of three bits, the octal number

is converted into a binary number.

Example 1.15 The octal number 3248 can be converted to a binary number as follows:

3 2 4

011 010 100

Hence 3248 ¼ 110101002; the most significant 0 is dropped because it is meaningless, just

as 012310 is the same as 12310.

The conversion from binary to octal is also straightforward. The binary number is parti-

tioned into groups of three starting with the least significant digit. Each group of three

binary digits is then replaced by an appropriate decimal digit between 0 and 7 (Table 1.1).

1.4 OCTAL NUMBERS 9

Example 1.16 Let us convert 1100111010012 to octal:

110
|{z}

6

011
|{z}

3

101
|{z}

5

001
|{z}

1

The octal representation of the binary number is 63518. If the leftmost group of a

partitioned binary number does not have three digits, it is padded on the left with 0’s.

For example, 1101010 would be divided as

001
|{z}

1

101
|{z}

5

010
|{z}

2

The octal equivalent of the binary number is 1528. In case of a binary fraction, if the bits

cannot be grouped into 3-bit segments, the 0’s are added on the right to complete groups of

three. Thus 110111.1011 can be written

110
|{z}

6

111
|{z}

7
� 101
|{z}

5

100
|{z}

4

As shown in the previous section, the binary equivalent of a decimal number can be

obtained by successively dividing the number by 2 and using the remainders as the

answer, the first remainder being the lowest significant bit, and so on. A large number

of divisions by 2 are required to convert from decimal to binary if the decimal number

is large. It is often more convenient to convert from decimal to octal and then replace

each digit in octal in terms of three digits in binary. For example, let us convert 52310

to binary by going through octal.

523

8
¼ 65, remainder 3

65

8
¼ 8, remainder 1

8

8
¼ 1, remainder 0

1

8
¼ 0, remainder 1

TABLE 1.1 Binary to Octal Conversion

Binary Octal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

10 NUMBER SYSTEMS AND BINARY CODES

Thus

(523)10 ¼ (1 0 1 3)8

¼ (001 000 001 011)2

It can be verified that the decimal equivalent of 0010000010112 is 52310:

1� 29 þ 1� 23 þ 1� 21 þ 1� 20 ¼ 512þ 8þ 2þ 1

¼ 52310

Addition and subtraction operations using octal numbers are very much similar to that

use in decimal systems. In octal addition, a carry is generated when the sum exceeds

710. For example,

1538

þ 3278

5028

3þ 7 ¼ 1010 ¼ 2þ 1 carry first column

5þ 2þ 1 carry ¼ 0þ 1 carry second column

1þ 3þ 1 carry ¼ 5 third column

In octal subtraction, a borrow requires that 810 be added to the minuend digit and a 110 be

added to the left adjacent subtrahend digit.

6708

� 1258

5438

0� 5 ¼ (8� 5þ 1 borrow)10 ¼ 3þ 1 borrow first column

7� (2þ 1 borrow) ¼ 7� 3 ¼ 4 second column

6� 1 ¼ 5 third column

1.5 HEXADECIMAL NUMBERS

The hexadecimal numbering system has a base 16; that is, there are 16 symbols. The

decimal digits 0 to 9 are used as the first ten digits as in the decimal system, followed

by the letters A, B, C, D, E, and F, which represent the values 10, 11, 12, 13, 14, and

15, respectively. Table 1.2 shows the relationship between decimal, binary, octal, and hex-

adecimal number systems. The conversion of a binary number to a hexadecimal number

consists of partitioning the binary numbers into groups of 4 bits, and representing each

group with its hexadecimal equivalent.

1.5 HEXADECIMAL NUMBERS 11

Example 1.17 The binary number 1010011011110001 is grouped as

1010 0110 1111 0001

which is shown here in hexadecimal:

A6F1H

The conversion from hexadecimal to binary is straightforward. Each hexadecimal digit is

replaced by the corresponding 4-bit equivalent from Table 1.2. For example, the binary

equivalent of 4AC2H is

4 A C 2

0100 1010 1110 0010

Thus 4AC2H ¼ 01001010111000102.

Sometimes it is necessary to convert a hexadecimal number to decimal. Each position

in a hexadecimal number is 16 times more significant than the previous position. Thus the

decimal equivalent for 1A2DH is

1� 163 þ A� 162 þ 2� 161 þ D� 160

¼ 1� 163 þ 10� 162 þ 2� 161 þ 13� 160

¼ 6701

Hexadecimal numbers are often used in describing the data in a computer memory. A com-

puter memory stores a large number of words, each of which is a standard size collection

TABLE 1.2 Number Equivalents

Decimal Binary Octal Hexadecimal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

12 NUMBER SYSTEMS AND BINARY CODES

of bits. An 8-bit word is known as a byte. A hexadecimal digit may be considered as half of

a byte. Two hexadecimal digits constitute one byte, the rightmost 4 bits corresponding to

half a byte, and the leftmost 4 bits corresponding to the other half of the byte. Often a half-

byte is called a nibble.

Hexadecimal addition and subtraction are performed as for any other positional number

system.

Example 1.18 Let us find the sum of 688H and 679H.

688H

679H

D01H

8þ 9 ¼ 1710 ¼ 1þ 1 carry first column

8þ 7þ 1 carry ¼ 1610 ¼ 0þ 1 carry second column

6þ 6þ 1 carry ¼ 1310 ¼ D third column

Hexadecimal subtraction requires the same need to carry digits from left to right as in octal

and decimal.

Example 1.19 Let us compute 2A5H – 11BH as shown:

2A5H

11BH

18AH

5� B ¼ (21� 11þ 1 borrow)10 ¼ 10þ 1 borrow

¼ Aþ 1 borrow first column

A� (1þ 1 borrow) ¼ (10� 2)10 ¼ 8 second column

2� 1 ¼ 1 third column

1.6 SIGNED NUMBERS

So far, the number representations we considered have not carried sign information. Such

unsigned numbers have a magnitude significance only. Normally a prefixþ or 2 may be

placed to the left of the magnitude to indicate whether a number is positive or negative.

This type of representation, known as sign-magnitude representation, is used in the

decimal system. In binary systems, an additional bit known as sign bit, is added to the

left of the most significant bit to define the sign of a number. A 1 is used to represent 2 and

a 0 to represent þ. Table 1.3 shown 3-bit numbers in terms of signed and unsigned

equivalents. Notice that there are two representations of the number 0, namely, þ0 and

–0. The range of integers that can be expressed in a group of three bits is from

–(22 2 1) ¼ 23 to þ(22 – 1) ¼ þ3, with one bit being reserved to denote the sign.

1.6 SIGNED NUMBERS 13

Although the sign-magnitude representation is convenient for computing the negative

of a number, a problem occurs when two numbers of opposite signs have to be added. To

illustrate, let us find the sum of þ210 and 2610.

þ210 ¼ 0010

�610 ¼ 1110

10000

The addition produced a sum that has 5 bits, exceeding the capability of the number system

(sign þ3 bits); this results in an overflow. Also, the sum is wrong; it should be 24 (i.e.,

1100) instead of 0.

An alternative representation of negative numbers, known as the complement form,

simplifies the computations involving signed numbers. The complement representation

enjoys the advantage that no sign computation is necessary. There are two types of comp-

lement representations: diminished radix complement and radix complement.

1.6.1 Diminished Radix Complement

In the decimal system (r ¼ 10) the complement of a number is determined by subtracting

the number from (r 2 1), that is, 9. Hence the process is called finding the 9’s

complement. For example,

9’s complement of 5 (9� 5) ¼ 4

9’s complement of 63 (99� 63) ¼ 36

9’s complement of 110 (999� 110) ¼ 889

In binary notation (r ¼ 2), the diminished radix complement is known as the 1’s comp-

lement. A positive number in 1’s complement is represented in the same way as in sign-

magnitude representation. The 1’s complement representation of a negative number x is

derived by subtracting the binary value of x from the binary representation of (2n 2 1),

where n is the number of bits in the binary value of x.

TABLE 1.3 Signed and Unsigned Binary Numbers

Decimal Equivalent

Binary Signed Unsigned

000 þ0 0

001 þ1 1

010 þ2 2

011 þ3 3

100 20 4

101 21 5

110 22 6

111 23 7

14 NUMBER SYSTEMS AND BINARY CODES

Example 1.20 Let us compute the 1’s complement form of � 43. The binary value of

43 ¼ 00101011. Since n ¼ 8, the binary representation of 28 2 1 is

28 ¼ 100000000

�1

28 � 1 ¼ 11111111

Hence the 1’s complement form of 243 is

28 � 1 ¼ 11111111

�43 ¼�00101011

11010100

Notice that the 1’s complement form of 243 is a number that has a 0 in every position that

þ43 has a 1, and vice versa. Thus the 1’s complement of any binary number can be

obtained by complementing each bit in the number.

A 0 in the most significant bit indicates a positive number. The sign bit is not comple-

mented when negative numbers are represented in 1’s complement form. For example, the

1’s complement form of 225 will be represented as follows:

�25 ¼ 111001 (sign-magnitude form)

¼ 100110 (1’s complement form)

Table 1.4 shows the comparison of 3-bit unsigned, signed, and 1’s complement values.

The advantage of using 1’s complement numbers is that they permit us to perform subtrac-

tion by actually using the addition operation. It means that, in digital systems, addition and

subtraction can be carried out by using the same circuitry.

The addition operation for two 1’s complement numbers consists of the following steps:

(i) Add the two numbers including the sign bits.

(ii) If a carry bit is produced by the leftmost bits (i.e., the sign bits), add it to the result.

This is called end-around carry.

TABLE 1.4 Comparison of 3-Bit Signed, Unsigned, and

1’s Complement Values

Decimal Equivalent

Binary Unsigned Sign-Magnitude 1’s Complement

000 0 þ0 þ0

001 1 þ1 þ1

010 2 þ2 þ2

011 3 þ3 þ3

100 4 20 23

101 5 21 22

110 6 22 21

111 7 23 20

1.6 SIGNED NUMBERS 15

Example 1.21 Let us add 27 to 25:

The result is a negative number. By complementing the magnitude bits we get

11100, that is,�12

Thus the sum of 27 and 25 is 212, which is correct.

The subtraction operation for two 1’s complement numbers can be carried out as

follows:

(i) Derive the 1’s complement of the subtrahend and add it to the minuend.

(ii) If a carry bit is produced by the leftmost bits (i.e., the sign bits), add it to the result.

Example 1.22 Let us subtract þ21 from þ35:

The sign is correct, and the decimal equivalent þ14 is also correct.

The 1’s complement number system has the advantage that addition and subtraction are

actually one operation. Unfortunately, there is still a dual representation for 0. With 3-bit

numbers, for example, 000 is positive zero and 111 is negative zero.

1.6.2 Radix Complement

In the decimal system, the radix complement is the 10’s complement. The 10’s comp-

lement of a number is the difference between 10 and the number. For example,

10’s complement of 5, 10� 5 ¼ 5

10’s complement of 27, 100� 27 ¼ 73

10’s complement of 48, 100� 48 ¼ 52

In binary number system, the radix complement is called the 2’s complement. The 2’s

16 NUMBER SYSTEMS AND BINARY CODES

complement representation of a positive number is the same as in sign-magnitude

form. The 2’s complement representation of a negative number is obtained by comple-

menting the sign-magnitude representation of the corresponding positive number and

adding a 1 to the least significant position. In other words, the 2’s complement form of

a negative number can be obtained by adding 1 to the 1’s complement representation of

the number.

Example 1.23 Let us compute the 2’s complement representation of �43:

þ43 ¼ 0101011 (sign-magnitude form)

¼ 1010100 (1’s complement form)

þ1 (add 1)

1010101 2’s complement form

Table 1.5 shows the comparisons of four representations of 3-bit binary numbers. The

bit positions in a 2’s complement number have the same weight as in a conventional

binary number except that the weight of the sign bit is negative. For example, the 2’s

complement number 1000011 can be converted to decimal in the same manner as a

binary number:

�26 þ 21 þ 20 ¼ �64þ 2þ 1

¼ �61

A distinct advantage of 2’s complement form is that, unlike 1’s complement form,

there is a unique representation of 0 as can be seen in Table 1.5. Moreover, addition

and subtraction can be treated as the same operation as in 1’s complement; however,

the carry bit can be ignored and the result is always in correct 2’s complement notation.

Thus addition and subtraction are easier in 2’s complement than in 1’s complement.

An overflow occurs when two 2’s complement numbers are added, if the carry-in bit

into the sign bit is different from the carry-out bit from the sign bit. For example, the

TABLE 1.5 Various Representations of 3-Bit Binary Numbers

Decimal Equivalent

Binary Unsigned Signed 1’s Complement 2’s Complement

000 0 þ0 þ0 þ0

001 1 þ1 þ1 þ1

010 2 þ2 þ2 þ2

011 3 þ3 þ3 þ3

100 4 20 23 24

101 5 21 22 23

110 6 22 21 22

111 7 23 20 21

1.6 SIGNED NUMBERS 17

following addition will result in an overflow:

0 Carry-in

101010 (�22)

101001 (�23)

1010011

Carry-out

Hence the result is invalid.

Example 1.24 Let us derive the following using 2’s complement representation:

(i) þ13 (ii) �15 (iii) �9 (iv) �5

�7 �6 þ6 �1

1 Carry-in

(i) þ13 01101

�7 11001

þ6 100110

Carry-out

Since the carry-in is equal to the carry-out, there is no overflow; the carry-out bit can be

ignored. The sign bit is positive. Thus the result is þ6.

0 Carry-in

(ii) �15 10001

�6 11010

101011

Carry-out

The carry-out bit is not equal to the carry-in bit. Thus there is an overflow and the result is

invalid.
0 Carry-in

(iii) �9 10111

þ6 00110

�3 011101

Carry-out

There is no overflow, and the sign bit is negative. The decimal equivalent of the result is

224
þ 23
þ 22
þ 20 ¼ 23.

1 Carry-in

(iv) �5 1011

�1 1111

�6 11010

Carry-out

There is no overflow, and the sign bit is negative. The result, as expected, is

223
þ 21 ¼ 26.

An important advantage of 2’s complement numbers is that they can be sign-extended

without changing their values. For example, if the 2’s complement number 101101 is

18 NUMBER SYSTEMS AND BINARY CODES

shifted right (i.e., the number becomes 1101101), the decimal value of the original and the

shifted number remains the same (219 in this case).

1.7 FLOATING-POINT NUMBERS

Thus far, we have been dealing mainly with fixed-point numbers in out discussion. The

word fixed refers to the fact that the radix point is placed at a fixed place in each

number, usually either to the left of the most significant digit or to the right of the least sig-

nificant digit. With such a representation, the number is always either a fraction or an

integer. The main difficulty of fixed-point arithmetic is that the range of numbers that

could be represented is limited. Figure 1.1 illustrates the fixed-point representation of a

signed four-digit decimal number; the range of numbers that can be represented using

this configuration is 9999. In order to satisfy this limited range, scaling has to be used.

For example, to addþ50.73 toþ40.24 we have to multiply both numbers by 100 before

addition and then adjust the sum, keeping in mind that there should be a decimal point two

places from the right. The scale factor in this example is 100.

An alternative representation of numbers, known as the floating-point format, may be

employed to eliminate the scaling factor problem. In a floating-point number, the radix

point is not placed at a fixed place; instead, it “floats” to various places in a number so

that more digits can be assigned to the left or to the right of the point. More digits on

the left of the radix point permit the representation of larger numbers, whereas more

digits on the right of the radix point result in more digits for the fraction. Numbers in float-

ing point format consist of two parts—a fraction and an exponent; they can be expressed in

the form

fraction� radixexponent

The fraction is often referred to as the mantissa and can be represented in sign-magnitude,

diminished radix complement, or radix complement form. For example, the decimal

number 236,000 can be written 0.236 � 106. In a similar manner, very small numbers

may be represented using negative exponents. For example, 0.00000012 may be written

0.12 � 1026. By adjusting the magnitude of the exponent, the range of numbers

covered can be considerably enlarged. Leading 0’s in a floating-point number may be

removed by shifting the mantissa to the left and decreasing the exponent accordingly;

this process is known as normalization and floating-point numbers without leading 0’s

are called normalized. For example, the normalized of floating-point number

0.00312 � 105 is 0.312 � 103. Similarly, a binary fraction such as 0.001 � 24 would be

normalized to 0.1 � 22.

FIGURE 1.1 Fixed-point number representation.

1.7 FLOATING-POINT NUMBERS 19

1.8 BINARY ENCODING

In Section 1.1 it was shown how decimal numbers can be represented by equivalent binary

numbers. Since there are ten decimal numbers (0, 1, . . . , 9), the minimum number of bits

required to represent a decimal number is four, giving 16 (¼24) possible combinations, of

which only ten are used. Binary codes are divided into two groups—weighted and

nonweighted.

1.8.1 Weighted Codes

In a weighted code each binary digit is assigned a weight w; the sum of the weights of the I

bits is equal to the decimal number represented by the four-bit combination. In other

words, if dj (i ¼ 0 , . . . , 3) are the digit values and wj (i ¼ 0 , . . . , 3) are the corresponding

weights, then the decimal equivalent of a 4-bit binary number is given by

d3w3 þ d2w2 þ d1w1 þ d0w0

If the weight assigned to each binary digit is exactly the same as that associated with each

digit of a binary number (i.e., w0 ¼ 28 ¼ 1, w1 ¼ 21 ¼ 2, w2 ¼ 22 ¼ 4, and w3 ¼ 23 ¼ 8),

then the code is called the BCD (binary-coded decimal) code. The BCD code differs from

the conventional binary number representation in that, in the BCD code, each decimal digit

is binary coded. For example, the decimal number 15 in conventional binary number

representation is

1111

whereas in the BCD code, 15 is represented by

0001 0101

1 5

the decimal digits 1 and 5 each being binary coded.

Several forms of weighted codes are possible, since the codes depend on the weight

assigned to the binary digits. Table 1.6 shows the decimal digits and their weighted

TABLE 1.6 Weighted Binary Codes

Decimal Number 8421 7421 4221 8421

0 0000 0000 0000 0000

1 0001 0001 0001 0111

2 0010 0010 0010 0110

3 0011 0011 0011 0101

4 0100 0100 1000 0100

5 0101 0101 0111 1011

6 0110 0110 1100 1010

7 0111 1000 1101 1001

8 1000 1001 1110 1000

9 1001 1010 1111 1111

20 NUMBER SYSTEMS AND BINARY CODES

code equivalents. The 7421 code has fourteen 1’s in its representation, which is the

minimum number of 1’s possible. However, if we represent decimal 7 by 0111 instead

of 1000, the 7421 code will have sixteen 1’ instead of fourteen. In the 4221 code, the

sum of the weights is exactly 9(¼4þ 2þ 2þ 1). Codes whose weights add up to 9

have the property that the 9’s complement of a number (i.e., 9 2 N, where N is the

number) represented in the code can be obtained simply by taking the 1’s complement

of its coded representation. For example, in the 4221 code shown in Table 1.6, the

decimal number 7 is equivalent to the code word 1101; the 9’s complement of 7 is 2

(¼9 2 7), and the corresponding code word is 0010, which is the 1’ complement of

1101. Codes having this property are known as self-complementing codes. Similarly,

the 8421 is also a self-complementing code.

Among the weighted codes, the BCD code is by far the most widely used. It is useful in

applications where output information has to be displayed in decimal. The addition

process in BCD is the same as in simple binary as long as the sum is decimal 9 or less.

For example,

Decimal BCD

6 0110

þ3 þ0011

9 1001

However, if the sum exceeds decimal 9, the result has to be adjusted by adding decimal 6

(0110) to it. For example, let us add 5 to 7:

Decimal BCD

7 0111

þ5 þ0101

12 1100 12 (not a legal BCD number)

þ0110 Add 6

0001
|ffl{zffl}

1

0010
|ffl{zffl}

2

As another example, let us add 9 to 7:

Decimal BCD

9 1001

þ7 þ0111

16 0001
|ffl{zffl}

1

0000
|ffl{zffl}

0

Although the result consists of two valid BCD numbers, the sum is incorrect. It has to be

corrected by adding 6 (0110). This is required when there is a carry from the most signifi-

cant bit of a BCD number to the next higher BCD number. Thus the correct result is

0001 0000

þ 0110

0001
|ffl{zffl}

1

0110
|ffl{zffl}

6

Other arithmetic operations in BCD can also be performed.

1.8 BINARY ENCODING 21

1.8.2 Nonweighted Codes

In the nonweighted codes there are no specific weights associated with the digits, as was

the case with weighted codes. A typical nonweighted code is the excess-3 code. It is gen-

erated by adding 3 to a decimal number and then converting the result to a 4-bit binary

number. For example, to encode the decimal number 6 to excess-3 code, we first add 3

to 6. The resulting sum, 9, is then represented in binary (i.e., 1001). Table 1.7 lists the

excess-3 code representations of the decimal digits.

Excess-3 code is a self-complementing code and is useful in arithmetic operations. For

example, consider the addition of two decimal digits whose sum will result in a number

greater than 9. If we use BCD code, no carry bit will be generated. On the other hand,

if excess-3 code is used, there will be a natural carry to the next higher digit; however,

the sum has to be adjusted by adding 3 to it. For example, let us add 6 to 7:

Decimal Excess-3

7 1010

þ6 1001

13 10011

Carry 00110011 Add 3 to both sum

0100
|ffl{zffl}

1

0110
|ffl{zffl}

3

and carry bit

In excess-3 code, if we add two decimal digits whose sum is 9 or less, then the sum should

be adjusted by subtracting 3 from it. For example,

Decimal Excess-3

6 1001

þ2 þ0101

8 1110

0011 Subtract 3

1011
|ffl{zffl}

8

TABLE 1.7 Excess-3 Code

Decimal Excess-3

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

22 NUMBER SYSTEMS AND BINARY CODES

For subtraction in excess-3 code, the difference should be adjusted by adding 3 to it. For

example,

Decimal Excess-3

17 0100 1010

�11 0100 0100

6 0000 0110

0011 Add 3

1001
|ffl{zffl}

6

Another code that uses four unweighted binary digits to represent decimal numbers is

the cyclic code. Cyclic codes have the unique feature that the successive codewords differ

only in one bit position. Table 1.8 shows an example of such a code.

One type of cyclic code is the reflected code, also known as the Gray code. A 4-bit Gray

code is shown in Table 1.9. Notice that in Table 1.9, except for the most significant bit

TABLE 1.8 Cyclic Code

Decimal Cyclic

0 0000

1 0001

2 0011

3 0010

4 0110

5 0100

6 1100

7 1110

8 1010

9 1000

TABLE 1.9 Gray Code

Decimal Binary Gray

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

1.8 BINARY ENCODING 23

position, all columns are “reflected” about the midpoint; in the most significant bit

position, the top half is all 0’s and the bottom half all 1’s.

A decimal number can be converted to Gray code by first converting it to binary. The

binary number is converted to the Gray code by performing a modulo-2 sum of each digit

(starting with the least significant digit) with its adjacent digit. For example, if the binary

representation of a decimal number is

b3 b2 b1 b0

then the corresponding Gray code word, G3G2G1G0, is

G3 ¼ b3

G2 ¼ b3 � b2

G1 ¼ b2 � b1

G0 ¼ b1 � b0

where � indicates exclusive-OR operation (i.e., modulo-2 addition), according to the

following rules:

0� 0 ¼ 0

0� 1 ¼ 1

1� 0 ¼ 1

1� 1 ¼ 0

As an example let us convert decimal 14 to Gray code.

Decimal Binary

b3 b2 bl b0

14 1 1 1 0

Therefore

G3 ¼ b3 ¼ 1

G2 ¼ b3 � b2 ¼ 1� 1 ¼ 0

G1 ¼ b2 � b1 ¼ 1� 1 ¼ 0

G0 ¼ b1 � b0 ¼ 1� 0 ¼ 1

Thus the Gray code word for decimal 14 is

G3 G2 G1 G0

1 0 0 1

The conversion of a Gray code word to its decimal equivalent is done by following this

sequence in reverse. In other words, the Gray code word is converted to binary and

24 NUMBER SYSTEMS AND BINARY CODES

then the resulting binary number is converted to decimal. To illustrate, let us convert 1110

from Gray to decimal:

G3 G2 G1 G0

1 1 1 0

b3 ¼ G3 ¼ 1

G2 ¼ b3 � b2

[b2 ¼ G2 � b3 (since G2 � b3 ¼ b3 � b2 � b3)

¼ 1� 1 (since G2 ¼ 1 and b3 ¼ 1)

¼ 0

G1 ¼ b2 � b1

[b1 ¼ G1 � b2

¼ 1� 0

¼ 1

G0 ¼ b1 � b0

[b0 ¼ 1

Thus the binary equivalent of the Gray code word 1110 is 1011, which is equal to decimal

11. The first ten codewords of the Gray code shown in Table 1.9 can be utilized as reflected

BCD code if desired. The middle ten codewords can be used as reflected excess-3 code.

EXERCISES

1. Convert the following decimal numbers to binary:

a. 623

b. 73.17

c. 53.45

d. 2.575

2. Convert the following binary numbers to decimal:

a. 10110110

b. 110000101

c. 100.1101

d. 1.001101

3. Convert the following binary numbers to hexadecimal and octal:

a. 100101010011

b. 001011101111

c. 1011.111010101101

d. 1111.100000011110

4. Convert the following octal numbers to binary and hexadecimal.

a. 1026

EXERCISES 25

b. 7456

c. 5566

d. 236.2345

5. Convert the following hexadecimal numbers to binary and octal:

a. EF69

b. 98AB5

c. DAC.IBA

d. FF.EE

6. Perform the addition of the following binary numbers:

a: 100011 b: 10110110 c: 10110011

1101 11100011 1101010

7. Perform the following subtractions, where each of the numbers is in binary form:

a: 101101 b: 1010001 c: 10000110

111110 1001111 1110001

8. Add the following pairs of numbers, where each number is in hexadecimal form:

a: ABCD b: 129A c: EF23

75EF AB22 C89

9. Repeat Exercise 8 using subtraction instead of addition.

10. Add the following pairs of numbers, where each number is in octal form:

a: 7521 b: 62354 c: 3567

4370 3256 2750

11. Repeat Exercise 10 using subtraction instead of addition.

12. Derive the 6-bit sign-magnitude, 1’s complement, and 2’s complement of the fol-

lowing decimal numbers:

a. þ22

b. 231

c. þ17

d. 21

13. Find the sum of the following pairs of decimal numbers assuming 8-bit 1’s comple-

ment representation of the numbers:

a. þ61þ (223)

b. 256þ (255)

c. þ28þ (þ27)

d. 248þ (þ35)

26 NUMBER SYSTEMS AND BINARY CODES

14. Repeat Exercise 13 assuming 2’s complement representation of the decimal numbers.

15. Assume that X is the 2’s complement of an n-bit binary number Y. Prove that the 2’s

complement of X is Y.

16. Find the floating-point representation of the following numbers:

a. (326.245)10

b. (101100.100110)2

c. (264.462)8

17. Normalize the following floating-point numbers:

a. 0.000612 � 106

b. 0.0000101 � 24

18. Encode each of the ten decimal digits using the weighted binary codes.

a. 4, 4, 1, 22

b. 7, 4, 2, 21

19. Given the following weighted codes determine whether any of these is

self-complementing.

a. (8, 4, 23, 22)

b. (7, 5, 3, 26)

c. (6, 2, 2, 1)

20. Represent the decimal numbers 535 and 637 in

a. BCD code

b. Excess-3 code

Add the resulting numbers so that the sum in each case is appropriately encoded.

21. Subtract 423 from 721, assuming the numbers are represented in excess-3 code.

22. Determine two forms for a cyclic code other than the one shown in Table 1.8.

23. Assign a binary code, using the minimum number of bits, to encode the 26 letters in

the alphabet.

EXERCISES 27

