
CO
PYRIG

HTED
 M

ATERIA
L

1
NO PROGRAMMER DIES

The Bible shows the way to go to heaven, not the way the heavens go.

—GALILEO GALILEI

There is one question that is so frequently asked in software engineering that

it may seem tedious to ask it yet again, but here it is, anyway: �What are the

basic differences between software development projects and engineering

projects (or manufacturing production), that is, say, between producing

enterprise information system and building tunnels or manufacturing cars?�
The usual, dry, academic answer is that software is a conceptual, intan-

gible, invisible artifact. This definition may be useful, but there is another

attribute of software projects that distinguish them even more starkly from

traditional engineering projects. Thedistinction,which is rarelymentioned, is

that—while engineersmayalways be indanger— software developers are never

killed or injured while working on their projects.

No matter how lousily or messily planned or implemented a software

development project may be, nobody in a software team is ever seriously

physically hurt at the office computer. There is a clear difference between

developingAdobeanddigging thePanamaCanal, and thismaybeone reason

why so many software development projects are hastily, carelessly, and

sloppily managed.

In 2005 the death toll from a tunnel project in western China broke a

new record indicating project mismanagement and poor supervision

of safety procedures. An investigation reveded that many fatal accidents

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

3

could have been avoided. This brought the issue of the rushed produc-

tivity for the project rather than workers� and engineers� safety, environ-
mental concerns, and social needs under even closer scrutiny. The public

severely blamed the chief engineer for the tunnel accidents.

—LOCAL NEWS IN CHINA, 2005

In real-world engineering projects, the prospects and costs of death are

always looking over our shoulders, holding individuals personally respon-

sible for the consequences of their decisions and actions. Thus, project

managers must adhere to strict procedures and industrial standards:

agreed-onplans, signed confirmations,writtenworkflows, and timing.When

an error occurs, a project management model enables us to track the work

process, conduct a postmortem review, and identify errors; in addition, this

may also involve financial issues of insurance and litigation.

Because life matters1 and mistakes incur heavy costs, real-world engi-

neering demands discipline, consistency, consideration, commitment to

detail, and a strong sense of teamwork. The result is not just greater safety;

it�s also better products. You have to wonder whether software development

can afford to continue in its current (often) irresponsible way. Are there any

factors in society or themarketplace that will ever make it change? If so, what

are they?

1.1 DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL

Many types of cancer are treatedwith radiotherapy, inwhichhigh-energy rays

are used to damage malignant tumors. Given the danger of overdosage, the

amount of radiation energy is supposed to be precise, and safely controlled by

a computer system. The Therac-25 was developed for this purpose by the

Atomic Energy ofCanadaLimited fromaprototype in 1976 to a safety analysis

in 1983 (Leveson 1993). Between 1985 and 1987, the Therac-25 overdosed a

number of patients, killing five. Subsequent investigations blamed the soft-

ware, but there�s something strange in this. The programming code for the

Therac-25 was built by only one person, who also didmost of the testing. This

is not even conceivable in a real-world engineering project, but in some

software development the programmers are often responsible for their

own testing. How did the software development process ever get itself into

this mess?

1The ISO 9000, which have often been compared with CMM and CMMI, came from
BS5750, which was adopted to control quality problems of bombs going off in
munitions factories and bombs not blasting when they should have.

4 NO PROGRAMMER DIES

1.1.1 The Good Old Days?

In 2005, a Helios Airways Boeing 737 crashed in Greece, with the loss of

all 121 on board. The suspected cause was a series of design defects in

the 737 where the plane�s pressurization warning alarm made the same

sound as the improper takeoff and landing alert. Confusion over the

reason for the warning may have contributed to the fatal crash. When

things start to go wrong, it sometimes doesn�t take much to spin them

right out of control. Factors that may seem trivial in normal circum-

stances, may contribute to tragic outcomes when things aren�t going
according to plan .

Regardless of whether engineering product defects may be unavoidable,

we are taught that rigorous development processes do remove as many as

possible. A �rigorous� process normally means the separation between

planning and execution. During construction, planned tasks should be

designed to be strict to follow and easy to control. Ideally, constructive

peer pressure should positively shape workplace behavior to ensure that a

development process will be �as rigorous as possible.�
Adopting that philosophy in engineering management, software devel-

opment activities can normally be divided into two types of process—(1)

analysis and design as planning and (2) programming as execution, with (2)

following (1). This intuitive model, generally referred to as the �waterfall

model� by Winston Royce (1970), is normally adopted when managing large

software projects. These twoprocesses are often chopped into smaller but still

ordered processes. Dividing and conquering allows us to better allocate

limited resources and control and track project progresses through a number

of checkpoints and milestones. The analysis–design process is made up of

such activities as software requirements gathering, system analysis and

logical design, while the programming process is made up of coding, unit

testing, system integration, and user acceptance testing, all of which are

basically linked serially, one after the other. For the purpose of discussion, we

consider here what is called a four-stage waterfall model as below:

Requirement!design!coding!testing ðR!D!C!TÞ

Thenature of thewaterfallmodelmakes it easy foraprojectplan tobeexecuted

the same way engineers manage their projects. Focusing on breaking down

larger tasks into smaller tasks andputting them in the right order for execution

better allows project resources to be allocated and conflicting problems to be

resolved. With this idea of the separation between planning and execution

behind a waterfall model, a project plan can be reviewed to optimize against

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 5

time and resources. With this, we can then identify and weight various risk

factors to draw up a contingency plan for a project.

Such a project management paradigm to develop software may sound

intuitive, but one could easily discover that it does not encourage the

exploration of interrelationships between people, programming tasks, and

software practices. It can be difficult for some project managers to compre-

hend development synergies between these three elements, particularly in a

situation where something can change unexpectedly during execution.

1.1.2 The More Things Change, the More They Stay the Same?

Whenproject requirements are constantly changing, sometimesmore rapidly

than what we had imagined, and when developers know that what they are

building is not what their customers need, they will start to realize that their

software can be developed only by progressing in small steps so as to obtain

constant feedback all the time. This is, however, easier said than done.

Our thinking is often limited by our past experience. For many software

managers, their formative software experience is with the waterfall. Seeking

to improve on it, we come up with an enhanced waterfall. As single-phase

analysis for user requirements may rarely provide a full solution, more than

one phase is often considered necessary, and for this, straightforwardly, we

link two or smaller waterfall cycles together in a chain.

R!D!C!T ! R!D!C!T ! R!D!C!T

There is really nothing new here. The same principles behind the waterfall

model apply except that, in each cycle, one can plan according to the feedback

obtained from what has previously been done. The current cycle will there-

fore be less stringent and more flexible than previous cycles.

The waterfall model, if strictly implemented as �one cycle� or some

�bureaucratic procedures for turning back,� may not be too popular in the

commercial world. Many software teams take the concept of the waterfall

model but implement their softwareprojectsmore flexibly. Some teams adopt

the enhanced waterfall model while still others may go even further to adopt

an adaptive model so that the length and activities in each iteration can be

dynamically adjusted. All these models can be considered as belonging to a

waterfall family of models.

In some extreme cases in such a family, to deal with unexpected

changes, some software managers would substantially revise their project

plans on a weekly basis. Since they know that none of their team members

could die or be injured, they are free to revise their plan to cope with any

6 NO PROGRAMMER DIES

change when it occurs. Compared to software projects, in engineering

projects this would be considered very unusual. It would be more normal

to delay the project rather than risk changingwhat andhowwehave already

planned and managed.

When project variables keep changing, a revision of a project plan is the

way out of potential crisis. Many project managers do not care how often the

project plans are revised as long as it is necessary. But, what really matters is

ourway of thinkingbeing limited to the style ofwaterfallmanagement,which

always involves breaking down tasks into many sequential tasks, and

resources, responsibilities, and any understanding of any bottleneck are

planned along this line. Whenever there is any change, replanning is needed

and it is hoped that the revised plans can reflect the situation as quickly as if

such changeswere already anticipated. This is undesirable as a software team

does not manage change in this case; they are, instead, managed by change.

1.1.3 Behind Software Products

Let us look at the design and planning of manufacturing products and then

come back to software products. If a product is supposedly made up of a

number of components, subcomponents, and sub-subcomponents, and so on,

then one can draw up a hierarchical architecture that consists of the complete

product at the top with a hierarchy of subcomponents, which, in turn, are

made up of sub-subcomponents, and so forth. This structure is called a bill of

materials (BOM) and it is at the heart of operations inmany assembly plants. It

supports assembly task planning inmanufacturing resource planning (MRP),

as shown in Figure 1.1, where one plans when, what types, and what

Car

Body Wheel

4 pieces

1 unit

1 piece

Base Seat

2 pieces

1 piece

Engine1 piece

E
ng

in
e

B
as

e
Se

at

B
od

y
W

he
el

C
ar

Assembly Tasks

Design Planning

M
on

th

Engine 1 piece × unit cost

Seat 2 pieces × unit cost

Wheel 4 pieces × unit cost

Labor per hour × total hours

+

Unit Cost of a Car

BOM to Plan

Bill of Materials
(BOM)

BOM and Plan to Cost

Costing

FIGURE 1.1 How bill of materials (BOM) can be used for planning and costing.

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 7

quantities of materials or subcomponents are needed for production (Chap-

man 2006). The assembly task planning will allow costing to be determined

(Figure 1.1). Subcomponent information can be used to do cost rollup

calculation for customer quotations and for effective internal control over

production costs.

Similar to engineering projects, software is often designed using a class

diagram (see Figure 1.2), which resembles a bill ofmaterials. Class diagrams

help us understand attributes, methods, and class component relationships.

Unfortunately, we could rarely use a class diagram to tell us how to do

assembly task planning and costing. It would be good to have an integrated

approach to tighten up or clarify what needs to be written and how a project

should be planned. Only recently has it become possible to do this to some

extent through the concept of a �user story� in eXtreme programming (XP),

which can be used both for requirements management and project

planning.

Compared to software tasks, other engineering tasks are often more

tangible. Components built in a typical engineering project can be combined

in the order suggested by a bill of materials (BOM) so that work progress can

be objectively measured and quality can easily be monitored. This, when

compared with software, is more tangible. For instance, as part of an

engineering project, one can assemble an engine to the gearshaft and then

form the base before installing thewheels andfinally carrying outwheel tests.

The sequence in which these tasks are performed could be designed in

accordance with both physical constraints and economic efficiency, and this

sequence somehow solidifies the idea of the separation of planning and

execution into two stages.

In software projects, products cannot be assembled with this kind of job

sequence asdefinedwith classdiagrams in the samewayBOMsare, nomatter

how these products are designed. Programmers canwork out login interfaces

and main menu interfaces in an order that corresponds to how the users

Car

Body WheelEngine

1 1
1

1 41

FIGURE 1.2 Class diagram for a car (simplified) that resembles bill of materials (BOM)
but serves a different purpose.

8 NO PROGRAMMER DIES

operate the system. But they can also do these later on.2 There are virtually no

restrictions on the ordering when we build with software components.

Walker Royce (2005) of IBM suggests that softwaremanagers shouldmanage

software in the same way as managing a movie production rather than as a

typical engineering production. To make a film, we have to effectively assess

how all the elements of scenes of the filmwork together (actors, timing, lines,

sets, props, lighting, sound, etc.) so that scenes of the filmwill be shot in away

that will minimize production costs and production time so that the film can

be completed with the least amount of time and money.

In manufacturing, when two products, designed by two groups of

engineers, eventually appear on the same BOM, we can almost speculate

that these products should be built in similar ways. Furthermore, since

products are built to follow the design as given by a BOM, if there are defects,

either they are design problems or the products have not been made to plan.

Unfortunately, this same logic that is applicable to manufacturing does

not apply to software development (refer to Figure 1.3). Unlike BOMs, class

diagrams do not fully address code implementation. Given the same dia-

grams, implementation could be done in a variety of ways by different

programmers. The programmer will not have to write the same software

twice for a second installation, but may have to redo it for a second version,

FIGURE 1.3 Degree of difference is a conceptual term measuring how two products
can be built differently using the same design.

2�It may make some kind of logical sense that you have to finish writing the login
servlet before you start the logout servlet; but in reality you could write and test them
in any order,� said Robert Martin (2003).

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 9

and this canbedone evenwithoutmodifying the classdiagrams! For instance,

programmers may tune structured query language (SQL) algorithms for

better performance when they know the characteristics of real data. Some

software teamswill adopt the practice of revisiting each other�s code to detect
defects and improve readability. Again, none of this necessarily implies

redesigning the class diagrams.

In the case of software projects, not all that is well designed ends well!

Worse yet, many software problems cannot be classified as problems even

when the class diagrams or code are not written in compliance with the

design. Bad code but good design is not that rare! In short, having qualified

experienced system analysts do design using data models, unified modeling

language (UML) diagrams, and so on, is not the only necessary condition for

producing good software; we also need qualified experienced programmers

to write code to build the system. Furthermore, with the right design and

good-quality code, we need skilled testers to discover bugs in products.

Managing these people effectively in a team, whether each member has just

one role (e.g., system analyst, programmer, tester) ormultiple roles requires a

methodology for coordination, collaboration, and communication! Left to

themselves, things may go wrong, and once they do, they will go from bad to

worse.One cannot expect a bunchof the right technical people sitting together

(without proper management or coordination) to produce software on time,

within budget, and according to requirements if there is no development

framework.

1.1.4 Deal or No Deal

Traditionally, software management emphasizes mainly relatively formal,

rigorous, software development processes. Recently, agile development

approaches have grown quite popular. There is now an agile or eXtreme

version for formal methods, testing, database, tools, or project management.

Although this new trend has attracted great attention in the software com-

munity, it has not taken over the waterfall model as the dominant approach.

In fact, agile practices are often adopted within a waterfall framework. It

appears that the waterfall model is either so intuitively better than the others

or that software developers have been so used to it that they cannot think of

any other ways better.

The popular TV game show Deal or No Deal displays a number of

briefcases, each of which contains a different cash prize ranging from just

one dollar tomillions of dollars. A contestantwhowins a game on the show is

allowed to pick any of these briefcases as a prize. The contestant, however, is

not allowed to open the briefcase until the end of the game. As the game

10 NO PROGRAMMER DIES

progresses, a �Banker� offers the contestant a deal to buy the chosen briefcase.

If the contestant rejects the deal, other cases can be chosen and opened

while the banker continues to make offers to the contestant regarding the

suitcase the contestant chose at the beginning. The contestant can either

accept the banker�s offer or take the cash prize inside the briefcase selected at

the beginning of the game. It is interesting to note that many contestants who

had chosen the right briefcase often accepted a lower-value offer from the

bankers. They would have, say, accepted $250,000 dollars, rather than

resisting temptations to hold onto the end to win millions. Even in the

presence of favorable odds, it is interesting that many people are actually

highly risk-averse (Post et al. 2006).

In a study involving 150 volunteers (Tversky and Kahenman 1981),

who were asked to choose between a guaranteed $250 or a 75% chance to

win $1000 dollars, the overwhelming majority (84%) of the participants

took the $250 cash. Interestingly, when the choice was between winning or

losing $750 dollars with a 75% chance, 87% preferred to try their luck.

Mathematically, the odds were the same but not the subjects� perception of

winning and losing.

Daring to take risk for a higher reward is an entrepreneurial attitude. For

entrepreneurs to be successful, they need to be risk-takers. They need to

understand the odds on success and failure, so that they can spotmarkets and

seize opportunities before others do. If not, they need to have the gamblers�
attitude. Compared to an entrepreneur or a gambler, how much risk is a

software project manager willing to take when adopting a new development

methodology? On the surface, this seems to be a matter of personal prefer-

ence. However, it may be a bit more complicated than this. There is a chance

that themembers of a software teammay not be so cooperative. Theymay try

to stick to their usualwayof thinking andwork consciously or subconsciously

toward it. If things do not seem to go as originally expected, these members

may well place the blame on the manager. They may say that the manager

should have been more prudent and should not have replaced the usual

practice with something unproven. Is this prudence? Does fear overwhelm

ambition? Or is it politics that has raised its ugly head?

Typically, user requirements continue to change and our competitors act

and react much more quickly than we do. Even with all these arguments and

hesitation, there is a chance that members of a software team will eventually

bewilling to adopt a newdevelopmentmethodology. But as software projects

rarely go wrong at the beginning, it can take a significant investment of time

and money before we realize that the old way isn�t working.

Meeting deadlines is often a pressure to make us change our old way of

working. Let us look at a real case here. In 1995, TechTrans, a Hong Kong

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 11

software house with a technical staff of around 20 that specialized in the

development of retail-chain points-of-sales (POS) systems written in C and

Clipper, won a software outsourcing contract to redevelop an AS/400

application on a truly client/server platform. The system had to be written

in PowerBuilder and Informix. At that time, no TechTrans programmer knew

these tools. TechTrans could have used its existing Clipper database model

for the Informix relational database. However, PowerBuilder is an event-

driven programming tool under Windows 3.0, while Clipper is a program-

ming language used to create business applications under the disk operating

system (DOS). The project leader asked two developers to pair up to explore

how to start their programming. The pair was expected to develop a set of

code patterns that the other developers would try to follow. The project was

managed using the waterfall model, and both the leader and the team firmly

believed that this would be an effective, efficient, and less riskyway forward.

1.2 DO-RE-MI DO-RE-MI

Experience keeps people growing professionally. The customers today are

different from yesterday�s customers, and so aremembers of a software team.

For this, one can only expect software projects, and how they should be

managed, to also keep changing. When projects cannot be effectively man-

aged using the simple and familiar waterfall model, an iterative approach is

used. This can revolutionize the way a software team develops software, but

even though resistance to new ways of doing things can be expected, the

resistance may be small as there is a familiar simplicity here.

�When you read, you begin with A–B–C� and �when you sing, you begin

with do-re-mi.�3Agoodplace to begin iterative software development iswith

the waterfall model�s requirements analysis (R) – design (D) – coding (C) –

testing (T). The simplest way to perform iteration is to simply join two smaller

waterfalls together as

R!D!C!T!R!D!C!T

Onebenefit of iterative softwaredevelopment is that it can be adoptedflexibly

when coping with the inevitable changes that arise from customer feedback,

communications, and working software. Because of changes and the issues

discovered earlier, we have more realistic views to control projects to ensure

that they are within scope, budget, and timeframe. Another benefit is that it

breaks a protracted system analysis into more phases, and thereby actual

3From Rodgers and Hammerstein�s The Sound of Music in 1965.

12 NO PROGRAMMER DIES

programming can start earlier. This is real progress for software delivery as

design diagrams do not cover the details of how to code.

There are at least three ways to implement a simple iterative waterfall

model.Most straightforwardly, a system is logically broken down into two or

threemodules, each of which could be consecutively released for production.

It is also possible to implement one or two modules and withdraw the rest.

The development approach is referenced as step-by-step or phase-by-phase.

A metaphoric example of this approach is given in Figure 1.4.

The second way to implement iterative waterfall model is to review the

system nature and functions and to define a kernel and its interface at the

beginning (Figure 1.5). The goal of such an iterative cycle is to build new

components that could be integrated with a kernel. Different software

applications are assembled using the components, which are blackbox to

the outside world, but are accessible via their defined interface. Components

themselves can be written in several different programming languages as

long as they are in full compliance with the interface specifications. This

approach to implementing the iterative waterfall model is particularly useful

whenanumber of different applications, each sharing the same reusable login

components, are to be developed.Although this can appear to be ambitious, it

is a very traditional computing approach. An example is for one to think of an

operating system (OS) as a kernel and each application running on the OS,

developed with the use of application programming interfaces (APIs), as

components so that the computer running the application can serve as a

dedicated point-of-sales (POS) or an application server.

 C→T D→ R→ C→T D→ R→ C→T D→ R→

FIGURE 1.4 Phase-by-phase development.

FIGURE 1.5 Component-based incremental development.

DO-RE-MI DO-RE-MI 13

Brooks (1995) captures the spirit of evolutionary software development

very well by saying �Grow, don�t build software.� This third way of im-

plementing iterative software development is iterative, generative, and

incremental (see Figure 1.6).With this approach, a small, immature prototype

evolves through constant or regular customer reviews until the software has

all the functionalities required. Customers are encouraged to reengineer their

requirements so that the final product fits their business needs. With this

approach, an early prototype may not even be software. It could be a paper

prototype including a set of screen layouts showing the required function-

ality. However, the prototype must be sufficiently complete for customers to

provide solid feedback.

All these different ways of implementing the iterative waterfall model

can be adopted in the same project. They can be integrated to different

extents into a hybrid iterative model. One way to do this is to have an outer

loop taking a step-by-step approach so that each outer loop has several

inner loops that can take, say, the evolutionary approach. Such a double-

loop iterative model has been proposed and used with some successes as

part of some agile methods such as the scrum (i.e., scrummage meeting, as

in rugby)Q1 .

1.2.1 Iterative Models

As early as the 1950s, Deming popularized Shewhart�s closed-loop model in

statistical process control for business continual process improvement, to

measure and identify sources of variations so that one can identify and

manage the areaswhere improvement is needed. The feedback loop included

in somany project management texts has been generally known as the �plan–
do–check–act� (PDCA) cycle. The PDCAcycle is shown in Figure 1.7,which is

self-explanatory. The PDCA cycle involves a solid grounding in identifying

User
Initial Requirments

Feedback

Develop

Input

Product

Prototype

Prototype

FIGURE 1.6 Evolutionary software development.

14 NO PROGRAMMER DIES

performance metrics and measuring them for analysis. The underlying

principles have become the foundation of software project management.

Returning to a basic iteration like R!D!C!T!R!D!C!T, we

can see that the iterationdoes not tell us how to sustain actions! For this reason,

a review session is normally needed after each cycle to determine whether we

have done as planned so that we can realistically plan what the next cycle

should be. In addition to this, we also need to reevaluate the different risk

factors that may affect a project so as to ensure that we can better control

budgets, resources, and schedules against the original project plan. Clearly,

some supporting process areas should be considered to sustain the iteration of

R!D!C!T!R!D!C!T so that each iteration delivers solid prog-

ress toward the final product until an application is released for production.

The PDCA andwaterfall model activities, can be combined to establish a

complete iterative model — the spiral model— as proposed by Barry Boehm

(1988). This spiral model can be modified as shown in Figure 1.8. The

sequences of R!D!C!T!R!D!C!T can therefore become, say,

R!R!D!R!D!C!T (see Figure 1.8). As expected, processes and

practices are required to sustain such a model. It should be noted that this

modified spiral model does not contradict the iterative waterfall model of

R!D!C!T!R!D!C!T and software teams can choose to substi-

tute it with the modified spiral model.

The spiralmodelwas originally proposed todevelopdifferent prototypes

at various stages of a project until the final product is completed. The use of

such model is both generative and evolutionary. In practice, software teams

may adopt a spiral model according to project requirements. The implemen-

tation of the iterative waterfall model can be flexible, and the three different

approaches to implementing such amodel can be integrated and hybridized.

Do

Plan

Check

Act

FIGURE 1.7 The PDCA cycle.

DO-RE-MI DO-RE-MI 15

With these characteristics, the spiral model, which applies the ideas of the

PDCA and a combination of these three implementation approaches, can be

used rather flexibly with different software projects and thus has been

generally accepted as much better than the waterfall model.

1.2.2 Code and Fix

Even though iterative software development approaches have their advan-

tages, not all iterative approaches are desirable. The code-and-fix approach,

for example, is repetitive. It involves writing code to clarify requirements for

better design later. It is a time-buying strategy where the target is to release

the software on schedule and to release patches afterward. It is common in

software development that project pressure quashes discipline and thatwhen

software developers are under time constraints, they will naturally handle

this pressure by jumping into coding immediately. Another situation in

which developers would adopt a code-and-fix approach is when the appli-

cation beingdeveloped is sopopular that it attracts new, additional, originally

unintended users who demand additional expansions in performance and

functionalities.

Let us consider a real case as follows. In a retail chain of 45 outlets in

a metropolitan area, operational staff might need to split their time between

staying in office and visiting other stores. The human resources (HR)

department therefore decides to have their information technology (IT)

Objectives, Constraints,
Alternatives

Prototype 1, 2 , 3 ...

Development

Commitment
Review

1 2 3

Next Phase Planning

Risk Analysis

R R

D

R

D

C

T

FIGURE 1.8 The spiral model (simplified version).

16 NO PROGRAMMER DIES

department write a system for them to allow staff to submit trip records

electronically. Their goal was to replace manual forms with a database so

that the HR department could quickly retrieve information relating to these

business trips. The written requirements provided by HR were a brief

sample copy of their current form!

The HR system, called TripLog, was written in under a fortnight in

Microsoft Access using Delphi 6.0. Since the functionalities of TripLog

were rather simple, so the HR staff were quick with their user acceptance

testing. As expected, HR occasionally reported minor bugs, but these were

quickly fixed.

After 2months, theHRstaff asked the IT team todistributeTripLog touser

departments so that they could directly enter data into the system. After an

additional 2-month period, the HR department decided to add vacation leave

as a type of a �trip� in the TripLog so as to automate leave applications. Now

that the number of users had unexpectedly increased, the system became

extremely slow. Naturally, users start to request that the IT department to

improve system performance and to have TripLog display leave balances.

The IT department decided to rewrite the system inMS SQL Server using

Delphi 6.0. This took a month, but this was not the end of the story yet as

TripLog continued to be the subject of modifications and eventually its user

base included all staff of 150 back offices.

The development of TripLogwas not disciplined, but the systemwas not

complicated and the software teammanaged to do a good job. However, the

software team actually redeveloped the system completely. The code-and-fix

cycle in this case resembles the following sequence:

Code!use!fixð!codeÞ!use!fixð!codeÞ!use!fix . . .

The activity shown in parentheses may occasionally be required.

The code-and-fix approach is different from the iterativemodel in thatwe

could not tell when a development activity would occur and when one

activity would switch to another. Although there was no sense of rhythm

and events appeared to occur randomly, the pattern was iterative. This

approach can be considered by some developers to be ad hoc.

1.2.3 Chaos

Timing and patterns are important in any kind of iterative model. There can

be huge differences of days and even months in completion dates when the

same iterative software activities are followed. In this section, we will see

what an iterative model may look like when a cycle is as short as a day.

DO-RE-MI DO-RE-MI 17

Figure 1.9 showsa four-stagewaterfallmodel over time. Ifwe assume that

there is a deadline to meet for each stage, the project can be tracked with four

separate milestones. According to Parkinson�s law, work expands to fill the

time available for its completion. Therefore, it is rare for a software team to

complete its tasks on time. Assuming the probability of delay in project

schedule be 1
2 , for four stages, we can be very pessimistic about the chance of

completing the project on time as 1
2 ·

1
2 ·

1
2 ·

1
2 ¼ 1

16. In other words, there is

very little chance that a project is able to finish on time. Of course, many

project managers would squeeze time from later stages to compensate for

earlier delays, but this effectively shortens the time available for the tasks that

are to be achieved in later stages. This may lead to sacrificing either quality,

functionalities, or both.

To copewith this problem,we can implement an incentive scheme.When

developers are able to complete jobs on time (see the �timebox� in Figure 1.10),
they receive a bonus pay. To implement this effectively, we need to assign

different roles to different members of a software team at each stage. It is

possible for us to assigndifferent roles to the samedeveloper. For instance,we

can assign requirements engineers the role of software testing to test the final

DR TC

Time

FIGURE 1.9 Waterfall topology.

FIGURE 1.10 Waterfall in action.

18 NO PROGRAMMER DIES

product and the role of coder to system analysts to enable them to write

programs for verification.4

In addition to an incentive scheme and the assignment of different roles,

another question arises as to howpeople in a team communicate andwhether

such communication is effective. For example, there is a need forwell-written

documents to be used as a communication tool between two sequential

stages. Figure 1.10 illustrates the waterfall in action.

A software teammaybe involved in several projects at the same timewith

team members organized as divisions. Figure 1.11 illustrates how two

projects can be run by the same team in parallel. Basically, each subteam

either handles just one project at a time or themembers dealwith one project�s
tasks at a time. However, when documents passed down from a previous

R R

D

C

T

R

D

C

T

D

C

T

R

D

C

T

Idle

Idle

Suppose that all tasks have the same elapsed time

Delayed task

Slack

Project B
Project A

Subteam

Subteam

Subteam

Subteam

Team

Idle Idle

FIGURE 1.11 Delayed tasks and idle developers.

4The idea of how quality control checkpoint can be integrated into each phase
throughout the development as implemented in the V model. As in our simple
example, the look resembles a �V� as shown here:

DO-RE-MI DO-RE-MI 19

stage are difficult to understand, incorrect, or incomplete, the responsible

subteamhas to follow up. Thus, some subteammemberswill find themselves

handling the tasks of two projects at the same time. Although this is quite

typical in the real world, this kind of task switching adds no value at all to

software development (Poppendieck and Poppendieck 2003). Human con-

centration is easy to break and hard to get back. Switching tasks between two

projects eats up time (say, 10–15 minutes) as people reenter the flow of

thought for a new task. Frequent interruptions are time-wasting.

Figure 1.11 illustrates another issue that is perhaps evenmore disturbing

than task switching. Most staged models require the completion of one stage

before it is possible to enter thenext. Thismakes it difficult toplan twoprojects

to avoid any slack-time between them! Compounding this is the fact that

delaying someactivities in oneprojectwill tremendously affect another project.

Figure 1.11 illustrates how �delayed time� and �idle time� intertwine even

though there is no real idle developer as the project plan can be revised as

often as necessary.

To tackle these problemswith the simultaneousmanagement of multiple

projects, we are brought to the arena of concurrent engineering. We do not

wait for the completion of one taskbefore the other starts (see Figure 1.12), and

we allow different development processes to run in parallel. To allow a

process to evolvemoreflexibly,we should not be confinedonly todocuments.

Instead, we hold more face-to-face meetings to facilitate proper communica-

tions. To manage single projects, we can also adopt concurrent software

engineering (Figure 1.13).

Concurrent software engineering can be adopted by applying amodel for

managing single aswell asmultiple projects (Figure 1.13). The greatest benefit

of such amodel, called the Sashimi model (Raccoon 1995), is that it shortens the

iteration cycle.

FIGURE 1.12 Concurrent engineering.

20 NO PROGRAMMER DIES

One way to expedite tasks is to shorten iteration cycles. Iteration cycles

can be shortened by allowing many things to happen simultaneously. For

example, the chaos model (Figure 1.14) looks at a team�s activities as a whole,

fractally. The model uses a short, small problem-solving loop, but unlike the

case with code-and-fix, the chaos model can be very rhythmic as far as we

anticipate when things work, when things can be used (i.e., how one loop

turns to another), how to sustain the rhythm, and so on.

1.2.4 Methodology that Matters

The following statement was made by a finance director in charge of

accounting, administration, personnel, IT, and purchasing departments: �My

daughter, 15, was already building her home page at school! I just don�t
understand what our IT team is busy with.�

Customers canbeuserswithin anorganization, or they canbe the external

client of a software house. They may not see our service the way we do.

Building and managing customer relationships are as important as develop-

ing quality software. Projects with teaming relations with customers could

be twice productive (Bernstein and Yuhas 2005). When it comes to what

R

C

R

D
C

T

R
D C

T
T

D C

R

D
C

T

R
D C

T

R

D

T

Involovemnt

0 %

100 %

time

Simplified
as TCDR

FIGURE 1.13 Sashimi model.

R

D

C

T

FIGURE 1.14 Chaos model developed byQ1 Raccoon (2006).

DO-RE-MI DO-RE-MI 21

customer-relations management (CRM) is, Ed Thompson of the Gartner

Group presents the following matrix (see Figure 1.15). CRM, according to

him, is all about how customers see the development team and how the

development team sees them. When customers and developers regard each

other asmutually ugly ormutually attractive, nothing can or needs to be done

(shown as �,� in Figure 1.15). But when the mutual perception is ugly–

attractive, there is room to improve the customer–developer relationship.

From a developer�s perspective, ugly customers are reluctant to partici-

pate in the development process [i.e., requirementsmanagement process and

user acceptance testing (UAT)]. Such customers think that what and how

software is built is not their concern.Of course, software that is not targeted to

specific business processes or domain knowledge demands less user partici-

pation. Other than these kinds of customers, there are also customers who are

not concernedwith the details of software functionalities. For example, some

people use Microsoft Word every day but have no interest in knowing

anything more than what they already know even though there are better

ways of doing things. Customers with that kind of attitude are not helpful. In

fact, such attitudes can be harmful to a software team. From the customer�s
perspective, besides return on investment, satisfaction with the product or

service, schedules and scheduling, speed of response, ongoing service sup-

port, and product quality are major concerns. Much of this is directly related

to how a software team builds software, namely, software development

methodologies.

Generally, customers do not like jargon or complicated flowchart dia-

grams. For this reason, the ideas of metaphoric communications or writing

short descriptive requirements (see user story in Chapter 3) have been

FIGURE 1.15 Customer–developer relationship.

22 NO PROGRAMMER DIES

proposed. In addition, since many users, not trained as programmers, have

problems with too many if–then-type requirements, keep them fewer than

five.

From time to time, a software team has to give customers progress

reports. Some software team will send their customers an enormous, per-

plexing updated project plan but customers like a product demo (demon-

stration model) or prototype. Instead of a report, it is therefore easier and

more effective if anupdate of the latest progress status is reportedby releasing

a demonstration of working software. Owing to their organizational culture

and operational processes, some customers accept only big-bang implemen-

tation, but it is still a good idea to release working software for a demo, or for

early training.

In the commercial world, customer requirements are often dynamic.

There is often much need for effective exceptional handling ability in an

organization. Customers appreciate quick response from developers. How

fast a software team can change a software to meet new business require-

ments depends on a number of factors. If one is to ignore technical issues and

look only at development procedures, one may conclude that the implemen-

tation of bureaucratic document control and awkward team structure may

make us change our work more slowly than we should.

Modifications can be made with these concerns in place and, after

modification, it is necessary to retest the software. Moreover, after modifica-

tion, retesting what software has worked is necessary. Testing and retesting

are two basic concepts in software testing. Generally speaking, the purpose of

testing is to detect faults in executed code that causes a failure,while retesting

is done to confirm that the changes do not introduce error to other parts of the

code (this is also known as regression testing). Retesting is often boring and

tedious.Automating all or somepart of the testing could be an answer to some

of the problems mentioned here. Coding and testing need to be better

integrated here for a more complete solution. Developers need to be able to

write automated testing cases while coding.

When some developers leave a team, others will have to take over, and

developers who take over will have to spend some time to understand and

make changes to a piece of code. To do so, they may have to refer to technical

documents or to read the code directly. This takes time as documentsmay not

be written in such a way as to make them easy for other developers to follow.

Ideally, developers should rotate jobs among themselves so that each piece of

code can be maintained by more than one person. This, however, may not

always be feasible.

All these development problems can arise at the same time, making it

difficult to respondquickly to changing requirements.Changingour software

DO-RE-MI DO-RE-MI 23

development practices overnight will not lead to successes. We have to take

small steps first. The iterative model discussed so far may meet this require-

ment as it allows us to manage processes, schedules, budgets, and risks.

However, it is not complete. There is still something missing. We need to

harmonize practices, people, and software, and this leads us to so-called

software development rhythms, inspired by Kent Beck who says, in his XP

book (Beck and Andres 2005), that rhythms operate at all different scales. A

principle such as do–check can be applied to the process of doing before the

process of checking or practice for doing before practice for checking. They

are still do–check!

1.3 SOFTWARE DEVELOPMENT RHYTHMS

If you drop a frog into a pan of hot water, the frog will leap straight out. But if

you put the frog into a pan of cold water and slowly heat it, the frog will sit

there until it is cooked, unaware of the gradual changes in temperature.Well,

maybe frogs are that dumb and maybe not, but there is an interesting point

here. No one likes sudden, unexpected changes and, ironically enough, that

includes techies such as software developers.

Suppose that a consultant is hired to coach a software team in a develop-

ment methodology that has a number of new software practices. He asks the

team to start with two or three practices and to gradually exercise others.

Alternatively, he suggests that the team take amaturity approach inwhich the

team advances toward software practices suggested by themethodology. For

instance, an onsite customer requires at least one customer representative to

be available onsite all the time.We begin with the representatives visiting the

developers frequently enough to sustain personal contacts, then being avail-

able not less than 2 hours per day and eventually being an onsite customer

(Nawrocki et al. 2003). Both approaches arewidely used. The secret ofmaking

this successful lies inwhetherwehave successfully complemented eitherway

with the right rhythms of a developmentmethodologywhile it is introduced!

For instance, Beck, in his book on eXtreme programming, suggests a

�standup meeting� to start a day and software integration before calling it a

day. Participation of all team members in these meetings is necessary.

Developers have to be punctual; otherwise, time is lost in waiting. Not all

people in every software team can get it done as easily aswe thought. In some

extreme cases, people who are not used to the time rhythm dislike the idea of

morning meetings. A better way is to organize an informal morning coffee

meeting for thewhole team and to have a day-end gathering to orally confirm

who could not join the coffee meeting the following day. We can see the

24 NO PROGRAMMER DIES

rhythm as morning gathering–work–day-end gathering. Once the team gets

used to that rhythm, we may easy change to �standup meeting–work–code

integration before go home.�
Often a development framework can have many such rhythms playing

simultaneously. In this case a software team should better get used to a

thematic rhythm that actually drives the success of the framework. For

example, in the iterative waterfall, the thematic rhythm can be design–

programming–design–programming.5 This thematic rhythm must be sus-

tained; otherwise, the paradigm could be more harmful than helpful.

To sustain any rhythm, such as A–B–A–B, requires both strategy and

execution. Determiningwhat practices betweenAandB are selected andhow

they can be harmoniously combined to establish effective development

strategies is the same as exploring when software practices work and when

they can be used. Adopting the right strategy is only half of the story;we need

execution, and we especially need to be able to sustain a rhythm. This issue

will be revisited in Section 1.3.2.

1.3.1 Stave Chart by Example6

�Most people livewithin awall of rationality that is definedby the real and the

apparent limits of the world they inhabit� (Anderson 1993). Software profes-

sionals, by occupation, have been trained for so many years that they are

mentally fixed to think in certain patterns. For instance, they often carry a

preference of conditional logicwhen seeing diagrams looking like flowcharts.

This is sort of reflection, and hence we are often being limited bywhat we see

(Figure 1.16).

Development rhythm can be expressed in flowcharts as illustrated in

Figure 1.16. However, the use of flowcharts may cause us to lose the ability to

sustain, harmonize, and, most importantly, synergize. For simplicity and

readability, we use stave charts to represent software development rhythms.

We believe that the stave chart gives us a stronger sense of exploring deep

harmony by putting two or more software practices in harmony. (For

instance, in the sequence A–B–A–B depicted in the four different scenario

in Figure 1.16, when practices A and B are harmonized to produce synergies,

5For those who have known eXtreme programming (XP), another example is that the
thematic rhythm of XP is test–code–refactor; see Chapter 9.
6

Q2 The authors would like to thank Dr. Michael E. McClellan from the Department of
Music at The Chinese University of Hong Kong for technical comments on the �stave
chart by example.�

SOFTWARE DEVELOPMENT RHYTHMS 25

the stave chart is a good choice.) The main purpose, however, is to help us

think of software practices in rhythms.

Let us look at a simple rhythmof software practices such asA–B–A–B–A–B.

The rhythm starting with A is denoted as . Then we have .

FIGURE 1.16 Different visual representations of the same thing affects our thinking.

26 NO PROGRAMMER DIES

Since it is repeatedly moving between A and B, we use the symbol to show

repetition. Aswithmany rhythms,we are often concerned aboutwhich practice

should come at the end. The rhythmwill be .Wherewe don�t care
about the order of starting and ending, a practice can be expressed as

.7

Now let us look at another example of code–use–fix–(code)–use–fix–

(code)–use–fix. Here �(code)� has an unplanned duration. It can even be

skipped. The notation is placed over it to mean unplanned or uncertain

practices. The rhythm tells less about when that practice happens and how

long it may last. Figure 1.17 illustrates the rhythm of code–fix using a stave

chart.

In some cases, we would emphasize pause and interruption. Sometimes,

doing and holding onto something for a bit longer will unavoidably incur a

stop or interruption. For example, when trying to have a standupmeeting for

an hour, teammemberswill naturally ask for a regular break after 15minutes.

The symbol indicates an interruption.

Ifwedonot place in Figure 1.18, thenwewould justwrite one �standup�
instead of three. In this case, we deemphasize any interruption during a

standup meeting.

The pause or interruption of an unknown duration can be really prob-

lematic. It is notwise to have a long standupmeeting in themorning todiscuss

every project and technical issue that arose yesterday until all issues are

resolved. Long meetings fragment, as shown in Figure 1.19. People may ask

for breaks to return calls anddonot return to themeeting on time. In addition,

FIGURE 1.18 Explained by standup meetings.

FIGURE 1.17 Explained by code–fix.

7This a minor point, but technically, if something is enclosed in repeat signs, it will be
repeated only once and everything within it should be repeated. So, for this example,
the result would be A–B–A–B, nothing more and nothing less. There should be an
indication that the section enclosed in the repeat signs should be repeated more times
or an indefinite number of times.

SOFTWARE DEVELOPMENT RHYTHMS 27

urgent matters that should be handled soonmay come up in the meeting and

the meeting may have to be suspended.

Nowwe talk about the structure of a rhythm. Consider a rhythm such as

.We can interpret this tomean that activityA is done to deliver

something for activity B. Another meaning is that A and B are linked by time.

Another scenario is a bit more complicated. Some objectives of activities

within A are to turn B. Normally, outputs of A are the input for B. But it is

possible that A itself ismuchmore important than its outputs and contributes

much for B. The slur mark here indicates a special condition in which

A itself triggers B.

Some rhythms have a faster tempo (e.g., hourly or daily basis). We use

�Vivace� to represent that tempo as . The five lines onwhich practices or

processes (e.g.,AandB)appeararewritten such that, by comparingAwithB, the

higher it is on the stave chart, the more difficult it is or the more human

dynamism is required for a team so that people will pay attention. However,

in the real world, can be for some, but becomes for

others.

The stave chart is self-explanatory. It is not a detailed workflow diagram.

Basically, we have not invented any notation, although one of them has been

slightly altered. The musical notation here parallels those between the

compositional processes that Bach and Mozart used and the processes that

programmers employ.We draw it on thewhiteboard to coach software teams

in development rhythms.

1.3.2 Game Theory

Companies from one country venturing into another are faced with a thicket

of unfamiliar and easily misinterpreted regulations to which theymust make

their business operations conform.

Dave is a software leader who is going to take over a project to build an

insurance application in a developing country. His software teamhas around

10 experienced colleagues, and they have successfully used the waterfall

model to develop similar systems for almost a decade.WhatDave needs to do

is to lead the team and repeat the earlier success. However, unprecedented

challenges are ahead of him.

FIGURE 1.19 Long standup meetings.

28 NO PROGRAMMER DIES

The situation is more or less like exploring a game to determine the best

strategy by understanding how the customer and the software team interact.

When requirements are correctly formulated and relatively stable, Dave�s
team can do as well as usual. They feel confident. This way should therefore

be considered as the faster or most expedient approach (see Figure 1.20).

Unfortunately, the customers could ask for any change in their business

requirements during the construction stage. More risks could result from the

frequent change requests. In such a case, rework seems unavoidable.

Dave knows that the requirements could be unstable in that environment.

A big waterfall model is not desirable. On the basis of his past experience, he

works out a simple iterative model to build the system through evolution.

There will be three or four releases, and review sessions will be held immedi-

ately afterward. During the review, the customers are allowed to raise any

questions or comments for modification. Once satisfied with the progress, the

customers have to pay the development fee. Rework can be minimized.

Although this sounds great, this could cause problems inDave�s software

team, who may not be familiar with such an iterative approach. Adopting a

new software paradigm is a team-level change! As the size of the develop-

ment team is small and Dave has established a good relationship with the

team, he can manage this situation. Nevertheless, the whole development

process is definitely longer.

According to the maximum principle in game theory, players prefer to

minimize themaximumpossible loss. Thus, theproject leaderwill plan for the

iterative model because the loss is less.

This game theory analysis is satisfactory only if we can have data to

understand the implications in detail. Moreover, change in software devel-

opment is more than a yes/no issue. To fully analyze the game, the matrix

A BIT
FASTER

LESS
REWORK

A BIT
SLOWER

MORE
REWORK

Old Way
(Waterfall)

Changing
Requirements

My Softw
are Team

Custo
mer

Stable
Requirements

New Way
(Iterative
Model)

My Software
Team

W
ate

rfa
ll

Iterative
M

odel

Stable

Requirements

ChangingRequirements

Stable

Requirements

ChangingRequirements

A BIT
FASTER

MORE
REWORK

A BIT
SLOWER

LESS
REWORK

FIGURE 1.20 Software team playing their development game with customer.

SOFTWARE DEVELOPMENT RHYTHMS 29

shown in Figure 1.20would have to bemuchmore complicated. Still this type

of tool is helpful for our strategic thinking about playing rhythms.

1.3.3 In–Out Diagram

When praised for brilliant, fantastic piano playing, Johana Sebastian Bach

humbly said,�There�s really nothing remarkable about it.All youhave todo is

to hit the right key at the right time and the instrument plays itself.� To play

the pianowell, we knowhowgood a start iswhen attempting to tackle a piece

of work that can have tremendous psychological impact on us. A good start

motivates players to keep their focus and continue to strive for better results.

A good beginning is work half-done. How a rhythm can be sustained is

another key factor to be considered for a music player. One wrong key could

break the melody immediately and could ruin all previous efforts!

Every rhythm can be represented as A–B–A–B regardless of what A and

B are. They could be R!D!C!T!R!D!C!T or code!use !fix

code!use!fix or anything at all. Each rhythm is uniquely different from

the others. Some rhythms are easy to start but require a lot of effort to sustain,

and external factors can also affect them negatively. Some rhythms, however,

once we are used to them, are easy to sustain.

Sustainability is a key issue in software development rhythms. So often, a

development rhythmno longer delivers expected values to both the teamand

the software but continues to be used. We use the in–out diagram shown in

Figure 1.21 to represent rhythms as easy or difficult to start and to sustain. The

in–out diagram provides a tool for strategic thinking. It is crucial to software

development rhythms and is used throughout this book.

FIGURE 1.21 In–out diagram.

30 NO PROGRAMMER DIES

Both the conventional and the iterative waterfall models are easy to start

with but difficult to sustain. Any changes can require substantial rework on

software and its documentation and can also break the rhythm, at least

temporarily. Changing requirements are less vulnerable to the iterative

waterfall than to the conventional waterfall. Thus Dave�s decision can be

depicted in the in–out diagram in Figure 1.22.

In this book, we discuss the in–out development rhythm diagram on the

basis of our experience. When putting this concept into action, it should be

noted that all teams are different and all participants should reevaluate the

diagram for their own team.

1.3.4 Master–Coach Diagram

The in–out diagramalonedoes not tell uswhatwill happen to a software team

when developers change with old hands leaving and new blood coming in.

For better planning, there is a need to know that a worker has gone and taken

his or her project knowledge and development experience.

Knowledge itself is an evergreen topic in philosophy. Ontologically,

knowledge can be explicit and/or tacit. Explicit knowledge can be simply

recorded in text, symbols, and/or diagrams. It can be articulated. Tacit

knowledge is individual�s actions, experience, values, enjoyment, rapport,

or passion, or the emotions that they embrace. It is human knowledge. A

software team putting rhythms into action has to work with tacit knowledge.

It takes time to learn and master new rhythms of practices in a unique

development environment. Even a single practice such as two people col-

laborating in programming appears so simple, yet both people require hours

or days to learn how to communicate well with each other. One dimension to

FIGURE 1.22 Dave�s decision.

SOFTWARE DEVELOPMENT RHYTHMS 31

consider when adopting development rhythms is whether they are easy or

difficult to master.

Newly hired developers may join a team during the development stage.

Newcomers may find some rhythms easier to learn through on-the-job

training alongside those who have already had experience with them or

through previous project documents or even by absorbing the development

atmosphere and culture.Newcomers start as apprentices tomaster craftsmen.

However a skill is acquired, the ease or difficulty of acquiring a rhythm adds

another dimension. Bringing team learning and newly hired programmer

training together,we have themaster–coach diagram shown in Figure 1.23. In

formal terms, the diagram reflects knowledge transfers between those who

have mastered the rhythm and those who have not.

1.3.5 No Mathematics

We do not need to perceive things through the use of mathematics. For

instance, we can turn a burner to high and heat up a water-filled pot. The pot

warms up and large bubbles rise to the surface. Eventually the pot boils dry.

Wehave learned theprinciples of this phenomenon fromour ownexperience.

We do not need equations.

There is no mathematics in rhythms. Depending on how software prac-

tices are played as a rhythm, their synergy cannot be clear through under-

standing each of them individually. An example is shown in Figure 1.24.

Pair programming, which is done by a team of two programmers who always

collaborateon the sameprogramtogether, is easy to startbutdifficult to sustain

because the teamhasonly twoprogrammers, there isnopartner exchangewith

FIGURE 1.23 Master–coach diagram.

32 NO PROGRAMMER DIES

otherpairs. If theyworkon the same task for long, itmaynotbeeasy for themto

alwaysmaintain their concentration. Solo programming is easy to start and easy

to sustain. It is hard to conceive of the in–out diagram of two rhythms as one

just byunderstanding these two individual rhythms.Wehave to look intohow

a rhythm is established.

1.3.6 Where to Explore Rhythms

Iterations, patterns, and rhythms are interrelated. Rhythm refers to harmo-

nized processes and practices in the sense that each element should be used at

appropriate times so as to deliver synergistic values to people and software.

Software development rhythms are also relevant when it comes to the use of

different development strategies andhowandwhen they should be executed.

Both the in–out and master–coach diagrams can guide such analysis.

It is possible for one to identify many rhythms in good software develop-

ment. Some are easy to start but difficult to sustain,while others are difficult to

start but easy to sustain. In this book, we are interested only in those that are

botheasy to start andeasy to sustain.There isno singleone rhythm that applies

to all kinds of software development. Identifying rhythms is a matter of

observation and experience, and it may even involve many trials and errors.

We have to try different rhythms out in our teams in practical situations. Agile

practices are generally amenable to this kind of approach, and for this reason,

rhythms of agile practices one of the main themes in this book.

Good software rhythms are required to ensure that a software team is

productive and the software projects are completed successfully. For this, we

need to know how to meet our new software teams, and how to recruit new

software developers for our team.A software teamhas its ownnorms, and it is

difficult for one to talk about a general template that can be adopted to achieve

the same results with a different team. For this reason, instead of discussing

some standard practices, we present some case studies. We will discuss

software teams in developing countries to emphasize the importance of

FIGURE 1.24 Rhythms have no mathematics.

SOFTWARE DEVELOPMENT RHYTHMS 33

cultural elements in exploring the right rhythms. To make software team

productive, a teammust be aware that not all the knowledge gained from their

software project experiencemay be helpful or useful.We return to this issue in

Chapter 2.

It is tremendously challenging to tell a software team that they need to

change their usual practice and adopt something better. As there are somany

ways to build a piece of software, it is possible for some people to prefer one

method and others to prefer a completely different method. To address such

conflict in typicalmodern-day software development inChapter 3wediscuss

open-source software development that is almost diametrically opposite to

themethods used to develop software in the commercialworld.Almost every

programmer believes that there is something to be learned from open-source

software development, and in Chapter 3 we describe some of our experience

with using agile software development processes.

Chapters 2 and 3 establish some basics and cover a very broad spectrum

of topics in contemporary software engineering, touching on the essentials of

programmers, social culture, project experience, team communications, soft-

ware processes, and practices. The second part of the book makes use of

proven techniques and applications in engineering management, sociology,

industrial psychology, and group dynamics.

We explain software development rhythms in varying depths through-

out the other chapters in Part II and discuss several software development

rhythms. Many software rhythms are closely related to eXtreme program-

ming (XP), and this is not just a coincidence.Whilemany software teams have

successfully adopted thoseXPpractices, some teamsare crying out loud to get

out of it. I have often heard complaints such as �Kim and Keith, we already

tried the agile practices before, but theydidnotworkhere!�We think that they

get the software development rhythms wrong or they only get their old

development rhythms right. Trust me! To succeed with any software para-

digms, the mindsets and ways of working have to catch one critical element

right: software development rhythms.

Wehope that this bookwill helpyoubecomemore awareof the rhythmsof

software development and see how they can contribute to the quality of both

processes and products in your own firsthand experience of writing software.

REFERENCES

Anderson JV. Mind mapping: A tool for creative thinking. Business Horizon 1993; 36
(1):41–46.

Beck K and Andres C. Extreme Programming Explained. 2nd ed. Boston: Addison-

Wesley; 2005.

34 NO PROGRAMMER DIES

Bernstein L and Yuhas CM. Trustworthy Systems through Quantitative Software

Engineering. Hoboken, NJ: Wiley; 2005.

Boehm B. A spiral model of software development and enhancement. IEEE Computer

1988; 21 (5):61–72.

Brooks FP. The Mythical Man-Month: Essays on Software Engineering. Reading, MA:

Addison-Wesley; 1995.

ChapmanSN.The Fundamentals of ProductionPlanning andControl. Upper SaddleRiver,

NJ: Pearson/Prentice-Hall; 2006.

Leveson N. An investigation of the Therac-25 accidents. IEEE Computer 1993; 26 (7):

18–41.

Martin RC. UML for Java Programmers. Upper Saddle River, NJ: Prentice-Hall; 2003.

Nawrocki J, Walter B, and Wojciechowski A. Toward maturity model for extreme

programming. Proceedings of 27th Euromicro Conference, 2001, p. 233–239.

Poppendieck M and Poppendieck T. Lean Software Development: An Agile Toolkit.

Boston: Addison-Wesley; 2003.

Post TJ, Baltussen G, and Van den AssemM. Deal or no deal? Decision making under

risk in a large-payoff game show.EFA2006ZurichMeetings 2006; available at SSRN:

http://ssrn.com/abstract¼636508 .

RaccoonLBS.The chaosmodel and the chaos life cycle.ACMSoftwareEngineeringNotes

1995; 20 (1):55–66.

Royce W. Successful software management style: Steering and balance. IEEE Software

2005; 22 (5):40–47.

Royce W. Managing the development of large software systems. Proceedings of IEEE

WESCON, Aug (1970) p.1–9.

Tversky A and Kahenman D. The framing of decisions and the psychology of choice.

Science 1981; 221 (4481):453–458.

REFERENCES 35

