80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 1 $

Introduction to Exploitation:
Linux on x86

Welcome to the Part I of the Shellcoder’s Handbook Second Edition: Discovering
and Exploiting Security Holes. This part is an introduction to vulnerability dis-
covery and exploitation. It is organized in a manner that will allow you to
learn exploitation on various fictitious sample code structures created specifi-
cally for this book to aid in the learning process, as well as real-life, in-the-wild,
vulnerabilities.

You will learn the details of exploitation under Linux running on an Intel 32-bit
(IA32 or x86) processor. The discovery and exploitation of vulnerabilities on
Linux/IA32 is the easiest and most straightforward to comprehend. This is why
we have chosen to start with Linux/IA32. Linux is easiest to understand from
a hacker’s point of view because you have solid, reliable, internal operating
system structures to work with when exploiting.

After you have a solid understanding of these concepts and have worked
through the example code, you are graduated to increasingly difficult vulner-
ability discovery and exploitation scenarios in subsequent Parts. We work
through stack buffer overflows in Chapter 2, introductory shellcoding in
Chapter 3, format string overflows in Chapter 4, and finally finish up the part
with heap-based buffer overflow hacking techniques for the Linux platform in
Chapter 5. Upon completion of this part, you will be well on your way to
understanding vulnerability development and exploitation.

e

80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 2 $

80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 3 $

Before You Begin

This chapter goes over the concepts you need to understand in order to make
sense of the rest of this book. Much like some of the reading required for a col-
lege course, the material covered here is introductory and hopefully already
known to you. This chapter is by no means an attempt to cover everything you
need to know; rather, it should serve as jumping off point to the other chapters.

You should read through this chapter as a refresher. If you find concepts that
are foreign to you, we suggest that you mark these down as areas on which
you need to do more research. Take the time to learn about these concepts
before venturing to later chapters.

You will find many of the sample code and code fragments in this
book on The Shellcoder’s Handbook Web site (http://www.wiley.com/go
/shellcodershandbook); you can copy and paste these samples into your
favorite text editor to save time when working on examples.

Basic Concepts

To understand the content of this book, you need a well-developed under-
standing of computer languages, operating systems, and architectures. If you
do not understand how something works, it is difficult to detect that it is mal-
functioning. This holds true for computers as well as for discovering and
exploiting security holes.

e

80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 4 $

4 Part I = Introduction to Exploitation: Linux on x86

Before you begin to understand the concepts, you must be able to speak the
language. You will need to know a few definitions, or terms, that are part of
the vernacular of security researchers so that you can better apply the concepts
in this book:

Vulnerability (n.): A flaw in a system’s security that can lead to an
attacker utilizing the system in a manner other than the designer
intended. This can include impacting the availability of the system,
elevating access privileges to an unintended level, complete control
of the system by an unauthorized party, and many other possibilities.
Also known as a security hole or security bug.

Exploit (v.): To take advantage of a vulnerability so that the target
system reacts in a manner other than which the designer intended.

Exploit (n.): The tool, set of instructions, or code that is used to take
advantage of a vulnerability. Also known as a Proof of Concept (POC).

0day (n.): An exploit for a vulnerability that has not been publicly dis-
closed. Sometimes used to refer to the vulnerability itself.

Fuzzer (n.): A tool or application that attempts all, or a wide range of,
unexpected input values to a system. The purpose of a fuzzer is to
determine whether a bug exists in the system, which could later be
exploited without having to fully know the target system’s internal
functioning.

Memory Management

To use this book, you will need to understand modern memory management,
specifically for the Intel Architecture, 32 Bit (IA32). Linux on IA32 is covered
exclusively in the first section of this book and used in the introductory chap-
ters. You will need to understand how memory is managed, because most
security holes described in this book come from overwriting or overflowing one
portion of memory into another.

INSTRUCTIONS AND DATA

A modern computer makes no real distinction between instructions and data. If
a processor can be fed instructions when it should be seeing data, it will happily
go about executing the passed instructions. This characteristic makes system
exploitation possible. This book teaches you how to insert instructions when
the system designer expected data. You will also use the concept of overflowing
to overwrite the designer’s instructions with your own. The goal is to gain
control of execution.

80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 5 (E

Chapter 1 =« Before You Begin

When a program is executed, it is laid out in an organized manner—various
elements of the program are mapped into memory. First, the operating system
creates an address space in which the program will run. This address space
includes the actual program instructions as well as any required data.

Next, information is loaded from the program’s executable file to the newly
created address space. There are three types of segments: .text, .bss, and
.data. The . text segment is mapped as read-only, whereas .data and .bss are
writable. The .bss and .data segments are reserved for global variables. The
.data segment contains static initialized data, and the .bss segment contains
uninitialized data. The final segment, . text, holds the program instructions.

Finally, the stack and the heap are initialized. The stack is a data structure,
more specifically a Last In First Out (LIFO) data structure, which means that
the most recent data placed, or pushed, onto the stack is the next item to be
removed, or popped, from the stack. A LIFO data structure is ideal for storing
transitory information, or information that does not need to be stored for a
lengthy period of time. The stack stores local variables, information relating to
function calls, and other information used to clean up the stack after a function
or procedure is called.

Another important feature of the stack is that it grows down the address
space: as more data is added to the stack, it is added at increasingly lower
address values.

The heap is another data structure used to hold program information, more
specifically, dynamic variables. The heap is (roughly) a First In First Out (FIFO)
data structure. Data is placed and removed from the heap as it builds. The heap
grows up the address space: As data is added to the heap, it is added at an increas-
ingly higher address value, as shown in the following memory space diagram.

T Lower addresses (0x08000000)
Shared libraries

.text

.bss

Heap (grows i)

Stack (grows T)

env pointer

Argc

| Higher addresses (Oxbfffffff)

Memory management presented in this section must be understood on a
much deeper, more detailed level to fully comprehend, and more importantly,
apply what is contained in this book. Check the first half of Chapter 15 for
places to learn more about memory management. You can also pay a visit to
http://linux-mm.org/ for more detailed information on memory manage-
ment on Linux. Understanding memory management concepts will help you

e

80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 6 $

6 Part I = Introduction to Exploitation: Linux on x86

better comprehend the programming language you will use to manipulate
them—assembly.

Assembly

Knowledge of assembly language specific to IA32 is required in order to
understand much of this book. Much of the bug discovery process involves
interpreting and understanding assembly, and much of this book focuses on
assembly with the 32-bit Intel processor. Exploiting security holes requires a
firm grasp of assembly language, because most exploits will require you to
write (or modify existing) code in assembly.

Because systems other than IA32 are important, but can be somewhat
more difficult to exploit, this book also covers bug discovery and exploitation
on other processor families. If you are planning to pursue security research on
other platforms, it is important for you to have a strong understanding of
assembly specific to your chosen architecture.

If you are not well versed in or have no experience with assembly, you will
tirst need to learn number systems (specifically hexadecimal), data sizes, and
number sign representations. These computer-engineering concepts can be
found in most college-level computer architecture books.

Registers

Understanding how the registers work on an IA32 processor and how they are
manipulated via assembly is essential for vulnerability development and
exploitation. Registers can be accessed, read, and changed with assembly.

Registers are memory, usually connected directly to circuitry for perfor-
mance reasons. They are responsible for manipulations that allow modern
computers to function, and can be manipulated with assembly instructions.
From a high level, registers can be grouped into four categories:

m General purpose
m Segment
m Control
m Other
General-purpose registers are used to perform a range of common mathemat-
ical operations. They include registers such as Eax, EBX, and Ecx for the IA32,
and can be used to store data and addresses, offset addresses, perform counting
functions, and many other things.
A general-purpose register to take note of is the extended stack pointer register

(esp) or simply the stack pointer. Esp points to the memory address where the
next stack operation will take place. In order to understand stack overflows in

e

80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 7 (E

Chapter 1 =« Before You Begin

the next chapter, you should thoroughly understand how Esp is used with
common assembly instructions and the effect it has on data stored on the stack.

The next class of register of interest is the segment register. Unlike the other
registers on an IA32 processor, the segment registers are 16 bit (other regis-
ters are 32 bits in size). Segment registers, such as cs, bs, and ss, are used to
keep track of segments and to allow backward compatibility with 16-bit
applications.

Control registers are used to control the function of the processor. The most
important of these registers for the IA32 is the Extended Instruction Pointer (EIP)
or simply the Instruction Pointer. EIp contains the address of the next machine
instruction to be executed. Naturally, if you want to control the execution path
of a program, which is incidentally what this book is all about, it is important
to have the ability to access and change the value stored in the EIP register.

The registers in the other category are simply extraneous registers that do
not fit neatly into the first three categories. One of these registers is the
Extended Flags (EFLAGS) register, which comprises many single-bit registers
that are used to store the results of various tests performed by the processor.

Once you have a solid understanding of the registers, you can move onto
assembly programming itself.

Recognizing C and C++
Code Constructs in Assembly

The C family of programming languages (C, C++, C#) is one of the most
widely used, if not the most widely used, genre of programming languages. C
is definitely the most popular language for Windows and Unix server applica-
tions, which are good targets for vulnerability development. For these reasons,
a solid understanding of C is critical.

Along with a broad comprehension of C, you should be able to understand
how compiled C code translates into assembly. Understanding how C vari-
ables, pointers, functions, and memory allocation are represented by assembly
will make the contents of this book much easier to understand.

Let’s take some common C and C++ code constructs and see what they look
like in assembly. If you have a firm grasp of these examples, you should be
ready to move forward with the rest of the book.

Let’s look at declaring an integer in C++, then using that same integer for
counting:

int number;
. more code . . .

number++;

80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 8 (E

8 Part I = Introduction to Exploitation: Linux on x86

This could be translated to, in assembly:

number dw 0

.more code
mov eax,number
inc eax

mov number, eax

We use the Define Word (pw) instruction to define a value for our integer,
number. Next we put the value into the Eax register, increment the value in the
EAX register by one, and then move this value back into the number integer.

Look at a simple if statement in C++:

int number;
if (number<0)
{

.more code

Now, look at the same if statement in assembly:

number dw 0
mov eax,number
or eax,eax

jge label

<no>

label :<yes>

What we are doing here is defining a value for number again with the pw
instruction. Then we move the value stored in number into EaX, then we jump
to label if number is greater than or equal to zero with Jump if Greater than or
Equal to (JGE).

Here’s another example, using an array:

int arrayl[4];
.more code
array|[2]=9;

Here we have declared an array, array, and set an array element equal to 9.
In assembly we have:

array dw 0,0,0,0
.more code

mov ebx, 2

mov array[ebx],9

In this example, we declare an array, then use the EBx register to move val-
ues into the array.

e

80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 9 (E

Chapter 1 =« Before You Begin

9

Last, let’s take a look at a more complicated example. The code shows how
a simple C function looks in assembly. If you can easily understand this exam-

ple, you are probably ready to move forward to the next chapter.

\

int triangle

int array[5] =

int area;

(int width,

area = width * height/2;

return

Here is the same function, but in disassembled form. The following is out-
put from the gdb debugger. gdb is the GNU project debugger; you can read
more about it at http: //www.gnu.org/software/gdb/documentation/. See if

(area) ;

in height) {

{0,1,2,3,4};

you can match the assembler to the C code:

0x8048430
0x8048431
0x8048433
0x8048434
0x8048435
0x8048438
0x804843Db
0x8048440
0x8048441
0x8048446
0x8048448
0x804844b
0x804844d
0x8048451
0x8048453
0x8048456
0x8048459
0x804845¢c
0x804845e
0x8048461
0x8048464
0x8048466
0x8048469
0x804846a
0x804846b
0x804846¢

<triangle>:
<triangle+1>:
<triangle+3>:
<triangle+4>:
<triangle+5>:
<triangle+8>:
<triangle+11>:
<triangle+16>:
<triangle+17>:
<triangle+22>:
<triangle+24>:
<triangle+27>:
<triangle+29>:
<triangle+33>:
<triangle+35>:
<triangle+38>:
<triangle+41>:
<triangle+44>:
<triangle+46>:
<triangle+49>:
<triangle+52>:
<triangle+54>:
<triangle+57>:
<triangle+58>:
<triangle+59>
<triangle+60>:

push
mov
push
push
sub
lea
mov
cld

mov

repz movsl

mov
mov
imul
mov
sar
shr
lea
sar
mov
mov
mov
add
pop
pop
pop
ret

$ebp
%esp,
$edi

$esi

$ebp

$0x30, %¥esp

Oxffffffd8 (%ebp), %edi
$0x8049508, $esi
$0x30, $esp
%ds: (%esi), %es:(%edi)
0x8 (%$ebp) , seax
$eax, sedx
Oxc (%$ebp) , $edx
$edx, $eax
S0x1f, %eax
SO0x1f, $eax
($eax, %edx, 1), %eax
Seax

$eax, Oxffffffd4 (%ebp)
Oxffffffd4 (%ebp) , 3eax
$eax, seax

$0x30, %esp

%esi

$edi

$ebp

The main thing the function does is multiply two numbers, so note the imul

instruction in the middle. Also note the first few instructions—saving gp, and
subtracting from Esp. The subtraction makes room on the stack for the func-

e

80238c0l.gxd:WileyRed 7/11/07 7:24 AM Page 10 $

Part | = Introduction to Exploitation: Linux on x86

tion’s local variables. It’s also worth noting that the function returns its result
in the EAX register.

Conclusion

This chapter introduced some basic concepts you need to know in order to
understand the rest of this book. You should spend some time reviewing the
concepts outlined in this chapter. If you find that you do not have sufficient
exposure to assembly language and C or C++, you may need to do some back-
ground preparation in order to get full value from the following chapters.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

