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The Standard Split Plot Experiment

Design

1.1. INTRODUCTION

Prior to starting the topic of this book, it was deemed advisable to present some

design concepts, definitions, and principles. Comparative experiments involve a

number, v, treatments (factors) where a treatment is an item of interest to the

experimenter. A treatment could be a medical treatment, a drug application, a level

of a factor (amount of a drug, fertilizer, insecticide, etc.), a genotype, an agricultural

practice, a marketing method, a teaching method, or any other item of interest. The

selection of the v treatments for an experiment is known as the treatment design. The

selection of an appropriate treatment design is a major element for the success of an

experiment. It may include checks (standards, placebos) or other points of reference.

The treatments may be all combinations of two or more factors and this is known as

a factorial arrangement or factorial treatment design. A subset of a factorial is

denoted as a fractional replicate of a factorial.

The arrangement of the treatments in an experiment is known as the experiment

design or the design of the experiment. The term experimental design is of fre-

quent use in statistical literature but is not used here. There are many types of

experiment designs including: unblocked designs, blocked designs (complete blocks

and incomplete blocks), row-column experiment designs, row-column designs

within complete blocks, and others. Tables of designs are available in several

statistical publications. However, many more experiment designs are available from

a software package such as GENDEX (2005). This package obtains a randomized

form of an experiment design and the design in variance optimal or near optimal.

There are three types of units to be considered when conducting an experiment.

These are the observational unit, the sample or sampling unit, and the experimental
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unit (Federer, 1991, Chapter 7). The observational unit is the smallest unit for which

a response or measurement is obtained. A population or distribution is composed of

sample units or sampling units. The experimental unit is the smallest amount of

experimental material to which one treatment is applied. In many experiments, these

three types of units are one and the same. In other cases, they may all be different.

For example, suppose a treatment is a teaching method taught to a group of thirty

students. The experimental unit is the group of thirty students for the period of

time used to evaluate a teaching method. The sampling unit is the student, from

a population of all students, for which inferences are to be made about this teaching

method. Suppose that several examinations are given during the period of time

the method is applied, the result from each examination is an observation or

response and the observational unit is one examination from one student. In some

investigations like sampling for water quality, obtaining a measurement on produce

for a genotype from a plot of land measuring 1 m by 10 m (an experimental unit),

etc., the sampling units are undefined.

Fisher (1966) presented three principles of experiment design. These are local

control (blocking, stratification), replication, and randomization. Owing to random

fluctuations of responses in any experiment or investigation, there is variation. The

variation controlled should not be associated or interacting with treatment responses.

For example, if an animal dies during the course of conducting an experiment and

the death is not caused by the treatment, it should be considered as a missing

observation and not as a zero response. Blocking (stratification) or local control is

used to exclude extraneous variation in an experiment not associated with treatment

effects. The blocking should be such as to have maximum variation among blocks

and minimum variation within blocks. This makes for efficient experimentation and

reduces the number of replicates (replications) needed for a specified degree of

precision for treatment effects.

To reduce the effect of the variation in an experiment on measuring a treatment

effect, the sample size or the number of replicates needs to be increased. Replication

allows for an estimate of the random variation. Replication refers to the number

of experimental units allocated to a particular treatment. The variation among the

experimental units, eliminating treatment and blocking effects, is a measure of

experimental variation or error. The number of replications should not be confused

with the number of observations. For example, in a nutrition study of several regimes

with an experimental unit consisting of one animal, weekly measurements

(observations) may be taken on the weight of the animal over a 6-month period.

These week-by-week measurements do not constitute replications. The number of

replications is determined by the number of experimental units allocated to one

treatment and not by the number of observations obtained.

Randomization is necessary in order to have a valid estimate of an error variance

for comparing differences among treatments in an experiment. Fisher (1966)

has defined a valid estimate of an error variance or mean square as one which

contains all sources of variation affecting treatment effects except those due to the

treatments themselves. This means that the estimated variance should be among

experimental units treated alike and not necessarily among observations.
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An appropriate response model needs to be determined for each experiment. It is

essential to determine the pattern of variation in an experiment or investigation and

not assume that one response model fits all experiments for a given design. With the

availability of computers, exploratory model selection may be utilized to determine

variation patterns in an experiment (Federer, 2003). The nature of the experiment

design selected and the variation imposed during the conduct of an experiment

determine the variation pattern. The conduct of an experiment or investigation is a

part of the design of the experiment or investigation. This fact may be overlooked

when selecting a response model equation for an experiment. For example, a

randomized complete block design may be selected as the design of the experiment.

Then, during the course of conducting the experiment, a part of the replicate of the

experiment is flooded with water. This needs to be considered as a part of the design

of the experiment and may be handled by setting up another block, using a covariate,

or missing experimental units. This would not be the response model envisioned

when the experiment design was selected. Or, it may be that the experimenter

observed an unanticipated gradient in some or all of the blocks. A response model

taking the gradients within blocks into consideration should be used in place of the

model presumed to hold when the experiment was started. More detail on

exploratory model selection may be found in Federer (2003).

For further discussion of the above, the reader is referred to Fisher (1966) and

Federer (1984). The latter reference discusses a number of other principles and

axioms to consider when conducting experiments.

An analysis of variance is considered to be a partitioning of the total variation into

the variation for each of the sources of variation listed in a response model. An F-test

is not considered to be a part of the analysis of variance as originally developed

by Sir Ronald A. Fisher. Statistical publications often consider an F-test as part of

the analysis of variance. We do not, as variance component estimation, multiple

range tests, or other analyses may be used in connection with an analysis of variance.

Some experimenters do consider the term analysis of variance to be a misnomer. A

better term may be a partitioning of the total variation into its component parts or

simply variation or variance partitioning.

1.2. STATISTICAL DESIGN

The standard split plot experiment design (SPED) discussed in several statistics

textbooks has a two-factor factorial arrangement as the treatment design. One

factor, say A with a levels, is designed as a randomized complete block design

with r complete blocks or replicates. The experimental unit, the smallest unit to

which one treatment is applied, for the levels of factor A treatments is called a

whole plot experimental unit (wpeu). Then each wpeu is divided into b split plot

experimental units (speus) for the b levels of the second factor, say B. Note that

either or both factors A and B could be in a factorial arrangement or other

treatment design rather than a single factor. A schematic layout of the standard

SPED is shown below.
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Standard split plot design with r replicates, a levels of factor A, and b levels of

factor B

Replicate 1 2 3 . . . r

Whole plot factor A 1 2 . . . a 1 2 . . . a 1 2 . . . a . . . 1 2 . . . a

Split plot factor B 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1

2 2 . . . 2 2 2 . . . 2 2 2 . . . 2 2 2 . . . 2

. . . . . . . . . . . . . . . . . . . . . . . .
b b . . . b b b . . . b b b . . . b b b . . . b

The a levels of factor A are randomly and independently allocated to the a wpeus

within each of the r complete blocks or replicates. Then within each wpeu, the b levels

of factor B are independently randomized. There are r independent randomizations for

the a levels of factor A and ra independently assigned randomizations for b levels of

factor B. The fact that the number of randomizations and the experimental units are

different for the two factors implies that each factor will have a separate error term for

comparing effects of factor A and effects of factor B.

Even though the standard SPED has the whole plot factor A treatments in a

randomized complete block design, any experiment design may be used for the factor A.

For example, a completely randomized experiment design, a Latin square experiment

design, an incomplete block experiment design, or any other experiment design may be

used for the whole plot treatments. These variations are illustrated in Chapter 3.

The three steps in randomizing a plan for a standard or basic split plot experiment

design consisting of r ¼ 5 blocks (replicates), a ¼ 4 levels of whole plot factor A,

and b ¼ 8 levels of split plot factor B are shown below:

Step 1: Divison of the experimental area or material into five blocks
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Step 2: Randomizaton of four levels of whole plot factor A to each of five blocks

        B
LO

C
K

1 

A3 A2 A1 A4  

        B
LO

C
K

2 

A4 A1 A3 A2  

        B
LO

C
K

3 

A2 A3 A4 A1  

        B
LO

C
K

4 

A4 A2 A3 A1  

        B
LO

C
K

5 

A3 A4 A1 A2 

Step 3: Randomization of eight levels of split plot factor B within each level of

whole plot factor A

B1 B2 B7 B2   
B4 B3 B8 B4   
B5 B4 B4 B7   

B3 B5 B2 B5   

B6 B1 B5 B8   

B8 B6 B3 B1   

B7 B8 B6 B6   

B2 B7 B1 B3 BLOCK1 
A3 A2 A1 A4   

B7 B6 B2 B5   

B2 B1 B3 B4   

B4 B4 B5 B2   

B6 B3 B7 B8   

B3 B7 B8 B3   

B8 B2 B1 B6   

B1 B5 B6 B7   

B5 B8 B4 B1 BLOCK2 
A4 A1 A3 A2   
B4 B7 B1 B6   

B6 B8 B2 B1   

B1 B2 B4 B3   

B8 B6 B3 B5   

B5 B3 B7 B4   

B7 B1 B8 B8   

B3 B5 B6 B7   

B2 B4 B5 B2 BLOCK3 
A2 A3 A4 A1
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B3 B7 B5 B8   

B8 B6 B2 B5   

B5 B2 B3 B4   

B6 B8 B4 B1   
B1 B4 B7 B3   
B7 B5 B6 B6   
B4 B1 B8 B7   

B2 B3 B1 B2 BLOCK4 
A4 A2 A3 A1   
B3 B1 B7 B1   

B1 B6 B2 B7   

B5 B2 B3 B4   

B6 B7 B4 B8   

B8 B4 B5 B3   

B7 B5 B6 B6   

B4 B8 B1 B5   

B2 B3 B8 B2 BLOCK5 
A3 A4 A1 A2   

If an experiment design involving blocking is used for the b split plot treatments,

factor B, should be within each whole-plot-treatment wpeu, as this facilitates the

statistical analysis for an experiment as orthogonality of effects is maintained. If the

experiment design for the split plot factor B treatments is over levels of the whole

plot treatments within one complete block, confounding of effects is introduced and

the statistical analysis becomes more complex (Federer, 1975). This may not be a

computational problem as available statistical software packages can be written to

handle this situation. However, the confounding of effects reduces the precision of

contrasts and estimates of effects.

1.3. EXAMPLES OF SPLIT-PLOT-DESIGNED EXPERIMENTS

Example 1—A seed germination test was conducted in a greenhouse on a ¼ 49

genotypes of guayule, the whole plots (factor A), with four seed treatments (factor B)

applied to each genotype as split plot treatments (Federer, 1946). The wpeu was a

greenhouse flat for one genotype and 100 seeds of each of the four seed treatments

(factor B) were planted in a flat, as more information on seed treatment than on

genotype was desired and this fitted into the layout more easily than any other

arrangement. The speu consisted of 1/4 of a greenhouse flat in which 100 seeds were

planted. The 49 genotypes were arranged in a triple lattice incomplete block

experiment design with r ¼ 6 complete blocks and with an incomplete block size of

k ¼ 7 wpeus. The four seed treatments were randomly allocated to the four speus in

a flat, that is, within each genotype wpeu. The data for eight of the 49 genotypes in

three of the six replicates are given as Example X-1 of Federer (1955) and as

Example 1.2. The whole plot treatments, 49 genotypes, are considered to be a

random sample of genotypes from a population of genotypes, that is, they are
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considered to be random effects whereas the seed treatments are fixed effects as

these are the only ones of interest.

Example 2—Example X-2 of Federer (1955) contains the yield data for b ¼ 6

genotypes which are corn double crosses. The data are from two of the twelve

districts set up for testing corn hybrids in Iowa. The a ¼ 2 districts are the whole

plots, and the six corn double crosses, the split plot treatments, are arranged in a

randomized complete block design within each district. The yield data (pounds of

ear corn) arranged systematically are given below:

District 1, A

Double-cross,

factor B Replicate 1 Replicate 2 Replicate 3 Replicate 4 Total

1-1 34.6 33.4 36.5 33.0 137.5

2-2 34.5 39.1 35.4 35.6 144.6

4-3 30.1 30.8 35.0 33.3 129.2

15-45 31.3 29.3 29.7 33.2 123.5

8-38 32.8 35.7 36.0 34.0 138.5

7-39 30.7 35.5 35.3 30.6 132.1

Total 194.0 203.8 207.9 199.7 805.4

District 2, A

Double-cross,

factor B Replicate 1 Replicate 2 Replicate 3 Replicate 4 Total

1-1 33.1 24.6 33.8 34.6 126.1

2-2 46.4 36.9 36.3 45.3 164.9

4-3 32.3 38.7 37.5 37.6 146.1

15-43 37.5 39.2 39.1 34.1 149.9

8-38 31.2 40.8 46.1 44.1 162.2

7-39 35.8 38.2 38.8 39.6 152.4

Total 216.3 218.4 231.6 235.3 901.6

Example 3—Cochran and Cox (1957), page 300, present the data for an SPED with

a ¼ 3 recipes, the whole plots (factor A), for chocolate cakes baked at b ¼ 6

temperatures, the split plots (factor B). The response was the breaking angle of the

cake. Enough batter for one recipe was prepared for the six cakes to be baked at the

six temperatures. That is, the wpeu was one batter for six cakes. The three recipes

were arranged in a randomized complete block design with r ¼ 15 replicates.

Example 4—Federer (1955), page 26 of the Problem Section, presents the data

for an SPED with a ¼ 2 whole plot treatments (factor A) of alfalfa or no alfalfa

and b ¼ 5 split plot treatments of bromegrass strains. The bromegrass strains

were intercropped (mixed together) with the alfalfa and no alfalfa (See Federer,
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1993, 1999). The whole plot treatments were arranged in a randomized complete

block design with r ¼ 4 replicates. The dry weights (grams) of hay arranged

systematically are:

Replicate 1 Replicate 2 Replicate 3 Replicate 4

Bromegrass Factor A Factor A Factor A Factor A

strain, factor B alfalfa alone alfalfa alone alfalfa alone alfalfa alone

a 730 786 1004 838 871 1033 844 867

b 601 1038 978 1111 1059 1380 1053 1229

c 840 1047 1099 1393 938 1208 1170 1433

d 844 993 990 970 965 1.308 1111 1311

e 768 883 1029 1130 909 1247 1124 1289

Example 5—Das and Giri (1979), page 150, present an example of three varieties

forming the whole plots and b ¼ 4 manurial treatments forming the split plots in an

SPED with r ¼ 4 replications.

Example 6—Gomez and Gomez (1984), page 102, give a numerical example of six

levels of nitrogen applications forming the whole plots and b ¼ 4 rice varieties

forming the split plots in an SPED with r ¼ 3 replications.

Example 7—Raghavarao (1983), page 255, presents a numerical example where the

whole plots were a ¼ 3 nitrogen levels and the b ¼ 4 split plot treatments were

insecticides in an SPED with r ¼ 4 replications.

Example 8—Leonard and Clark (1938), Chapter 21, give a numerical example of a

split plot experiment design with a ¼ 10 maize hybrids as the whole plots of 36 hills

(3 plants per hill). The wpeus were divided into thirds with 12 hills making up the

speu. The b ¼ 3 split plot treatments were seeds from the three generations F1, F2,

and F3. Two replicates were used and the response was the yield of ear corn.

Example 9—In a setting other than agriculture, three types of schools (public,

religious, and private) were the whole plots. Four types of teaching methods formed

the split plots. This arrangement was replicated over r school districts. The response

was the average score on standardized tests.

Example 10—Two types of shelters (barn and outdoor) were the whole plot factor A

treatments and two types of shoes for horses were used as the factor B split plot

treatments. There were to be r ¼ 5 sets (replicates) of four horses used. Two horses,

wpeu, of each set would be kept in a barn and two would be kept outdoors. One

horse, speu, had one type of shoe and the second horse received the other type of

shoe. The response was length of time required before reshoeing a horse was

required.

Example 11—In a micro-array experiment, the two whole plot treatments were

methods one and two. The two split plot treatments were red color-label 1 and green
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color-label 2 for method 1 and were green color-label 1 and red color-label 2 for

method 2. There were r ¼ 10 sets of whole plots. The color by label interaction is

completely confounded with method in the SPED experiment performed.

Example 12—Three types of managements (factor A) constituted the whole plots

that consisted of a litter of six male rats. The b ¼ 6 medical treatments (factor B)

were the split plot treatments with one rat constituting the speu. Three litters, wpeus,

were obtained from each of r ¼ 6 laboratories.

Example 13—A randomized complete block experiment design with a ¼ 5

treatments (factor A) and r¼ 5 replicates was conducted to determine the effect

of the treatments on the yield and the quality of strawberries. The experiment was

laid out in the field in five columns, the blocks or replicates, and five rows. Hence,

this is a row-column design as far as spatial variation is concerned. A 5� 5 Latin

square experiment design should have been used but was not. The strawberries in

each of the 25 wpeus were graded into b ¼ 4 quality grades (factor B) that were the

split plot treatments. Responses were the weight and the number of strawberries in

each of the grades within a wpeu.

Example 14—Jarmasz et al. (2005) used several forms of a split plot experiment

design to study human subject perceptions to various stimuli. The factor sex was not

taken into account when analyzing the data presented in the paper. Taking the factor

sex into account adds to the splitting of units and the complexity of the analysis.

Several variations of the SPED were used. The split-plot-designed experiment is of

frequent occurrence in this type of research investigation.

Numerous literature citations of split plot designs are given by Federer (1955) in

the Problem Section at the end of the book. This type of design appears in many

fields of inquiry and is of frequent occurrence. Kirk (1968) lists ten references as

representative applications of split plot designs in literature involving learning and

other psychological research. The Annual Reports of the Rothamsted Experiment

Station, the International Rice Research Institute (IRRI), and other research

organizations give data sets for split-plot-designed experiments.

1.4. ANALYSIS OF VARIANCE

A partitioning of the degrees of freedom in an analysis of variance table for the

various sources of variation is one method for writing a linear model for a set of

experimental data. Alternatively, writing a linear model in equation form is another

way of presenting the sources of variation for an experiment. A linear response

model for the SPED for fixed effects factors A and B is usually given as

Yhij ¼ mþ rh þ ai þ dhi þ bj þ abij þ ehij, ð1:1Þ

where Yhij is the response of the hijth speu,

m is a general mean effect,
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rh is the hth replicate effect which is identically and independently distributed

with mean zero and variance s2
r,

ai is the effect of the ith whole plot factor A treatment,

dhi is a whole plot random error term which is identically and independently

distributed with mean zero and variance s2
d,

bj is the effect of the jth split plot factor B treatment,

abij is the interaction effect of the ith whole plot treatment with the jth split plot

treatment, and

ehij is a split plot random error effect identically and independently distributed

with mean zero and variance s2
e .

The rh, ehi, and dhij in Equation (1.1) are considered to be mutually independent

variables.

Prior to calculating an analysis of variance, ANOVA table for the above response

model, it is often instructive and enlightening to construct an ANOVA table for each

whole plot as follows:

Whole plot level A1 A2 . . . Aa

Source of variation DF SS DF SS . . . DF SS

Total rb T1 rb T2 . . . rb Ta

Correction for mean 1 C1 1 C2 . . . 1 Ca

Replicate r � 1 R1 r � 1 R2 . . . r � 1 Ra

Split plot factor B b� 1 B1 b� 1 B2 . . . b� 1 Ba

R� B ¼ Error ðr � 1Þðb� 1Þ E1 ðr � 1Þðb� 1Þ E2 . . . ðr � 1Þðb� 1Þ Ea

DF is degrees of freedom and SS is sum of squares. The dot notation is used

which indicates that this is a sum over the subscripts replaced by a dot. The sums of

squares for the ith whole plot treatment, i ¼ 1, 2, . . ., a, are:

Ti ¼
Xr

h¼1

Xb

j¼1

Y2
hij

Ci ¼ Y2
:i:=br

Ri ¼
Xr

h¼1

Y2
hi:=b� Y2

:i:=br ¼ b
Xr

i¼1

ð�yhi: � �y:i:Þ2

Bi ¼
Xb

j¼1

Y2
:ij=r � Y2

:i:=br ¼ r
Xb

j¼1

ð�y:ij � �y:i:Þ2:

These are the usual equations for computing sums of squares for data from a

randomized complete block designed experiment. Ei is obtained by subtraction.
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Data from a split-plot-designed experiment should not be analyzed as a three-

factor factorial of the three factors A, B, and R. This is not correct as can be seen

from the above and noting that the b R� B interactions are nested within whole plot

treatments. This means that this interaction is completely confounded with the

R� A� B interaction. The replicates for different wpeus are not the same even

though they may have the same numbering. They are from different parts of the

experiment. The calculations can be performed but this does not validate the

partition for these two interactions.

A combined ANOVA is easily obtained from the above analyses as indicated in

the table that follows.

Source of variation Degrees of freedom Sum of squares

Total rab T1þ T2þ . . .þ Ta

Correction for mean 1 CFM Compute as usual

Whole plot treatment A a� 1 C1þ C2þ . . .þ Ca� CFM

Replicate within A aðr � 1Þ R1þ R2þ . . .þ Ra

Replicate r � 1 Compute as usual

Error A ¼ R� A ða� 1Þðr � 1Þ Subtraction

Split plot treatment B within A aðb� 1Þ B1þ B2þ . . .þ Ba

Split plot treatment B a� 1 Compute as usual

A� B ða� 1Þðb� 1Þ Subtraction

Error B ¼ R� B within A aðb� 1Þðr � 1Þ E1þ E2þ . . .þ Ea

The Replicate within A sum of squares with aðr � 1Þ degrees of freedom is the

sum R1þ R2þ . . .þ Ra. This is the Replicate sum of squaresþ the Error A sum of

squares. The additional sums of squares required for the above table are obtained

from the following equations:

CFM ¼ Y2
:::=abr

Replicate ¼
Xr

i¼1

Y2
h::=ab� Y2

:::=abr

Split plot treatment B ¼
Xb

i¼1

Y2
::j=ar � Y2

:::=abr:

Using this format for obtaining an ANOVA for an SPED can be enlightening for

information on the nature of the factor B responses at each level of factor A and for

observing the homogeneity of the error mean squares Ei=ðrb� r � b� 1Þ at each

level of factor A.

In the above form, it may be instructive in some situations to partition each of the

Ei sum of squares into Tukey’s one-degree-of-freedom for nonadditivity (see e.g.,

Snedecor and Cochran, 1980, Section 15.8) and a residual sum of squares with

rb� r � b degrees of freedom. Likewise, the R� A sum of squares may be partitioned
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to check for nonadditivity. The formula for computing Tukey’s one-degree-of-

freedom sum of squares for a two-way layout is

TNA ¼

Pr
h¼1

Pb
j¼1

Yhijð�yhi: � �y:i:Þð�y:ij � �y:i:Þ
" #2

Pr
h¼1

ð�yhi: � �y:i:Þ2
Pb
j¼1

ð�y:ij � �y:i:Þ2
: ð1:2Þ

The mean of combination hi is �yhi:. �y:i: is the ith whole plot mean. �y::j is the mean of

the jth split plot treatment, and �y:ij is the mean of treatment combination ij. For the

numerical example, Example 1.2, in Section 1.7 and i ¼ 0, the differences of

replicate means from the overall mean are �5/12, �2/12, and 7/12. The differences

of seed treatment means from the overall mean are 500/12, �156/12, �148/12, and

�196/12. The replicates by seed treatment responses for genotype 0 are:

Seed treatment

Replicate 0 1 2 3 Total �yh0: � �y:0:

1 66 12 13 6 97 �5/12

2 63 10 13 12 98 �2/12

3 70 13 11 7 101 7/12

Total 199 35 37 25 296 —

�y:0j � �y:0: 500/12 �156/12 �148/12 �196/12

Using Equation (1.2) for the above data, TNA is computed as:

½66ð500=12Þð�5=12Þ þ 63ð500=12Þð�2=12Þ þ 70ð500=12Þð7=12Þ
þ . . .þ 7ð�196=12Þð7=12Þ�2=½fð�5=12Þ2 þ . . .þ ð�196=12Þ2g�
¼ ½�1; 145þ 65þ . . .� 79� 67�2=ð2:167=4Þð6; 972=3Þ ¼ 2:80:

1.5. F-TESTS

The replicate effects should always be considered as random effects. Considering

them as fixed effects makes no sense as an experimenter is concerned with

inferences beyond these particular replicates. This means that the Error A mean

square is the appropriate error term for testing significance of whole plot treatment

main effects, that is, factor A effects. Depending on the validity of the assumption

that the Error A effects, dhi, are normally, identically, and independently distributed

with zero mean and common variance s2
d, that is, NIID(0,s2

d), an F-test of the Factor

A mean square divided by the Error A mean square is appropriate for testing the null

hypothesis that the A effects are zero.
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When the whole plot treatment effects are fixed effects and the assumption of

normality of the random error effects is correct, an F-test of the null hypothesis of

zero split plot treatment effects is performed using the Error B mean square.

Likewise, an F-test to test the null hypothesis of zero A� B interaction effects is

obtained using the Error B mean square. Note that the normality assumption is not

crucial in most cases as an F-test is quite robust, especially when the number of

degrees of freedom associated with the denominator mean square is not small.

When the whole plot treatments are random effects, the appropriate error mean

square for testing the null hypothesis of zero split plot treatment effects is the A� B

interaction mean square. The appropriate error term for testing the null hypothesis of

zero A� B interaction effects is the Error B mean square.

When the split plot treatments are random effects and whole plot treatments are

fixed effects, the appropriate error mean square for testing the null hypothesis for

zero split plot treatment effects is the Error B mean square. For the interaction

variance component for factors A and B defined as s2
ab, the error mean square

s2
e þ bs2

d þ
ras2

ab

a� 1

is the appropriate mean square for testing for zero factor A effects. The degrees of

freedom associated with the above mean square are unknown and will need to be

approximated (see, e.g., Snedecor and Cochran, 1980, Section 6.11). The expected

value of the interaction mean square is

s2
e þ

ars2
ab

a� 1
:

The following table presents the expected values of the mean squares in an analysis

of variance table for factors A and B as fixed effects and as random effects:

Source of Degrees of Expected value of mean square

variation freedom Fixed A and B Random A and B

Replicate r � 1 s2
e þ bs2

d þ abs2
r s2

e þ bs2
d þ abs2

r

Factor A a� 1 s2
e þ bs2

d þ f ðaiÞ s2
e þ bs2

d þ rs2
ab þ rbs2

a

Error A ða� 1Þðr � 1Þ s2
e þ bs2

d s2
e þ bs2

d

Factor B b� 1 s2
e þ f ðbjÞ s2

e þ rs2
ab þ ars2

b

A� B ða� 1Þðb� 1Þ s2
e þ f ðabijÞ s2

e þ rs2
ab

Error B aðb� 1Þðr � 1Þ s2
e s2

e

The variance components for factor A effects and factor B effects are s2
a and s2

b,

respectively. The other variance components have been defined previously. The term

f (x) refers to a function of the sum of squares of the parameter x inside the

parentheses.

f-tests 13



A table showing the variance components in each of the mean squares for random

replicate and random whole plot treatment effects and for fixed split plot treatment

effects is given below:

Expected value

Source of variation Degrees of freedom of mean square

Replicate r � 1 s2
e þ bs2

d þ abs2
r

Whole plot factor A a� 1 s2
e þ bs2

d þ rbs2
a

Error A ða� 1Þðr � 1Þ s2
e þ bs2

d

Split plot factor B b� 1 s2
e þ

brs2
ab

b� 1
þ f ðbjÞ

A� B interaction ða� 1Þðb� 1Þ s2
e þ

brs2
ab

b� 1
Error B aðb� 1Þðr � 1Þ s2

e

For a given set of data, the term f ðbjÞ ¼ ar
Pb

i¼1

b2
j

b� 1
is a function of the factor

B effects. When the factor A effects are fixed effects, the variance component s2
ab

drops out of the factor B mean square.

To obtain the above expectations and to be consistent with assumptions for the

fixed effects situation, note the following. The same assumptions for the random

effects case cannot be those for the mixed effects and still be consistent with the

fixed case. Furthermore, note that once a random level of a random factor, say A, has

been selected, all of the interaction terms with factor B are present. There is not a

population of interaction terms but only b of them. This accounts for the term

b=ðb� 1Þ in the expectation of the interaction mean square and in the factor B mean

square.

1.6. STANDARD ERRORS FOR MEANS AND DIFFERENCES
BETWEEN MEANS

The estimated standard error of difference between two factor A effects or means for

fixed factor B effects is the square root of two times the Error A mean square divided

by rb for i 6¼ i0, that is,

SEð�y:i: � �y:i0:Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Error A mean square

rb

r
: ð1:3Þ

The estimated standard error of a difference between two factor B effects or means

for fixed factor A effects is, j 6¼ j0,

SEð�y::j � �y::j0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Error B mean square

ra

r
: ð1:4Þ
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The estimated standard error of a difference between two factor B effects or means

for random factor A effects is

SEð�y::j � �y::j0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 A� B interaction mean square

ra

r
: ð1:5Þ

The estimated standard error of difference between two factor B effects or means at

one level of factor A is

SEð�y:ij � �y:ij0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Error B mean square

r

r
: ð1:6Þ

This latter standard error of a difference may be seen from the ANOVAs presented

for each whole plot treatment. The estimated standard error of a difference between

two factor A effects or means at one level of factor B is

SEð�y:ij � �y:i0jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðb� 1Þ Error Bþ Error A�

rb

r
: ð1:7Þ

The degrees of freedom for the above standard error of a difference and the

following are unknown and need to be approximated.

The standard error of a mean for a whole plot treatment with random replicate

effects is

SEð�y:i:Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error Aþ bs2

r

rb

s
: ð1:8Þ

The standard error of a mean for a split plot treatment with random replicate effects

is

SEð�y::jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error Bþ a s2

r

ra

s
: ð1:9Þ

The standard error of an A� B interaction mean with random replicate effects is

SEð�y:ijÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Error Bþ s2

r þ s2
d

r

s
: ð1:10Þ

The estimated values for the above standard errors of a mean and for difference

between two means, Equations (1.3)–(1.10), are obtained by substituting the numerical

values for Error A, Error B, and the estimate of the pertinent variance component for

the corresponding ones in the above equations. The estimated values are obtained from

an analysis of the data from an experiment.

standard errors for means and differences between means 15



1.7. NUMERICAL EXAMPLES

Example 1.1. A maize yield trial was conducted to determine the effects of four

methods, a ¼ 4, of primary seedbed preparations (A1, A2, A3, and A4), factor A the

whole plot treatments, and four methods, b ¼ 4, of planting the corn kernels (B1,

B2, B3, and B4), factor B the split plot treatments. The basic split plot experiment

design contained r ¼ 4 complete blocks or replicates. The four seedbed preparations

were arranged in a random fashion within each of the four replicates. Then within

each of the 4� 4 ¼ 16 seedbed preparations, the wpeu was divided into four areas or

plots, speus, and the four methods of planting maize seeds were randomly assigned

to the four speus. The object of this experiment was to compare seedbed preparations

and planting methods. In addition, it was desirable to know if there was an

interaction and whether it is necessary to use a particular planting method for each

seedbed preparation. A systematized arrangement of the maize yields from the

experiment in bushels per acre, are given in Table 1.1.

Table 1.1. Bushels per Acre Yield of Maize for Seedbed Preparations and Planting

Methods.

Planting methods

Replicate B1 B2 B3 B4 Total

A1¼ plowed at 7 inches

1 82.8 46.2 78.6 77.7 285.3

2 72.2 51.6 70.9 73.6 268.3

3 72.9 53.6 69.8 70.3 266.6

4 74.6 57.0 69.6 72.3 273.5

Total 302.5 208.4 288.9 293.9 1093.7

A2¼ plowed at 4 inches

1 74.1 49.1 72.0 66.1 261.3

2 76.2 53.8 71.8 65.5 267.3

3 71.1 43.7 67.6 66.2 248.6

4 67.8 58.8 60.6 60.6 247.8

Total 289.2 205.4 272.0 258.4 1025.0

A3¼ blank basin listed

1 68.4 54.5 72.0 70.6 265.5

2 68.2 47.6 76.7 75.4 267.9

3 67.1 46.4 70.7 66.2 250.4

4 65.6 53.3 65.6 69.2 253.7

Total 269.3 201.8 285.0 281.4 1037.5

A4¼ disk-harrowed

1 71.5 50.9 76.4 75.1 273.9

2 70.4 65.0 75.8 75.8 287.0

3 72.5 54.9 67.6 75.2 270.2

4 67.8 50.2 65.6 63.3 246.9

Total 282.2 221.0 285.4 289.4 1078.0

B total 1142.2 836.6 1131.3 1123.1
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The grand total is 4234.2. The replicate totals are 1086.0, 1090.5, 1035.8, and

1021.9 for replicates 1, 2, 3, and 4, respectively. An analysis of variance and

F-statistics for this experiment are given in Table 1.2. An SAS computer program for

computing this analysis of variance table is given in Appendix 1.1.

The sum of squares for the contrast A1þ A4� A2� A3 is computed as

ð1093:7þ 1078:0� 1025:0� 1037:5Þ2

64
¼ 186:32:

The sum of squares for the contrast 3ðB2Þ � B1� B3� B4 is computed as

½3ð836:6Þ � 1143:2� 1131:3� 1123:1�2

16ð32 þ 1þ 1þ 1Þ ¼ ð�887:8Þ2

192
¼ 4105:15:

As may be observed, these two contrasts account for most of the differences among

the planting methods and seedbed preparations. There is a slight indication that some

interaction may be present. Also, since the two ‘‘Rest’’ mean squares are less than

the Error A and Error B mean squares, there appears to be some type of heterogeneity

that is not controlled. The problem of finding it is left as an exercise for the reader as

is the computation for the interaction of the above two contrasts. Figures 1.1 and 1.2

illustrate the variation of planting methods in each of the seedbed preparations with

two different axes.

A computer code for obtaining many of the numerical results including the means

is given in Appendix 1.1.

Example 1.2. An experiment consisting of 49 guayule genotypes as whole plot

treatments was designed as a triple lattice incomplete block experiment design with

r ¼ 6 replicates (see Federer, 1946). The split plot treatment represented four seed

treatments for breaking the dormancy of guayule seeds. The split plot experimental

unit consisted of 100 seeds planted in one-fourth of greenhouse flat. The wpeu was a

greenhouse flat. Eight of the guayule genotypes from three of the six replicates from

Table 1.2. Analysis of Variance and F-Statistics for the Data of Table 1.1.

Source of variation DF Sum of squares Mean square F Prob>F

Total 64 285,505.47

Correction for mean 1 279,991.26

Replicate ¼ R 3 223.81 74.60

Factor A 3 194.56 64.85 3.69 0.06

A1þ A4 vs. A2þ A3 1 186.32 10.60 0.01

Rest 2 8.24 0.47

Error A ¼ R� A 9 158.24 17.58

Planting method¼ B 3 4107.38 1369.13 81.01 0.00

B2 vs. rest 1 4105.15 242.90 0.00

Rest 2 2.23 0.13

A� B interaction 9 221.74 24.64 1.46 0.20

Error B 36 608.48 16.90
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this experiment were selected to illustrate the analysis for a split-plot-designed

example. The selected data are analyzed as if a randomized complete block design

had been used for the eight whole plot treatments. This design is now considered to

be a standard split-plot-designed experiment. The data for the ij combinations of
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Figure 1.1. Planting method by seedbed preparation interaction.
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Figure 1.2. Planting method by seedling preparation interaction.

18 the standard split plot experiment design



genotypes i ¼ 0, 1, . . ., 7 and seed treatments j ¼ 0, 1, 2, 3, for each of the replicates

h ¼ 1, 2, 3 are given in Table 1.3. The top number of a pair is the combination ij and

the bottom number is the number of plants that emerged from 100 seeds. A computer

program for computing the analysis of variance tables and means is given in

Appendix 1.2. The genotype-by-seed treatment totals are given in Table 1.4. The

ANOVAs for seed treatments by replicate for each genotype are presented in

Table 1.5. An ANOVA for this split-plot-designed example is given in Table 1.6.

Table 1.3. Number of Plants Germinating from 100 Seeds for Each of Four Seed

Treatments from Eight Guayule Genotypes in a Split Plot Experiment Design with

Three Replicates.

Replicate 1

01 23 30 52 42 11 73 61

12 10 52 28 9 26 9 12

02 20 33 53 43 12 71 62

13 51 13 14 12 27 14 26

00 21 32 51 40 10 72 63

66 8 19 8 45 77 30 15

03 22 31 50 41 13 70 60

6 20 4 59 20 15 49 56

Total 97 89 88 109 86 145 102 109 825

Replicate 2

32 60 73 41 03 12 51 21

16 38 15 13 12 5 8 16

31 62 70 43 00 10 52 22

15 16 41 12 63 47 32 30

33 61 72 40 02 11 53 20

9 16 28 51 13 11 21 81

30 63 71 42 01 13 50 23

40 8 20 10 10 4 66 14

Total 80 78 104 86 98 67 127 141 781

Replicate 3

63 72 50 42 32 22 01 11

7 36 49 12 7 29 13 18

62 71 52 40 30 21 03 10

24 25 29 52 59 14 7 66

61 70 53 41 31 23 00 12

16 54 16 16 11 10 70 11

00 73 51 43 33 20 02 13

45 12 8 11 7 63 11 15

Total 92 127 102 91 84 116 101 110 823
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From Table 1.5, we note that the residual mean squares vary from 8.417 for

genotype 0 to 55.889 for genotype 3. This may indicate that a square root or arcsine

transformation of the numbers is needed. This was not done as differences in seed

treatment means are large and a more precise analysis may not be necessary. The

F-values for seed treatments varied from 20.74 for genotype 3 to 276.12 for

Table 1.4. Genotype-by-Seed Treatment Totals.

Genotypes

Seed treatment 0 1 2 3 4 5 6 7 Total

0 199 190 195 151 148 174 139 144 1340

1 35 55 38 30 49 24 44 59 334

2 37 43 79 42 31 89 66 54 481

3 25 34 34 29 35 51 30 36 274

Genotype total 296 322 346 252 263 338 279 333 2449

Table 1.5. ANOVAs and F-Values for Replicate and Seed Treatment for Each

Genotype, SS¼ Sum of squares, MS¼Mean Square.

Genotype 0

Source DF SS MS F-value Prob > F

Total 12 14,325.98 — — —

Correction for mean 1 7301.31 — — —

Replicate 2 2.167 1.08 0.13 0.88

Seed treatment 3 6972.00 2324.00 276.12 0.00

Residual 6 50.50 8.42 — —

Genotype 1

Source DF SS MS F-value Prob > F

Total 12 14,955.99 — — —

Correction for mean 1 8640.32 — — —

Replicate 2 763.17 381.58 15.31 0.00

Seed treatment 3 5403.00 1801.00 72.28 0.00

Residual 6 149.50 24.92 — —

Genotype 2

Source DF SS MS F-value Prob > F

Total 12 16,184.00 — — —

Correction for mean 1 9976.33 — — —

Replicate 2 338.17 169.08 4.53 0.06

Seed treatment 3 5645.67 1881.89 50.45 0.00

Residual 6 223.83 37.31 — —
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Table 1.5. (Continued)

Genotype 3

Source DF SS MS F-value Prob > F

Total 12 9112.00 — — —

Correction for mean 1 5292.00 — — —

Replicate 2 8.000 4.00 0.07 0.93

Seed treatment 3 3476.67 1158.89 20.74 0.00

Residual 6 335.33 55.89 — —

Genotype 4

Source DF SS MS F-value Prob > F

Total 12 8889.00 — — —

Correction for mean 1 5764.09 — — —

Replicate 2 4.17 2.08 0.23 0.80

Seed treatment 3 3066.25 1022.08 112.52 0.00

Residual 6 54.50 9.08 — —

Genotype 5

Source DF SS MS F-value Prob > F

Total 12 13,972.00 — — —

Correction for mean 1 9520.34 — — —

Replicate 2 83.167 41.58 2.56 0.16

Seed treatment 3 4271.00 1423.67 87.61 0.00

Residual 6 97.50 16.25 — —

Genotype 6

Source DF SS MS F-value Prob > F

Total 12 9107.00 — — —

Correction for mean 1 6486.75 — — —

Replicate 2 120.50 60.25 2.43 0.17

Seed treatment 3 2350.92 783.64 31.59 0.00

Residual 6 148.83 24.81 — —

Genotype 7

Source DF SS MS F-value Prob > F

Total 12 11,649 — — —

Correction for mean 1 9240.75 — — —

Replicate 2 96.50 48.25 2.82 0.14

Seed treatment 3 2208.92 736.31 42.96 0.00

Residual 6 102.83 17.14 — —
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genotype 0. There was smaller variation among replicate means, as the F-values

varied from 0.07 for genotype 3 to 4.53 for genotype 2.

From the combined analysis in Table 1.6, it is noted that the seed treatment by

genotype interaction is present. To study this in further detail, Figure 1.3 was

prepared. Genotypes 0, 1, 2, and 5 for seed treatment 0 and genotypes 2 and 5 for

Table 1.6. An Analysis of Variance and F-Values for the Data of Table 1.3.

Source of variation DF Sum of squares Mean square F-value Prob > F

Total 96 98195 — — —

Correction for mean 1 61,458.76 — — —

Replicate 2 38.58 19.29 0.20 —

Genotype¼ A 7 763.16 109.02 1.11 —

Error A 14 1377.25 98.38 —

Seed treatment¼ B 3 30,774.28 10,258.09 82.22 0.00

0 vs. 1þ 2þ 3 1 29,829.03 239.07 0.00

1 vs. 2þ 3 1 52.56 0.42

2 vs. 3 1 892.69 7.15 0.02

Seed treatment� genotype 21 2620.13 124.77 5.15 0.00

A� 0 vs 1þ 2þ 3 7 1456.72 208.10 8.59 0.00

A� 1 vs. 2þ 3 7 632.94 90.42 3.73 0.01

A� 2 vs. 3 7 530.48 75.78 3.13 0.01

Error B 48 1162.84 24.23 — —
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Figure 1.3. Genotype by seed treatment interaction.
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seed treatment 2 are the ones contributing most to the interaction sum of squares.

Their responses to seed treatments 0 and 2 were relatively higher than the other

responses.

The various standard errors of a difference of two means are obtained next. The

standard error of a difference between two genotype means is [Equation (1.3)].

SEð�y:i: � �y:i0:Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð98:38Þ

3ð4Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:3967
p

¼ 4:05:

The standard error of a difference of two seed treatment means for random genotype

effects is [Equation (1.4)].

SEð�y::j � �y::j0 Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð124:77Þ

3ð8Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:3975
p

¼ 3:22:

The standard error of difference between two seed treatment means for one genotype

is [Equation (1.6)].

SEð�y:ij � �y:ij0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð24:23Þ

3

r
¼ 4:02:

The standard error of difference between two genotype means for one seed treatment

is [Equation (1.7)].

SEð�y:ij � �y:i0jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f3ð24:23Þ þ 98:38g

3ð4Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28:5117
p

¼ 5:34:

Even though a seed treatment by genotype interaction is present (see Figure 1.3.), the

mean for seed treatment 0, threshed seed and untreated, is far above the remaining

three seed treatment means in increasing the germination percentage of guayule seeds,

hence would be preferred for treating guayule seeds. Seed treatment 1 was unthreshed

and untreated, seed treatment 2 was unthreshed and treated 1943 seeds, and seed

treatment 3 was unthreshed and treated 1942 seeds. The seed treatment 3 represented

the seed treatment method prior to this experiment. Seed treatment 0 involved using

threshed and untreated seeds and was quite effective in increasing seed germination.

The threshing removed many empty seeds. There are also genetic differences in a

genotype response to seed treatment 0 but in all cases this treatment was superior to the

other treatments. Some genotypes may have more empty seeds than others. A further

experiment using different lengths of threshing times or other treatments may be

needed when specific genotypes are being considered.

1.8. MULTIPLE COMPARISONS OF MEANS

Federer and McCulloch (1984) presented multiple comparison procedures for an

SPED. They discussed five different multiple comparison procedures, viz., the least
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significant difference procedure (lsd) with a per comparison error rate, Tukey’s

range procedure or honestly significant difference (hsd) with an experiment-wise

error rate for all pairs of two means, the Bonferroni procedure (esd) with a per

experiment error rate for m specified contrasts, Scheffe’s procedure (ssd) with an

error rate for all possible comparisons and contrasts, and Dunnett’s procedure (dsd)

for comparing treatments with a control with an experiment-wise error rate.

Using the data given in Table 1.3, all possible differences between pairs of the

eight guayule genotype (whole plot) means are given in Table 1.7.

All possible differences between pairs of the seed treatment (split plot) means are

presented in Table 1.8.

A two-sided Type I error rate of 5% is used. For genotype mean differences, the

lsd is computed as (df ¼ degrees of freedom associated with error term and Ea is the

Error A mean square),

t:05;14df

ffiffiffiffiffiffiffiffi
2Ea

rb

r
¼ 2:145

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð98:38Þ

3ð4Þ

s
¼ 8:69: ð1:11Þ

Using Tukey’s procedure, the hsd is computed as,

q:05;8;14df

ffiffiffiffiffi
Ea

rb

r
¼ 4:99

ffiffiffiffiffiffiffiffiffiffiffi
98:38

3ð4Þ

s
¼ 14:29: ð1:12Þ

Using the Bonferroni procedure, the esd, for m ¼ 8ð8� 1Þ
2

¼ 28, is computed as,

esd ¼ t:05=m;14df

ffiffiffiffiffiffiffiffi
2Ea

rb

r
¼ 3:85

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð98:38Þ

3ð4Þ

s
¼ 15:57: ð1:13Þ

Table 1.7. All Possible Differences Between Pairs of Eight Guayule Genotype Means,

Number of Seeds Germinated Out of 100.

Genotype

2 5 7 1 0 6 4

Genotype Mean 29 28 28 27 25 23 22

3 21 8 7 7 6 4 2 1

4 22 7 6 6 5 3 1 —

6 23 6 5 5 4 2 — —

0 25 4 3 3 2 — — —

1 27 2 1 1 — — — —

7 28 1 0 — — — — —

5 28 1 — — — — — —
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Using Scheffe’s method, the ssd is computed as (df¼ degrees of freedom for

Error A),

ssd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� 1ÞF:05ða� 1; dfÞðEaÞ

rb

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7ð2:77Þð2Þ 98:38

3ð4Þ

� 	s
¼ 17:83: ð1:14Þ

Using the Dunnett method, the dsd is computed with genotype 2, for example,

designated as the control treatment,

dsd ¼ da�1;df;:05

ffiffiffiffiffiffiffiffi
2Ea

rb

r
¼ 3:10ð4:045Þ ¼ 12:54: ð1:15Þ

To compare differences between seed treatment means for random genotype effects,

the lsd is computed as (Eab is the interaction mean square),

lsd ¼ t:05;21df

ffiffiffiffiffiffiffiffiffi
2Eab

ra

r
¼ 2:08

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð124:77Þ

3ð8Þ

s
¼ 6:71: ð1:16Þ

The hsd is computed as,

q:05;4;21

ffiffiffiffiffiffiffi
Eab

ra

r
¼ 3:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
124:77

3ð8Þ

s
¼ 9:03: ð1:17Þ

The esd, for m ¼ 4ð4� 1Þ=2 ¼ 6, is computed as,

esd ¼ t:05=m;21df

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEabÞ

ra

r
¼ 3:82

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð124:77Þ

3ð8Þ

s
¼ 9:13: ð1:18Þ

Table 1.8. All Possible Differences Between Pairs of the four

Seed Treatment Means, Number of Seeds Germinated out of 100.

Seed treatment

0 2 1

Seed treatment Mean 56 20 14

3 11 45 9 3

1 14 42 6 —

2 20 36 — —
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The ssd is computed as (df¼ degrees of freedom for error mean square for seed

treatments),

ssd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb� 1ÞF:05ðb� 1; dfÞðEabÞ

ra

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3:07Þð2Þ 124:77

3ð8Þ

� 	s
¼ 9:79: ð1:19Þ

The dsd is computed as, where seed treatment 2 is designated as the control treatment,

dsd ¼ db�1;df;:05

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEabÞ

rb

r
¼ 2:56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð124:77Þ

3ð8Þ

s
¼ 2:56ð3:225Þ ¼ 8:25: ð1:20Þ

In order to obtain the values for hsd, esd, and dsd for large values, say ab ¼ 32, more

extensive tables of t, q, and d values are needed. For the 32 genotype by seed

treatment mean differences, the lsd for comparing seed treatment means for a

specific genotype is computed as

lsd ¼ t:05;48df

ffiffiffiffiffiffiffiffi
2Eb

r

r
¼ 2:01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð24:23Þ

3

r
¼ 2:01ð4:019Þ ¼ 8:08: ð1:21Þ

The ssd is computed as,

ssd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðab� 1ÞF:05ðab� 1;dfÞðEbÞ

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð31Þð1:76Þ 24:23

3

� 	s
¼ 29:69: ð1:22Þ

The above multiple comparison results were for the genotype and seed treatment

means. If it is desirable to perform multiple comparisons on the 32 genotypes by

seed treatment means, the standard error of means and of differences between two

means given in Equations (1.3)–(1.10) will need to be used. Depending upon which

pair of means and method is under consideration, the appropriate standard error of a

mean or of a difference between two means will need to be selected for each pair.

1.9. ONE REPLICATE OF A SPLIT PLOT EXPERIMENT DESIGN
AND MISSING OBSERVATIONS

In the course of statistical consulting, many types of experiment designs are

encountered. Federer (1975) presents an example wherein only one replicate of a

split plot experiment design was used, and the experimenter wanted advice on the

statistical analysis. Three light intensities were the whole plot treatments and were

used in three different growth chambers. The three plant types were the split plot

treatments. The plant types were tomato, pigweed, and pigweed þ tomato (an

intercropping treatment as described by Federer, 1993, 1999). One greenhouse flat of
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eight plants formed the speu. Eight tomato plants and eight pigweed plants were

used for the tomato and pigweed plant types. Four pigweed and four tomato plants

made up the tomatoþ pigweed treatment. An ANOVA for one light intensity in one

growth chamber is as given below in the tabular form.

Source of variation DF DF general

Total 24 bk

Correction for mean 1 1

Replicates (blocks)¼ R 0 0

Plant types¼ B 2 b� 1

R� B 0 0

Plants within B 21 bðk � 1Þ

The R� B error mean square is the appropriate error term for comparing

plant-type means but there is no estimate of it. The plants within B mean square

are frequently used in place of the R� B interaction mean square. This is

incorrect in that the variance component due to variation from block to block is

not included in the plants within B mean square but it is in the plant-type mean

square. This is a frequent mistake found in published literature. An ANOVA

partitioning of the degrees of freedom for all 72 observations is as given below

in the tabular form.

Source of variation DF DF general

Total 72 abk

Correction for mean 1 1

Replicates (blocks)¼ R 0 0

Light intensity ¼ chamber ¼ A 2 a� 1

Error A ¼ R� A 0 0

Plant types¼ B 2 b� 1

A� B 4 ða� 1Þðb� 1Þ
Error B ¼ R� B within A 0 0

Plants within R;A; and B 63 abðk � 1Þ

If light intensity could be considered to be a random effect, then the A� B mean

square would be used as the error term for comparing the plant-type means but it has

only four degrees of freedom. The fact that there are 63 ¼ abðk � 1Þ degrees of

freedom associated with the plants within R;A; and B mean squares, has tempted

many researchers to use these mean squares to replace the appropriate Error B mean

square. This practice results in using an error mean square that is too small, resulting

in false significance statements.

Occasionally missing observations occur in split-plot-designed experiments.

Anderson (1946) and Khargonkar (1948) present formulas for computing missing

plot values. Computer packages are mostly designed to handle these situations and

hence there is no need for the formulas.
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1.10. NATURE OF EXPERIMENTAL VARIATION

In Section 1.5, several assumptions about the nature of the random error terms were

made to obtain the expected values of the various mean squares. The split plot

random errors ehij were assumed to be identically and independently distributed,

IID(0,s2
e ). It was further assumed that the Error A mean square contained both terms

s2
e and s2

d with the split plot, whole plot random errors being additives. Also, it was

assumed that the split plot and whole plot random error terms were independent.

Simply because this was assumed and because it appears to be a reasonable

assumption, does not mean that the assumption holds for all split-plot-designed

experiments.

Cochran and Cox (1957, Section 7.12) and Kirk (1968, Chapter 8) present

another way of quantifying the experimental variation exhibited by a split-plot-

designed experiment. These authors assume that the split plot random errors ehij are

correlated. For spatially laid out experiments, this correlation may be due to the

proximity of neighboring speus. In baking and industrial experiments, a single batch

may be divided into b speus for the b split plot treatments. Any factor affecting the

batch affects all b speus. They assumed that the following correlation structure

holds:

E½ehikehij� ¼ rs2
e and E½ehijerst� ¼ 0; j 6¼ k; hij 6¼ rst ð1:23Þ

The random split plot error terms in the same whole plot have covariance rs2
e

and those in different whole plots have zero covariance, that is, they are

un-correlated.

Consider the case where factor B has b ¼ 2 levels. Ignoring the random nature of

the replicate or complete block effect, the variance of a whole plot is

E½ðehi1 þ ehi2Þ2� ¼ s2
e þ s2

e þ 2rs2
e ¼ 2s2

e ð1þ rÞ: ð1:24Þ

For b levels of split plot treatments, the whole plot variance is,

E½ðehi1 þ ehi2 þ ehi3 þ � � � þ ehibÞ2� ¼ bs2
e ð1þ ðb� 1ÞrÞ: ð1:25Þ

The split plot main effects are derived from differences of split plot responses. Hence

the variance of a difference of two split plot treatments is,

E½ðehi1 � ehi2Þ2� ¼ s2
e þ s2

e � 2rs2
e ¼ 2s2

e ð1� rÞ; ð1:26Þ

with an effective error variance per speu of s2
e ð1� rÞ whatever the value of b. This

variance also applies to contrasts of interaction effects within the same whole plot.

For comparing two interaction terms from different whole plots the variance is 2s2
e .

The analysis of variance, as described above, gives unbiased and correct estimates of

the above.
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For many situations r will be positive. However, it could be negative for certain

types of experimental variations and materials. In this event, the Error A mean square

could be smaller than the Error B mean square. Also, if competition is present among

the speus within the same whole plot, the Error B mean square would contain a

component of variance due to competition that would not enter into the Error A mean

square. This could make Error B larger than the Error A mean square. Another

situation where this could occur is when there is more genetic variation within whole

plots than among whole plots. It is also possible owing to lack of symmetry of the

distribution of random split plot effects that a transformation of the responses may

be required in order to have Error B less than Error A. Numerical examples can

easily be constructed where Error B is considerably larger than Error A.

1.11. REPEATED MEASURES EXPERIMENTS

Some authors, for example, Kirk (1968, Chapter 8), consider a repeated measures

experiment as a split-plot-designed experiment. There are two kinds of repeated

measures experiments, viz., the same treatment is repeated b times on a single

subject or the b treatments of factor B are applied sequentially to a subject over b

periods. The latter type of experiment is known as a cross-over-designed

experiment. It is this type of repeated measures experiment that has been

confused with split-plot-designed experiments. It is inappropriate to consider the

cross-over-designed experiment as a split plot experiment. One reason is that

there are several kinds of treatment effects in a cross-over experiment, whereas,

there is only one kind of treatment effect for split plot experiments. A cross-over

experiment may have the direct effect of a treatment in the period in which it was

applied, a carryover effect in the periods after it has been applied, a continuing

effect, and/or a permanent effect. A split plot experiment has only the direct

effect of the treatment. Also the treatment design is different for a cross-over

experiment as certain sequences of treatments on a subject are used for a cross-

over design, whereas the treatments in a split plot design appear in a random

order. The complexity of the nature of treatment effects and the statistical design

in a cross-over experiment makes it prudent to consider this class of designs as an

entity in itself. Therefore, this type of designed experiment should not be

confused with split-plot-designed experiments.

1.12. PRECISION OF CONTRASTS

The average overall precision of the contrasts in a standard split plot design is the

same as that for a randomized complete block design of the ab treatment

combinations. The precision of whole plot treatment contrasts, factor A, is usually

less than or equal to what it would be for a randomized complete block design. The

gain in precision is obtained for the split plot treatments, factor B, and for the

interaction effects. Thus, if less precision is required for factor A treatments and
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more for factor B and interaction effects, the split plot design is admirably suited for

this situation. Another reason that a split plot design may be selected is that larger

experimental units are required for factor A treatments than for factor B treatments.

For example, fertilizer and irrigation treatments require larger experimental units

than do treatments like varieties, pesticides, etc.

Federer (1955, page 274) presents a measure of the efficiency for split plot

treatments (Also, see Kempthorne, 1952, Section 19.4). Using this measure, the

precision of the split plot treatments, factor B, and of the A� B interactions is

ða� 1Þðs2
e þ bs2

dÞ þ aðb� 1Þs2
e

ðab� 1Þs2
e

¼ 1þ bða� 1Þs2
d

ðab� 1Þs2
e
; ð1:27Þ

and the precision is estimated by,

ða� 1ÞError Aþ aðb� 1ÞError B

ðab� 1ÞError B
: ð1:28Þ

The precision of the whole plot treatment effects, factor A, is given by,

ða� 1Þðs2
e þ bs2

dÞ þ aðb� 1Þs2
e

ðab� 1Þðs2
e þ bs2

dÞ
¼ ða� 1Þbs2

d þ ðab� 1Þs2
e

ðab� 1Þðs2
e þ bs2

dÞ
; ð1:29Þ

and it is estimated by,

ða� 1ÞError Aþ aðb� 1ÞError B

ðab� 1ÞError A
: ð1:30Þ

If the variance component s2
d is equal to zero, the precision is equal to one in both

cases.

For the numerical example in Section 1.7, Example 1.2 with a ¼ 8 and b ¼ 4, the

estimated precision for the split plot treatments, seed treatments, and interaction

from Equation (1.28) is,

ð8� 1Þð98:38Þ þ 8ð4� 1Þð24:23Þ
f8ð4Þ � 1gð24:23Þ ¼ 1:69;

that is, a 69% increase over conducting the experiment as a randomized complete

block design. The estimated precision for the whole plot treatments, guayule

genotypes, from equation (1.30) is,

ð8� 1Þð98:38Þ þ 8ð4� 1Þð24:23Þ
f8ð4Þ � 1gð98:38Þ ¼ 0:42;

that is, a 58% loss over using a randomized complete block experiment design.
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1.13. PROBLEMS

Problem 1.1. For the data of Example 1.1

(i) Analyze the data and use residual diagnostic plots to assess the equal

variance and normality assumptions.

(ii) Use a multiple comparison procedure to test significance of pairs of means.

(iii) Redo (i) and (ii) for log transformed data.

Problem 1.2. For the data of Example 1.2

(i) Using the square root, transform the data, and perform analysis.

(ii) Use the arcsine transformation and obtain an analysis of the data.

(iii) Are there any differences in interpretation from these analyses?

Problem 1.3. Mazur (2005) presents several data sets for split-plot-designed

experiments. For one of the experiments, four rats, R1, R2, R3, and R4, represented

the four blocks or replicates, two whole plot treatments representing two time levels,

long (20 s) and short (10 s), and four time intervals between stimuli, B1, B2, B3, and B4,

were the split plot treatments. The terminal link entries per hour to the stimuli were:

R1 R2 R3 R4

Condition Long Short Long Short Long Short Long Short

B1 ¼ 60s 42.8 48.5 51.7 60.0 45.7 49.3 56.8 59.7

B2 ¼ 30s 108.8 53.9 97.9 51.9 86.9 50.8 103.9 56.8

B3 ¼ 15s 100.4 43.7 198.3 54.4 161.4 53.5 211.1 55.7

B4 ¼ 2s 59.8 51.3 899.1 1.9 176.1 51.6 614.9 50.1

(i) Give a linear model for an analysis of these data and state assumptions

used.

(ii) Obtain an analysis for these data and interpret the results.

(iii) Use residual diagnostic plots to assess the equal variance and normality

assumptions.

(iv) If the assumptions are violated, find a transformation of the data that is

suitable to obtain more variance homogeneity.

Problem 1.4. The data for this problem were taken from Mazur (2005). A split plot

designed experiment on four pigeons, P1, P2, P3, and P4, as the four blocks was

used. Two delay intervals, long (20 s) and short (10 s) represented the whole plot

treatments. The eight split plot treatments, B1, B2, B3, B4, B5, B6, B7, and B8, were

in a two by four factorial treatment arrangement. The two levels of one factor, say F,

were independent, ind, and dependent, dep, and the four levels of the second factor
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were variations of presenting the four levels of the second factor, T. The levels of T

are those described in Problem 1.3. The terminal entry rates per hour are given in the

table below:

P1 P2 P3 P4

Condition Long Short Long Short Long Short Long Short

B1 ¼ 60sind 31.5 62.3 42.7 52.9 40.4 61.6 5.9 61.8

B2 ¼ 30sind 14.7 67.3 42.1 57.3 19.3 61.2 5.6 57.1

B3 ¼ 15sind 12.2 63.1 42.1 61.2 22.0 56.5 0.8 57.4

B4 ¼ 2sind 8.1 54.8 43.0 60.2 42.0 54.2 8.9 61.1

B5 ¼ 60sdep 38.2 40.0 45.7 46.2 37.6 37.6 25.7 25.3

B6 ¼ 30sdep 62.3 30.4 77.1 39.0 59.1 29.4 31.7 16.4

B7 ¼ 15sdep 104.2 25.2 140.9 34.8 88.6 21.9 28.6 7.5

B8 ¼ 2sdep 124.3 4.1 339.0 11.7 178.8 6.6 69.8 2.4

(i) Obtain an analysis of the data.

(ii) Is variance heterogeneity a problem?

(iii) Obtain an analysis omitting P4 data. Does this change the results?

(iv) Discuss the results of your various analyses and compare the results on rats

in the previous problem with those on pigeons.

Problem 1.5. For the data given as Example 2 in Section 2

(i) Write a SAS/PROC GLM code for obtaining an analysis of variance and

means.

(ii) Prepare a graph of the corn genotype by district interaction. Is there a

significant district by corn genotype interaction?

(iii) Compute the residuals and perform a diagnostic plot to assess the variance

homogeneity and normality assumptions.

Problem 1.6. For the data of Example 4 in Section 2

(i) Perform a multiple comparisons procedure using the lsd, the hsd, and the esd

methods for the 10 combinations of alfalfa and no alfalfa with the five brome-

grass strains. Are there significant differences among the pairs of means?

(ii) Compute Tukey’s one degree of freedom for non-additivity. Is there an

indication of non-additivity?
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APPENDIX 1.1. EXAMPLE 1.1 CODE

The following is the SAS PROC/GLM code for obtaining an analysis of the data for

Example 1.1:

DataData spex1;

input Y R A B; /*Y¼ yield, R¼ block, A¼ planting method,
B¼ cultivation method*/

datalines;

82.8 1 1 1
46.2 1 1 2
78.6 1 1 3

. . .

65.6 4 4 3
63.3 4 4 4

;runrun;

ProcProc GLMGLM;

Class R A B;
Model Y¼ R A R*A B A*B;
Lsmeans A B A*B;
Test H¼ A E¼ A*R;

Run;Run;

The following is an abbreviated form of the output for the above code for

Example 1.1:
Output
Dependent Variable: Y
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Sum of
Source DF Squares Mean Square F Value Pr> F
Model 27 4905.738750 181.694028 10.75 <.0001
Error 36 608.478750 16.902187
Corrected Total 63 5514.217500

R-Square Coeff Var Root MSE Y Mean
0.889653 6.215594 4.111227 66.14375

Source DF Type I SS Mean Square F Value Pr> F
R 3 223.808750 74.602917 4.41 0.0096
A 3 194.561250 64.853750 3.84 0.0176
R*A 9 158.242500 17.582500 1.04 0.4284
B 3 4107.383750 1369.127917 81.00 <.0001
A*B 9 221.742500 24.638056 1.46 0.2012

Source DF Type III SS Mean Square F Value Pr> F
R 3 223.808750 74.602917 4.41 0.0096
A 3 194.561250 64.853750 3.84 0.0176
R*A 9 158.242500 17.582500 1.04 0.4284
B 3 4107.383750 1369.127917 81.00 <.0001
A*B 9 221.742500 24.638056 1.46 0.2012

Least Squares Means

A Y LSMEAN
1 68.2937500
2 64.0625000
3 64.8437500
4 67.3750000

B Y LSMEAN
1 71.3875000
2 52.2875000
3 70.7062500
4 70.1937500

A B Y LSMEAN
1 1 75.3750000
1 2 52.1000000
1 3 72.2250000
1 4 73.4750000
2 1 72.3000000
2 2 51.3500000
2 3 68.0000000
2 4 64.6000000
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3 1 67.3250000
3 2 50.4500000
3 3 71.2500000
3 4 70.3500000
4 1 70.5500000
4 2 55.2500000
4 3 71.3500000
4 4 72.3500000

Dependent Variable: Y

Tests of Hypotheses Using the Type III MS for R*A as an Error Term

Source DF Type III SS Mean Square F Value Pr> F
A 3 194.5612500 64.8537500 3.69 0.0557

APPENDIX 1.2. EXAMPLE 1.2 CODE

A SAS PROC/GLM code for obtaining an analysis for the data of Example 1.2 is

given below. The code for an analysis for each whole plot data set is obtained by

using IF and THEN statements such as ‘‘IF A > 1 THEN DELETE; and IF A < 1

THEN DELETE;’’ to obtain an analysis of the data for genotype 1. An analysis is

obtained for the entire data set using the following code:

DataData spex2;

Input Y R A B; /*Y¼ count, R¼ block, A¼ genotype, B¼ seed
treatment*/

Datalines;

12 1 0 1
13 1 0 2
66 1 0 0

. . .

11 3 1 2
15 3 1 3
;

Proc GLM;Proc GLM;

Class R A B ;
Model Y¼ R A R*A B A*B;
Lsmeans A B A*B;
Test H¼ A E¼ R*A;

run;run;

An abbreviated form of the output from running the above code is given below:
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Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr> F
Model 47 35573.40625 756.88098 31.24 <.0001
Error 48 1162.83333 24.22569
Corrected Total 95 36736.23958

R-Square Coeff Var Root MSE Y Mean
0.968346 19.45279 4.921960 25.30208

Source DF Type I SS Mean Square F Value Pr> F
R 2 38.58333 19.29167 0.80 0.4568
A 7 763.15625 109.02232 4.50 0.0006
R*A 14 1377.25000 98.37500 4.06 0.0001
B 3 30774.28125 10258.09375 423.44 <.0001
A*B 21 2620.13542 124.76835 5.15 <.0001

Source DF Type III SS Mean Square F Value Pr> F
R 2 38.58333 19.29167 0.80 0.4568
A 7 763.15625 109.02232 4.50 0.0006
R*A 14 1377.25000 98.37500 4.06 0.0001
B 3 30774.28125 10258.09375 423.44 <.0001
A*B 21 2620.13542 124.76835 5.15 <.0001

Least Squares Means
A Y LSMEAN
0 24.6666667
1 26.8333333
2 28.8333333
3 21.0000000
4 21.9166667
5 28.1666667
6 23.2500000
7 27.7500000

B Y LSMEAN
0 55.8333333
1 13.9166667
2 20.0416667
3 11.4166667

A B Y LSMEAN
0 0 66.3333333
0 1 11.6666667
0 2 12.3333333
0 3 8.3333333
1 0 63.3333333
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1 1 18.3333333
1 2 14.3333333
1 3 11.3333333
2 0 65.0000000
2 1 12.6666667
2 2 26.3333333
2 3 11.3333333
3 0 50.3333333
3 1 10.0000000
3 2 14.0000000
3 3 9.6666667
4 0 49.3333333
4 1 16.3333333
4 2 10.3333333
4 3 11.6666667
5 0 58.0000000
5 1 8.0000000
5 2 29.6666667
5 3 17.0000000
6 0 46.3333333
6 1 14.6666667
6 2 22.0000000
6 3 10.0000000
7 0 48.0000000
7 1 19.6666667
7 2 31.3333333
7 3 12.0000000

38 the standard split plot experiment design


