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CHAPTER 1

Introduction

The ability to predict the future would certainly be a highly desirable skill.
Soothsayers have claimed to have this ability for centuries, but history has shown
them to be quite fallible. No statistical technique can be used to eliminate or
explain all of the uncertainty in the world, but statistics can be used to quantify
that uncertainty. Unlike the soothsayer, the user of regression analysis can make
predictions and place error bounds on those predictions. Regression can be used
to predict the value of a dependent variable from knowledge of the values of
one or more independent variables. The technical details of regression are given
starting in Section 1.2.

The parents of a young man who has applied to a prestigious private university
would certainly welcome information on what his grade-point average (GPA)
might be after four years. If his predicted average was not high enough to enable
him to graduate, his parents would obviously be more willing to pay his tuition
at a different school at which he would be expected to graduate.

Similarly, it would be nice to know how long a certain make of automobile
would be expected to last before needing major repairs, or to know the expected
yield of a manufacturing process given a certain combination of inputs, or to
know what a company’s sales should be for a given set of expenses.

We see predictions being made all around us. Colleges and universities do
use regression analysis to predict what a student’s four-year college GPA would
be if the student were admitted, and then make a decision regarding admittance
from that predicted value and from other information. There is a vast amount of
literature on this subject, including Paolillo (1982), Graham (1991), and Wright
and Palmer (1994, 1997, 1999).

Regression analysis is one of the two most widely used statistical techniques
(analysis of variance is the other), and it is used in almost every field of application.
The following sample of titles of relatively recent research papers provides some
evidence of the breadth of range of possible applications:

Modern Regression Methods, Second Edition By Thomas P. Ryan
Copyright C© 2009 John Wiley & Sons, Inc.
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Regression analysis as an aid in making oboe reeds (Ceasar-Spall and Spall,
1997).

Using segmented regression models to fit soil nutrient and soybean grain yield
changes due to liming (Shuai, Zhou, and Yost, 2003).

Human animation using nonparametric regression (Faraway, 2004).
Tiered polychotomous regression: Ranking NFL quarterbacks (White and

Berry, 2002).
Semiparametric regression for periodic longitudinal hormone data from mul-

tiple menstrual cycles (Zhang, Lin, and Sowers, 2000).
Bayesian variable selection in logistic regression: Predicting company earn-

ings direction (Gerlach, Bird, and Hall, 2002).
Calibration using a piecewise simple linear regression model (Ndlovu and

Preater, 2001).

and an especially contemporary application paper

How to make millions on eBay, or using multiple regression to estimate prices
(Robinson, Kamischke, and Tabor, 2005).

The first of these papers describes an interesting and seemingly novel use of
regression. As stated in the abstract, professional oboe players make their own
reeds, which is a time-consuming process. Regression was used to help predict
the ultimate quality of a finished reed based on data available at the initial tryout,
with the inputs being several different characteristics of the cane used in making
the reeds. Work would cease on a reed when the prediction quality was acceptable.
It was found that the predicted quality was close to the actual quality and thus
the overall effort was successful.

It is worth noting that the strength of a regression model will vary over the
various application fields, which raises the question of whether something other
than regression should be used in fields where strong models generally cannot
be developed from data. In a very interesting paper, Dana and Dawes (2004)
concluded that regression will generally not be the best approach in social science
applications. What they recommend is discussed in Chapter 4.

A complete listing and description of all of the research papers in which
regression analysis has been applied in analyzing data from subject-matter fields
would require a separate book. It has even been claimed that lifespan can be
predicted using regression, and we examine this issue in Section 2.4.7.

In a nonstatistical context, the word regression means “to return to an earlier
place or state,” and reversion is listed in dictionaries as a synonym. We might
then wonder how regression can be used to predict the future when the word
literally means to go backward in some sense.

Regression analysis can be traced to Sir Francis Galton (1822–1911), who
observed that children’s heights tended to “revert” to the average height of the
population rather than diverting from it. In other words, the future generations of



P1: OTA
c01 JWBK300-Ryan September 25, 2008 22:33 Printer Name: Yet to Come

1.1 SIMPLE LINEAR REGRESSION MODEL 3

offspring who are taller than average are not progressively taller than their respec-
tive parents, and parents who are shorter than average do not beget successively
smaller children. (This has been called “regression to the mean” or regression
toward the mean, which Galton (1886) termed regression towards mediocrity
in his famous paper: “Regression towards mediocrity in hereditary stature.” See
also Bland and Altman (1994).)

Galton originally used the word reversion to describe this tendency, and some
years later used the word regression instead. This early use of the word regression
in data analysis is unrelated, however, to what has become known as regression
analysis. (For additional information on the invention of regression analysis, as
well as some aids to understanding simple linear regression, see Stanton (2001).
See also Stigler (1997) and Finney (1996).)

The user of regression analysis attempts to discern the relationship between
a dependent variable and one or more independent variables. That relationship
will not be a functional relationship, however, nor can a cause-and-effect re-
lationship necessarily be inferred. (Regression can be used when there is a
cause-and-effect relationship, however.) The equation F= 9

5 C + 32 expresses
temperature in Fahrenheit as a function of temperature measured on the Celsius
scale. This represents an exact functional relationship; one in which temperature
in degrees Celsius could just as easily have been expressed as a function of tem-
perature in degrees Fahrenheit. Thus there is no clear choice for the dependent
variable.

Exact relationships do not exist in regression analysis, and in regression the
variable that should be designated as the dependent variable is usually readily
apparent. As a simple example, let’s assume that we want to predict college GPA
using high school GPA. Obviously, college GPA should be related to high school
GPA and should depend on high school GPA to some extent. Thus, college GPA
would logically be the dependent variable and high school GPA the independent
variable.

Throughout this book the independent variables will be referred to as re-
gressors, predictors, or regression variables, and the dependent variable will
occasionally be referred to as the response variable.

1.1 SIMPLE LINEAR REGRESSION MODEL

The word simple means that there is a single independent variable, but the word
linear does not have the meaning that would seem to be self-evident. Specifically,
it does not mean that the relationship between the two variables can be displayed
graphically as a straight line. Rather, it means that the model is linear in the
parameters.

The basic model is

Y = β0 + β1 X + ε (1.1)
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in which Y and X denote the dependent and independent variable, respectively,
and β0 and β1 are parameters that must be estimated. The symbol ε represents
the error term. This does not mean that a mistake is being made; it is simply a
symbol used to indicate the absence of an exact relationship between X and Y .

The reader will recognize that, except for ε, Eq. (1.1) is in the general form of
the equation for a straight line. That is, β1 is the slope and β0 is the Y-intercept.

1.2 USES OF REGRESSION MODELS

Once β0 and β1 have been estimated (estimation is covered in Section 1.4), the
following prediction equation results:

Ŷ = β̂0 + β̂1 X (1.2)

The “hats” (as they are called) above β0 and β1 signify that those parameters are
being estimated, but the hat above Y means that the dependent variable is being
predicted. (The reader will observe that there is no error term in Eq. (1.2), as we
do not estimate error terms explicitly in regression models.) The equation would
be used for values of X within the range of the sample data, or perhaps only
slightly outside the range.

The prediction equation implies that prediction is one of the uses of regression
analysis. Simply stated, the objective is to see if past data indicate a strong enough
relationship between X and Y to enable future values of Y to be well predicted.
The rationale is that if past values of Y can be closely fit by the prediction
equation, then future values should similarly be closely predicted. As mentioned
previously, a prediction equation can be used to predict what a student’s college
GPA would be after four years if he or she were admitted to a particular college
or university.

Regression can also be used for the related purposes of estimation and descrip-
tion. Specifically, once β̂0 and β̂1 have been obtained, these parameter estimates
can be used to describe the relationship between Y and X. For example, β̂1 is
the amount, positive or negative, by which we would predict Y to change per
unit change in X, for the range of X in the sample that was used to determine
the prediction equation. (Note: Whereas such an interpretation is possible when
the prediction equation contains a single X, it will often not be possible to do so
when there are multiple Xs, as is discussed in Section 4.3.) Similarly, β̂0 is the
value that we would predict for Y when X = 0.

A seldom mentioned but important use of regression analysis is for control.
For example, Y might represent a measure of the pollutant contamination of a
river, with the regressor(s) representing the (controllable) input pollutant(s) being
varied (e.g., reduced) in such a way as to control Y at a tolerable level. The use
of regression for control purposes is discussed by Hahn (1974) and Draper and
Smith (1998) and is discussed in Section 1.9.1.
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Table 1.1 Four Data Sets Given by Anscombe (1973) which Illustrate the
Need to Plot Regression Data

Data Set: 1–3 1 2 3 4 4
Variable: X Y Y Y X Y

10 8.04 9.14 7.46 8 6.58
8 6.95 8.14 6.77 8 5.76

13 7.58 8.74 12.74 8 7.71
9 8.81 8.77 7.11 8 8.84

11 8.33 9.26 7.81 8 8.47
14 9.96 8.10 8.84 8 7.04
6 7.24 6.13 6.08 8 5.25
4 4.26 3.10 5.39 19 12.50

12 10.84 9.13 8.15 8 5.56
7 4.82 7.26 6.42 8 7.91
5 5.68 4.74 5.73 8 6.89

1.3 GRAPH THE DATA!

The use of the model given in Eq. (1.1) assumes that we have already selected the
model. As George E.P. Box has often stated, “all models are wrong, but some are
useful.” Any statistical analysis should begin with graphic displays of the data,
and these displays can help us select a useful model.

The importance of graphing regression data is perhaps best illustrated by
Anscombe (1973), who showed that completely different graphs can correspond
to the same regression equation and summary statistics. In particular, Anscombe
showed that the graph of a data set that clearly shows the need for a quadratic
term in X can correspond to the same regression equation as a graph that clearly
indicates that a linear term is sufficient. The four data sets are given in Table
1.1, and the reader is asked to compare the four (almost identical) regression
equations against the corresponding scatter plots in Exercise 1.1.

� EXAMPLE 1.1

Consider the data given in Table 1.2. Assume that the data have come from
an industrial experiment in which temperature is varied from 375 to 420 ◦F in
5-degree increments, with the temperatures run in random order and the process
yield recorded for each temperature setting. (It is assumed that all other factors
are being held constant.)

The scatter plot for these data is given in Figure 1.1. The plot shows a strong
linear relationship between X and Y , although there is some hint of curvature
at the extreme values of X. Therefore, the model given by Eq. (1.1) is a good
starting point, possibly to be modified later.
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Table 1.2 Process Yield Data

Y (Yield) X (◦F)

26.15 400
28.45 410
25.20 395
29.30 415
24.35 390
23.10 385
27.40 405
29.60 420
22.05 380
21.30 375
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Scatterplot of Yield vs Temperature

Figure 1.1 Scatter plot of yield versus temperature for the data in Table 1.2. �

1.4 ESTIMATION OF β0 AND β1

Point estimates of β0 and β1 are needed to obtain the prediction equation given
in Eq. (1.2). A crude approach would be to draw a line through the center of the
points and then use the slope and Y-intercept of the line as the estimates of β1

and β0, respectively.
Before one could even attempt to do so, however, it would be necessary to

define what is meant by “center.” We could attempt to minimize the sum of the
slant distances (with each distance measured from the point to the line), but since
we will be using X to predict Y , it would make more sense to try to minimize the
sum of the vertical distances. If we use the signs of those distances we have a
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problem, however, because then the line is not uniquely defined (as the reader is
asked to show in Exercise 1.2).

One way to eliminate this problem would be to minimize the sum of the
absolute values of the distances (see, e.g., Birkes and Dodge (1993)). This has
been suggested as a way to deal with extreme X-values and is discussed briefly
in Chapter 11.

The standard approach, however, is to minimize the sum of the squares of the
vertical distances, and this is accomplished by using the method of least squares.
(The following is a presentation of ordinary listed squares (OLS), with the first
word used to distinguish the method from other least squares methods, such as
weighted least squares, which is discussed in Section 2.1.3.1.) For the purpose
of illustration we must assume that Eq. (1.1) is the correct model, although as
stated previously the correct model will generally be unknown.

The starting point is to write the model as

ε = Y − (β0 + β1 X ) (1.3)

Since ε represents the vertical distance from the observed value of Y to the line
represented by Y = β0 + β1 X that we would have if β0 and β1 were known, we
want to minimize

∑
ε2.

For convenience we define L as

L =
n∑

i=1
ε2

i =
n∑

i=1
(Yi − β0 − β1 Xi )2 (1.4)

where n denotes the number of data points in a sample that has been obtained.
To minimize L we take the partial derivative of L with respect to each of the two
parameters that we are estimating and set the resulting expressions equal to zero.
Thus,

∂L

∂β0
= 2

n∑
i=1

(Yi − β0 − β1 Xi )(−1) = 0 (1.5a)

and

∂L

∂β1
= 2

n∑
i=1

(Yi − β0 − β1 Xi )(−Xi ) = 0 (1.5b)

Dropping the 2 and the −1 from Eqs. (1.5a) and (1.5b), the solutions for β0

and β1 would be obtained by solving the equations (which are generally called
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normal equations):

n∑
i=1

(Yi − β0 − β1 Xi ) = 0

and

n∑
i=1

(Xi Yi − Xiβ0 − β1 X2
i ) = 0

which become

nβ0 + β1

n∑
i=1

Xi =
n∑

i=1
Yi

and

β0

n∑
i=1

Xi + β1

n∑
i=1

Xi =
n∑

i=1
Yi

The solution of these two equations (for the estimators of β0 and β1) produces
the least squares estimators

β̂1 =
∑

Xi Yi − (∑
Xi

) (∑
Yi

)
/n∑

X2
i − (∑

Xi
)2

/n
(1.6a)

and

β̂0 = Y − β̂1 X (1.6b)

(The astute reader will recognize that L in Eq. (1.4) is not automatically mini-
mized just by setting the first derivatives equal to zero and solving the resultant
equations. It can be shown, however, that the determinant of the matrix of second-
order partial derivatives of L is positive, thus ensuring that a minimum, rather
than a maximum, has been attained. Matrix algebra for regression is covered in
Chapter 3.)

Notice that in Eq. (1.6) we have dropped the beginning and ending points of
the summation and have simply used

∑
. We shall do so frequently in this and

subsequent chapters, as all summations hereinafter will be assumed to start with
1 and end with n, unless indicated otherwise. We will also drop the subscript i in
most summation expressions.

If computations were performed by hand calculator, β̂1 would obviously have
to be computed before β̂0, since the latter is obtained using the former.
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It is advantageous (and space saving, in particular) to use shorthand notation
to represent the right side of Eq. (1.6). The symbol Sxy can be used to represent
the numerator, and Sxx to represent the denominator. The S can be thought of
as representing “sum,” while xx represents X times X, which, of course, equals
X2. In statistical jargon, Sxx represents the “corrected” sum of squares for X,
and Sxy denotes the corrected sum of products of X and Y . That is, Sxx �= ∑

X2

and Sxy �= ∑
XY Rather, Sxx = ∑

(X − X )2 and Sxy = ∑
(X − X )(Y − Y ),

where these two expressions can be shown to be equal to the denominator and
numerator, respectively, of Eq. (1.6). Thus, the “correction” factors are X and Y .
Also, Syy = ∑

(Y − Y )2.
When the calculations are performed using the data in Table 1.2, the following

results are obtained:

β̂1 = 102,523.5 − (3975)(256.9)/10

1,582,125 − (3975)2/10

= 405.75

2062.5
= 0.19673

and

β̂0 = 25.69 − 0.19673(397.5)

= −52.51

The regression equation is thus Ŷ = −52.51 + 0.19673X .

� EXAMPLE 1.2

Background

An interesting and important application of simple linear regression was de-
scribed by Current (1998). It is a frequent practice in anesthesiology and crit-
ical care medicine to estimate the body surface area (BSA) of infants and
children, in particular. This is necessary for determining proper drug dosages
and for other reasons. The most accurate formula for accomplishing this
is BSA = Weight(0.7285−0.0188 log (weight)) × Height(0.3) × 0.0003207, as given by
Boyd (1935), which was determined using data from the literature on 231 sub-
jects, with the “known” BSA values determined using triangulation, surface
integration, and various coating methods.

Boyd’s formula is obviously not a simple expression, however, and requires the
use of a calculator. Consequently, Current (1998) sought something simpler and
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used data for 112 patients ranging in weight from 3 to 30 kilograms given in the
literature and reported by Boyd (1935). Current (1998) showed a graph of BSA
(using Boyd’s formula) plotted against Weight (in grams), with the simple linear
regression line displayed on the graph (see http://www.ispub.com/ostia/
index.php?xmlFilePath=journals/ija/vol2n2/bsa.xml). The fit is
obviously very good at low weights but breaks down at high weights.

Regression Equation

The regression equation is BSA = 1321 + 0.3433Weight, and the R2 value (see
Section 1.5.2) was .9715. Remember, however, that BSA is from Boyd’s formula;
it is not the “known” BSA. Virtually all formulas used for any type of estimation
will break down somewhere, so the question must be asked: Is the disagreement
between the fitted BSA and Boyd’s BSA at higher weights due to Boyd’s formula
not working well at those weights, or is it due to the simple linear regression
model not being very applicable at high weights, since there should obviously
be greater variability in BSA values for high weights than for low weights?
Current (1998) stated that the regression equation should be used because of
the high correlation (.9857) between the fitted values that it produces and the
values obtained using Boyd’s formula. (Correlation is discussed in Section 1.8.)
High correlation by itself is not necessarily sufficient, however, because two
sets of values can differ by a large constant and still be perfectly correlated.
It is also worth noting that Current (1998) states that the regression equation
applies only to well-proportioned infants and children who range from 3 to 30
kilograms and, furthermore, should be used only in noncritical applications, with
Boyd’s formula used in critical applications. Current (an M.D.) stated that he has
found the regression equation to be quite useful in operating room management
of infants and children for the application of pump flows and fresh gas flows
and believes it to be adequate for most noncritical cases. We should also note
that although the regression equation is simpler than Boyd’s formula, medical
personnel will still probably need to use a calculator and would also probably
need a calculator if a simplified version, given by Current (1998), of the regression
equation is used.

This is an interesting application of simple linear regression because a less
complicated, easier to use model was sought. In essence, this is what lin-
ear regression is all about because the true (unknown) model in practically
any application will be unknown, as was emphasized in Section 1.3 with the
quote from George Box. It is also worth noting that Current (1998) empha-
sized that not only should the regression equation be used only for the weight
range of 3–30 kilograms, but that the child must be “well proportioned.” Thus,
this is somewhat of a multidimensional problem relative to the subjects, even
though the regression equation contains only a single predictor. So extrapo-
lation would occur if the model were applied to a child who was not well
proportioned. �
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1.4.1 Orthogonal Regression

It is reasonable to ask why β̂0 and β̂1 are not obtained by minimizing the sum of
the squares of the perpendicular (slant) distances from the points to the regres-
sion line rather than the sum of the squares of the vertical distances, especially
since those distances are shorter. Indeed, this is sometimes done and that is
called orthogonal regression. (For more technical details and a computer pro-
gram for orthogonal regression, see, for example, http://www.nlreg.com/
orthogonal.htm.)

If the regressor values are fixed, vertical distances seem to be most appropriate.
Nevertheless, orthogonal regression, which corrects for measurement error in the
predictors, has been found to be useful in various applications, but as Carroll
and Ruppert (1996) pointed out, it is frequently misused as equation error is not
considered.

Orthogonal regression assumes that there is an exact relationship between X
and Y (i.e., no equation error), with measurement error, assumed for both X and
Y , preventing the points from plotting on a straight line. It is often used when
two methods measure the same quantity, or when Y is related to X through a
physical law. We will not pursue further discussion of orthogonal regression. The
interested reader is advised to read the corresponding material in Fuller (1987)
and is especially advised to read Carroll and Ruppert (1996) carefully.

1.5 INFERENCES FROM REGRESSION EQUATIONS

What can we infer from the regression equation for the Table 1.2 data? Since
the data have come from a designed experiment, we can state that, within the
range of temperatures used in the experiment, process yield should increase by
approximately 0.2 (×100) units per single degree increase in temperature. This
assumes that all controllable factors that might influence process yield have been
held constant during the experiment, and that the randomization of temperatures
has prevented any “lurking variables” from undermining the inferences made
from the data. (Lurking variables are factors that can have a systematic effect on
the response variable; see Section 5.7 for further discussion of lurking variables.)
See Chapter 14 for a discussion of inferences that can be made from controlled
experiments versus the conclusions that can be drawn from observational studies.
The latter refers to obtaining data without any intervention on the part of the data
collector, such as taking a sample of data from a college registrar’s records. From
Table 1.2 we can see that if the temperatures are ordered from 375 ◦F to 420 ◦F,
the average change in process yield for each degree increase in temperature is
0.184, which differs only slightly from β̂1 (as we might expect).

In a study of this type, the primary benefit to be derived from this experiment
would be a better understanding of how temperature affects process yield, and
to gain a better understanding of what might seem to be the optimal temperature
setting, as is done in Evolutionary Operation (see, e.g., Box and Draper (1969)
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or Ryan (2000)). Notice, however, that this cannot be determined from the data
in Table 1.2, as the yield is strictly increasing as temperature increases. It would
appear though that the optimal temperature setting may be just slightly greater
than 420 ◦F, as yield does level off somewhat as temperature is increased from
415 to 420 ◦F.

1.5.1 Predicting Y

To illustrate the other uses of regression analysis and the inferences that we can
draw from such an analysis, let’s assume that we want to use the regression
equation to predict Y . That is, we are interested in predicting process yield for
different temperature settings.

Let’s assume that we would like to be able to predict what yield should be when
the temperature is 400 ◦F. A very simple approach would be to use 26.2 as the
predicted value since that was the process yield that resulted when temperature
was set at 400 ◦F in the experiment. To do so, however, would be to ignore the
question “Is there a relationship between X and Y?” and if a relationship does
exist, to not utilize the extent of that relationship.

Consider this. Assume that a scatter plot of Y versus X resulted in a random
configuration of points such that the line represented by the regression equation
would have a slope of zero (which would be a horizontal line). It would then be
foolish to use any particular value of Y in the data set as the predicted value of
Y for the corresponding value of X, because the regression equation would be
telling us that there is no relationship between X and Y , and that we might as well
use the average value of Y in the data set in predicting Y . (Note that this is what
happens algebraically when β̂1 = 0, since β̂0 = Y − β̂1 X and Ŷ then equals β̂0,
which in this case equals Y .)

Thus, there is no point in trying to predict Y from X unless there is evi-
dence of some type of a relationship (linear or nonlinear) between the two, and
the apparent strength of the relationship suggests that Y will be well predicted
from X.

How do we discern the strength of the relationship between X and Y? Figure
1.1 shows that there is a strong linear relationship between X and Y , and when
this is the case, the observed values in Table 1.2 should be very close to the
fitted values. In particular, when X = 400, Ŷ = −52.51 + 0.19673(400) = 26.18,
which hardly differs from Y = 26.15 in Table 1.2. (We shall use the term fitted
values to denote the Ŷ values for the sample and the term predicted value to
represent the prediction of a future (i.e., unobservable) value of Y .)

We would expect the other fitted values to be close to the observed values,
and Table 1.3 shows that this is true. We can see that all of the fitted values are
close to the observed values, with the largest difference occurring at X = 420.
The latter is to be expected since the difference in the Y values for X = 415 and
X = 420 is noticeably smaller than any of the other differences for successive X
values.
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Table 1.3 Y and Ŷ Values for Table 1.1 Data

X Y Ŷ Y − Ŷ (Y − Ŷ )2

400 26.15 26.18 −0.03 0.0009
410 28.45 28.15 0.30 0.0900
395 25.20 25.20 0.00 0.0000
415 29.30 29.13 0.17 0.0289
390 24.35 24.21 0.14 0.0196
385 23.10 23.23 −0.13 0.0169
405 27.40 27.17 0.23 0.0529
420 29.60 30.12 −0.52 0.2704
380 22.05 22.25 −0.20 0.0400
375 21.30 21.26 0.04 0.0016

0.00 0.5212

(It should be noted that the values for (Y − Ŷ )2 differ slightly from the values
that would be obtained if a computer (or more decimal places) were used, as
the given values are computed directly from the two-decimal-place values for
Y − Ŷ . This also means that subsequent calculations in this chapter that utilize∑

(Y − Ŷ )2 will also differ slightly from the results produced by a computer.)
It can also be observed that

∑
(Y − Ŷ ) = 0. This is due to Eq. (1.5a), since

that equation can be written, with the parameters replaced by their respective
estimators, as

∑
(Y − (β̂0 + β̂1)) = 0 = ∑

(Y − Ŷ ). Thus, since the second of
the two equations that were solved is not involved, having

∑
(Y − Ŷ ) = 0 does

not ensure that the correct values for β̂0 and β̂1 were obtained, as the reader is
asked to investigate in Exercise 1.2.

For the correct β̂0 and β̂1 values,
∑

(Y − Ŷ )2 is minimized. This is because
the method of least squares was used with the initial intent being to minimize∑

ε2 = ∑
(Y − β0 − β1 X )2. We cannot observe the values for ε, however, since

β0 and β1 are unknown. What we do observe are the e values, where e = Y − Ŷ
is called a residual, and

∑
e2 = ∑

(Y − β̂0 − β̂1 X )2 is minimized for a given
set of data. (Obviously, e is defined only when Ŷ denotes a fitted value rather
than a predicted value yet to be observed.)

1.5.2 Worth of the Regression Equation

For this example it is clear that the regression equation has value for prediction
(or for control or descriptive purposes).

A scatter plot will not always show as obvious a linear relationship as was
seen in Figure 1.1, however, and the size of the Y − Ŷ values will generally
depend on the magnitude of Y . Consequently, it would be helpful to have a
numerical measure that expresses the strength of the linear relationship between
X and Y .
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A measure of the variability in Y is
∑

(Y − Y )2. Since∑
(Y − Y )2 = ∑

(Y − Ŷ )2 + ∑
(Ŷ − Y )2 (1.7)

as is shown in the chapter Appendix, it would be logical to use either
∑

(Y − Ŷ )2

or
∑

(Ŷ − Y )2 as a measure of the worth of the prediction equation, and divide
the one that is used by

∑
(Y − Y )2 so as to produce a unit-free number.

It is a question of whether we want the measure to be large or small. If we
define

R2 =
∑

(Ŷ − Y )2∑
(Y − Y )2

(1.8)

then R2 represents the percentage of the variability in Y (as represented by∑
(Y − Y )2) that is explained by using X to predict Y . Note that if β̂1 = 0, then

Ŷ = Y for every value of X and R2 = 0. At the other extreme, R2 would equal
1 if Ŷ = Y for each value of Y in the data set. Thus, 0 ≤ R2 ≤ 1 and we would
want R2 to be as close to 1 as possible.

From the data in Table 1.3,

R2 =
∑

(Ŷ − Y )2∑
(Y − Y )2

= 1 −
∑

(Y − Ŷ )2

Syy
(from Eq. (1.7)) (1.9)

= 1 − 0.5212

80.3390
= .9935

Thus, R2 is very close to 1 in this example.
How large must R2 be for the regression equation to be useful? That depends

on the area of application. If we could develop a regression equation to predict
the stock market (which unfortunately we cannot), we would be ecstatic if R2 =
.50. On the other hand, if we were predicting college GPA, we would want the
prediction equation to have strong predictive ability, since the consequences of a
poor prediction could be quite serious.

Although R2 is a well-accepted measure, a few criticisms can be made both
for one X and for more than one X. For example, with a single X the slope of the
plotted points will affect R2, as is discussed by Barrett (1974). The argument is as
follows. Consider the expression for R2 given in Eq. (1.9). If we let the closeness
of Ŷi to Yi be fixed so that

∑
(Yi − Ŷi )2 remains constant, but then rotate the

configuration of points so that the slope of the regression line is increased, R2
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must increase because
∑

(Y − Y )2 will increase. Under the assumption that the
values of X are preselected, Ranney and Thigpen (1981) showed that the expected
value of R2 can also be increased by increasing the range of X. The value of R2

may also be artificially large if the sample size is small relative to the number
of parameters, and as pointed out by Draper and Smith (1998), when there are
repeated X-values, it is the number of distinct X-values relative to the number of
parameters that is important, not the sample size. Another disturbing feature of
R2 is that we can expect it to increase for each variable that is added to a known
(true) model. (This result is discussed in the chapter Appendix.)

Despite these shortcomings, R2 has value as a rough indicator of the worth of
a regression model. Another form of R2, R2

adjusted, is sometimes used. Since

R2
adjusted = 1 − SSEp/(n − p)

SST/(n − 1)

with p denoting the number of parameters in the model, R2
adjusted can decrease as

p is increased if n − p declines at a faster rate than SSEp. Thus, R2
adjusted might be

used to determine the “point of diminishing returns.” R2
adjusted is discussed further

in Section 7.4.1. (Note that R2
adjusted would be negative if SSEp is close to SST but

that is of no practical concern since this isn’t likely to occur with a fitted model.)

1.5.3 Regression Assumptions

What has been presented to this point in the chapter has hardly involved statistics.
Rather, calculus was used to minimize a function, and the estimators that resulted
from this minimization, β̂0 and β̂1, were used to form the prediction equation.
Thus, there are very few assumptions that need to be made at this point.

One assumption that obviously must be made is that the model given in
Eq. (1.1) is a suitable proxy for the “correct” (but unknown) model. We also need
to assume that the variance of εi (i.e., Var(εi)) is the same for each value of i
(i = 1, 2, . . . , n). If this requirement is not met, then weighted least squares (see
Section 2.1.3.1) should be used.

A typical analysis of regression data entails much more than the development
of a prediction equation, however, and additional inferences require additional
assumptions. These assumptions are stated in terms of the error term, ε, in the
regression model. One very important assumption is that the error terms are
uncorrelated. Specifically, any pair of errors (εi, εj) should be uncorrelated, and
the errors must also be uncorrelated with X. This means that if we knew the value
of εi, that value would not tell us anything about the value of εj. Similarly, the
value of εi should not depend on the value of Xi.

The assumption of uncorrelated errors is frequently violated when data are col-
lected over time, and the consequences can be serious (see Chapter 2). Another
important assumption is that ε should have approximately a normal distribution.
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The method of least squares should not be used when the distribution of ε is
markedly nonnormal. For example, positive and negative residuals with equal
absolute values should clearly not be weighted the same if the distribution of
the errors is not symmetric. As discussed by Rousseeuw and Leroy (1987, p. 2)
and others, Gauss introduced the normal distribution as the optimal error dis-
tribution for least squares, so using least squares when the error distribution is
known (or believed) to be nonnormal is inappropriate. Although some theoretical
statisticians would argue that asymptotic results support the use of least squares
for nonnormal error distributions when certain conditions are met, such a stance
will often lead to very bad results. It is important to realize that the methods of
Chapter 11 (for nonnormal error distributions and other problems) will often be
needed. With any statistical analysis (using regression or some other technique),
it is a good idea to analyze the data first assuming that the assumptions are met,
and then analyze the data not assuming that the assumptions are met. If the results
differ considerably, then the results of the second analysis will generally be the
more reliable.

This last point cannot be overemphasized, as the confidence intervals, pre-
diction interval, and hypothesis tests that are presented in subsequent sections
are sensitive (i.e., not robust) to more than a slight-to-moderate departure from
normality (see, e.g., Rousseeuw and Leroy (1987, p. 41) or Hamilton (1992,
p. 113)), with the prediction interval being the most sensitive. Nonnormality,
bad data, and good data that are far removed from the rest of the data can cre-
ate serious problems. Consequently, the regression user and serious student of
regression are urged to study Chapter 11 carefully. Methods for checking the as-
sumptions of normality, independence, and a constant error variance are given in
Chapter 2.

Another assumption on ε is that the mean of ε is zero. This assumption is
never checked; it simply states that the “true” regression line goes through the
center of a set of data. These assumptions on ε can be represented by ε ∼
NID(0, σ 2), with the additional assumption of normality meaning that the εi, εj

are not only uncorrelated but are also independent (i.e., normal and independent;
NID).

Another assumption that is necessary for the theory that immediately follows,
but is not necessary for regression analysis in general, is for the values of X to be
selected by the experimenter rather than being allowed to occur at random. (The
use of regression analysis when X is random is discussed in Section 1.9.)

When X is fixed, the assumptions on ε translate into similar assumptions
on Y . This is because β0 + β1 X is then an (unknown) constant, and adding
a constant to ε causes Y = β0 + β1 X + ε to have the same distribution and
variance as ε. Only the mean is different. Specifically, for a given value of
X, Y ∼ N (β0 + β1 X, σ 2), and the assumption of uncorrelated errors means that
the Yi, Yj are also uncorrelated. As with the errors, the assumption of normality
allows us to state further that the Yi, Yj are also independent. These assumptions
of normality and independence for Y are necessary for the inferential procedures
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that are presented in subsequent sections. (In subsequent sections and chapters we
will write Var(Y) to represent the conditional variance, Var(Y |X ), as the variance
of Y is assumed to be the same for each value of X.)

1.5.4 Inferences on β1

Confidence intervals and hypothesis tests are covered in introductory statistics
courses, and the relationship between them is often discussed. Although the in-
formation provided by a hypothesis test is also provided by a confidence interval,
the confidence interval provides additional information. Obviously, it would be
helpful to have a confidence interval on the true rate of change of Y per unit
change in X, acting as if Eq. (1.1) is the true model.

To obtain a confidence interval for β1, we need an estimate of the standard
deviation of β̂1, after first deriving the expression for the standard deviation. The
latter can be obtained as follows. We first write β̂1 as a linear combination of the
Y values. Specifically,

β̂1 =
∑

(Xi − X )(Yi − Y )∑
(Xi − X )2

(1.10)

=
∑

(Xi − X )Yi

Sxx

with the second line resulting from the fact that
∑

(Xi − X )Y = 0. (Notice that
the expression for β̂1 in Eq. (1.10) differs from the expression in Eq. (1.6). The
latter is used for hand calculation; the reader is asked to show the equivalence of
the two expressions in Exercise 1.3.)

Using the expression in the second line, we may write β̂1 = ∑
ki Yi , with

ki = (Xi − X )/Sxx . Recall that Y is assumed to have a normal distribution, so the
fact that β̂1 can be written as a linear combination of normally distributed random
variables means that β̂1 also has a normal distribution. Furthermore, writing β̂1

in this manner makes it easy to obtain its standard deviation.
We may also use this expression for β̂1 to show that it is an unbiased estimator

of β1, as is shown in the chapter Appendix. In general, an unbiased estimator is
one for which the expected value of the estimator is equal to the parameter, the
unknown value of which the value of the estimator serves to estimate. It will be
seen later in this section that β̂1 is in the center of the confidence interval for β1.
This would be illogical if β̂1 were a biased estimator, and the amount of the bias
were known. It should be noted that the unbiasedness property of β̂1 is based
on the assumption that the fitted model is the true model. This is a rather strong
assumption that generally will be false. But since the true model is unknown,
we do not know the extent to which β̂1 is biased. Therefore, the usual textbook
approach is to regard the β̂i as being unbiased when the method of least squares
is used.
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We initially obtain the variance of β̂1 as

Var(β̂1) = Var
(∑

ki Yi
)

= ∑
Var(ki Yi )

= ∑
k2

i Var(Yi )

= σ 2 ∑
k2

i

= σ 2/Sxx

Thus, the standard deviation of β̂1 is σ/
√

Sxx , so the estimated standard deviation
is σ̂ /

√
Sxx . Therefore, we need to estimate σ . (The estimated standard deviation

of an estimator is frequently called the standard error of the estimator.)
Before doing so, however, we need to clearly understand what σ and σ 2

represent. To this point in the chapter (and in Section 1.5.3, in particular), σ 2 has
been used to represent Var(εi) and Var(Yi |Xi ). Can we state that σ 2 is also the
variance of Y? Not quite.

Our interest is in the variance of Y given X, not the variance of Y ignoring X.
Whereas we could estimate σ 2

y as s2
y = ∑

(Y − Y )2/(n − 1), this would ignore
the fact that X is being used to predict Y . Consequently, the estimate of σ 2

ε

should be less than s2
y , and the variance of Y that we should speak of is, in

statistical parlance, the conditional variance of Y given X, as was stated previously,
remembering that the variance is assumed to be the same for each value of X.
We need not be concerned about the latter, however, since it is equal to σ 2

ε when
the postulated model is the true model. As stated previously, we cannot expect
to know the true model, but we act as if these two variances are the same in the
absence of information that would suggest that the model given by Eq. (1.1) is
not an appropriate model.

In estimating σ 2
ε we can think about how the variance of a random variable

is estimated in an introductory statistics course. For a sample of observations on
some random variable, W, σ 2

w is estimated by s2
w = ∑

(W − W )2/(n − 1), with
the divisor making s2

w an unbiased estimator of σ 2
w .

If we proceed to estimate σ 2
ε in an analogous manner, we would compute

s2
e = ∑

(e − e)2/(n − 2). Note that e is substituted for ε since ε is not observable.
Notice also that the divisor is n − 2 instead of n − 1. A divisor of n − 2 is needed
to make s2

e an unbiased estimator of σ 2
ε , as is shown in the chapter Appendix.

(Another reason why the divisor must be n − 2 is given later in this section.)
Since e = Y − Ŷ and e = 0, s2

e can be written as s2
e = ∑

(Y − Ŷ )2/(n − 2).
Putting these results together, we obtain

sβ̂1
= se√

Sxx

=
√∑

(Y − Ŷ )2

(n − 2)Sxx
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If we write

t = β̂1 − β1

sβ̂1

it can be shown that t has a Student’s-t distribution with n − 2 degrees of freedom
(see the chapter Appendix).

It follows that

P

(
−tα/2,n−2 ≤ β̂1 − β1

sβ̂1

≤ tα/2,n−2

)
= 1 − α (1.11)

provides the starting point for obtaining a 100(1 − α)% confidence interval for
β1, with the value of tα/2,n−2 obtained from a t table with a tail area of α/2 and n
− 2 degrees of freedom. Rearranging Eq. (1.11) so as to give the end points of
the interval produces

P(β̂ − tα/2,n−2sβ̂1
≤ β1 ≤ β̂1 + tα/2,n−2sβ̂1

) = 1 − α

The lower limit (L.L.) is thus β̂1 − tα/2,n−2sβ̂1
and the upper limit (U.L.) is β̂1 +

tα/2,n−2sβ̂1
.

For the data in Table 1.2, the values of
∑ (

Y − Ŷ
)2

and Sxx were given
previously. We thus have

sβ̂1
=

√∑
(Y − Ŷ )2

(n − 2)Sxx

=
√

0.5212

(8)2062.5

= 0.0056

A 95% confidence interval for β1 would then have L.L. = 0.19673 −
2.306(0.0056) = 0.1838, and U.L. = 0.19673 + 2.306(0.0056) = 0.2096.

We would certainly want our confidence interval to not include zero because
if β1 = 0, there would be no regression equation. Since R2 was quite large
(.9935), we would expect the interval not to include zero. The converse is not
true, however. That is, if the interval does not include zero, R2 could be much
less than one and could even be less than .5. This will be discussed further in the
context of hypothesis testing.

Statistics books that cover regression analysis generally present a hypothesis
test of β1 = 0 in which the null and alternative hypotheses are Ho: β1 = 0 and
Ha: β1 �= 0, respectively. The rejection of H0, using a (typical) significance level
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of α = .05 or α = .01, will not ensure that the regression equation will have much
value, however.

This can be demonstrated as follows, continuing with the current example. For
testing Ho: β1 = 0,

t = β̂1 − 0

sβ̂1

= 0.19673

0.0056
= 35.13

Since t8,.025 = 2.306 and t8,.005 = 3.355, we would reject Ho: β1 = 0 at either
significance level. As inferred earlier, the hypothesis test and confidence interval
for β1 are not robust (i.e., not insensitive) to nonnormality, or to extreme data
points that can result from nonnormality. Therefore, the hypothesis test and
confidence interval should be used with caution, with methods such as those
given in Chapter 2 used for detecting a clear departure from normality.

With some algebra we can show (see chapter Appendix) that

R2 = t2

n − 2 + t2
(1.12)

so R2 < 0.50 if t2 < n − 2. If the calculated value of t had equaled t8,.025, then R2

would have equaled .3993. Using a significance level of α = .01 would not help
much, because if t = t8,.005 then R2 = .5845.

It should thus be clear that for the regression equation to be of value (for not
only prediction, but also for the other uses of regression), the calculated value
of t should exceed some multiple of the tabular value. If we adapt to a t-test the
recommendation of Draper and Smith (1998), which is based on the work of
Wetz (1964), we obtain the result that the calculated t-value should be at least
twice the tabular value.

For the current example, if t ≥ 2t8,.025 then R2 ≥ .7267, and if t ≥ 2t8,.005

then R2 ≥ .8491. Obviously, these numbers look better than the pair of R2 values
given previously. As stated earlier, there is no clear dividing line between high
and low R2 values, but we can see that the “double t” rule could result in some
rather small R2 values being declared acceptable when n is much larger than 10.
For example, for n = 20, t ≥ 2t18,.025 implies R2 ≥ .4952, whereas t ≥ 3t18,.025

implies R2 ≥ .6882. Therefore, three might be a more suitable multiplier if n is
much larger than 10.

How large should n be? This decision is also somewhat arbitrary, just as are
the choices for α and the multiplier of t. Draper and Smith (1998) suggest that
n should be at least equal to ten times the number of regressors. Thus, we might
consider having n ≥ 10 in simple regression. This should be considered as only
a very rough rule-of-thumb, however, as data are expensive in certain fields of
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application, such as the physical sciences. As stated by Frank and Friedman
(1992), “In chemometrics applications the number of predictor variables often
(greatly) exceeds the number of observations.”

Because of the relationship between confidence intervals and hypothesis tests
for β1, the results that were stated in terms of hypothesis tests also apply to con-
fidence intervals. Specifically, if t = t8,.025 the lower limit of the 95% confidence
interval would be zero, and if t > t8,.025 the lower limit would exceed zero (and
similarly the upper limit would be less than zero if t < −t8,.025). Thus, a 95% (or
99%) confidence interval for β1 that does not cover zero does not guarantee a
reasonable value for R2.

1.5.5 Inferences on β0

We are usually not interested in constructing a confidence interval for β0, and
rarely would we want to test the hypothesis that β0 = 0. There are, however,
a few situations in which a confidence interval for β0 would be useful, and the
form of the confidence interval can be obtained as follows.

Analogous to the form of the confidence interval for β1, the confidence interval
for β0 is given by

β̂0 ± tα/2,n−2sβ̂0

It is shown in the chapter Appendix that Cov(Y , β̂1) = 0, with Cov denoting co-

variance. It then follows that Var(β̂0) = Var(Y − β̂1 X ) = Var(Y ) + X
2

Var(β̂1) =
σ 2/n + X

2
(σ 2/Sxx ), which can be written more concisely as σ 2

(∑
X2/nSxx

)
.

It then follows that

sβ̂0
= σ̂

(∑
X2

nSxx

)1/2

The use of a hypothesis test of Ho: β0 = 0 against Ha: β0 �= 0 is another matter,
however, as this relates to choosing between the models Y = β0 + β1 X + ε and
Y = β ′

1 X + ε′. A choice between the two models should be made before any
data are collected, and rarely would we use the no-intercept model. We would
generally use the latter when (1) we know that Y = 0 when X = 0, (2) we are
using a data set (for parameter estimation) where the points are at least very close
to the point (0, 0), and preferably cover that point, and (3) we are interested in
using the regression equation (for prediction, say) when X is close to zero.

Certainly, there are many potential applications of regression analysis for
which the first condition is met. One such application is described by Casella
(1983), in which the independent variable is the weight of a car and the dependent
variable is gallons per mile. The author contends that a no-intercept model (which
is also termed regression through the origin) is appropriate in view of the physical
considerations. Obviously, no car weighs close to zero pounds, however, so the
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second and third conditions are not met, and to say that the first condition is
met in this example is to state the obvious: if we do not drive a car then we will
not realize any mileage from a car, so no gas will be used. Thus, since the first
condition is satisfied only trivially, one might argue that a hypothesis test of Ho:
β0 = 0 is needed to determine if a no-intercept model should be used, and in
this example Casella (1983) found that Ho was not rejected. It was also shown,
however, that the intercept model had a slightly higher R2 value, so one could
argue that the intercept model should be used. (Note: Different forms of R2 have
been recommended for different types of regression models; this is discussed in
Section 1.6 and in subsequent chapters.)

Recall a potential application of regression for control that was mentioned
briefly in Section 1.2, in which the objective is to control the level of a certain
type of river pollutant (and, ideally, to eliminate the pollutant). If the dependent
variable were a measure of pollution that could have a nonzero value only if the
pollutant were nonzero, then regression through the origin would be appropriate
because we would probably be interested in predicting Y when X is close to zero.

Even if we know that Y must equal zero when X = 0, that is not a sufficient
reason for using the no-intercept model, especially when this condition is triv-
ially satisfied. (The latter will certainly be true in many regression applications,
because if X and Y are related and X is “absent” in the sense that X = 0 is an
implausible value, then Y is also likely to be absent.) For the “absent–absent”
scenario we are not likely to have data that are close to the point (0, 0), so if we
force the regression line to go through the origin the line may not fit the data as
well as a regression line with an intercept. An example of this is given by Draper
and Smith (1998), who indicate that the intercept model provides a better fit to
the data even though it was known that Y = 0 when X = 0. (Y was the height of
soap suds in a dishpan, and X was grams of the detergent.)

Thus, there are limited conditions for which linear regression through the
origin is appropriate. Accordingly, the topic is treated only briefly in Section 1.6.

1.5.6 Inferences for Y

Fitted values of Y have been illustrated previously, but we would generally like to
have an interval about the predicted values. Such an interval is termed a prediction
interval rather than a confidence interval because the latter is constructed only
for a parameter, and Y is not a parameter.

1.5.6.1 Prediction Interval for Y
Confidence intervals for a parameter θ often have the general form θ̂ ± tsθ̂ . The
confidence interval presented in the next section will thus be of this form, but the
prediction interval for Y , which is considerably more useful, is not of this form.
Specifically, the prediction interval is given by

Ŷ ± tα/2,n−2

√
σ̂ 2

y + σ̂ 2
ε (1.13)
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Notice that we would have the general form of a confidence interval (for the
parameter that Ŷ estimates) if it were not for the second term under the radical
in Eq. (1.13). The presence of that term can be explained as follows. Since the
mean of ε is zero, it follows that the conditional mean of Y given X, µy|x , is equal
to β0 + β1 X . Because we are predicting an individual Y value, we must account
for the variability of Y about its mean. Since ε = Y − (β0 + β1 X ) = Y − µy|x ,
the additional variance component must be σ 2

ε . Thus, since Y = µy|x + ε and
Ŷ = µ̂y|x , we must add σ 2

ŷ to σ 2
ε and then use the appropriate estimators for each

of the two variance components. (Note that Var(Ŷ + ε) is equal to the sum of
the individual variances because ε is assumed to be independent of Ŷ , which
follows from the assumption stated earlier that ε must be uncorrelated, and hence
independent under normality, of X.)

It is shown in the chapter Appendix that

Var(Ŷ ) = σ 2
ε

(
1

n
+ (x − x)2

Sxx

)
(1.14)

Thus, σ̂ 2
ε + σ̂ 2

ŷ = σ̂ 2
ε (1 + 1/n + (x − x)2/Sxx ), and the square root of this last

expression would be used in obtaining the prediction interval given in Eq. (1.13).
It was stated previously that σ 2

ε could be estimated as σ̂ 2
ε =∑

(Y − Ŷ )2/(n − 2). This is not the best form of σ̂ 2
ε for computational pur-

poses, however, as each of the n Ŷ values would have to be computed. It is
shown in the chapter Appendix that

∑
(Y − Ŷ )2 = Syy − β̂1Sxy − β̂2

1 Sxx . Thus,
σ̂ 2

ε = (Syy − β̂1Sxy)/(n − 2), which is frequently denoted as simply s2.
Since σ̂ 2

ε and σ̂ 2
β̂1

both contain s2, Eq. (1.13) may be written in the form

Ŷo ± tα/2,n−2s

√
1 + 1

n
+ (x0 − x)2

Sxx
(1.15)

where Ŷo is the predicted value of Y using a particular value of X denoted by xo.
The latter may be one of the values used in developing the prediction equation, or
it may be some other value as long as that value is within the range of X values in
the data set used in constructing the interval (or at least very close to that range).
(Note that here we are using a lowercase letter to denote a specific value of a
random variable, as is customary.)

To obtain predicted values and prediction intervals for values of X outside that
range would be to engage in extrapolation, as we would be extrapolating from a
region where we can approximate the relationship between Y and X to a region
where we have no information regarding that relationship.

For the data in Table 1.2, a 95% prediction interval for Y given that xo = 380
can be obtained as follows. For xo = 380, ŷo = 22.05, as was given in Table 1.3.
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Using s2 = (Syy − β̂1Sxy)/(n − 2) we obtain

s2 = 80.339 − 0.19673(405.75)

8
= 0.0645

so that s = 0.2540. The prediction interval would then be obtained as

Ŷo ± tα/2,n−2s

√
1 + 1

n
+ (x0 − x)2

Sxx
(1.16)

= 22.05 ± 2.306(0.2540)

√
1 + 1

10
+ (380 − 397.5)2

2062.5
= 22.05 ± 0.65

Thus, the prediction interval is (21.4, 22.7) when x = 380. Prediction intervals are
interpreted analogous to the way that confidence intervals are interpreted. That
is, if the experiment described in Section 1.2 were repeated 100 times, x = 380
was one of the temperature readings used, the normality assumption was met,
and the true model was given by Eq. (1.1), the expected number of times that the
interval (21.4, 22.7) covers the observed value of Y when x = 380 is 95.

One might ask why we are interested in obtaining a prediction interval for Y
for x = 380 when we have an observed value of Y corresponding to that value
of X. That value of Y , 22.05 in this example, is of course a random variable, and
we would much prefer to have an interval estimate for a future value of Y than a
point estimate obtained by using an observed sample value. Therefore, even if we
wish to estimate future process yield for an x0 that is one of the sample values, it
is desirable to have an interval estimate in addition to the predicted value.

It should be noted that the width of the prediction interval given by Eq. (1.16)
will depend on the distance that x0 is from x . This should be intuitively apparent,
as we should certainly be able to do a better job of predicting Y when x0 is in the
middle of a data set than when it is at either extreme.

There are many areas of application in which prediction intervals are extremely
important. Consider again the scenario where Y = college GPA, and consider
two possible prediction intervals given by (1.8, 2.6) and (2.1, 2.3). The value of
Ŷ is 2.2 in each case (since Ŷ lies in the center of the interval), but an admissions
officer would undoubtedly look more favorably upon the second interval than the
first interval. In other areas of application such as fisheries management, having
a well-estimated prediction interval is thought to be probably as important as
having good estimates of the regression parameters (Ruppert and Aldershof,
1989).

The assumption of normality is quite important for a prediction interval (un-
like the confidence interval presented in the next section), so there should be
evidence of approximate normality before a prediction interval is constructed.
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If the normality assumption appears not to be valid, methods of constructing
prediction intervals given by Olive (2006) should be considered as they are not
based on any error distribution assumption.

1.5.6.2 Confidence Interval for µY |X

A confidence interval for µY |X is similar to the prediction interval in terms of the
computational form, but quite different in terms of interpretation. In particular,
a prediction interval is for the future, whereas a confidence interval is for the
present. The only difference computationally is that the “1” under the radical
in Eq. (1.16) is not used for the confidence interval. That is, the latter is of the
form Ŷo ± tα/2,n−2sŶ . The confidence interval would be an interval on the average
value of Y in a population when X = xo. This will generally be less useful than
the prediction interval, however. For example, using Y = college GPA and X =
high school GPA, of what value would it be to have a confidence interval for the
average GPA of all students who have entered a certain college with a particular
value of X and subsequently graduated, when we are trying to reach a decision
regarding the admittance of a particular student?

1.5.7 ANOVA Tables

An Analysis of Variance (ANOVA) table is usually constructed in analyzing
regression data. Loosely speaking, the information provided by such tables is es-
sentially the square of the information used in conjunction with the t-distribution
that was presented in Section 1.5.4. The hypothesis test and confidence and pre-
diction intervals presented in the preceding sections have utilized the standard
deviation of the appropriate estimators, whereas ANOVA tables utilize variance-
type information in showing variation due to different sources.

An ANOVA table for the example used in this chapter will have components
that correspond to Eq. (1.7). Those three components are all sums of squares.
Since

∑
(Y − Y )2 represents the total variability in Y , disregarding X, it would be

logical to call it the total sum of squares (SStotal). The calculation of
∑

(Y − Ŷ )2

produces the residual sum of squares (SSresidual);
∑

(Ŷ − Y )2 is the reduction in
SStotal that results from using X to predict Y , and this is labeled SSregression. Thus,
SStotal = SSregression + SSresidual.

Mean squares in ANOVA tables are always obtained by dividing each sum
of squares by the corresponding degrees of freedom (d.f.). When SStotal is de-
fined as

∑
(Y − Y )2, which is the usual way, “total” will always have n − 1

d.f. This can be explained as follows. First, there are n − 1 of the n compo-
nents of

∑
(Y − Y ) that are free to vary since

∑
(Y − Y ) = 0. We then obtain

n − 1 as the number of degrees of freedom by applying the rule which states
that degrees of freedom are given by the number of observations, n, minus the
number of linear restrictions. Another way to view d.f.(total) is to recognize
that a degree of freedom is used, in general, whenever a parameter is estimated,
and it can be shown that SS(β̂0) = (∑

Y
)2

/n, which is part of SStotal since
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Table 1.4 ANOVA Table for Data in Table 1.2

Source df Sum of Squares Mean Square F p

Regression 1 79.822 79.822 1235.38 0.000
Residual error 8 0.517 0.065
Total 9 80.339

∑
(Y − Y )2 = ∑

Y 2 − (∑
Y

)2
/n. Thus, this “corrected” sum of squares that

corrects for the mean also incorporates the sum of squares for one of the param-
eters that has been estimated. In order to compute

∑
(Y − Ŷ )2, both parameters

must have been estimated, so this sum of squares has n − 2 d.f . Since degrees of
freedom are generally additive,

∑
(Ŷ − Y )2 must have one d.f., and this one d.f.

corresponds to the estimation of β1.
Using the data in Table 1.2, we obtain the ANOVA table given in Table 1.4.

The number in the column labeled F is obtained by computing the ratio of the
two mean squares, and the p-value is the probability of obtaining a value of F
that is at least this large when β1 = 0.

In introductory courses, the relationship between the t- and F-distributions is
usually discussed. Specifically, t2

ν1,α/2 = F1,ν1,α , where ν1 is the degrees of free-
dom of the t-statistic, and 1 and ν1 are the degrees of freedom for the numerator
and denominator, respectively, of the two components whose ratio comprises the
F-statistic. (The upper tail areas for the t- and F-distributions are here denoted
by α/2 and α, respectively.)

It is easy to show that t2 = F, where t = β̂1/sβ̂1
. We proceed by writing

t = β̂1

(se/
√

Sxx )

so that t2 = β̂2
1 Sxx/s2

e . It was mentioned in Section 1.5.6.1 that∑
(Y − Ŷ )2 = Syy − β̂2

1 Sxx , where
∑

(Y − Ŷ )2 = SSresidual and Syy = SStotal. It
follows that β̂2

1 Sxx = SSregression. Since s2
e = MSresidual, t2 = SSregression/MSresidual =

MSregression/MSresidual = F. (It is shown in the chapter Appendix that the ratio of
these two mean squares has an F-distribution, starting from the assumption of a
normal distribution for the error term.)

Whether we look at t = 35.13 or F = 1235.38, the magnitude of each of these
two numbers coupled with the fact that R2 = .9935 indicates that there is a strong
relationship between yield and temperature for the range of temperatures covered
in the experiment.

1.5.8 Lack of Fit

Frequently, a regression model can be improved by using nonlinear terms in
addition to the linear terms. In simple regression the need for nonlinear terms
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is generally indicated by the scatter plot of the data, but with more than one
regressor the need for nonlinear terms will be more difficult to detect.

A lack-of-fit test can be performed to see if there is a need for one or more
nonlinear terms. We should note that we are still concerned here with linear
regression models, which are linear in the parameters; we are simply trying to
determine the possible need for terms such as polynomial terms or trigonometric
terms that would enter the model in a linear manner.

The general idea is to separate SSresidual into two components: SSpure error and
SSlack of fit. Simply stated, SSpure error is the portion of SSresidual that cannot be
reduced by improving the model. This can be seen from the formula for SSpure error,
which is

SSpure error =
ni∑

j=1

k∑
i=1

(Yi j − Y i )2 (1.17)

where Y i is the average of the ni Y values corresponding to Xi, k is the number of
different X-values, and Yij is the jth value of Y corresponding to the ith distinct
value of X.

� EXAMPLE 1.3

Consider the data in Table 1.5 for which k = 6 and, for example, Y42 = 33. Thus,
SSpure error = (15 − 15.5)2 + (16 − 15.5)2 + (20 − 21)2 + (22 − 21)2 + (31 −
32)2 + (33 − 32)2 + (46 − 47.5)2 + (49 − 47.5)2 = 9.0. For a given value of
X, different values of Y will plot vertically on a scatter plot, and there is no way
that a regression model can be modified to accommodate a vertical line segment,
as the slope would be undefined.

Table 1.5 Data for
Illustrating Lack of Fit

Y X

15 10
16 10
14 15
20 20
22 20
31 25
33 25
46 30
49 30
60 35
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Using the formulas given in the preceding sections, SSresidual = 261.85. Thus,
SSlack of fit = 261.85 − 9.00 = 252.85, so almost all of the residual is due to lack
of fit, thereby indicating that the wrong model is being used. When this is the
case, σ 2

ε should not be estimated by MSresidual as the latter contains more than
just experimental error. Some authors use error instead of residual in ANOVA
tables such as Table 1.4. The two terms are conceptually different as the former
is the experimental error (in Y) that results when an experiment is repeated,
whereas the latter represents the collection of factors that result in the model
not providing an exact fit to the data. The latter might consist of not having the
right functional form of the regressor(s) or not using all relevant regressors, in
addition to experimental error (i.e., variation) resulting from factors that cannot
be identified and/or controlled during the experiment.

By extracting the experimental error component from the residual, we can see
whether we should attempt to improve the model. A formal lack-of-fit test is
performed by computing F = MSlack of fit/MSpure error and rejecting the hypothesis
of no lack of fit if F exceeds the value from the F-table.

Each mean square is computed in the usual manner by dividing the sum of
squares by the corresponding degrees of freedom. The d.f. for pure error is best
viewed as the sum of the degrees of freedom for each Xi that is repeated, where
each such d.f. is ni − 1. When SSpure error is computed using Eq. (1.17) and then
divided by the d.f., this is equivalent to taking a weighted average of the s2

i values,
where s2

i is the sample variance of the Y-values corresponding to Xi, with the
weights being ni − 1. Thus, σ 2

pure error is estimated in a logical manner. The d.f.
for lack of fit is obtained from d.f.(residual) − d.f.(pure error).

For the Table 1.5 data,

F = 252.85/4

9.00/4

= 28.09

Since F4,4,.05 = 6.39 and F4,4,.01 = 15.98, we would conclude that there is evidence
of lack of fit.

Since the degree of lack of fit is so extreme, we would expect that the nonlin-
earity would be evident in the scatter plot. The latter is shown in Figure 1.2, and
we can see the obvious curvature.

It is important to recognize that this lack-of-fit test does not indicate how the
model should be modified; it simply shows that some modification is necessary.
Other methods must be employed to determine how the model should be modified.
Some of these methods are discussed in detail in Chapter 5.

When the regressor values are not preselected, we may not have any repeated
values. When this happens, there are other methods that can be used. Daniel
and Wood (1980, p. 133) discuss a method of nearest neighbors that is based
on forming pseudo-replicates from regressor values that are close together. An-
other method is the variagraph approach as described by Robinson and Weisberg



P1: OTA
c01 JWBK300-Ryan September 25, 2008 22:33 Printer Name: Yet to Come

1.6 REGRESSION THROUGH THE ORIGIN 29

X

Y

353025201510

60

50

40

30

20

10

Scatterplot of Y vs X

Figure 1.2 Scatter plot of Y versus X for the data in Table 1.5.

(2003). The performance of each of three lack-of-fit tests were compared by
Wang and Conerly (2003). �

1.6 REGRESSION THROUGH THE ORIGIN

This topic was mentioned briefly in Section 1.5.5, in which it was stated that
linear regression through the origin will rarely be applicable. The model is

Y = β X + ε (1.18)

and to derive the least squares estimator of β we could use the same approach as
was used in Section 1.4. Doing so would produce the estimator

β̂ =
∑

XY∑
X2

Inferences for the model given by Eq. (1.18) are similar to the inferences
that were developed in Section 1.5 for the model given by Eq. (1.1). There are,
however, a few notable differences. In particular, the residuals will not sum to
zero. For the intercept model, the solution of Eq. (1.5a) is what causes the residuals
to sum to zero. There is no counterpart to that equation for the no-intercept model,
however, so the residuals are not forced to sum to zero.
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Other differences include the fact that the estimate of σ 2 is based on n − 1
d.f. instead of n − 2 since there is only one parameter in the model. A major
difference is the way in which R2 is defined. As discussed in Section 1.5.2, the
definition of R2 for the intercept model is quite intuitive in that it measures the
(scaled) improvement in the prediction of Y that results for β̂1 �= 0 over β̂1 = 0.
For the intercept model, Ŷ = Y if β̂1 = 0, but for the no-intercept model Ŷ = 0 if
β̂ = 0. Therefore, an analogous definition of R2 for the no-intercept model would
be one that measures improvement over Ŷ = 0. This suggests that R2 might be
defined as R2 = ∑

Ŷ 2/
∑

(Y − Y )2.
Some reflection should indicate that this is not logical, however, because if

we knew that there was no relationship between X and Y , the most reasonable
choice for Ŷ is still Ŷ = Y . Also, it should be apparent that R2 would exceed one
if we had a perfect fit (i.e., Ŷi = Yi , i = 1, 2, . . . , n). Therefore, something must
be subtracted from the numerator.

The use of Ŷ = Y when there is no regression relationship might suggest that
we also use R2 as given in Eq. (1.8) for the no-intercept model, but whereas we
know from Eq. (1.7) that R2 when defined in this manner has an upper bound of
one, we have no such assurance for the no-intercept model. Kvålseth (1985) gave
an example in which R2 exceeds one when defined by Eq. (1.8) and recommends
that R2 be defined as in Eq. (1.9) for both the intercept and no-intercept models.
Although Eq. (1.9) is equivalent to Eq. (1.8) for an intercept model, they are not
equivalent for a no-intercept model. Simple algebra reveals that using Eq. (1.9)
for a no-intercept model produces

R2
0 =

∑
Ŷ 2 − (∑

Y
)2

/n∑(
Y − Y

)2 (1.19)

Using Eq. (1.9) avoids the issue of how Ŷ would be computed if a regression
relationship did not exist, but the use of either (1.9) or (1.19) is not totally devoid
of deficiencies, however, as R2

o could be negative. This would simply indicate
the total inappropriateness of the model given in Eq. (1.18). We also note that
Eq. (1.19) is equivalent to the form of R2 recommended by Gordon (1981).

It is worthwhile to reiterate a point made in Section 1.5.5 regarding a no-
intercept model. In discussing such models, Kvålseth (1985) stated “Occasionally,
an analyst may force such a model to be fitted by empirical data by relying purely
on theoretical reasoning, whereas a careful analysis of the data may reveal that
an intercept model is preferable.”

1.7 ADDITIONAL EXAMPLES

� EXAMPLE 1.4

An interesting application of regression, to which we can all relate, was given
by Armstrong and Cuzan (2006). They refer to a “Keys model” due to Lichtman
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(2005) for predicting the winner of the presidential election. There were 13
keys identified by Lichtman as being crucial in determining whether or not an
incumbent would be reelected. Each key was a statement which, if true, favored
the incumbent, and if false, favored the opponent. True statements are scored a
zero and false statements are scored a one. If fewer than six statements are false
(i.e., at least 8 are true), the incumbent is forecast to win, and is forecast to lose
if six or more are false (at most 7 are true). Armstrong and Cuzan (2006) get
tangled up a bit when they subsequently state “The model challenges credibility
because to win, . . . the incumbent needs 7 of the 13 keys in his or her favor.” This
contradicts their earlier statement, which implies that at least 8 keys must favor
the incumbent.

One might question this simple approach because (1) each key is treated
equally, and (2) the assignment of a 0 or 1 for the outcome is done subjectively.
Accordingly, Armstrong and Cuzan (2006) applied simple linear regression to
all historical data (1860 through 2004) and obtained the following regression
equation:

Ŷ = 37.3 + 1.8X

with Y denoting the percentage of the two-party vote that the incumbent received,
and X denoting the number of keys that are favorable to the incumbent.

They found that this simple regression equation correctly predicted the winner
of each presidential election, going backward in time. Note that at least 7 keys
must be favorable to the incumbent in order for the latter to be predicted to
win the majority vote. Armstrong and Cuzan (2006) stated that the incumbent is
considered to have an advantage and seemingly wouldn’t have to win a majority
of the keys, but the regression equation indicates that they do need that majority.
It is hard to argue against perfect prediction, however. �

To this point, we have assumed that a single linear regression is adequate for
all of the sample data. There will be many applications in which this will not
be true, however, as the relationship between Y and X may not be constant over
the range of values of X in the sample. Values of Y at each extreme might also
suggest that a different model would be needed at those extremes, depending
on the application. Indeed, Wright and Palmer (1977, 1999) found that such
an approach was necessary in predicting the performance of graduate business
students.

We explore methods for fitting something other than a single model to a set of
a data in Chapter 10, as well as doing fitting without specifying any model.

1.8 CORRELATION

If X is a random variable, we may properly speak of the correlation between X
and Y . This refers to the extent that the two random variables are related, with
the strength of the relationship measured by the (sample) correlation coefficient,
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rxy. The latter is computed as

rxy = Sxy√
Sxx Syy

(1.20)

with the components of Eq. (1.20) as previously defined. This is sometimes called
the Pearson correlation coefficient to distinguish it from the other correlation
coefficients that are used. The relationship between X and Y is assumed to be
linear when Eq. (1.20) is used, and X and Y are assumed to have a bivariate normal
distribution, although the second assumption is generally not checked. Formally,
the population correlation coefficient, ρxy, is defined as the covariance between
X and Y divided by the standard deviation of X times the standard deviation of Y .
When those parameters are estimated by the sample statistics, the result reduces
to Eq. (1.20).

The possible values of rxy range from −1 to +1. The former represents perfect
negative correlation, as would happen if all the points fell on a line with a
negative slope, and the latter represents perfect positive correlation. In regression
there is nothing really “negative” about negative correlation, as a strong negative
correlation is just as valuable as a strong positive correlation as far as estimation
and prediction are concerned. A zero correlation between X and Y would signify
that it would not be meaningful to construct a linear regression equation using
that regressor, but when there is more than one regressor, we would prefer that
the regressors be “uncorrelated” (orthogonal) with each other. This is discussed
and illustrated in Chapter 14.

When there is only a single regressor, r2
xy = R2. Thus, for the one-regressor

random-X case, R2 is the square of the correlation between X and Y . When X
is fixed, R2 must then be viewed (and labeled) somewhat differently, and it is
customary to refer to R2 as the coefficient of determination (and the coefficient
of multiple determination when there is more than one regressor).

Another connection between the square of a correlation coefficient and R2 is
r2

y ŷ = R2, as the reader is asked to show in Exercise 1.10. (Note that this last result
holds whether X is random or not, since both Y and Ŷ are random variables.)
Clearly, Y and Ŷ must be highly correlated for the regression model to have value.

1.9 MISCELLANEOUS USES OF REGRESSION

Three uses of simple linear regression are discussed in the next three sections.

1.9.1 Regression for Control

As mentioned in Section 1.2, an important but infrequently discussed application
of regression is to attempt to control Y at a desired level through the manipulation
of X.
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Doing so may be difficult, however, for a number of reasons. First, since
a cause-and-effect relationship is being inferred, the prediction equation must
have been produced from preselected X values, and there must not be any other
independent variables that are related to Y . The latter is not likely to be true when
only a single X is being used, however, and the consequences when it is not true
may be great.

Box (1966) gives a good example of this in regard to a hypothetical chemical
process in which Y = process yield, X1 = pressure, and X2 = an unsuspected
impurity. The scenario is that undesirable frothing can be reduced by increasing
pressure, but a high value of X2 is what actually produces frothing and also
lowers yield, with the latter unrelated to pressure. Assume that the regression
equation Ŷ = β̂0 + β̂1 X1 is developed with the intention of increasing Y through
manipulation of X1. Even if an experiment consisted of systematically varying
X1 and recording the corresponding Y value, the regression equation would have
no value for control because Y depends solely on X2. Therefore, an experimenter
who attempted to rely on the value of β̂1 to effect a desired change in Y through
manipulation of X1 would not be successful.

The equation could still have value for prediction, however, because if R2 is
large, X1 is essentially serving as a suitable proxy for X2. So even though the
(high) correlation between Y and X1 is a spurious correlation, X1 can still be used
to predict Y . Thus, a spurious correlation can produce suitable predictions, but
β̂1 has no meaning by itself because the correct model does not include X2. If the
true relationship between X1 and X2 were known, then that relationship could be
incorporated into the prediction equation, but the appropriate coefficient would
be different from β̂1.

Following Box (1966), let’s assume that X2 = β∗
0 + β∗

1 X1 and the true model
in terms of Y is Y = β ′

0 + β2 X2. Then with X̂2 = β̂∗
0 + β̂∗

1 X1 we have

Ŷ = β̂ ′
0 + β̂2(β̂∗

0 + β̂∗
1 X1)

= (β̂ ′
0 + β̂∗

0 β̂2) + β̂2β̂
∗
1 X1

Thus, the experimenter who attempts to manipulate Y through X1 will do poorly
if β̂2β̂

∗
1 differs from β̂1 by more than a small amount, and there should generally

be no reason to expect them to be close.
Additional information on the use of regression for control can be found in

Hahn (1974) and Draper and Smith (1998).

1.9.2 Inverse Regression

Two specialized uses of simple linear regression are discussed in this section and
in the following section. The first of these, inverse regression, can be used effec-
tively in calibration work, although its applications are not limited to calibration.

Assume that we have two measuring instruments; one is quite accurate but is
both expensive to use and slow, and the other is fast and less expensive to use,
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but is also less accurate. If the measurements obtained from the two devices are
highly correlated, then the measurement that would have been made using the
expensive measuring device could be predicted fairly well from the measurement
that is actually obtained using the less expensive device.

In particular, if the less expensive device has an almost constant bias and we
define X = measurement from the accurate instrument, and Y = measurement
from the inaccurate device, and then regress X on Y to obtain X̂∗ = β̂∗

0 + β̂∗
1 Y ,

we would expect β̂1 to be close to 1.0 and β̂0 to be approximately equal to the
bias.

This is termed inverse regression because X is being regressed on Y instead of
Y regressed on X.

Since X and Y might seem to be just arbitrary labels, why not reverse them
so that we would then have just simple linear regression? Recall that Y must
be a random variable, and classical regression theory holds that X is fixed. A
measurement from an accurate device should, theoretically, have a zero variance,
and the redefined X would be a random variable.

But we have exactly the same problem if we regress X on Y , with X and Y as
originally defined. The fact that the independent variable Y is a random variable
is not really a problem, as regression can still be used when the independent
variable is random, as is discussed in Section 1.8.

If the dependent variable is not truly a random variable, however, then classical
regression is being “bent” considerably, and this is one reason why inverse
regression has been somewhat controversial. Krutchkoff (1967) reintroduced
inverse regression, and it was subsequently criticized by other writers.

There is an alternative to inverse regression that avoids these problems, how-
ever, and which should frequently produce almost identical results. In the classical
theory of calibration, Y is regressed against X and X is then solved for in terms
of Y for the purpose of predicting X for a given value of Y . Specifically,

Ŷ = β̂0 + β̂1 X

so that

X = (Ŷ − β̂0)/β̂1

For a given value of Y , say, Yc, X is then predicted as

X̂c = (Yc − β̂0)/β̂1

As in Section 1.7, let rxy denote the correlation between X and Y . If rxy
.= 1,

then X̂c and X̂∗
c (from inverse regression) will be almost identical. Recall that

for inverse regression to be effective, the two measurements must be highly
correlated, so under conditions for which we would want to use either inverse
regression or the classical method of calibration, the two approaches will give
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very similar results. Therefore, we need not be concerned about the controversy
surrounding inverse regression.

� EXAMPLE 1.5

Data and Analysis

The real data given in Table 1.6 will be used to illustrate the two approaches.
Regressing Y on X produces the equation

Ŷ = 0.76 + 0.9873 X

so for a given value of Y , X would be estimated as

X̂ = Y − 0.76

0.9873
= −0.7698 + 1.0129 Y

Table 1.6 Calibration Data

Measured Amount of Known Amount of
Molybdenum (Y) Molybdenum (X)

1.8 1
1.6 1
3.1 2
2.6 2
3.6 3
3.4 3
4.9 4
4.2 4
6.0 5
5.9 5
6.8 6
6.9 6
8.2 7
7.3 7
8.8 8
8.5 8
9.5 9
9.5 9

10.6 10
10.6 10

Source: The data were originally provided by G. E. P. Box
and are given (without X and Y designated) as Table 1 in
Hunter and Lamboy (1981).
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Table 1.7 Predicted Values for the Table 1.6 Data Using
Inverse Regression (X̂∗) and Calibration (X̂ )

X X̂∗ X̂

1 1.08882 1.05341
1 0.88786 0.85083
2 2.39509 2.37017
2 1.89268 1.86373
3 2.89751 2.87662
3 2.69654 2.67404
4 4.20378 4.19338
4 3.50040 3.48436
5 5.30908 5.30757
5 5.20860 5.20628
6 6.11294 6.11788
6 6.21342 6.21917
7 7.51970 7.53593
7 6.61535 6.62433
8 8.12259 8.14367
8 7.82114 7.83980
9 8.82597 8.85269
9 8.82597 8.85269

10 9.93127 9.96688
10 9.93127 9.96688

Regressing X on Y produces the inverse regression estimator

X̂∗ = −0.7199 + 1.0048 Y

Discussion

Thus, the equations differ only slightly, and the X̂ and X̂∗ values are given for
comparison in Table 1.7. We can see that the estimated values produced by the
two procedures differ only slightly, and this is because X and Y are very highly
correlated. (The value of the correlation coefficient is .996.)

It is also important to note that X̂ and X̂∗ are closer to X than is Y in all but
two cases, and that the difference in most cases is a considerable amount.

For this example the average squared error for X̂∗ is 0.0657 compared to 0.0662
for X̂ , but this small difference is hardly justification for using X̂∗. Furthermore,
such a comparison would be considered inappropriate by some people since
the classical estimator has an infinite mean (expected) square error, whereas the
inverse regression estimator has a finite mean square error. (The mean square
error of an estimator is defined as the variance plus the square of the bias. This is
discussed further in the chapter Appendix.) �

Various methods have been proposed for obtaining a confidence interval for
X0; for example, see Seber (1977), Draper and Smith (1998), and Cox (2005).

The reader is referred to Chow and Shao (1990) for a related discussion on a
comparison of the classical and inverse methods, and an application for which
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the two approaches were not equally useful. See also Brown (1993), Graybill and
Iyer (1994), Hunter and Lamboy (1981), Mee and Eberhardt (1996), and Ndlovu
and Preater (2001).

1.9.3 Regression Control Chart

A regression (quality) control chart was presented by Mandel (1969). The ob-
jective is similar to the use of regression for control, although with a regression
control chart the intention is to see whether Y is “in control” rather than trying to
produce a particular value of Y .

For example, let Y be some measure of tool wear, with X = time. Since Y
can be expected to change as X changes, it would be reasonable to determine a
prediction interval for Y for a given X, and this is what is done. Specifically, Eq.
(1.15) is used with tα/2,n−2 replaced by 2.

A regression control chart has the same potential weakness as the use of
regression for control, however, in that Y could be affected by other variables in
addition to X.

1.9.4 Monitoring Linear Profiles

Whereas a regression control chart is for monitoring Y , it is also desirable to
monitor the regression relationship. Since nothing is ever static, the parameter
estimates will very likely become inappropriate in time, and a simple linear
regression model may even become inappropriate. Mahmoud and Woodall (2004)
addressed the issue of monitoring a regression model, with applications to quality
control/improvement, by constructing control charts for β0, β1, and σ 2. A test
for the equality of several regression lines is performed, using indicator variables
(see Section 4.4). Briefly, the test consists of fitting a model with a common slope
and intercept and then fitting a model that additionally contains the slope and
intercepts for each sample. The hypothesis of a common slope and intercept is
rejected if SSresidual drops substantially when the full model is fit.

If the test results in rejection of a common slope and intercept, control charts
are constructed for the slope and intercept in an effort to determine the sample(s)
that caused the hypothesis test of a common slope and intercept to be rejected.

In statistical process control parlance, this approach is for Phase I (only),
which is analysis of historical data. If an in-control state is suggested for Phase I,
a model with a single slope and intercept would be used for process monitoring
in Phase II.

Krieger, Pollak, and Yakir (2003) also considered the monitoring of a simple
linear regression equation but used a different approach.

1.10 FIXED VERSUS RANDOM REGRESSORS

It is important to realize at the outset that even though classical regression theory
is based on the assumption that the values of X are selected, regression can
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still be used when X is a random variable. This is important because regression
data frequently come from observational studies in which the values of X occur
randomly, and we could probably go further and state that most regression data
sets have random regressors.

The issue of random regressors has been discussed by many writers, and
there is some disagreement. The problem is compounded somewhat by the fact
that in the literature it sometimes isn’t clear whether regressors “with error” are
considered to have random error, or measurement error, or both. Here we consider
only random error; measurement error is discussed in Section 2.6.

One popular position is that we may proceed as if X were fixed, provided that
the conditional distribution of Yi given Xi is normal and has a constant variance
for each i, and the Xi are independent (as are the Yi), and the distribution of
Xi does not depend on β0, β1, or σ 2 (see Neter, Wasserman, and Kutner, 1989,
p. 86). Other writers speak of random regressors, while simultaneously assuming
true, unobservable values for each Xi (see Seber, 1977, pp. 210–211). If X is a
random variable that is devoid of measurement error, there is clearly no such
thing as a true value, so the assumption of a true value that is different from
the observed value implies that there is measurement error. In compiling and
elaborating on results given in earlier papers, Sampson (1974) concluded that in
the random regressor case we may proceed the same as in the fixed regressor
case. (A detailed discussion of that paper is beyond the scope of this chapter.)
A somewhat different view can be found in Mandel (1984), however. Proper-
ties of the regression coefficients when X is random are discussed by Shaffer
(1991).

1.11 MISSING DATA

Missing data is often a problem in linear regression work. If data are missing on
Y or X (but not both), the most commonly used approach is to discard the data
on the variable for which it is not missing (obviously there is nothing to discard
if the data are missing on both Yi or Xi for one or more values of i). This usually
does not create a problem if the data are missing at random.

The user of simple linear regression has a problem if the sample size is small
and there are several missing values. Imputation might be attempted, but this does
have some drawbacks. See Bello (1995) for a discussion of imputation methods
in regression.

1.12 SPURIOUS RELATIONSHIPS

Just because a significant relationship exists between X and Y doesn’t necessarily
mean that the relationship makes any sense, as there are many examples of
nonsensical relationships that produce significant regression results. One such
example is given in Section 2.1.1.1, which is also discussed in Box (1995).
There are many unrelated variables that are related to a third variable and move
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in the same direction as that variable. One classic classroom example is the
“significant” regression relationship between the salaries of college professors
and alcohol consumption. They can both be expected to change in accordance
with the state of the economy and measures of that state.

Oftentimes spurious relationships are exposed by indicating that there is no
causal relationship between X and Y . This isn’t necessary, however, and no causal
relationship could be inferred without fixing the values of X, as in a designed
experiment. (Experimental designs for regression are discussed in Chapter 12.)

1.13 SOFTWARE

The use of statistical software is essential if regression data are to be thoroughly
analyzed. All general-purpose statistical software packages have basic regression
analysis capability, although capabilities across software vary considerably as one
moves past the basics. This will become apparent with the detailed discussion that
begins in Section 2.7. The SPSS Web Book by X. Chen, P. Ender, M. Mitchell,
and C. Wells (http://www.ats.ucla.edu/stat/spss/webbooks/reg/
default.htm) informs readers how to use SPSS to perform regression analyses.
Similarly, Regression with SAS (http://www.ats.ucla.edu/stat/sas/
webbooks/reg/default.htm) and Regression with Stata (http://www.
ats.ucla.edu/stat/stata/webbooks/reg/default.htm) by the same
authors show users how to employ SAS Software and STATA, respectively, for
regression analyses. For STATA, see also Chapter 6 of Hamilton (2006).

R and S-Plus are popular with statisticians. The first is freeware and the
second is commercial; they are both command line statistical packages. They are
especially appropriate for a small part of this book (especially Chapter 11) but are
not as user friendly as software like MINITAB and thus have a steeper learning
curve. (Note that R should not be confused with the R-code (short for “regression
code”) developed by Dennis Cook and Sandy Weisberg and described in Cook
and Weisberg (1994), which is essentially a user’s manual for the software. The
software will be discussed in later chapters.)

Students are best advised to use software such as MINITAB for learning the
basic concepts of regression analysis. R and S-Plus enthusiasts are referred to
Weisberg (2005a) for information on using R and S-Plus in regression, although
that is really intended to be a companion to Weisberg’s (2005b) book.

Of these software packages, MINITAB is the software chosen for statistics
courses by most colleges and universities. STATA has always sought to provide
statistical capabilities that are not found in many, if any, other statistical software.
Some of its regression capabilities are unique and are utilized in this book.
MINITAB and STATA are both used extensively and JMP (from SAS Institute,
Inc.) is also used on a limited basis. SYSTAT is used to produce two scatter
plots in Chapter 2 and two scatter plots in Chapter 16, although a much earlier
version of the software has better features for those (influence) plots than does the
current version (SYSTAT 12), so the plots were produced by the earlier version.
This is not to suggest that other software such as SAS, SPSS, S-Plus, and R do
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not have worthy regression capabilities. Software popularity, availability to the
author, ease of use, and capabilities needed for this book were all determining
factors in deciding which software to use and discuss.

Given below is the basic output obtained using MINITAB for the data in Table
1.2. A “complete” regression analysis entails going far beyond the production
of such output, however, and includes investigation of “unusual observations” as
designated in the last part of this output.

The regression equation is
Y = - 52.5 + 0.197 X

Predictor Coef SE Coef T P
Constant -52.509 2.226 -23.59 0.000
X 0.196727 0.005597 35.15 0.000

S = 0.254192 R-Sq = 99.4% R-Sq(adj) = 99.3%

Analysis of Variance

Source DF SS MS F P
Regression 1 79.822 79.822 1235.38 0.000
Residual Error 8 0.517 0.065
Total 9 80.339

Unusual Observations

Obs X Y Fit SE Fit Residual St Resid
8 420 29.6000 30.1164 0.1494 -0.5164 -2.51R

R denotes an observation with a large standardized residual.

1.14 SUMMARY

The material presented in this chapter constitutes the first part of an introduction to
the fundamentals of simple linear regression; the introduction is completed in the
next chapter in which diagnostic procedures and additional plots are discussed.

When there is only a single regressor, a scatter plot of the data can be very
informative and can frequently provide as much information as the combined in-
formation from all of the inferential procedures for determining model adequacy
that were discussed in this chapter. The situation is quite different when there is
more than one regressor, however, so it is desirable to master the techniques used
in simple regression so as to have a foundation for understanding multiple regres-
sion, which is discussed starting in Chapter 4. (We will discover in subsequent
chapters, however, that additional techniques are needed for multiple regression.)



P1: OTA
c01 JWBK300-Ryan September 25, 2008 22:33 Printer Name: Yet to Come

APPENDIX 41

We may use regression when X is either fixed or random, with X quite fre-
quently being random because regression data are often obtained from observa-
tional studies.

Unthinking application of regression can produce poor results, so it is im-
portant for the reader to understand the array of available methods and when
they should be used. This is emphasized in Chapter 16, in which the regression
methods presented in this and subsequent chapters are reviewed in the context
of a strategy for analyzing regression data. The reader should also study Watts
(1981), in which the knowledge and skills necessary to analyze regression data
are discussed, and a step-by-step approach to the analysis of linear and nonlinear
regression data is given. A detailed discussion of the considerations that should
be made in analyzing regression data is given in Section 16.6.

There are a large number of references cited in this text; many other references
can be found in Draper (1998, 2002).

APPENDIX

1.A Analysis of Variance Identity

We wish to show that
∑

(Y − Y )2 ≡ ∑
(Y − Ŷ )2 + ∑

(Ŷ − Y )2. We proceed
by writing

∑(
Y − Y

)2 ≡ ∑ (
Y − Ŷ + Ŷ − Y

)2

≡ ∑ ((
Y − Ŷ

) + (
Ŷ − Y

))2

≡ ∑ (
Y − Ŷ

)2 + ∑(
Ŷ − Y

)2 + 2
∑(

Y − Ŷ
) (

Ŷ − Y
)

The cross-product term can be shown to vanish as follows:

∑ (
Y − Ŷ

) (
Ŷ − Y

) = ∑(
Y − Ŷ

)
Ŷ − ∑ (

Y − Ŷ
)

Y

= ∑(
Y − Ŷ

)
Ŷ

since Y
∑

(Y − Ŷ ) = 0. Thus, we need only show that
∑

(Y − Ŷ )Ŷ = 0. Notice
that this can be written as

∑
eŶ = 0, so as a by-product we will obtain the

important result that the residuals are orthogonal to Ŷ . We obtain

∑
Y Ŷ = ∑

Y
(
Y + β̂1

(
X − X

))
= nY

2 + β̂1
∑(

X − X
)

Y

= nY
2 + β̂1Sxy
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and ∑
Ŷ 2 = ∑(

Y + β̂1
(
X − X

))2

= ∑
Y

2 + β̂2
1

∑ (
X − X

)2 + 2Y β̂1
∑ (

X − X
)

= nY
2 + β̂2

1 Sxx

Thus,
∑

Y Ŷ = ∑
Ŷ 2 since β̂1Sxy = (Sxy/Sxx )Sxy = S2

xy/Sxx = (Sxy/Sxx )2Sxx

= β̂2
1 Sxx

1.B Unbiased Estimator of β1

It was stated in Section 1.5.4 that β̂i is an unbiased estimator of β i, under the
assumption that the fitted model is the true model. We show this for β1 as follows.
Writing β̂1 = ∑

(Xi − X )Yi/Sxx and assuming that X is fixed, we obtain

E(β̂1) = 1

Sxx

∑(
Xi − X

)
E(Yi )

= 1

Sxx

∑(
Xi − X

)
(β0 + β1 Xi )

= 1

Sxx

(
0 + β1

∑ (
Xi − X

)
Xi

)
= 1

Sxx
(β1Sxx ) = β1

1.C Unbiased Estimator of σ 2
ε

The fact that s2
e is an unbiased estimator of σ 2

ε can be shown as follows. Since
Y is assumed to have a normal distribution with variance σ 2, it follows that
(Y − µy)2/σ 2 will have a chi-square distribution with one degree of freedom, and∑

(Y − µy)2/σ 2 will have a chi-square distribution with n degrees of freedom.
But µy is unknown, and two degrees of freedom are lost (corresponding to β0

and β1) when Ŷ is used in place of µy, so χ2
n−2 = ∑

(Y − Ŷ )2/σ 2 must be chi-
square with n − 2 degrees of freedom. Since E(χ2

n−2) = n − 2, it follows that
E(S2

e ) = σ 2 if s2
e is defined as s2

e = ∑
(Y − Ŷ )2/(n − 2).

This proof depends on E(Ŷ ) = µy , but it can also be shown (Myers, 1990)
that s2 is unbiased when the fitted model contains the true model in addition to
extraneous variables.

1.D Mean Square Error of an Estimator

The term mean square error was used in Section 1.9.2. When an estimator
is unbiased, the mean square error of an estimator is equal to the variance of
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that estimator. For an arbitrary estimator θ̂i , the mean square error, MSE(θ̂i ), is
defined as MSE(θ̂i ) = Var(θ̂i ) + (E(θ̂i ) − θ)2. If θ̂i is an estimator of a regression
parameter, we must know the true model in order to determine E(θ̂i ). Thus,
whereas we may speak conceptually of the mean square error of an estimator, we
will rarely be able to derive it.

1.E How Extraneous Variables Can Affect R2

Since a degree of freedom is lost whenever a variable is added to a regression
model, the fact that s2 is an unbiased estimator of σ 2 for an overfitted model
implies that the expected value of SSerror must decrease, and so the expected
value of SSregresion, and hence R2, must increase.

1.F The Distribution of
(
β̂1 − β1

)
/sβ̂1

We will use the fact that a t random variable with ν degrees of freedom results
from a standard normal random variable divided by the square root of a chi-square
random variable that is first divided by its degrees of freedom, which is also ν.

Let

T =
(
β̂1 − β1

)
/σβ̂1

sβ̂1
/σβ̂1

The numerator of T is normal(0, 1), and the denominator reduces to the square
root of s2

e /σ
2. From the result given in 1.B, we know that (n − 2)s2

e /σ
2 has a

chi-square distribution with n − 2 degrees of freedom, so sβ̂1
/σβ̂1

is the square
root of a chi-square random variable divided by its degrees of freedom, and,
hence, T has a t-distribution with n − 2 degrees of freedom.

1.G Relationship Between R2 and t2

If we expand the numerator of R2 in Eq. (1.8) we obtain

∑(
Ŷ − Y

)2 = ∑
Ŷ 2 − 2Y

∑
Ŷ + ∑

Y
2

= ∑
Ŷ 2 − nY

2

with the second line resulting from the fact that
∑

Y = ∑
Ŷ since∑

(Y − Ŷ ) = 0. From the derivations in 1.A. we have
∑

Ŷ 2 − nY
2 = β̂2

1 Sxx .
Therefore, we may write R2 as

R2 = β̂2
1 Sxx

Syy
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with Syy = ∑
(Y − Y )2. If we write t as

t = β̂1
√

Sxx

se

so that

t2 = (n − 2)β̂2
1 Sxx

Syy − β̂2
1 Sxx

,

simple algebra then shows the result given in Eq. (1.12).

1.H Variance of Ŷ

We first write Ŷ as Ŷ = Y + β̂1(X − X ). Then

Var
(
Ŷ

) = Var
(
Y + β̂1

(
X − X

))
= Var

(
Y

) + Var
(
β̂1

(
X − X

)) + 2 Cov
(
Y , β̂1

(
X − X

))
= σ 2

n
+ (

X − X
)2

σ 2
β̂1

since Cov(Y , β̂1(X − X )) = 0, where Cov represents covariance. The covariance
result may be established as follows. Since X is assumed to be fixed (i.e., not
a random variable), it follows that Cov(Y , β̂1(X − X )) = (X − X )Cov(Y , β̂1),
and

Cov
(
Y , β̂1

) = Cov

(
Y ,

∑(
X − X

)
Y

Sxx

)

= 1

Sxx

{
Cov

(
Y1 + Y2 + · · · + Yn

n
, X1Y1 + X2Y2 + · · ·

+ XnYn − X (Y1 + Y2 + · · · + Yn)

)}
= 1

Sxx

{
σ 2

(∑
Xi

n

)
− X

(
nσ 2

n

)}
= 0
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Since Var(β̂1) = σ 2/Sxx , we may write the final result for Var(Ŷ ) as in
Eq. (1.14).

1.I Distribution of MSregression/MSresidual

When two independent chi-square random variables are each divided by their
respective degrees of freedom, and a ratio of the two quotients is formed,
that ratio will be a random variable that has an F-distribution. Therefore, we
need to show that SSregression and SSresidual are independent chi-square random
variables.

From the derivation in 1.B, we know that SSresidual/σ 2 has a chi-square dis-
tribution with n − 2 degrees of freedom. Applying the same approach to the
distribution of

∑
(Y − Y )2/σ 2, it is apparent that this random variable has a

chi-square distribution with n − 1 degrees of freedom (one d.f. is lost since Y is

used to estimate µy). It then follows that
∑

(Ŷ − Y )
2
/σ 2 must have a chi-square

distribution with 1 d.f. because the difference of two chi-square random variables
is also a chi-square random variable with degrees of freedom equal to the differ-
ence between the two degrees of freedom. Independence of the two chi-square
random variables could be established by applying Cochran’s (1934) theorem on
the decomposition of squared functions of normal random variables.
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EXERCISES

1.1. Plot each of the four data sets in Table 1.1 and then determine the predic-
tion equation Ŷ = β̂0 + β̂1 X . Do your results suggest that regression data
should be plotted before any computations are performed?
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1.2. Given the following data,

X 1.6 3.2 3.8 4.2 4.4 5.8 6.0 6.7 7.1 7.8
Y 5.6 7.9 8.0 8.2 8.1 9.2 9.5 9.4 9.6 9.9

compute β̂0 and β̂1 using either computer software or a hand calcula-
tor. Now make up five different values for β̂1 (wrong) that are of the same
order of magnitude as β̂1, and for each of these compute β̂0 (wrong) =
Y − β̂1 (wrong).

Then compute
∑

(Y − Ŷ ) and
∑

(Y − Ŷ )
2

for each of these six solu-
tions, using four or five decimal places in the calculations. Explain your
results relative to what was discussed in Sections 1.4 and 1.5.1.

1.3. Show that Eq. (1.10) is equivalent to Eq. (1.6).

1.4. Express R2 as a function of F, the test statistic used in the ANOVA table.

1.5. Graph the data in Exercise 1.2, and then compute R2 and construct the
ANOVA table. Could the magnitude of the values of R2 and F have been
anticipated from your graph?

1.6. Assume that β̂1 = 2.54. What does this number mean relative to X and Y?

1.7. What does 1 − R2 represent in words?

1.8. Given the following numbers,

Y 3 5 6 7 2 4 8

Ŷ 2.53 5.30 6.68 3.22 5.30 8.06

fill in the blank. Could the prediction equation be determined from what
is given? Explain.

1.9. Construct an example in which the correlation coefficient, rxy, is equal to
(plus) one, then multiply the numbers by an appropriate constant that will
convert the correlation coefficient to minus one.

1.10. Prove that r2
Y Ŷ

= R2.

1.11. Compute the value of the correlation coefficient for the data in Exercise
1.2 and show that the sign of the correlation coefficient must be the same
as the sign of β̂1. Explain why this should be expected.
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1.12. Using the data in Exercise 1.2, construct a 95% prediction interval for Y
when X = 5.7.

1.13. Consider the following data:

X 1 2 3 4 5 6 7
Y 5 6 7 8 7 6 5

First obtain the prediction equation and compute R2. Then, graph the data.
Looking at your results, what does this suggest about which step should
come first?

1.14. Explain why it would be inappropriate to use the regression equation
obtained in Exercise 1.2 when X = 9.5.

1.15. Perform a lack-of-fit test for the following data (use α = .05):

X 3.2 2.1 2.6 3.2 3.0 2.1 3.2 2.9 3.0 2.6 2.4
Y 3.6 3.7 3.0 3.7 3.3 3.8 3.4 2.7 2.8 3.1 3.4

Now construct a scatter plot of the data. Does the plot support the result
of the lack-of-fit test?

1.16. Explain the conditions under which an experimenter should consider using
regression through the origin. Then consider the following data:

X 0.6 0.7 0.4 1.1 1.3 0.9 1.6 1.2
Y 0.7 0.8 0.6 1.4 1.6 0.7 1.3 1.5

Assume that the (other) conditions are met for the proper use of regression
through the origin, and obtain the prediction equation.

1.17. Extrapolation was mentioned in Section 1.5.6.1 as something that
should be avoided, especially extrapolation well beyond the range of
the data used in computing the prediction equation. Dallal (http://
www.tufts.edu/∼gdallal/slr.htm) gives an example of muscle
strength regressed against lean body mass and states that the prediction
equation is Strength = −13.971 + 3.016 LBM, with “LBM” denoting lean
body mass in kilograms and Strength measured by “slow right extensor
peak torque in the knee.” Obviously, the predicted value for Strength will
be small and perhaps even be negative if the LBM value is small. Explain
this prediction equation to someone who knows nothing about simple linear
regression but who knows that no reasonable measure of Strength can be
negative.
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1.18. Consider Table 1.2 and the graph of those data in Figure 1.1. We can see
from the latter that there is obviously a strong linear relationship but it
is frequently helpful to see a line fit to the data, which can help indicate
points that deviate from linearity. Use appropriate software to construct a
graph that shows the fitted line. (This can be accomplished using a Java
applet for simple linear regression, some of which are Internet accessible,
or by using standard statistical software such as MINITAB. For the latter,
the FITLINE command will display the fitted line.) Does the fitted line
suggest a departure from linearity? Explain.

1.19. A simple linear regression will often suffice when there is a single predictor
variable, but it will often not suffice because, as is often said, “the world
is nonlinear.” The following is the well-known Skeena River Sockeye
Salmon data from Carroll and Ruppert (1988).

Spawners Recruits Spawners Recruits
Year (X) (Y) Year (X) (Y)

1940 963 2215 1954 511 1393
1941 572 1334 1955 87 363
1942 305 800 1956 370 668
1943 272 438 1957 448 2067
1944 824 3071 1958 819 644
1945 940 957 1959 799 1747
1946 486 934 1960 273 744
1947 307 971 1961 936 1087
1948 1066 2257 1962 558 1335
1949 480 1451 1963 597 1981
1950 393 686 1964 848 627
1951 176 127 1965 619 1099
1952 237 700 1966 397 1532
1953 700 1381 1967 616 2086

Use appropriate software to graph the data, determine the simple lin-
ear regression equation and R2. Would you recommend that this equa-
tion be used? Why or why not? We will return to these data in Exercise
13.20.

1.20. Radioimmunoassay data that has been used by R. J. Carroll (http://
www.stat.tamu.edu/∼carroll/data.php) is given below, Y denot-
ing radioimmunoassay (RIA) counts and X denoting concentration. Use
simple linear regression and perform a lack-of-fit test. What do you con-
clude? Now construct a scatter plot of Y against X. What does this suggest
relative to the heading of Section 1.3?
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X Y X Y X Y

0.0000 1.70 0.550 5.68 6.00 16.740
0.0000 1.66 0.750 6.06 6.00 16.870
0.0000 1.95 0.750 5.07 8.25 18.980
0.0000 2.07 0.750 5.00 8.25 19.850
0.0750 1.91 0.750 5.98 8.25 18.750
0.0750 2.27 1.000 5.84 8.25 18.510
0.0750 2.11 1.000 5.79 11.25 21.666
0.0750 2.39 1.000 6.10 11.25 21.218
0.1025 2.22 1.000 7.81 11.25 19.790
0.1025 2.25 1.375 7.31 11.25 22.669
0.1025 3.26 1.375 7.08 15.00 23.206
0.1025 2.92 1.375 7.06 15.00 22.239
0.1350 2.80 1.375 6.87 15.00 22.436
0.1350 2.94 1.850 9.88 15.00 22.597
0.1350 2.38 1.850 10.12 20.25 23.922
0.1350 2.70 1.850 9.22 20.25 24.871
0.1850 2.78 1.850 9.96 20.25 23.815
0.1850 2.64 2.500 11.04 20.25 24.871
0.1850 2.71 2.500 10.46 27.50 25.478
0.1850 2.85 2.500 10.88 27.50 25.874
0.2500 3.54 2.500 11.65 27.50 24.907
0.2500 2.86 3.250 13.51 27.50 24.871
0.2500 3.15 3.250 15.47 37.00 24.441
0.2500 3.32 3.250 14.21 37.00 25.874
0.4000 3.91 3.250 13.92 37.00 25.748
0.4000 3.83 4.500 16.07 37.00 27.270
0.4000 4.88 4.500 14.67 50.00 29.580
0.4000 4.21 4.500 14.78 50.00 26.698
0.5500 4.54 4.500 15.21 50.00 26.536
0.5500 4.47 6.000 17.34 50.00 27.181
0.5500 4.79 6.000 16.85

1.21. In her section entitled “Is the Assumption of Linear Regression Justified?”
Natrella (1963) gave an illustrative example of Young’s modulus (coded)
of sapphire rods (Y) as a function of temperature (X). The data are as

X Y X Y

500 328 750 175
550 296 750 154
600 266 800 152
603 260 800 146
603 244 800 124
650 240 850 117
650 232 850 94
650 213 900 97
700 204 900 61
700 203 950 38
700 184 1000 30
750 174 1000 5
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follows. Answer the question that she posed using any methods that you
prefer.

1.22. Natrella (1963) gave another example with Young’s modulus and tem-
perature but subtracted 4000 from the Young’s modulus values before
performing the computations. If later there is interest in expressing the
regression equation in terms of the original units, what adjustment(s) to
the computed equation would be necessary to accomplish this?

1.23. Croarkin and Varner (1982, National Institute of Standards and Technology
Technical Note) illustrated the use of a linear calibration function to cali-
brate optical imaging systems. With Y = linewidth and X = NIST-certified
linewidth, they obtained a regression equation of Ŷ = 0.282 + 0.977X .
With n = 40, Sxx = 325.1, and s = 0.0683, determine each of the
following:
(a) What is the numerical value of the t-statistic for testing the hypothesis

that β1 = 0?
(b) Is the t-statistic large enough to suggest that the equation should be

useful for calibration?
(c) What is the expression for X̂c, assuming that the classical theory of

calibration is used?

1.24. (Harder problem) J. A. Hoeting and A. R. Olsen gave a table in their
article “Are the fish safe to eat? Assessing mercury levels in fish in Maine
lakes” (in Statistical Case Studies: A Collaboration Between Academe and
Industry, R. Peck, L. D. Haugh, and A. Goodman, eds. ASA-SIAM series)
in which the p-value for a simple linear regression model is .0002 but the
R2 value is only .13. The messages are thus conflicting as to whether or
not the model is an adequate fit to the data. Explain how this could happen
and express the value of the t-statistic as a function of n.

1.25. To see the connection between the least squares regression equation and
the equation for a straight line from algebra, consider a sample with only
two points (x1, y1) and (x2, y2). Show that the least squares solution for
β̂1 is mathematically equivalent to (y2 − y1)/(x2 − x1), which of course in
algebra is the slope of the line. What is the numerical value of R2 for this
line?

1.26. Critique the following statement: “The least squares point estimates min-
imize the sum of the squares of the errors.”

1.27. Explain what the word “least” means in the “method of least squares.”

1.28. Consider a (small) sample of three observations on X1 and X2. If the values
on X1 are −2, 0, and 2, respectively, give corresponding values for X2 such
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that the correlation between X1 and X2 is zero. (Hint: There is more than
one correct answer.)

1.29. What is a consequence, if any, of trying to fit a simple linear regression
model to a data set that has a large amount of pure error?

1.30. Critique the following statement (question): “How can we expect the least
squares regression line to go through the center of the data, such that the
sum of the residuals is zero, if we don’t know the true model?”

1.31. A housewife asks the following question: “I prepare popcorn for my family
every Friday night and I need to know how thick a layer of kernels to use
in the cooker in order to produce the desired amount of popcorn. Of course
I know that some kernels won’t pop and the number that won’t pop is a
direct function of how many are used. I found on the Internet the results
of a group study performed in a statistics class, with a regression equation
being given. I don’t understand the use of the constant (i.e., intercept)
in the equation, however, because obviously if I don’t use any kernels, I
won’t have any popcorn. How can a regression equation with an intercept
make any sense in my application?” Respond to the question.

1.32. For simple linear regression with the predictor being a random variable
(so that r2

Y X is a correlation coefficient), show that both r2
Y Ŷ

and r2
Y X are

equal to R2. (Hint: What type of relationship exists between Ŷ and X?)

1.33. Assume that in simple linear regression a 95% prediction interval is to be
constructed for Y0, with X0 = x . If n = 20, R2 = .82, and Syy = 40, what
number will be subtracted from Ŷ0 to produce the lower limit?

1.34. A simple linear regression equation is obtained with Ŷ = 52.4 − 0.805X
and R2 = .652. What is the numerical value of rYX?

1.35. Assume that a predictor is measured in feet and its coefficient in a simple
linear regression equation is 5.13. What will be the value of the coefficient
if the predictor were changed from feet to inches? Would the value of the
intercept change? If so, what would be the change?

1.36. Consider the following statement: “I know that Var(β̂1) is affected by the
spread of the predictor values, so I am going to use a measurement unit
of centimeters instead of inches for the model predictor so as to increase
the spread.” Will this work? Show what will happen algebraically when
feet are initially used and then inches is used as the measurement unit.
Comment.

1.37. A simple linear regression model is fit to a set of 60 data points, for which
x = 23.8. If

∑
y = 612, what are the coordinates of one point through
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which the regression line must pass? (Hint: Write the regression equation
in a form that is equivalent to Eq. (1.6).)

1.38. Consider the information that is provided by the value of a correlation
coefficient while considering the following statement: “It has been found
that there is a positive correlation between the number of firefighters
battling a blaze and the amount of damage due to the fire.” That is, the
more firefighters, the greater the dollar damage. Does this suggest that
too many firefighters may be used at many fires with the result that more
damage than expected may be resulting because the firefighters are getting
in each other’s way and not working efficiently?

1.39. Critique the following statement: “I am going to use a simple linear re-
gression model without an intercept because I know that Y must be zero
when X is zero.”

1.40. Consider the following set of predictor values: 4, 8, 9, 7, 2, and 5. Now
compute values for the independent variable as Y = 5 + 7X . What will
be the numerical value of the correlation coefficient? What would be the
numerical value if Y = 7 − 0.5X?

1.41. Consider the following sample of (y, x) data: (10,1), (5,2), (2,3), (1,4),
(2,5), (5,6), and (10,7). Compute the value of the correlation coeffi-
cient. Does the value suggest that there is any relationship between X
and Y? Then graph the data. What does this suggest about what should
be done before computing the value of the correlation coefficient in
Section 1.7?

1.42. Consider the following data for a simple linear regression problem. The
sample size was n = 25 and when Ho : β1 = 0 was tested against Ha :
β1 �= 0, it was found that the value of the test statistic was positive and
was equal to the critical (tabular) value.
(a) What is the numerical value of the correlation coefficient, assuming

that X is a random variable?
(b) What does your answer to part (a) suggest about relying on the outcome

of the hypothesis test given in this problem for determining whether
or not the regression equation has predictive value?

1.43. It has been said by many that sometimes we discard good data when we
should be discarding questionable models. Explain the logic in this.

1.44. Consider a simple linear regression prediction equation written in an alter-
native way. If β̂1 X is replaced by β̂1

(
X − X

)
, what will be the numerical

value of the intercept if
∑

X = 33,
∑

Y = 56, and n = 20? Can the nu-
merical value of β̂1 be determined from what is given here, combined with
the value of β̂0? Why, or why not? If possible, what is the value?
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1.45. For which of the following computations is it necessary to assume that the
error term has a normal distribution: regression equation, R2, prediction
interval for Y , or test that the slope parameter is zero.

1.46. In production flow–shop problems, performance is often evaluated by
minimum makespan, this being the total elapsed time from starting the first
job on the first machine until the last job is completed on the last machine.
We might expect that minimum makespan would be linearly related, at
least approximately, to the number of jobs. Consider the following data,
with X denoting the number of jobs and Y denoting the minimum makespan
in hours.

X 3 4 5 6 7 8 9 10 11 12 13
Y 6.50 7.25 8.00 8.50 9.50 10.25 11.50 12.25 13.00 13.75 14.50

(a) From the standpoint of engineering economics, what would a nonlinear
relationship signify?

(b) What does a scatter plot of the data suggest about the relationship?
(c) If appropriate, fit a simple linear regression model to the data and

estimate the increase in the minimum make span for each additional
job. If doing this would be inappropriate, explain why.

1.47. A study was conducted at a large engineering firm to examine the rela-
tionship between the number of active projects (X) and the number of
man-hours required per week for a graphics project (Y), using the firm’s
data for the preceding year. An approximately linear relationship was
found and a simple linear regression model was fit to the data. The results
obtained using n = 75 showed that β̂0 = 1.2, β̂1 = 3.4, Y = 9.6, Sxx =
74.2, the residual mean square is 26.8, and a 95% prediction interval is
desired for X = 3.
(a) Notice that the intercept is not zero. Should it be zero? Explain.
(b) Construct the prediction interval.

1.48. Fill in the blanks in the following regression output.

Regression Analysis: Volume versus Diameter
The regression equation is
Volume = - 36.9 + 5.07 Diameter

Predictor Coef SE Coef T P
Constant -36.943 -10.98 0.000
Diameter 5.0659 0.2474 0.000

S = 4.25199 R-Sq = R-Sq(adj) = 93.3%
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Analysis of Variance

Source DF SS MS F P
Regression 1 7581.8 419.36 0.000
Residual Error 29
Total 30

1.49. Chu (1996) used data from an ad placed by a Singapore retailer of di-
amond jewelry in the February 29, 1992 issue of the Straits Times in
illustrating simple linear regression. The objective is to examine the re-
lationship between the prices of diamond rings and the weights of their
diamond stones. The data are available at http://www.amstat.org/
publications/jse/datasets/diamond.dat and the description of
the data is given at http://www.amstat.org/publications/jse/
datasets/diamond.txt.

(a) When the regression equation is fit to the data, the equation is
Ŷ = −259.6 + 3271X . Thus, as noted by Chu (1996), the intercept
is negative but obviously the price can’t be. Is this a problem? How
would you respond to someone who says that the regression equation
is useless because of the negative intercept?

(b) Graph the data and show the regression equation fit to the data. (This
can be done in MINITAB by using the FITLINE command.) Does your
graph suggest that a model of a different form should be used? Explain.

(c) The value of R2 is .978. Does this value alone suggest that the regres-
sion equation is useful, despite the negative intercept? Explain.

(d) Compare your responses to the discussion in the article, which is avail-
able at http://www.amstat.org/publications/jse/v4n3/
datasets.chu.html. Do you agree with the idea of using an alter-
native model? Explain.

1.50. Consider the data given in Exercise 1.21. Does the scatter plot of Y against
X suggest that a lack-of-fit test would produce a significant result? Perform
the test. Does the result conform to the visual impression from the scatter
plot? Explain.

1.51. The data in the MINITAB datafile BALLPARK.MTW that comes with the
software (in the Student14 folders) shows a moderate and significant cor-
relation (.499) between a major league team’s winning percentage for all
games and its home attendance. Armed with this knowledge, a team’s mar-
keting promotion people decide to try to boost home attendance, reasoning
that this will improve the team’s record. What is wrong with that line of
thinking?

1.52. An indication of how σ 2 causes variability in the regression equations can
be seen with the following exercise. Consider the data in Table 4.2 and the
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values given for β̂0 and β̂1, as well as the value for σ̂ 2, which was given as
0.0645 in Section 1.5.6.1. Use these as parameter values and generate two
sets of Y-values, with Y = β̂0 + β̂1 X + ε, with ε ∼ NID (0,

√
0.0645).

Plot the “true” equation on an X-Y scatter plot along with the two simulated
regression lines and comment. (This can be done in MINITAB by using
the OVERLAY subcommand of the PLOT command.)

1.53. The following data, given in the World Almanac and Book of Facts (1975)
is the average weight in pounds for women aged 30–39 of the indicated
height in inches.

Height 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
Weight 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

Fit a simple linear regression model with weight as the dependent variable.
Is the fit satisfactory? Would you expect it to be satisfactory? Explain. We
will return to this dataset in Exercise 2.22.

1.54. The following data are the appraised property values for 2007 and the
house square footage for a particular (short) street in northeast Atlanta:

Appraised (thousands) 333.8 308.6 330.6 433.5 317.6 332.9 348.9 329.0 290.5 324.6 318.0 355.0 342.1

Square footage (heated) 2924 2731 2976 3006 2752 2278 2686 2567 2432 2502 2440 2384 2691

Graph the data, using the appraised value as the dependent variable. Would
you fit a simple linear regression model based on the graph? Why, or why
not. Does the configuration of points in the graph conform to what you
would expect considering the nature of the data? Explain.

1.55. There is a dataset for illustrating regression on the Internet that gives height
data on a brother–sister pair for each of 11 families. This could hardly be
called an example for illustrating regression, however, because R2 is only
.31 when either the brother’s height or the sister’s height is used as the
dependent variable. Judicious use of regression analysis will frequently
result only when subject-matter knowledge is employed. Why would we
expect to have a poor model fit for this type of example?

1.56. One of the many Java applets for regression and correlation is the
one given at http://www.ruf.rice.edu/∼lane/stat sim/reg by
eye/index.html. The user is asked to guess the value of the correlation
coefficient from five choices. Do this 10 times. What was your score?

1.57. Two students (“A” and “B”) work a simple linear regression homework
problem by hand (for practice) and obtain the following set of predictor
values:



P1: OTA
c01 JWBK300-Ryan September 25, 2008 22:33 Printer Name: Yet to Come

EXERCISES 59

Y Ŷ (A) Ŷ (B)

1 1.33 1.18
3 2.38 2.27
4 5.55 5.53
6 6.60 6.62
8 6.60 6.62
9 8.71 8.80

11 10.83 10.98

(a) The course instructor decides to test the understanding of the other
class members and gives these two solutions, without identifying the
students. The instructor proclaims that one of the students has the
correct answer and asks the class to determine which student it is and
how the determination can be made. Answer these questions.

(b) Then the instructor asks if it can be determined that either student is
correct without assuming that one of the students is correct. Answer
this question.

1.58. Compute σ̂ 2 for the correct set of Ŷ values in Exercise 1.57.

1.59. Assume that R2 = .75 pertaining to the prediction equation Ŷ = 1.76 −
3.27X . What is the numerical value of rxy, the correlation between X and
Y , assuming here that X is a random variable?

1.60. Write R2
adjusted in terms of R2 for simple linear regression and use that

expression to show that R2
adjusted must always be less than R2.

1.61. Derive Var(β̂ ′) for the no-intercept model mentioned in Section 1.5.5:
Y = β ′ X + ε. Should the magnitude of this variance relative to Var(β̂) for
the standard model with an intercept be a factor in choosing between the
two models? Explain.

1.62. A regression user looks at the following output and declares that R2
adjusted

can’t have any worth because “everybody knows that a squared quantity
cannot be negative”. Explain what happened.

regress var2 var6

Source SS df MS
Model 104.041893 1 104.041893

Residual 35594.826 51 697.937765
Total 35698.8679 52 686.516691

Number of obs = 53
F (1, 51) = 0.15
Prob > F = 0.7010
R-squared = 0.0029
Adj R-squarred = -0.0166
Root MSE = 26.419

var2 Coef. Std. Err. t P > |t| [95% Conf. Interval]

var6 .2293197 .593944 0.39 0.701 -.9630727 1.421712

cons 55.7987 35.45303 1.57 0.122 -15.37624 126.9736


