
What Characterizes Rich
Internet Applications?

“Let me just say just one word to you, young man — plastics!”

— Older male character giving investment advice to Dustin Hoffman’s
character, Benjamin Braddock, in the 1964 film The Graduate

First things first. This is a book for software developers by software developers. As developers, we
are inclined to jump to the technical detail immediately. When we learn a new language, for exam-
ple, we probably want to understand concepts such as typing, declaration, variable assignment,
containment, and control flow structures: iteration, test and branching, modularization, and so on.
This chapter is going to be a little different, but no less valuable.

This chapter lays a foundation for why learning the RIA design approach is important. In that
sense, this chapter is going to be more “philosophical” than any other chapters in this book. It has
only a couple code examples, primarily explaining the software revolution under way, and help-
ing you understand the nature of the revolution. The rest of the book discusses code and coding;
here you discover what’s different and how you can profit from it. The discussion tilts toward
independent software writers, by explaining how the competitive landscape is changing; but
developers within the enterprise will benefit from understanding how to make their company
more competitive externally, by building more scalable and user-centric public user experiences;
and more effective internally, by building better collaboration and coordination tools.

In that spirit, read on to find out what makes RIAs (Rich Internet Applications) something worth
paying attention to.

04_082805 ch01.qxp 2/14/07 5:31 PM Page 3

CO
PYRIG

HTED
 M

ATERIA
L

Rich Internet Applications are “Plastic”
The reference to plastics from The Graduate at the beginning of the chapter suggests the most famous
meaning of the word “plastic,” a commodity material which is often used as a substitute for the real
(usually more expensive) material. In the film, plastics were being touted to the character as a good
investment for the future. When we, as developers, look back at the formative days of this period, the
next incarnation of the Internet, we may think “plastic” as well — in the dictionary meaning of the word:
“transforming; growing; changing; dynamic, developing.”

Thus, a first characteristic of RIAs is plasticity. The new generation of Internet-platformed applications is
extensible and able to be recomposed into many different “look and feel” models, sometimes with the
swipe of a cascading style sheet (CSS) paintbrush. Web applications, and Web pages before them, have
always been “skinnable,” and a simple demonstration of applying a cascading style sheet (CSS) in an
HTML page shows how plastic (dynamic) an ordinary Web page can become. If you are well versed in
Web page plasticity, feel free to skip this section; otherwise, read on.

An Example of Plastic (Dynamic) Web Pages
First, a Web page with no formatting: boring and mundane. Figure 1-1 shows a Web page with no
applied styles. The information is there, but the page is static and lifeless.

Figure 1-1

4

Part I: An Introduction to RIAs

The following code creates the trivial Web page shown in Figure 1-1. The few DOM (document object
model) elements are placed by default — a couple paragraphs identified by the <p> and </p> tag pairs
and a JPEG image declared in the tag:

<html>
<head>

<title>No CSS</title>
</head>
<body>
<p>
S T . M A R T I N S, F R E N C H W E S T I N D I E S
</p>

<p>
The smallest island in the world ever to have been partitioned between two
different nations,
St. Martin/St. Maarten has been shared by the French and the Dutch in a spirit of
neighborly
cooperation and mutual friendship for almost 350 years.
</p>
</body>
</html>

In contrast, applying a style sheet to the identical DOM dramatically changes the page to give it style
and appeal, as Figure 1-2 shows.

Figure 1-2

5

Chapter 1: What Characterizes Rich Internet Applications?

As the following HTML code shows, none of the DOM elements have changed, but a little style has been
added to the page. The information content of the Web page is identical to that of Figure 2-1, but now
the content stands out:

<html>
<head>
<title>With CSS</title>
<style>
#sxm {
position: absolute;
left: 10px;
top: 1px;
font-family:’Arial Black’;
font-size:180px;
line-height:130px;
color:rgb(173,181,184);
word-spacing:-50px;
margin:0;
padding:2px;
z-index:1;

}
#stm {
position: absolute;
left: 240px;
border:1px solid #000;
top: 10px;
width: 248px;
height: 340px;
z-index:2;

}
</style>

</head>
<body style=”background-color:rgb(194,203,207); margin:0; padding:0;”>
<div id=”sxm”>
S T . M A R T I N S F R E N C H W E S T I N D I E S
</div>
<div id=”stm”>

<p>
The smallest island in the world ever to have been partitioned between
two different nations, St. Martin/St. Maarten has been shared by the
French and the Dutch in a spirit of neighborly
cooperation and mutual friendship for almost 350 years.
</p>
</div>
</body>

</html>

How Style Sheets Create a Better Page
You find the first secret to the improved page between the <style> ... </style> tag pair, where two
styles, named #sxm and #stm, have been created. Additionally, now the informational elements of the

6

Part I: An Introduction to RIAs

page are set into their own divisions, demarked by <div> ... </div> tag pairs. In these two examples
showing a traditional use of the Web page, specific divisions are used (among other things) to show the
browser where to apply styles. This is a simple but effective demonstration of the inherent plasticity you
can take advantage of when writing the new style of applications, which you’ll find in later chapters.

Divisions become even more important in designing RIAs, where they delineate segments of the page
that modern browsers can dynamically update without a total page refresh. Throughout the book, and
especially in Chapter 10, which describes the capstone application, you’ll see many examples where
dynamic partial page refresh creates a critical bond between the user and the application, and avoids the
total page refresh, which made older-style applications seem static and more like filling out a form than
working with an interactive desktop application.

This section showed a trivial example of page plasticity in Web 1.0 pages. To get a flavor of just how far
designers can take pages, look at CSSZenGarden’s page at www.csszengarden.com, for some really
fun examples of plasticity using only CSS overlay for the identical content.

To run either of the two example pages in this section, one easy method is to create a folder somewhere
on your PC, edit each of the examples into its own HTML file, and then (assuming you have Python on
your system, which Mac OS/X and Linux users do by default) start a Web server in the same folder
with the following:

python -m SimpleHTTPServer

This starts a Web server capable of serving any pages in the same folder or child folders. If you don’t
have Python 2.4 or 2.5 on your system, you can download it from several sources, including
www.activestate.com. Use

http://localhost:8000/<name of the HTML file>

as the URL for the page. For example, if the name of the page without a stylesheet is “noStyle.html”,
then point the browser at

http://localhost:8000/noStyle.html

We demonstrated plasticity in an old-style Web page to make the point that some level of dynamism has
always been a possibility in the Web. Interactivity was another matter. Prior to the emergence of the Rich
Internet, it was never that easy to provide interactivity, but Web 2.0 applications take basic elements of
the traditional W3C specification of HTML and repurpose them to serve a far more interactive style of
application construction.

A more dramatic, exciting, and compelling style of plasticity is accomplished by interfacing the APIs of
various service-oriented applications to “mash up” your own application. Mashups take the idea of
plasticity to a much higher level, as shown in the next chapter.

RIAs also differ from the traditional Web in many important ways, and before looking at more code, let’s
talk more about these.

7

Chapter 1: What Characterizes Rich Internet Applications?

Rich Internet Applications: The Web Is
Disruptive (Finally)

Often, disruptive technologies such as RIAs appear to emerge suddenly, almost at the speed of thought,
with no obvious evolution. You could argue that in reality it’s only notice by the popular press and a set
of descriptive buzzwords that have sprung up in short order. The technologies behind Rich Internet
Applications have been growing and maturing since even before the original Internet bubble.

Consider the enablers required for your new Web 2.0 applications to work at all. For one thing, in order
for RIAs to exhibit the same level of responsiveness as their Rich Client Platform (RCP) ancestors, high-
speed Internet access must be near ubiquitous. You can’t offer a seamless user experience or convinc-
ingly separate the browser-resident user view and the server-resident model and controller logic without
broadband, and when the Web was a toddler in the 1990s, such was not the case. Try using Google Maps
over a 56 Kbps modem connection and you will understand the problem. Fortunately, you now have
nearly ubiquitous broadband in the market, as well as customers who are your likely targets. Broadband
is available almost everywhere in the U.S. At least 73 million Americans had high-speed Internet access
as of April 2006.

Additionally, as mentioned earlier, the fundamentals of Web design have changed. Originally, design
was about making pretty pages or replacements for magazines. Now design is slanted toward making
things look like actual applications. Web design has become application design, and CSS have been
repurposed to enhance the user experience, rather than the layout of the content.

Technology development takes longer than most of us think, with gradual changes that result in a per-
ceivable difference taking years. The reasons for this are beyond the scope of this book, but gradual evo-
lution, from the adoption of the lowly paper clip to the emergence of Rich Internet Application design
and implementation techniques, can take decades. In truth, the underlying technologies that support
RIAs have been around in one form or another for quite some time. In some ways, RIA development is a
modern updating of the client-server model. The profound difference is the number of possible clients,
given the explosion of wireless telephony-enabled devices, laptop portability, the proliferation of WiFi,
and the next generation of PDA descendents.

From a very high altitude, you can view another RIA enabler, AJAX in the browser, as a simple trick by
which round-trips to the server, as users input data that affects other fields/data on the page, implement
“partial page refreshes.” As mentioned earlier, modern browsers can refresh certain segments of the
page (delineated by <div>...</div> tag pairs) without doing an entire page refresh. Partial refresh sig-
nificantly improves the user experience by making application responses appear more seamless.

Neither of these technologies, whether in isolation or paired as they are in RIA, may seem like the basis
for a revolution in application design and delivery, but consider some examples of how small changes
conspire to promote dramatic change. E-mail and instant messaging (IM) are extremely similar in some
respects. Both are essentially store-and-forward messaging strategies, after all. Both require a network to
operate. In some cases, an e-mail and an IM sent at the same time to the same recipient can arrive at their
destination nearly simultaneously, yet the end user perceives them as very different applications.
Indeed, although they may share design characteristics, they have evolved to become very different
applications with rather different monetization profiles and developer communities (if in fact e-mail can
still be said to have much of a developer community). Looking at the difference between e-mail and IM
is instructive if you consider the new generation of applications you can deliver as RIAs, and how they

8

Part I: An Introduction to RIAs

are different from what came before them. Consider Table 1-1, which shows that two different software
platforms may share similar design centers, but be very different due to the community that forms
around them.

Table 1-1: Differences Between Instant Messaging and E-mail

Characteristic E-mail IM

Usage pattern A formal enterprise A convenient way to communicate
communication mechanism whenever you need to say something to

someone, usually in real time, and usually
something immediate and possibly pithy

What it displaces The business letter and The telephone, or even face-to-face
formal corporate communication
communications

Ease of use Requires a formal setup Is always “on” with no effort on your part.
and system administration You talk about “checking for e-mail,” but you

never say, “I am checking for IMs.”

Immediacy Slower and more ponderous; Immediate, conversational, and social. You
formal thought is required say what you need to say, when you need to
to compose a communication say it. Although both platforms use a store
before you send it and forward protocol, changing the speed of

IM interchange creates a change in experience.

Application Episodic, with formal Continuous, with the exchange of ideas just
continuity give and take and formal “happening”

presentation or
argumentation

Administrative You often feel the need to You don’t often review IM communication
burden to the user folderize and categorize streams, although you could use search tools

e-mail for future reference. to review logged conversations. This distinc-
tion may be ending due to migrate-to-Web
e-mail tools such as Gmail, or a RIA, where
searching has replaced folder navigation.

You could argue that the differences between these two applications, which have similar technical
underpinnings, are the differences between old school RCP or Web 1.0 applications and RIAs. RIAs offer
invisibility, immediacy, a continuous streamed user experience, and “ad hoc-rity” (a lack of formal setup
requirements). These are the disruptive qualities of Rich Internet Applications, each of which is
explained in the rest of this chapter.

Rich Internet Applications Are Invisible
You are a software developer, yes, but at times you’re also an end user, and as an end user of desktop
applications, you are used to acquiring (sometimes even purchasing), installing, and maintaining applica-
tions, You look after their well-being, contributing a lot of unpaid labor to do the necessary “yak shaving”

9

Chapter 1: What Characterizes Rich Internet Applications?

(see the sidebar in this chapter) to get applications into the necessary state to “serve your needs.” Figure
1-3 shows Google, a prime example of the invisible application. It’s taken for granted, but it’s never far
from the end user’s reach.

Figure 1-3

Invisibility of Google
Google is a prime example of the invisible application few can live without. Google’s developers have
deliberately made their software more valuable and more invisible by embedding its simple type-in box
into the toolbar of modern browsers, and into the Windows System Tray for desktop search (Google
Desktop), as shown in Figure 1-4. More than any other application, Google, has insinuated itself into the
browsing experience so deeply that many users unconsciously invoke it almost as a reflex action.
Unconscious use is the highest compliment users can pay to any product or service.

Figure 1-4

10

Part I: An Introduction to RIAs

Traditional applications are a lot like a high-maintenance relationship in that they deliver value, but not
necessarily in portion to the equity you invest. The more we experiment with this new paradigm, the
more the kinds of applications we used to write begin to look clunky and primitive to us.

The more you use RIAs as an end user, the less you notice the fact that they are just “there,” that they
somehow disappear into the background. As a developer, you may remember the epiphany that
occurred the first time you got facile with the many “applications” on the Linux (or if you’re old enough,
UNIX) command line. Although you rarely thought of them as such, find, grep, ps, ls, and gcc were
indeed applications, and a shell “incantation” such as

$ ls –lat | grep html | wc -l

to count the number of possible HTML files in a folder was an early example of chaining applications in
UNIX to create a mashup, or composite, application. After a while, though, you probably just forgot
about them, used them to perform your work, and didn’t even recognize them as software anymore.

Focusing Your RIAs
As you survey the universe of Web 2.0 applications, you’ll possibly notice that individual applications
don’t (as yet) suffer from the bloat of native tools. They seem to focus on doing one thing and doing it
solidly.

That’s not to say it’s impossible for you to write really bad RIAs, or that an escalation to bloated Web-based
applications with needless baggage won’t happen as a response to market pressure. It may. It’s just that
what has currently garnered the most mindshare and jumps out from the pack is notable for its simplicity.
For an industry perspective on what it takes to fight bloat, see the sidebar “An Interview with 37Signals.”

Two things may mitigate bloat and bad design, though:

❑ Bloated software won’t be as quick to load or as responsive to use.

❑ Users will find switching costs much lower.

The advice often repeated in this book, and hopefully emphasized in the example code, is to design with
a single feature in mind, and with the understanding that users do not want to “train up” on Web-based
software. An important dictum to remember is that on the Web, user experience is paramount.

11

Chapter 1: What Characterizes Rich Internet Applications?

Eating Our Own Dog Food
One decision the authors made early on in the writing of this book was to use an AJAX
word processor rather than a desktop tool, not just to “eat our own dog food” as we
used to say during the dotcom era, but because we often needed to collaborate at a
moment’s notice, regardless of location, regardless of what operating system that was
at hand. That way, we found that we didn’t have to worry about having the “correct”
software installed, or where precisely the content we needed to work with resided.
Striving to make your software something that a large number of users take for granted
only serves to increase your reputation and value. (See the section “How Am I Going
to Make Money from RIAs?” later in the chapter for more information.)

Another reason why the transition between “applications” seems, from a user standpoint, so easy, natu-
ral, and seamless really has little to do with RIAs directly, but is worth mentioning: Tabbed browsers are
most likely the desktop you always wanted but never got.

Users have settled for the chaotic Windows environment as though it were a fundamental law of nature.
Developers went right along with this, “compounding the felony,” as it were, but think for a moment:
The windowed world of the traditional desktop is chaotic and switching from one application’s space to
another entails some pain because you’re constantly searching, dragging windows around, and manipu-
lating the file systems to get content into the right place for the benefit of the application.

Rich Internet Applications Break Down
Walled Gardens

Platforms currently in use tend to control and channel intellectual property into a “walled garden.”
When you create a document with an RCP document creator, although you are the author, you don’t
own the content independently of the tool you use to create it. You can’t write or read Microsoft Word
documents without something that works remarkably like Microsoft Word. In fact, Word’s vendor
would rather you didn’t use anything other than Word to interact with what should be “your” informa-
tion. To take this logic even a step further, they really insist you use the operating system(s) that they will
happily sell you to run the application that they also sell you, all to get at the information that really
should be your information.

In the ideal world (from the traditional desktop era software vendor’s standpoint):

❑ Content cannot exist without the mediating application. Vendors sell applications and store the
content model in a format that prevents anyone from easily usurping their dominance over the
user. The vendor decides when, if, and how bugs are addressed. Vendors need to create massive
distribution systems that rely on end-user sweat equity to keep applications as up-to-date as the
vendor decides they ought to be.

❑ Applications cannot exist independently of the specific operating system. The vendor will pub-
lish as much or as little of the system call stack as they deem sufficient to encourage indepen-
dent software developers to develop the kinds of applications they want to support on their
operating system. Generally, they will “bless” a certain few languages and dissuade others.

❑ Both the operating system and the application are tightly bound so that, at the vendor’s discre-
tion, both can be rendered obsolete. Vendors will do this ostensibly in the name of operating
efficiency, but it also means that they can (and do) feel free to break the Model-View-Controller
paradigm or inject other undocumented efficiencies into “house” code. It also means that the
inner mechanism of the OS or application becomes arcane, brittle, and opaque to independent
software vendors and developers (ISVs) outside of the organization. External developers thus
struggle to come up with competing benchmark applications in addition to those they internally
produce. Dominant vendors thereby protect their hegemony over the “cash cow” applications
responsible for their revenue stream.

❑ Each tool creates an “island of automation,” with its own data model, its own controller, and a
view dependent on the OS and tool as platform. Because vendors are stuck in our worldview,
they will have a hard time developing (for example) applications that are net-centric, collabora-
tion-rich, OS neutral, or extensible — either by the end user or by other software developers.

12

Part I: An Introduction to RIAs

❑ In marketing, developer conferences, and other interactions, vendors tend to convince both ISVs
and end users that the trades-offs for these annoyances will result in assurance of (generally)
seamless and smooth interaction (for the users), and protection and a ready market (for the ISV).
They thus ensure a barrier to entry that keeps software prices artificially high and difficult to
replicate.

It would be surprising if anything on this list is a revelation to you, either as a software developer or in
your other role as an end user. These are the basic tenets of software, as it has existed for over three
decades. In writing this book and asking you to look at new techniques, ask yourself whether the state of
the world must be this way for some fundamental unalterable reason, or whether it simply has become a
staid custom that limits our innovation and spirit of adventure.

In the traditional software world — the one that should be left behind — tools and applications have
become traps for both the creator and potential consumers because they imprison content and intellec-
tual property. A few words of caution, though: Just because you learn to write extensible, re-mixable,
software-as-service applications in this book doesn’t make you immune to the imposition of other forces
just as inimical to open software as the old school OS and software vendors were. See the sections
“Rich Internet Applications Are Network-Centric” and “Rich Internet Applications Are Browser-Centric”
later in the chapter for more information.

Ironically, although consumer put up with walled gardens, software developers don’t much care for
them. Consider the wide variety of ways in which you can create and manipulate your Java/Python/
Ruby code. VI, Eclipse, Netbeans, EMACS, and note padding applications (which exist seemingly
beyond number) will do just fine. When you need a code viewer, open a terminal window, cat
mycode.py, and you’re done. One reason why you can operate in such an unfettered atmosphere is that
ASCII is ASCII all over the world, and no single vendor can imprison the format. As long as you can
create ASCII, you can program.

Rich Internet Applications Create New
(Unwalled?) Gardens

The aim of this book is to motivate developers to write new generations of applications that create a
different kind of garden. In this garden, the richness of the application is set free in order for content
creators and consumers to interact with far less interference and human investment in acquiring and
maintaining tools than the previous generations of “walled garden” applications. If the first incarnation
of the Internet was about serving and presenting hyperlinked information, and the second was about
submitting personal information to complete transactions, then the third is surely about creating, consum-
ing, and manipulating content in a social or collaborative setting. Specifically, a generation of applications
have emerged that are “us” powered.

The desktop generation of applications enabled end users to write, draw, print, and circulate their cre-
ations to a relatively limited circle of consumers, but today’s content is potentially open to unlimited
numbers of consumers, raters, taggers, and bloggers, who have raised the rate of content creation, con-
sumption, and the potential for debate and discourse to new highs. Whole businesses are being created
over the ranking of content by the “wisdom of crowds.” Consider, for example, how difficult it would
have been to create del.icio.us, Slashdot.org or dig.com in the desktop generation.

13

Chapter 1: What Characterizes Rich Internet Applications?

Constraints in the Unwalled Garden
The community of developers working with this new architecture (and you either are or soon will be a
member of that community) has converged on a couple of critical concepts about how to create value
with RIAs. Whether you build an application to create, store, and share content (too many to mention,
but think Flickr), comment on content (e.g., Slashdot), collaborate on content (think Writely and this
book’s capstone application, “ideaStax”), or to remix content (again, too many to mention, but consider
Google Map mashups, Apple or Yahoo! desktop widgets), the architect/developer chain of reasoning
forces some interesting design constraints on new-style applications:

❑ Shareable content and dynamic content publishing are a foundational element of this new
Internet age.

❑ You have less impedance to content creation and publishing than in past. To some extent, blogs
replace magazines and books. At the very least, they expand publishing options.

❑ More shareable is better than less shareable and may even be monetizable.

❑ High-speed networks are pretty ubiquitous in the user community that consumes new-style
applications.

❑ Given the ability to create a large community around specific content categories, there is a need
for applications to reach large numbers of end users.

❑ An application has to resemble a radio or television network in its dynamics — except, of
course, that those sorts of networks are “consume only.” They don’t permit the kinds of rich
interactions that this new kind of network encourages.

❑ The end user will largely use a browser to reach an application.

❑ There is no monopoly on browsers. Browsers are supported practically everywhere (desktops,
mobile phones, and various handheld incarnations); therefore, a new application doesn’t have
to write a vendor-specific API. In fact, it wastes developer cycles to write to specific client-side
APIs, and it may sub-optimize the value of a new application to both the developer and poten-
tial end users.

❑ There is an industry-wide data transport API (HTTP), and an industry-wide display standard
(HTML) for the client side.

❑ The application creator can still hold real value on the server side in the data model and the
data manipulation logic (which need not be exposed to the application’s user).

No formal committee sat down somewhere in Silicon Valley and decided that these principles would be
the foundation for RIAs. There is no list like the preceding one formally stated anywhere in the litera-
ture, but the logic does seem both sound and fairly bulletproof when you consider the following:

❑ This book comes out at a time when it makes sense for developers to both write and read it.

❑ The characteristics for most RIAs observed “in the wild.”

Some of these notions just evolved as a result of the availability of enabling technologies. Since the first
Internet bubble burst, software developers went back to the drawing board with a strong understanding of
the architectural possibilities. Innovators bootstrapped the current Internet “boom” by creating value
around ideas and applications that would not have been possible before. The existence of this new architec-
ture for applications creates a large “surface area” for content that was difficult to achieve in the desktop era.

14

Part I: An Introduction to RIAs

Technically, the seamless experience of using Internet-based tools is one pillar of the next generation of
applications. The ubiquity of broadband is one reason you can write distributed applications and not
worry (as much) about responsiveness, as you did with desktop generation applications. The availability
of unencumbered browsers is a ready-made outer container for applications.

However, there’s more to RIA than simply moving traditional desktop productivity applications to a
new venue. If you want to succeed at creating the next “must-have” application, you should keep the
vision just laid out for you in mind: Expose the surface area of content-based applications to the largest
number of “us” that you can. This, more than anything else, is your new design center.

At the time of writing, there were about 1 billion online content creators and consumers. These are the
new end users; and if you make it easy for them, they will provide untold wealth in shared wisdom,
social networks, personal perspectives, and a willingness to collaborate, all of which can be applied to
your application. It’s suddenly possible (maybe even for the first time in recorded history) to experience
the massive cooperation referred to as the “gift economy” if you write applications that enable small
contributions.

Understanding the Counter-Manifesto
The new kind of garden that you, the RIA developer, and by extension your end users, create can be
stated in a kind of “counter-manifesto” that is used as the design center for the code example and the
capstone application worked toward in this book. This counter-manifesto sounds remarkably different
to the one described earlier for the desktop era developer. We present them as a set of application-level
design patterns, which we enumerate in the next few sections.

Pattern 1: Expose (at least some of) the Remote API
RIA developers should create content in such a way that other mediating applications that other devel-
opers or end users might dream up can interact with it, display it, or repurpose its content.

You’ll read more about this topic in Chapter 3, where you create mashups. Mashups and remixes occur
when new applications (originally unintended) are constructed from data and services originally
intended for some other purpose.

For some interesting GoogleMaps mashups, check out www.housingmaps.com (houses to let) and
www.mywikimap.com (cheap gas finder)

Pattern 2: Use a Common Data Format
A different (but similar) pattern suggests that RIA developers create data models underlying the service-
based applications so that they or another developer can leverage them. While the backend server may
store the data model in whatever form that’s convenient (whether that’s a SQLite relational DB, an NFS
mounted flat file system, or an XML data store is irrelevant), the output to the user view is expressed as
something that any number of readers/parsers can handle.

It’s cheating just a tiny bit to call this a “design pattern” and then suggest that you support it.
Chapters 10 and 11 show that output to the browser really must be either XML or JavaScript Object
Notation (JSON). Like the speed of light, this is not just a good idea; it’s the law, duly enforced by all
browsers.

15

Chapter 1: What Characterizes Rich Internet Applications?

Pattern 3: The Browser Creates the User Experience
The only real limiting factor on application capabilities is the limitations of common commercially avail-
able browsers. You, the developer, can deal with this limitation because, as a trade-off, it’s a lot better than
the tall stack of entry limitations and barriers that drove you crazy during the previous software epoch.

If you need visual sophistication beyond the capability of the modern browser, you can use other
browser pluggable alternatives, such as Flash. Additionally, in extreme situations, you can employ
launchers for external application engines, although this may create a jarring discontinuity in the user’s
experience. One somewhat successful application-level pattern for doing this is Java Web Start, whereby
the user navigates to a URL, which contains JavaScript for launching an application.

Pattern 4: Applications Are Always Services
Applications are part of a service-oriented architecture (SOA) in which applications are services, created
from scratch or as artifacts from recombining other application facets. Subject to limitations (such as the
availability of some other service on which your application may depend), SOA will create the software
equivalent of evolutionary adaptation. Remarkably, no “protocol stack by committee” of desktop ven-
dors was required to create this pattern. Further, unlike the UDDI/WDSL stack, the Web 2.0 SOA is sim-
ple and almost intuitive.

Pattern 5: Enable User Agnosticism
RIAs won’t force the user to worry about operating systems or browsers. As long as the browser sup-
ports scripting in the browser, applications “just work.” Developers could choose to take advantage of
“secret handshakes” or other backend implementations that assure vendor or OS lockdown (and you
can probably think of one browser and one OS vendor that does this), but the downside of making such
a devil’s bargain is that ultimately you, as a developer, will wind up expending more cycles when, after
getting some user traction on a specific platform, you find that your best interests are served by extend-
ing you application to every other platform. It’s better not to support vendors with their own backend
implementation agenda, and to design from the start to avoid the slippery slope that leads to the trap of
another walled garden. Thus, it’s best to design to steer clear of OS and native library dependencies. If
you do this, you can safely ignore much of the annoying Byzantine detail of writing applications, and
specifically the parts that tend to make applications most brittle. Instead, you can concentrate on the
logic of what it is that you’re trying to accomplish for the user.

Pattern 6: The Network Is the Computer
Originally a Sun Microsystems marketing slogan from the 1980s, this bromide goes in and out of vogue.
Java Applets exemplified it with the X11/Motif distributed model in the 1990s. Both those models ulti-
mately failed, on infrastructural weaknesses. X11 failed because it exacted a huge performance cost on
the expensive “workstation” CPUs of the era, and because its network model couldn’t extend beyond
the LAN with the broadband era still a decade or so away. Java Applets failed because of their size (long
load time) and sluggish performance — again, broadband was a few years away.

This time, broadband is near ubiquitous in much of the cyber landscape. In addition, because the current
RIA user experience is small and fits comfortably within the memory footprint of the modern browser,
failure seems far less likely. Thus, the “operating system” for this new generation of applications is not a
single specific OS at all, but rather the Internet as a whole. Accordingly, you can develop to the separa-
tion of concerns afforded by the Model-View-Controller paradigm, while ignoring (for the most part) the

16

Part I: An Introduction to RIAs

network in the middle of the application. There still remain some real concerns about the network in the
middle, and you do need to code to protect the user experience, given this reality. Many of these issues
are covered in Part III.

Pattern 7: Web 2.0 Is a Cultural Phenomenon
Except for the earliest days of personal computing, when the almost exclusively male Homebrew
Computer Club, which gave birth to the first Apple, defined the culture of hackerdom, the PC desktop
has never been a cultural phenomenon. In contrast, Web 2.0 has never not been about the culture. End
users rally around “affinity-content.” Community is everywhere in the culture of Web 2.0. craigslist,
Digg, and Slashdot exist as aggregation points for user commentary. Narrow-focus podcasts replace
broadcast TV and radio. Blogging replaces other publishing formats and mass distribution formats.
Remixing and mashups are enabled by the fact that data models, normally closed or proprietary, are
exposed by service APIs, but they also wouldn’t exist without end user passion and sweat equity. Some
enterprising developers (e.g., Ning at ning.com) have even managed to monetize this culture, offering a
framework for creative hobbyists who create social applications based on existing APIs. Chapter 3, which
is about mashups and remixes, gives you a feel for what end users can do with the Web as platform, and
modest programming skills.

When you create an application, you should consider the social culture that may arise to embrace your
application. You can likely build in collaborative and social capabilities (e.g., co-editing, social tagging)
pretty easily; if there’s a downside to having an application exist only “in the cloud,” the best upside is
that a networked application also obeys the power law of networks: The application’s value increases as
a log function of the number of users. Most RIAs in the wild have many or all of these characteristics.

Consider the elder statesman of content-sharing applications, the blog, and its close relative, the wiki.
Many blogs approach or exceed print journalism in their reader penetration, and wikis are far more flex-
ible than their power-hungry desktop predecessors (such as Groove, for example) in supporting multi-
user coordination and collaboration.

Rich Internet Applications Are Always
Up-to-Date

A big reason for the lowered barriers to use (the “yak shaving” factor, as we call it) is that something
rather dramatic, and at the same time something taken for granted, happened when end users began to
seriously use invisible and pervasive applications — software upgrades, patches, security fixes, and mas-
sive distributions of service packs just stopped; suddenly they seemed an artifact of a bygone era. The
reason for this major end user shift seems so simple now, somehow obviously “right.”

As a developer, you can understand the profound and yet simple explanation in a way that end users
perhaps can’t: Because RIAs deliver a fresh instance of the application into the browser on reload, the
end user always receives the latest version, with all fixes and updates, automatically, even if you just fin-
ished making the fixes last night. No massive distribution headaches; no complicated patches in the
lethal grip of the end user.

17

Chapter 1: What Characterizes Rich Internet Applications?

In addition, as a developer, when you tweak the server side of the application, you spend late nights fix-
ing the data model or converting from one database to another. The end user is totally unaffected.
Native desktop software never looks as appealing again and end user expectations are permanently
altered.

Finally, as a developer, your expectations are altered as well. Because you don’t have to concentrate on
side issues such as distributing and maintaining multiple versions, you can concentrate on useful refac-
toring, or creating the follow-up project.

18

Part I: An Introduction to RIAs

Yak Shaving, and the Traditional Desktop versus
RIA Development Styles

A huge plus for every end user situation you can contemplate involves lowering the
barriers to use. A lot of traditional RCP application development as we have come to
know it involves a great deal of what is now called yak shaving. According to
Wikipedia, the term may have been coined at MIT’s CSAIL. In any case, it refers to any
seemingly pointless activity that is actually necessary to solve a problem that solves a
problem, which, several levels of recursion later, solves the real problem you’re work-
ing on.

A posting at http://projects.csail.mit.edu/gsl/gsb-archive/gsb2000-02-11
.html gives another definition and an example:

. . . yak shaving is what you are doing when you’re doing some stupid, fiddly little task that
bears no obvious relationship to what you’re supposed to be working on, but yet a chain of
twelve causal relations links what you’re doing to the original meta-task.

Here’s an example:

“I was working on my thesis and realized I needed a reference. I’d seen a post on comp.arch
recently that cited a paper, so I fired up gnus. While I was searching for the post, I came across
another post whose MIME encoding screwed up my ancient version of gnus, so I stopped and
downloaded the latest version of gnus.

“Unfortunately, the new version of gnus didn’t work with emacs 18, so I downloaded and built
emacs 20. Of course, then I had to install updated versions of a half-dozen other packages to
keep other users from hurting me. When I finally tried to use the new gnus, it kept crapping out
on my old configuration. And that’s why I’m deep in the gnus info pages and my .emacs file —
and yet it’s all part of working on my thesis.”

And that, my friends, is yak shaving.

You will probably find that developing RIAs involves a lot less yak shaving, or at least
is replaced by a more satisfying activity — perhaps wool gathering about how you can
make your application more “trick.” Or maybe just sheep shearing, because 1) the tech-
nologies tend not to be as reliant on secret handshake system calls, 2) the objectives of
most RIAs are more focused and less feature laden and therefore quicker to conceive
and deliver, and 3) the code, test, observe, refactor cycle seems (to us anyway) to be
shorter and iterate more quickly toward a finished product.

Rich Internet Applications Are OS Killers
Software has been tied to given operating systems since the beginning of computing. Originally, soft-
ware was offered almost as a loss leader for a vendor to assure loyalty to mainframe hardware. In the
age of the personal computer, users still could not buy just any personal computer to operate a given
application, for even after some vendors mastered the art of selling software as a standalone product,
application users were required to buy the supporting operating system and the approved PC architec-
ture. If automobiles worked this way, an automotive application — say, getting from Washington to
Baltimore — would require the purchase of a specific brand of car, perhaps with specific tires, and the car
would run only on roads paved with asphalt, and this would be the only way to achieve the applica-
tion’s goal of making that trip.

Web 2.0 Layering
Thankfully, neither the transport system nor Web 2.0 applications have such rigid constraints. As shown
in the graphic in Figure 1-5, RIA solutions are not quite so overconstrained. The natural layering of
Web 2.0–networked applications has positive indications for developers — forcing good development
discipline through separation of concerns; and positive indications for the growth and evolution of the
network itself — it becomes much easier to insert new (as yet unanticipated) layers, and ultimately adds
scalability, as pointed out in the “Interview with Industry Leaders” section at the end of the chapter.

Figure 1-5

Thus, because RIAs use the Web itself as their platform, in the end it won’t matter whether a user is run-
ning Windows, Linux, Mac OS/X, or something else. That’s huge news for you as a developer. The
design center of Web 2.0 requires the developer to deliver the application through a URL, via XHTML
(the standards-based version of “good old HTML”) into a browser. The Document Object Model (DOM)
is used for dynamic display and interactivity without complete browser refresh. The developer embeds
JavaScript inside the XHTML; that’s the user experience side.

View Container

XHTML AJAX RSS

Server

Flat File

Network Cloud

Controller

Data Base
•Relational
•XML
•Semantle Store

•Structured Data
•Microformat
•XML

Data Model

19

Chapter 1: What Characterizes Rich Internet Applications?

Cascading Style Sheets
The look and feel of the user experience is tailored through cascading style sheets (commonly CSS speci-
fications in the XHTML.) The JavaScript logic in the browser uses a convenient feature built into all
modern browsers as a way of making remote method calls (it’s called an XMLHttpRequest, and is
explained in detail in Chapter 3). The application’s logic and the data model are often written in a popu-
lar framework (frameworks in Python, Ruby, and Java are covered), but a framework just buys you more
productivity and less coding. There is no requirement to write to a framework — PHP, for example, is
just fine. That’s about all there is to it.

Leaving the Desktop Behind
In the desktop world, dealing with certain annoyances has become so ingrained in your life that you
either hardly notice them or assume they are basic laws of the universe. Many of these seemingly
immutable laws are part and parcel of the pain of working with applications in a native OS: compul-
sively hitting Save every few minutes as a safeguard against your word processor crashing; obsessively
rearranging folder hierarchies; nervously running a virus checker a few times a day. RIAs embody a cul-
tural shift for users, as well as a technological one.

In the event that users need to take smaller steps in leaving the desktop era behind, though, there is
at least one effort to code an entire desktop in AJAX: AJAXOS (see www.michaelrobertson.com/
ajaxos/. The differentiator for AJAXOS is that it assumes a network cloud, even for files on the com-
puter platform on which AJAXOS runs. One might think of it as intentionally blurring the line between
“local” and “in the cloud,” in the belief that these options should always be a user choice. Everything,
from the file system to the MP3 player, works this way in AJAXOS.

Is Java a Winner or Loser?
One question the authors of this book have been asked is whether Java is a winner or a loser in RIA,
which is both a technological and cultural shift. We don’t know the answer, but can hazard guesses;
most developers would agree that delivering applications in Java on the browser side is a dead issue and
has been for a long time now. As a comparison, run an RIA word processor such as Writely (docs.google
.com) against a Java-in-the-browser applet version of Thinkfree (thinkfree.com). Although Thinkfree
may, in the long run, offer similar features and responsiveness, in the end, the convenience of not having
to deal with desktop issues wins the day for the RIA. It may be tragically ironic that Java, which in so
many ways strives to be its own platform and manages nicely to be OS agnostic, and sparked the origi-
nal move of applications from the desktop to the network, fails to be a significant technology of the
future.

On the server side, it’s another matter. Java is just as compelling as it is in the desktop application con-
text. Additionally, Sun Microsystems, Java’s inventor, may be one of the big winners in the cultural shift
implied by the move to RIAs, simply because it’s a server-class hardware vendor. For an additional per-
spective on Java versus agile languages on the server side, read the comments in the sidebar “An
Interview with 37 Signals.”

Finally, understand that AJAX brings it own brand of challenges: managing asynchronous operations
and event-driven programming, especially if there’s a need for multiple threads of control; network
latency for these async requests; and coordination of multiple tasks on the Web interface, to cite but a
few. You can read more about these and other challenges in Chapter 15. In summary though, RIAs are
going to dampen future interest in both operating systems and “office suites.”

20

Part I: An Introduction to RIAs

Rich Internet Applications Are Browser
Centric

The browser has evolved from an information-connecting appliance, to a modest application appliance
(in Web 1.0), to a full blown application-hosting appliance in Web 2.0. And that’s going to force us to
think beyond the desktop. Whereas previously you only needed to test applications inside a software
monoculture (for the most part), as a part of your development discipline, you now have to test with all
major browsers, and at least the current and upcoming version of each.

Browsers are the “game changer” in the evolution of Web 2.0 applications, and you can highly
leverage their native capabilities. As numerous code examples in succeeding chapters show, the simple
ability to make remote procedure invocations using the built-in XMLHttpRequest from JavaScript has
already changed so much of the “game.” Consider how small a matter it would be for any modern
browser to “up the ante” by incorporating work-alikes for the Microsoft Office, OpenOffice, Mac iWork
suites. Already there are rich content editors — such as FCKEditor (www.fckeditor.net) and Tiny
MCE (tinymce.moxiecode.com) — written completely in JavaScript and directly embeddable in the
browser. In our capstone application, we will demonstrate an application similar to presentation
composers.

Once content escapes the desktop and exists in the Internet “cloud,” connected to the end user by wire-
less or broadband, the game has finally changed for good. TVs, phones, handheld devices, and devices
yet to be conceived, are on an equal footing with the traditional PC or laptop. At this writing, most
devices on the consumer market can host a browser. One operating system, Damn Small Linux,
(www.damnsmalllinux.org), can boot from a USB thumb drive and host a full-featured browser.

Of course, you will still want to test every new application you write for browser compatibility. Some
code for testing and working around browser peculiarities in various code snippets is available to you.
The truth is that issues with browsers will likely decrease as AJAX development tools encapsulate the
browser at a higher level of abstraction. Further, even mobile phone vendors (notably Nokia) are begin-
ning to support AJAX-compliant browsers on their gear. Increased platform agnosticism will help bring
your application to many more people globally than you would ever have attracted in the age of what
has been called the software/hardware “monoculture.”

Rich Internet Applications Are Network
Centric

This is an additional reason why, as stated in the last section, RIAs work to deprecate the OS. Many end
users are multi-locational and don’t stop working just because they move from work to home. Nor do
they set aside personal business when they move from home to work. There is no clear boundary
between activities done in one location or another. As a result, end users spend huge amounts of time
attempting to synchronize their home and work computers with both their content and the software that
manipulates the content. The end value you create in the RIA space, whether it’s the next great word
processor or the next great personal information manager, enables your application user to access your
software, and all their content, and is always available via a URL. Because of net centricity, sharing is
easier as well. Consider all the end user tricks and accommodations that overcome distance and multiple
computers: copying files to thumb drives, e-mailing content to Web mail accounts; using ponderous and

21

Chapter 1: What Characterizes Rich Internet Applications?

sluggish synchronizer applications (Groove, for example). All these activities still require intentional and
conscious planning and forethought about just what content you need to copy for availability in multi-
ple locations.

Rich client platform application advocates hold fast to the argument that the downside of RIAs is that if
the network is broken for a particular user, then their application is broken too. It’s certainly true, just as
it is true that a virus-compromised computer loses its utility. At the end of the day, however, the net-
work is far more robust and better maintained than the average end user’s PC. Consider, too, all the net-
centric applications we use and rely upon without giving them a second thought — satellite or FM radio,
mobile telephony, and television. The end user base for Internet applications is already familiar with and
comfortable with networked applications and devices. In addition, considering the number of U.S. cities
that have already deployed or are contemplating municipal WiFi, there is a growing understanding that
network ubiquity is a necessity of modern society.

An issue of apparent concern (for end users anyway) related to net centricity is the oft-heard comment,
“I am concerned that all my documents are no longer on my own PC. They’re up there in the Internet
cloud. They’re on the network, and that feels really dangerous to me.”

Is this really true? In many situations, having one’s “stuff” close at hand is a really bad idea: end users
probably don’t hoard their life savings under the mattress, or insist on squirreling away their chest
X-rays in the hall closet. Nonetheless, PCs often give users a false sense of security and trust despite the
fact that large numbers of laptops are stolen in a given year.

When end users raise this particular bogeyman, it’s worthwhile to point out that tangibility is difficult to
access. A user may well have content secure on my laptop, which (alas) has a bad power supply, bad
disk drive, failed motherboard, or software virus. Their content is therefore tangible and even close at
hand, but not accessible without the painful “yak shaving” required to resuscitate the PC.

One need only ask how many of them have lost valuable content to PC hard disks, or given complete
access rights to indexers such as Google Desktop, or loaded “phone home” programs such as certain tax
preparation software, or allowed a clandestine spybot such as the Sony/BMG rootkit to insinuate its
way onto their PCs. Most end users would be far better off letting a high-security data center host their
digital content, but the road to end user buy-in is long and only time will make a difference. The best
advice here is to push end user education.

A final note on the topic of net-centricity and you, as a developer, is that you shouldn’t assume that sim-
ply by moving applications to an RIA architecture that you are going to bulletproof your work and cre-
ate a garden of delights, rather than a walled garden. In the U.S. in particular, end users may be trading
one kind of walled garden for another.

As of this writing, much attention is being paid to the concept of a two-tiered Internet whereby ISPs would
charge premiums for better quality of service and throughput. Certainly, the Internet is not, by its nature,
immune to walled gardens. If an ISP can get its users (either by government regulation, by economic
inducement, or maybe by mass hypnosis) to agree to let them mediate their browsing experience, then they
can shape their users’ perceptions, prop up political agendas, or sell users things of interest (to the ISP).

By way of example, consider that in 2006 the Chinese government hobbled searches and political dis-
course by tightly regulating ISPs. And the Digital Millennium Copyright Act in the U.S. exemplifies
walled gardens that service either political or commercial agendas. Thus, the global development com-
munity’s best intentions are undone by circumstances beyond its control. The best advice is to become
engaged in affecting change in your country.

22

Part I: An Introduction to RIAs

Political regimes are not the only ones seeking to create walled gardens around the users’ experiences of
the Internet. America Online was the earliest example of an ISP placing users in a walled garden. They
remain one of the few that still does so.

Rich Internet Applications Are
Mind-Altering

You can assert this statement in two different ways. First consider how your mind is altered as a soft-
ware developer and a system architect, and then as an end user.

Observations from a Developer’s Altered Mind
Most developers, especially those of us who have been cutting code for a while, have had the experience
of mastering a new computer language and suddenly having our worldview significantly shift. When
developers discovered C, they found that they could manipulate a computer’s internal system state at a
much less primitive level than before.

When Smalltalk came along, savvy programmers found that they could think in a message-oriented way —
applications were “conversations” whereby messages were created and consumed. When Visual Basic was
promoted to service the needs of the desktop era, it introduced the document as a visual container for the
application, and many coders found it useful to think in document-oriented metaphors. When C++ and,
more important, Java came into common use, an entire generation of software architects and developers
suddenly started thinking in a more model-oriented way (one in which documents were but one of a host
of models for architecting an application).

More recently, a small but significant number of developers started writing serious applications with
dynamic languages such as Python and Ruby, and that introduced many independent and a few in-
house corporate developers to agile programming practice. At every waypoint in the odyssey, software
creators gained new perspectives that helped them design and write code differently, and write different
code as well.

Now, suddenly, fueled by dynamic behaviors in the browser and agile languages on the server side, the
wheel has turned again, giving developers yet another new perspective. The landscape that developers
seem to see from this altered mindset is an impressive list of modern application design attributes.
In this section, we present some observations on ways in which our perspectives have been altered.
How many of these are exemplary of your Web 2.0 development or end user creative experiences?

Some Observations from Our Altered Minds
The first observation we offer to you is that the current perspective shift you may be experiencing is not
due to the introduction of a new language, but of an entire platform. Python advanced a fresh philosophy
of creating general applications. Those of you who know about the “Zen of Python” know this concept; and
for those of you who don’t, try invoking the Python interpreter and type in import this at the Python
prompt to expose the interesting little “Easter Egg” shown in the left screen in Figure 1-6. In contrast to
the “zen” of any specific language, we suggest on the right screen in the same figure that RIAs advance a
new philosophy of what applications are; these observations are discussed in the following sections.

23

Chapter 1: What Characterizes Rich Internet Applications?

Figure 1-6

Rich Internet Applications Are
Software as Service

Applications, according to our unofficial “Zen of RIAs” are first and foremost services. This means that
they are invoked by URL navigation, rather than by installation, preparation, and configuration on a
specific compute platform. If a RIA fails to just “be there,” then you failed as a developer, and potential
end users will toss it aside. Software as service in this case also implies open APIs, which in turn implies
remixing and mashups. Mashups and remixes are made possible because many RIA developers have
opened their APIs specifically to allow for remixing. In truth, they can hardly prevent it, as in general,
server method invocations are exposed in the browser’s JavaScript. Many vendors ask a developer to
“apply” for an API key to pass along with a service invocation to authenticate the invoking application.
You can think of this as a way for the original software’s creator to keep score of the remixes and
mashups using their API.

24

Part I: An Introduction to RIAs

Rich Internet Applications Are
User Centered

RIAs are user centered in two different ways, and you should design with each of these aspects in mind.
First, they are user centered because they operate at a level above the operating system. This is important,
because traditionally, a lot of technology products start with the internals and wrap the user experience
around the technology. For example, most OSs have a lot of scaffolding that revolves around manipulat-
ing the file system, (there have only been a handful that don’t, such as General Magic’s Magic Cap).
Most technologists start with an interesting architecture and build outward from that toward something
that the user eventually sees, the user experience.

A really bad example of something like this might be a command-line interface for controlling MP3 play-
back. Typically, no one has put any thought into the interface, or because it was built from the technol-
ogy “out,” it’s so rooted in the inner workings of the system that the only person who really knows how
to use it is the person who built it.

In contrast, the only contact point the user has with a RIA is the user experience, so it’s designed with
this in mind. Notice, for example, how although Writely creates documents, there is no explicit need to
save a document. Ideally, a user should just be able to move from one functional context to another in a
completely modeless fashion.

For a perspective on starting with the user experience and moving inward toward the working mecha-
nism, read the sidebar “An Interview with 37 Signals” later in the chapter. Modeless operation explains
a little of Google’s success in becoming indispensable to the end user. The Internet is far bigger than any
individual’s file system; hence, searching and tagging become the evolutionary replacements for folder
navigation and folder management.

Whereas Web 1.0 sites sought to look and feel like magazines, Web 2.0 sites all seem to have a different
(but common) look and feel — big bold buttons and operable fixtures are the order of the day. That’s
because they are emphatically not books on the screen. Developers are not HTML publishers putting up
their political rants or the next Great American Novel for people to read; they’re putting up full-featured
applications.

End users, for their part, seem to have become comfortable with composing their own swivel chair inte-
gration point. They inherently “grok” that browsers offer topical separation of concerns/interests that
can be accessed or set aside at the click of a tab. The Web 2.0 “power user” doesn’t boast Excel profi-
ciency. Instead, a user controls three or four browser instances, each with multiple tabs, and boasts the
ability to manage a score of RSS feeds.

Rich Internet Applications Are Inherently
Collaborative

RIAs are also user centered in that communities of people participate in elaborating the creations of others.
Whether it’s commenting a blog, tagging a news story, adding metadata to a digital photo, or creating a
local marketplace with craigslist, people are forming communities around Web applications, and many
notable Web 2.0 applications are focused on community service in some way.

25

Chapter 1: What Characterizes Rich Internet Applications?

Although the authors’ parent company, BBN Technologies, is a large-scale player in developing the for-
malisms of the semantic Web through our work in OWL, the semantic Web language, we have been
terrifically impressed with “folksonomy,” a simpler kind of tagging that seems to work wonderfully
well, despite its simplicity and idiosyncratic nature. As Wikipedia explains it:

A “folksonomy” is a collaboratively generated, open-ended labeling system that enables Internet users
to categorize content such as web pages, online photographs, and web links. The freely chosen
labels–called tags–help to improve a search engine’s effectiveness because content is categorized using
a familiar, accessible, and shared vocabulary. The labeling process is called tagging.

Collaboration via the Web creates a new kind of participation, a new kind of information experience in
which a potentially world-spanning user community has the ability to modify their own online experi-
ence, and contribute to shaping that of others. In the capstone application developed in this book,
we provide a framework for multiple people to collaborate to create content with content locking.
Interestingly, this is still something that absolutely eludes even the best-known desktop applications
(e.g., collaborative real-time word processing has never been done well outside one or two exceptional
efforts, notably SubEthaEdit on the Macintosh; real time multi-participant coding hasn’t either outside
Netbeans Java IDE).

Rich Internet Applications: Small and Agile
Development

The next generation of Web development is still an unfolding story as we write this, so it’s difficult to
support some of the contentions we would argue in this section; however, we can use studies of agile
language development (e.g., projects developed in Ruby and Python) as a yardstick, first of all because
the pre-eminent frameworks for Web 2.0 development implement applications in these languages.

Studies involving agile languages (see, for example, Lutz Prechelt’s “An empirical comparison of seven
programming languages.” IEEE Computer 33(10):23–29, October 2000) show that developers write less
code overall in agile languages and achieve results faster. The power of the individual developer or the
small team seems to be amplified. In many cases that researchers have looked at, teams are smaller and
more agile for whatever reason. It appears that using the frameworks we cover here, teams can be
smaller and get things done faster: Writely, acquired by Google in 2006, consisted at the time of three
engineers (the three co-founders). 37Signals, inventors and heavy users of the Ruby on Rails framework,
consisted of four or five in 2006.

Rich Internet Applications Are Bound to
Change

At this writing, new versions of all major browsers are in the works. The Web 2.0 revolution appears
headed for a tipping point regarding numbers of applications converted from the desktop, in terms of
both user base and number of deployment platforms. The shortcomings of the current generation of
browsers and new feature requirements for the next will become apparent. This simply means that your
knowledge and competence will have to evolve as well. Whatever changes are in store for browsers,
they will certainly evolve to become even more general-application platforms than they are currently.

26

Part I: An Introduction to RIAs

How Do I Change the Way I Develop
Applications?

You may well be thinking that if, as we have implied, the application world around us is in the midst of
changing dramatically, whether that implies you are going to have to change your current development
practice to fit this new world. What are best current practices for the new generation of applications?
Clearly, something is happening: Applications are “in beta” for longer than many formal versions of tra-
ditional software. Extreme programming and continuous integration, so recently avant garde, now seem
possibly a little shopworn. In our survey of successful Web 2.0 efforts, there is a marked difference
between traditional development styles, with formal release cycles and technology focus, and the new
motif of continually evolving applications and customer focus. The following list describes some of the
manifestations of this change:

❑ All applications are betas — It’s not clear where this trend started, but as in so many other
areas, Google may have led the way. From the end user standpoint, it really doesn’t matter. If
the utility of the application is sufficiently compelling, the end user really doesn’t care about
labels. Betas set positive user expectations and enable developers to take risks and sometimes
even fail. Private betas and limited betas are part of an older style of cyclical develop and
release events. Applications with cycles also imply an end to the support of a previous release of
an application, and a not-so-subtle, implicit message to the end user that the developer desires
to end the relationship with the user community.

❑ Versions and bugs — Just because “it’s all betaware” doesn’t mean you can somehow get away
with shoddy implementation, however. The betaware strategy allows you to add features of an
application when they’re ready, and not tie new features to a largely artificial version rollout
system. It’s as important as ever to maintain good (CVS or SVN) versioning, building (Ant,
Cruise Control) and bug-tracking (Bugzilla) systems, but considering what we just said above,
you will have to set internal release milestones. Like a shark, you always need to be moving for-
ward. It’s not important what bugs were reported by users last week or last month; if a bug
can’t be reproduced against the live code, then you can safely kick it to the curb. One problem
you can’t afford to ignore, and which you have to design and plan for, is that while you can roll
back code, you can’t roll back user-contributed content. Finally, whether you provide the back-
end server or use one of myriad servers for hire, you can’t afford to let server-side bugs take
down your site, so think about this nonfunctional aspect as much as you do about the functional
capabilities of your application. You want users to think of your site and your application(s) like
a utility — always on, always operating, just like a light switch. (Remember the invisibility
thing?)

❑ Test-driven development — Test drive development becomes especially important because of dis-
tributed development teams, miniscule staffs and limited QA budgets, Unit, and Subsystem tests.

❑ A RIA is a living lab — The numbers of unique users that RIA sites attract often shock the
novice developer or entrepreneur. RIAs can grow from no users to hundreds of thousands expo-
nentially. Even a small sampling of users can be a large actual number. Your application is your
creation. You should feel free to change features and arrangements of controls and find out
directly how well users react. Building in click counters to understand how users navigate your
application, which features they use, which features they understand, and how they navigate
the application can all be done at a fraction of the cost of traditional usability testing.

27

Chapter 1: What Characterizes Rich Internet Applications?

❑ Don’t write one application, write two — As explained in the next section, there are many
paths to monetization, but understanding the community that accumulates around your appli-
cation is one of the surest ways. Certainly, companies have attempted to categorize the people
buying their applications in an effort to ensure repeat business or new product lines. The effec-
tiveness of their intrusive market research styles — such as user surveys packaged with product
registration — is debatable. Even in Web 1.0 applications, traffic monitors and other ways of
“slicing and dicing” the user populations are generally ineffectual. In contrast, consider the Web
2.0 “connected culture.” Users themselves identify their social networks and invite new users to
share and otherwise become a part of the application’s world. Flickr and YouTube are examples
of applications in which the community and the application become indistinguishable. The
kinds of user metadata that are useful to you in building value around your applications will
certainly vary according to application and end user community, and you need to apply as
much ingenuity to this aspect as the application itself.

How Am I Going to Make Money from RIAs?
If you’re an enterprise applications developer, perhaps this is not a particularly relevant issue for you.
For others, however, the question hinges on more than idle curiosity. At first glance, one might think that
there is considerable exposure of intellectual property for your crafty rivals to inspect and emulate. After
all, the user experience of a RIA (the “view” portion of the application), including the HTML, inline
CSSs, and inline JavaScript, is available in clear text in the browser via any browser’s “View Source”
capability.

Certainly, it is very hard to violate the basic separation of an application’s basic wiring diagram (the
Model-View-Controller pattern) with RIAs. Remember, though, that the real intellectual content of an
Internet application is secure within the server. How much of your service interface you choose to
expose is up to you. As we will show in the next chapter, several “big name” providers expose a remark-
able amount of their service call interfaces through external APIs. We will show you how to leverage
exposed APIs to create applications that are mashups composed from parts of other applications.

As far as your own viability is concerned, consider that economic models are changing rapidly. First, the
costs of production are really low. We have made a point in this book of demonstrating only frameworks
that are available and support open source. Second, server costs are really low. In the United States, ISP
costs continue to fall relentlessly. Further, when you begin to understand that with RIAs your applica-
tion becomes a service, significant (nonfunctional) parts of your offering — storage, security, and always-
on availability — are no or low-cost value adds.

According to Michael Robertson, the creative force behind ajaxWrite (one of the RIA word processors),
millions of documents have been served to tens of thousands of end users. It seems clear that as more
content manipulation capability moves “into the cloud,” the days of the $400 “Office” suite are num-
bered. Further, it also seems clear that as a result of the “gift” or sharing economy that seems to be an
emergent feature of the Web 2.0 culture, much of the content of new applications comes from end users.
The value of Flickr or YouTube is not so much that end users can put their pictures or videos on the
Internet cloud, but that they can publish their content to share with potentially millions of consumers.
What the developers behind Flickr and Writely have done is simply to provide a framework to load,
store, and tag content.

28

Part I: An Introduction to RIAs

Although all sorts of models exist for creating value in return for compensation, the observation to read-
ers is this: Don’t use Microsoft as a reference point. The timeworn models from the desktop era may well
be on their way to the dustheap of history. Further, build different things — things that play to the inher-
ent advantage offered by the fact that you are building a networked application, one that provides a
framework for multi-user contribution and collaboration. Remember that you may well want your
application to be “invisible,” enabling user content creation but building an air of indispensability
around your application.

How much value is there to becoming so indispensable that you are taken for granted? As pointed out
earlier in the chapter, the one application most end users take for granted, and consider to be a part of the
essential fabric of the Internet, is Google search. Google’s market cap in April 2006 was $128 billion USD.

Google’s approach is that while they help end users locate content of interest, they also help advertisers
locate “eyeballs” of interest, by assuming that an end user’s search might be a search for goods and ser-
vices. Most often it isn’t, but Google doesn’t need to be right much of the time, even most of the time. In
2005, advertisers sent $9 billion USD with the U.S. broadcast networks, where almost all their message
was irrelevant to almost everyone. Google’s AdSense capability can at least make a somewhat educated
estimation of consumer interest. Perhaps even the advertising community is catching on — during 2005,
Internet advertising revenues increased 28%.

The message here is that powerful things can happen if you build a target community around an appli-
cation. Consider, for example, the potential for an application built as a volleyball-centric website —
supporting league scheduling, result reporting, team statistics, and so on. Such a site, even with a relatively
small user community, would be extremely valuable to equipment producers. Other Internet communi-
ties (e.g., del.icio.us, ClipMarks) create data sources that appear only on the Internet; the value of those
data sources is currently underexploited, but you should recognize that there is value.

Rich Internet Applications Are Seductive
For end users, RIAs are certainly seductive, given the mashup capability for so many applications.
Further, as suggested previously, they are seductively easy to use. Here, though, what we really mean is
that they are seductive to us as developers. It seems much easier to get from thought to working applica-
tion. Online tutorials for TurboGears and Ruby on Rails show a developer how to get a better than Hello,
World quality Web 2.0 application coded and running in pretty short order, and that can be enough to
show a novice developer the overall structure of these really fine frameworks. In truth, there’s much
more involved in doing nontrivial works, but the initial “seduction” provides a real “developer rush.”

Ruby on Rails’ captivating screencast boasts of “Creating a weblog in 15 minutes” (www.rubyonrails
.org/screencasts); TurboGears’ equivalent is “The 20-Minute Wiki” (www.turbogears.org/docs/wiki20)

Because RIA development is most often associated with agile languages whereby often a small amount
of code pays bigger dividends, milestones seem to happen faster. Those of us in the agile languages
camp think we know why this is so. Agile language developers have always been a little suspicious of
the BIG DESIGN waterfall method. That’s the technical approach that always seems to produce a lot
more UML than code. It always seems to such developers that having a well-defined application
description in mind, plus the time-honored extreme programming approach of “design a little aspect,
code a little, test a little, refactor, and repeat,” yields better and faster results than endless agonizing over
decomposing the big system picture.

29

Chapter 1: What Characterizes Rich Internet Applications?

In our experience, Web 2.0 design seems to strike the right balance between doing some up-front plan-
ning and modifying applications as experience moderates both the goals and the approach. Further, the
frameworks that we cover in this book (Ruby on Rails, TurboGears, Django) make it eminently possible
to do just that — incrementally design and deliver. That’s not to say that some planning is a bad thing.
The practices developers use commonly — separation of concerns, decomposition of the problem into
object, and so on — still apply, and we will follow those precepts throughout the book (and, we hope,
succeed).

Even when used for creating OS-bound applications, RIA standards may be easier to write for than
desktop APIs. Slowly, the Macintosh Dashboard and Yahoo Widgets, the great-grandchildren of the old
terminate-and-stay resident (TSR) applications (like the venerable DOS SideKick) are starting to gain
some developer notice, and one reason is because, having mastered the skills and adopted the RIA
mindset, it’s hard to return to the bad old days of boring code. We cover desktop RIAs beginning in
Chapter 17.

30

Part I: An Introduction to RIAs

Interviews with Industry Leaders: Jason Fried and
David Heinemeier Hansson of 37Signals

This chapter makes a number of assertions regarding the Web’s future shape and potential
beyond its first incarnation, and you may agree or disagree with at least a few of them. We drew
many of our conclusions from listening carefully to industry leaders and revolutionary thinkers.
From time to time throughout the book, we’ll bring you insights from authoritative voices them-
selves. We interviewed Jason Fried and David Heinemeier Hansson of 37Signals, (37Signals.com),
leaders in creating value in the Web’s next generation.

On Being an Early Web 2.0 Innovator

Q: You started out as a Web design company. Now you are delivering the Web as an application platform.
When did you realize that things were changing on the Web from a hyperlink information browser to the
application framework we are beginning to have today? Was there ever an “Aha!” moment or was this just a
natural progression from Web design to application design?

37Signals co-founder, Jason Fried: I don’t think there was ever an “Aha!” moment, really. We needed to
build a product for ourselves. Basecamp was built for ourselves originally. We decided that we needed
to put it on the Web because we knew it needed to be centralized. Desktop software wasn’t something
we knew how to write, and desktop software really doesn’t work well for centralized information. We
felt that the Web was what we know best. It wasn’t that we had a long-term vision, where we thought
everything was going to the Web. It was just something we did out of necessity, and also we knew how
to write Web-based software. We lucked into doing the easiest things for us and that happened to be
doing Web stuff at the time.
Q: Have the other projects emerged out of Basecamp or are those projects that you thought would be relevant
to your own company and then you started to expose those as external services as well?

Jason: Everything we built we built for ourselves first. We always filled a need that we had and we real-
ized, as we like to say, “We are not unique snowflakes.” If we need a tool, then so do hundreds of thou-
sands of other companies just like us. There is nothing special about us that would only make a certain
tool only relevant to us. So we say, let’s put our own time into building this, and perhaps let’s turn it into
a product because other people need it as well and let’s generate some revenue off of it.

On Managing to Make the Software Subscription Model

Q: You seem to have hit a golden mean in which people don’t give a second thought to using your software
through subscription, and yet one of the world’s largest software vendors has tried that and broken their pick
on it for more than a decade. Why do you think you’re succeeding?

Jason: I think it’s because our value proposition is significantly different . . . and that is fair pricing and
good products — products that don’t do a lot of [unneeded] “stuff”; products that just do a few things
well and then get out of your way. That’s what’s compelling about what we are doing for people.
If you look at a lot of other software companies — they are in the “software business,” so they think they
need to build more and more software that does more and more things to justify their cost and justify
the belief they are the greatest software company in the world. More features doesn’t mean that they
deliver what people need. They really need to focus on simpler things that enable people to work better.
We don’t worry about what everyone else is doing and we make the pricing fair. For example, the entire
software industry prices everything by seat, or by user. If one person uses it, it’s X dollars, but if 10 peo-
ple use it it’s 10 times X dollars. Instead, we say, “Look, have as many people use it for the same price.

31

Chapter 1: What Characterizes Rich Internet Applications?

We don’t exact what we call “a participation tax,” which is what just about every other software com-
pany does. When you start doing that you are discouraging more people from using your product.
All those things coming together is giving us a nice head start on the software subscription model.

On Maintaining Focus

Q: It seems like one of the common threads in interviews with 37Signals is to keep it simple, don’t bother the
user. Now that some of your products have been out on the Web for a while and you’ve gained more users,
you’ve probably gotten a lot of feedback. Do you have to actively fight the urge to “feature creep” your
applications.

Jason: It’s certainly a challenge and takes a lot of discipline to say no, but we have it in our heads to say
no to everything, including our own ideas, first. That’s not to say that people won’t say yes later, but ini-
tially we say no by default to every new idea, and that allows us to be selective and keep listening and
hearing more requests; and if we keep hearing that from a large number of users, we’ll say yes ulti-
mately. We don’t react to one person’s request, not even our own. When you have hundreds of thou-
sands of users, you can’t respond to a single request.
It definitely requires a good bit of discipline to keep things simple, and the software industry, in general,
doesn’t have much [self] discipline. As products mature they get more and more complex for most com-
panies. I don’t feel that is the right trajectory. We are learning all the time.

On the Role of Agile Languages in Rich Internet Applications

Q: How did you guys come across Ruby? It would not have been the first choice on most peoples’ lists a few
years ago even if they were agile language savvy. Something that bothered people awhile back was that Ruby
didn’t have a native way to deliver user experience. Java has Swing. Python has TK, Wx, PythonCard, and a
ton of other UIs. TCL has libraries, but Ruby had nothing but the Web. So how did you decide on Ruby?

Ruby on Rails creator, and 37Signaller, David Heinemeier Hansson: Ruby is a language for writing
beautiful code. Beautiful code is code that makes the developer happy, and when a developer is happy
they are more productive. Ruby is unique in the way it lets you express something briefly, succinctly,
and beautifully, whereas both PHP and Java are either verbose or ugly in their structure and the way
they structure code.

On the Role of Frameworks in Rich Internet Applications

Q: Have you seen the Java framework from Google (http://code.google.com/webtoolkit/)? Do you have an
opinion about that? Have your looked at TurboGears (www.turbogears.org) or Django
(www.djangoproject.com/)?

David: Yes. First, the Google stuff is still Java, so it’s basically uninteresting to me in its raw form. The
approach they are using is something that we’ve been championing for about a year now, which is to
write JavaScript in another programming language other than JavaScript itself. We have in Rails some-
thing called RJS. We write JavaScript in Ruby and that gets compiled at runtime to JavaScript. It’s great
to see Google follow through on that.
As far as TurboGears and Django go, both are simply interesting frameworks. They have not been out as
long as Rails and definitely don’t have the same momentum as Rails, and also they are written in
Python, which is a great language (but isn’t Ruby). On the scale of things, it’s much closer to Java than
PHP. I’d rather be writing in Python than Java or PHP.
Django seems more interesting. TurboGears is basically a “glue” stack which takes existing components
and “glues” them together in a way that will fit a solution. A big part of the success of Rails is that it is
not a glue stack. All the components are developed knowing each other, and that’s the big pain we are

32

Part I: An Introduction to RIAs

alleviating from the Java world where everything is a glue stack. You have to go out and hunt to get a
ton of different frameworks and try and glue them together. I think that the Python frameworks are fol-
lowing the same approach we are, which is that if you use a consistently productive language, you can
make everything yourself, and you’ll be better for it.

On Agile Languages and Scalability

Q: With your selection of Ruby do you have concerns about scalability at all?

David: That’s an easy answer, because it’s exactly the same as other open-source languages. It follows
what we’ll call a shared nothing architecture. This means we split everything across three layers: Web,
Application, and Database. Then make sure you don’t keep state in your Web layer or in the Application
layer. When you do that [adhere to these conventions — ed.] you get the wonderful benefit of being able
to add unlimited Web servers, and unlimited application servers because all the state is being pushed
down either to a DB, a shared memory layer, or NFS storage, so it’s not your problem anymore.
That is basically the solution we picked. Scalability on data is hard. We don’t want that problem. There
are people out there that solved that problem long ago. Database folks are some of these people. So, scal-
ability — it doesn’t have any issues at all with respect to agile language. It’s infinitely scalable at the Web
and application layer — just add more servers.
The [Ruby] language itself is slightly slower than some other languages. It’s in the same ballpark as Perl,
PHP, and Python. Sure, you can hand-tune some Java code or write something in C or C++ that is faster.
That’s great, but it doesn’t matter too much. We are in a time where CPU cycles are getting cheaper by
the day, but programmer cycles are not getting cheaper and haven’t gotten cheaper for a long, long time.
The parameter you should be optimizing for is to get more programming cycles out of the development
team. Using a more productive language and framework is the correct way to do that.
Just as a performance metric, we know that we are processing millions of requests a day. We’re doing
very well at that and plenty of other sites out there are supporting hundreds of thousands of users.

On Creating a New Rich Application Development Environment

Q: What are the general guidelines you use to determine whether a new feature or concept makes it into
Rails’ core? Is it a benevolent dictatorship like Linux? Or a group decision?

David: It’s a group decision, but there’s always a shadow of a benevolent dictator, me. If it’s something I
don’t like, it’s not going in. It’s a simple as that. Most of the time, after using Rails for some time, they
get the culture and they understand the motivation and what matures and tends to lead to patches in
line with that vision.
Q: Where do you see Rails going as it evolves?

David: It continues to be a collection of solutions to problems encountered by the contributors. We don’t
have a road map. We don’t intend to make a road map. We don’t develop features for other people.
The only features we develop are the ones we need ourselves. That is the only way to get an effective
framework. If you try to imagine what some other programmer might need someday you are treading
on thin ice.

On Working from the User Experience as a Functional Specification

Q: We’ve heard it said that it’s a 37Signals philosophy to start from the user experience and, using that as a
functional spec, turn traditional application design on its head. Spending 80% of the time working on the UI
seems counterintuitive. Was that a personal sensibility or did you arrive at that because you stated out as a
Web design firm?

33

Chapter 1: What Characterizes Rich Internet Applications?

David: Yes, that definitely helped. Once we started not trying to live up to other people’s expectations
of how you are supposed to do things, we got more things done and we got more right things done.
That grew of practicing these things.

On Mashups

Q: Something that amazes people new to Web 2.0 is the ease of doing mashups. You seem to be somewhat
against exposing too much of your API so that other people can do mashups.

David: Most of our products have exposed APIs, but there is a lot more “talk” than “walk.” We haven’t
seen a large number of mashups that have been terribly useful rather than just cool. On the grand scale,
exposed APIs don’t matter as much yet as people would like us to believe. Our direction with Rails is to
make it easier to do APIs right out of the box.

34

Part I: An Introduction to RIAs

