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1.1 INTRODUCTION

In this chapter we discuss a number of process models, which we also refer to as life
cycles . In so doing, we discuss what a life cycle is with respect to our concepts of
systems engineering, systems thinking, and the systems approach. As engineers, we
ask “What is a life cycle good for?” and “How does it work?” As students, we are
constantly looking for fundamental principles and models with which to structure an
understanding of our subject (Bruner, 1960). Thus, a study of life-cycle models is an
appropriate way to begin an investigation of systems engineering.

Our understanding of life cycles is based on our understanding of systems engineer-
ing or the systems engineering approach. Johnson et al. (1967) define a system as “an
organized or complex whole; an assemblage or combination of things or parts form-
ing a complex or unitary whole . . . more precisely, an array of components designed
to accomplish a particular objective according to plan.” An unorganized collection of
parts has no purpose. As pointed out as early as in the writings of Aristotle (Ogle,
1941), it is exactly the identification of purpose with the organization of components
that defines the approach that we refer to as systems engineering.

Ackoff (1981) uses the term “systems thinking” to describe a means for understand-
ing an entity in terms of its purpose. He formulates the concept of systems thinking
as three steps:

1. Identify a containing whole (system), of which the thing to be explained is a part.
2. Explain the behavior or properties of the containing whole.
3. Explain the behavior or properties of the thing to be explained in terms of its

role(s) or function(s) within its containing whole.

Handbook of Systems Engineering and Management, Second Edition, Edited by Andrew P. Sage and William B. Rouse
Copyright © 2009 John Wiley & Sons, Inc.

65

CO
PYRIG

HTED
 M

ATERIA
L



66 SYSTEMS ENGINEERING LIFE CYCLES

Strategic planning is purposeful, goal oriented, and goal setting. Systems engineering
is the analysis and synthesis of parts, with an eye toward the goal set by strategic
planning. Focusing on the problem is analysis , or taking the problem apart to identify
and understand the pieces with which to do synthesis.

When we apply Ackoff’s formulation of the systems approach to explain systems
engineering life cycles, we first identify the containing whole, and we find that life
cycles are attributes of processes, processes are elements of enterprises, and enterprises
are actions of organizations. A life cycle is an application of the systems approach for
the purpose of understanding and implementing processes. Every process has a life
cycle. A process is a collection of one or more actions whose purpose is to accomplish
a goal. In a systems engineering organization, this goal contributes to the fulfillment
of a strategic plan. If we define a process very generally as a strict partial ordering
in time of the strategically important activities of the enterprise, then we can regard a
set of processes that includes all such activities of the enterprise in some process as
a partitioning of the enterprise. To be interesting, a process should have at least one
input and at least one output, and each activity in a process containing more than one
activity should either depend on or be dependent on some other activity in the same
process.

A process is an element of an enterprise, and an enterprise is itself a process. Every
enterprise (process) may be approached as a system (Thome, 1993) and has a life
cycle. Using a basic enterprise model due to Sage (1995), a process will be one of
three basic types: system acquisition or production; research, development, test, and
evaluation (RDT&E); or planning and marketing.

For a number of reasons, many of which relate to the systems engineering organiza-
tion, it is useful to regard a process as an ordered collection of phases that, when taken
together, produce a desired result. We refer to this ordered collection of phases as a
process life cycle. Moreover, it is possible and desirable to identify life cycles for each
of the three basic classes of processes. Thus, we may speak of a system production
or system acquisition life cycle, an RDT&E life cycle, and a planning and marketing
life cycle.

An enterprise is a collection of one or more processes undertaken by an organization
to achieve a goal. An organization may have one or more enterprises. Every enterprise
also has an organization, whose purpose is closely tied to the enterprise. Indeed, from
the standpoint of purpose, the enterprise and the organization are identical, since each
is an element of the other. Thus, to understand the purpose of the systems engineering
life cycle, it is reasonable to consider it part of an organization and to examine it in
that role.

Life cycles are both descriptive and prescriptive. In our study of systems engineering
life cycles, it is important to abstract and examine life-cycle models not only for their
simplicity for describing processes, but also for their prescriptive applicability to the
organization of an enterprise. Bass and Stogdill (1990), in a major work on leadership,
attribute to Deming the idea that managers need to know whether the organizational
system in which they are involved is stable and predictable. A well-defined systems
engineering life-cycle model that is imposed on the system from the beginning can give
the maturity derived from lessons learned in using the time-tested model, thus adding an
important element of stability to the organizational structure. Bass and Stogdill (1990)
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also cite the need for strong leadership in an organization’s early, formative period.1

This can be related to the idea of the relatively strong need for a predefined systems
engineering life cycle in early, immature stages of the organization, where “strong
need” equates to strong leadership requirements. Leadership and structure can help an
organization to avoid many problems, by eliminating several sources of conflict. For
example, Bradford et al. (1980) enumerate three of the most common group problems,
each of which may be reduced by strong leadership and well-defined structure:

1. Conflict or fight
2. Apathy and nonparticipation
3. Inadequate decision making

Burns (1978) associates both power and leadership with purpose:

Leadership over human beings is exercised when persons with certain motives and purposes
mobilize, in competition or conflict with others, institutional, political, psychological, and
other resources so as to arouse, engage, and satisfy the motives of followers. This is done
in order to realize goals mutually held by both leaders and followers.

Stogdill (1966), describing the classic view of the relationship of purpose to orga-
nizational structure, writes: “One of the most stable and enduring characteristics of
organization, purpose serves as a criterion or anchorage in terms of which a structure
of positions is differentiated and a program of operations is designed.” Stogdill mod-
els the organization as an interbehavioral system in three dimensions:2 interpersonnel,
structure, and operations, shown in Figure 1.1.

The operations dimension, the third dimension of Stogdill’s model, is concerned
with processes, including business processes that both describe and determine the enter-
prise activities of the organization. In introducing this third axis, Stogdill notes that
the operations side of the model will determine to a large degree the structural and
interpersonnel aspects of his model . Thus, it may be argued that operations should
lead, rather than follow, the elaboration of the other dimensions. We may introduce
the systems approach that views a process as a synthesis of organizational elements
to achieve a purpose. By introducing processes, as represented by their life-cycle
models, we can purposefully influence the formation of the organization in all of its
dimensions.

Stogdill points out that classic organizational theory is concerned mostly with the
subdivision of work and with the differentiation of responsibility and authority. It
constitutes an empirical and logical analysis of these aspects of organizations that has
proved to be highly effective as a template or set of principles for structuring new

1Bass and Stogdill (1990) write: “Hersey and Blanchard’s life cycle theory of leadership synthesizes Blake
and Mouton’s managerial grid, Reddin’s 3-D effectiveness typology, and Argyris’s maturity–immaturity
theory. According to this theory, the leader’s behavior is related to the maturity of the subordinates. As
the subordinates mature, the leader’s behavior should be characterized by a decreasing emphasis on task
structuring and an increasing emphasis on consideration. As the subordinates continue to mature, there
should be an eventual decrease in consideration. Maturity is defined in terms of subordinates’ experience,
motivation to achieve, and willingness and ability to accept responsibility.”
2This is an example of morphological analysis , which, according to Hall (1977b), refers to the decomposition
of a problem into its orthogonal basic variables, each becoming a dimension of a morphological box.
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Figure 1.1 An organizational model by Stogdill.

organizations. With adequate domain knowledge, including knowledge of the nature,
technology, size, and complexity of the tasks to be achieved, it is possible to create
positions and to specify their structure, function, and status interrelationships; design
communication channels; and chart the flow of operations (processes) necessary to
perform the tasks. Training of existing personnel or hiring of new personnel to fill the
positions is accomplished as a next step.

Life cycles are tools of management that allow the organization of enterprise activ-
ities around a purpose. When an organization undertakes an enterprise, members need
to structure themselves according to their goals. Organizations establish themselves
around processes according to some partition of the enterprise.3 Their strategic plan is
much enhanced by introducing a life-cycle model with proven success for the domain.
An ad hoc organization will occur—this is the message of Stogdill—if not templated,
especially if the organization is involved in an enterprise with which it is unfamil-
iar. Introducing the template saves much time and helps to assure success. Galbraith
and Nathanson (1978) carry on the tradition of Chandler (1962) with their claim that
“effective financial performance is obtained by the achievement of congruence between
strategy, structure, processes, rewards, and people.” Thus, in terms of Stogdill’s model,
the development of the operations side of the model can be enhanced by injecting a
life cycle (or set of process life cycles) with proven effect in every aspect of the
organization.

Now that we have identified the systems engineering organization as the whole that
embodies corporate purpose and have identified many of the dynamic forces within
the organization, we can continue our application of systems thinking by focusing on
overall behavior. Life cycles model organizational behavior. Behavior is characterized
by products, which may be organized into phases for manageability. Each phase is
usually characterized by one or more major products emerging from the organiza-
tion during that phase. In Figure 1.2, three classic views of the system life cycle are
depicted. At the lowest level of management, each phase of the life cycle terminates
with completion of one or more major products, shown as blackened rectangles. Many

3This is a basic assumption of business process reengineering, a procedure that involves examining, com-
bining, replacing, or adding enterprise activities as necessary to repartition the organization into processes
in a way that is more profitable. Reorganization during reengineering follows repartitioning of enterprise
tasks.
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Figure 1.2 Management views of life-cycle products by life-cycle phases.

intermediate products may be identified that are important to product-level manage-
ment, not because they are marketable products, but because they represent components
of the finished product, or checkpoints, that are associated with progress and productiv-
ity, sometimes referred to as earned value. The intermediate products are also shown as
visible to the lowest level of management. This level of the organization is responsible
for ensuring the quality of the product through product inspection, measurement of par-
tial products at checkpointed intervals, and other means that require all product details
to be visible.

Middle management typically has much less responsibility, visibility, and cog-
nizance relative to intermediate products than product-level management. In general,
the focus of middle management is on process rather than product. This is depicted
in Figure 1.2 by reducing the number of intermediate products shown to middle man-
agement to those deemed to be important for assessing process quality, and through
this product quality, shown as rectangles shaded in gray. Thus, middle management
is concerned with integrating product-level resources into a high-quality process. At
the upper management level, the concern is with integrating process to achieve an
organizational goal, a strategic purpose. Thus, upper management requires even less
visibility into intermediate products, perhaps none at all. Instead, the focus is on the
coordination and integration of production and acquisition, RDT&E, and planning and
marketing life cycles.

1.2 CLASSIFICATION OF ORGANIZATIONAL PROCESSES

Drucker (1974) references several traditional methods of classifying and grouping activ-
ities in organizations. From a systems engineering point of view, most are analytic,
in that they tend to direct attention inward to the skills required to accomplish tasks
by grouping like skills together. An outward-looking, synthetic approach, that Drucker
clearly finds to be more useful, results from grouping activities by their type of con-
tribution to the organization. He defines four major groups:

1. Result-producing activities
2. Support activities
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3. Hygiene and housekeeping activities
4. Top-management activity

Of Drucker’s four categories, only result-producing activities have nontrivial life
cycles. The other three types are ongoing, organic elements of the organization, whose
activities are necessary, but whose efficacy cannot be measured by their contribution
to corporate revenue.

Drucker identifies three subclassifications of result-producing activities:

(a) Those that directly generate revenue

(b) Those that do not directly generate revenue but are still fundamentally related
to the results of the enterprise

(c) Information activities that feed the corporate appetite for innovation

Each one of Drucker’s categories corresponds to a basic systems engineering process
type identified by Sage (1992a), each with a life cycle that we will examine in detail.
Respectively, we will discuss the following:

• The planning and marketing life cycle
• The acquisition or production life cycle
• The RDT&E life cycle

With respect to each life-cycle type, it is necessary to recognize, analyze, and synthesize
a response to the market, which may be external or internal to the organization.

For example, one high-level representation due to Sage (1992a) of a generic systems
engineering life cycle is a three-phase model: definition, development, and deployment
(DDD). Each phase can be further described using recognize, analyze, and synthesize
(RAS) to categorize activities contained in the phase. Activities and products can be
organized in a matrix representation as suggested by Figure 1.3.

The DDD model is itself a prime example of RAS. System definition is essentially
a recognition (R) activity during which requirements are recognized; development
is an analysis (A) activity in which requirements, and alternatives for their realiza-
tion, are considered, analyzed, and developed; and deployment is a synthesis (S)
step, in that the results of the development phase are purposefully integrated into
an operational system. RAS is recursive in that each phase can be considered to be
a stand-alone process, with inputs and outputs. Each phase may then be further ana-
lyzed using RAS. For example, the definition phase of a generic acquisition process

recognize

definition

development

deployment

analyze synthesize

Figure 1.3 Abstract matrix representation of a generic process.
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Figure 1.4 Narrowing the universe of possible products.

recognizes stakeholder and environmental needs and other constraints using such tools
as requirements elicitation and classification. The analysis subphase analyzes and, as
necessary, prototypes requirements to develop a requirements list. The synthesis sub-
phase transforms the finished product of the analysis subphase into a specification. We
can recursively apply RAS to “requirements elicitation and classification,” since it is a
process with an input that needs to be recognized and an output that must be synthe-
sized based on an analysis step. The DDD model can also be referred to as formulate,
analyze, and interpret (FAI) (Sage, 1992a). DDD, FAI, and RAS are congruent to
one another.

The three basic systems engineering life cycles of Sage can be seen as three filters
through which a product concept must pass to be deployed successfully by an organi-
zation (Fig. 1.4). Each successive filter subsets the universe of possibilities based on
both internal and external factors.

In the RDT&E cycle, the feasibility of ideas is measured by the standards of existing
technology, constrained only by the goals of the organization. These goals are normally
more liberating than limiting, since the organization that is focused on a goal will in
general be better endowed, in terms of its technology and its organization, and thus
better positioned than competitors to create successful products. From the standpoint
of the acquisition or production life cycle, the view is inward toward the capabilities
of the organization. Finally, from the viewpoint of the planning and marketing cycle,
the direction of focus is outward to the external market. We may note that these three
successive filters have, in terms of their direction and focus, the same characteristics
as the three parts of our RAS framework: “recognize” looks at possibilities within a
goal orientation; “analyze” looks inward and considers what resources are available;
and “synthesize” looks outward, answering patterns of need from the market in terms
of feasible alternatives based on organizational capabilities.

We now look at three classes of systems engineering life cycles: the RDT&E life
cycle; the acquisition, or production, life cycle; and the planning and marketing life
cycle.
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1.3 RESEARCH, DEVELOPMENT, TEST, AND EVALUATION
LIFE CYCLES

We represent RDT&E as a separate life cycle from system acquisition and planning
and marketing, since the staff, activities, goals, and constraints of research projects
are sufficiently different to require special treatment. Research by its nature is proac-
tive. Whether it is independent or directed, research is based on an innovative idea,
the worth of which is to be tested by the RDT&E organization and evaluated by
the planning and marketing organization. The innovation may be the result of inde-
pendent, or basic, research, whose work may result in either a product or a process
innovation. Alternately, in the case of directed research, often referred to as com-
mercial development , the innovation can be found in terms of a poorly understood
requirement for a system under development. In this case, prototype development may
help articulate the requirement, which can be returned to the acquisition organization
for development or to the RDT&E organization for further directed research. Poorly
understood requirements may also originate in the marketing organization, who, having
perceived a market need, subsequently wish to explore possibilities with the research
organization.

RDT&E is often viewed as unnecessary overhead by poor management who, when
faced with market pressures, reduce RDT&E expenditures in an effort to reduce
cost through eliminating a probable loss. A well-managed RDT&E program is bet-
ter regarded as a tool for risk mitigation, the use of which probably results in profit
(Cooper, 1992). Risk can be identified for each fundamental element of a system:
management, business processes, and products. Research is fundamentally either inde-
pendent or directed. Within these categories, we can systematically examine areas
of risk and corresponding techniques of addressing risk through RDT&E. Figure 1.5
depicts some of the relationships.

RDT&E provides a framework within which to manage research and development.
The concept of an RDT&E life cycle can be defined abstractly. For example, we can
postulate three major phases: definition, development, and deployment. These phases
exist apart from the acquisition life cycle, however, and create inputs to it: proactively in
the case of independent research, and interactively in the case of directed research.4 As

management obsolescence by new mngt. methods
obsolescence by new work force norms
obsolescence by new process requirements

independent researchI directed research

poor understanding of market requirements
poor understanding of organization
poor understanding of business processes

poor understanding of models
poor understanding of new methods
poor understanding of new tools

poor understanding of requirements
poor understanding of design
poor understanding of environment

obsolescence by new methodologies
obsolescence by new tools
obsolescence by new product requirements

obsolescence by new technology
obsolescence by changing demand
obsolescence by new market requirements

process

product

Figure 1.5 A classification of problems addressed by RDT&E.

4For completeness we can speak of reactive research, such as failure analysis.
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suggested by Figure 1.5, independent research and directed research mitigate different
classes of risk. While directed research solves short-term problems and yields answers
on demand, independent research deals with the long-term problems caused, ironically,
by success, and attendant complacence, inertia, and lack of innovation in a competitive
market. From the standpoint of life cycles, these two types of research are different,
in that independent research can properly be said to have a life cycle of its own with
definition, development, and deployment phases; but directed research “borrows” the
life cycle of the process that it serves.

Pearce and Robinson (1985) describe four basic decision areas for research and
development (R&D):

1. Basic research versus commercial development
• To what extent should innovation and breakthrough research be emphasized? In

relation to the emphasis on product development, refinement, and modification?
• What new projects are necessary to support growth?

2. Time horizon
• Is the emphasis short term or long term?
• Which orientation best supports the business strategy? Marketing and produc-

tion strategy?
3. Organizational fit

• Should R&D be done in-house or contracted out?
• Should it be centralized or decentralized?
• What should be the relationship between the R&D unit(s) and product man-

agers? Marketing managers? Production managers?
4. Basic R&D posture

• Should the firm maintain an offensive posture, seeking to lead innovation and
development in the industry?

• Should the firm adopt a defensive posture, responding quickly to competitors’
developments?

In terms of the Pearce–Robinson decision areas, both basic (independent) research
and commercial development (directed research) are systems engineering processes.
Each is a systems process in that it employs systems thinking to synthesize the goals
of the organization and the requirements of the marketplace. Basic research is an
engineering process in that it solves the general problem of generating a corporate
response to the market at the levels of management, process, and product. The inputs to
its definition phase may be provided by strategic planning. These inputs may be general,
necessitating the search of a broad solution space, or very specific. Often the outputs
from the definition phase are poorly understood and require further definition. While
it is true that the refinement of requirements is an active task throughout all systems
engineering life cycles, the RDT&E life cycle is especially tolerant of imprecision and
lack of clarity in early stages of research.

Figure 1.6 depicts an RDT&E process model, organized in terms of the famil-
iar three-phase systems engineering life cycle. In the definition phase, Melcher and
Kerzner (1988) differentiate basic research as either well-defined or non-well-defined.
An example of well-defined research is defensive research, undertaken to protect the
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Figure 1.6 A life-cycle model for RDT&E.

organization’s market position from market competition. Non-well-defined research is
more likely to result in product diversification.

During the development phase, in which an actual product is designed and built,
the constraining influences of organizational goals may be felt and perhaps measured
in terms of the capacity and necessity for corporate change that the potential new
product represents. In addition to new insights about the product, the prospect of
realigning business processes to accommodate new production may provide both posi-
tive and negative insights needed by strategic planners to guide future research efforts.
Product-level insights cause iteration on the requirements phase until an acceptable
product is defined and built. In a very real sense, the development phase might be
regarded as the prototyping element of the requirements phase. At the end of the
development phase, requirements will be much more stable than they were at the end
of the definition phase, but still not immutable. The purpose of the development phase
is to provide support for a decision on whether the potential product is feasible and
desirable.

Test and evaluation of the product provide the content of the deployment phase of
the RDT&E life cycle. The goal of this phase is to deploy a useful model of a poten-
tial product for the consideration of management. The model provides much more
information than would requirements alone about the impact potential of the product
upon the organization in terms of start-up costs, perturbation of existing functions, and
applicability of existing assets. Testing in this phase may take many forms, includ-
ing product testing; product validation; and review by management, marketing, and
process elements of the organization. This “internal marketing” is essential to assess
the level of organizational buy-in, which is an indirect measure of consistency with
strategic goals.

The output of the RDT&E life cycle may be viewed as input to the acquisition life
cycle. Successful candidates from the RDT&E life cycle are moved to the requirements
phase of the acquisition life cycle. While it is possible that, because a candidate has
been chosen for development, requirements are complete, it may not be assumed. It
is more often the case that “life-cycle issues,” such as maintainability, safety, and
reliability, have not been considered adequately and must be added in the definition
phase of the acquisition life cycle. RDT&E provides a proof of concept that is generally
not of production quality.
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Figure 1.7 Market share versus market growth rate.

The planning and marketing cycle influences and thus provides input to the RDT&E
process. Marketing may evaluate an existing product or line of products and services
according to their market share and their potential for growth. Figure 1.7 catalogs
classic market share and market growth rate concepts (Sage, 1995).

An organization should understand its position in the market to properly coordinate
its RDT&E efforts. According to the dynamics of the market, management, through
the planning and marketing process, may pursue any of three mathematically possible
strategies: (1) increase market share, (2) maintain market share, or (3) reduce market
share. We examine each in turn.

1. Pursuing an increase in market share is a cost-effective strategy in the case of a
selected “star” or a carefully selected “chameleon” (Fig. 1.7). The RDT&E process
will not be seeking a new product, but rather a way to save costs (especially in
the case of a star) or improve quality (especially in the case of a chameleon).
Solutions may be found in improvements to either process or product. Cash cows
and dogs characteristically have low potential for growth. However, a dramatic
product improvement or a new product based on either may be provided by
RDT&E.

2. Maintaining market share is an appropriate strategy in the case of a selected
star or a cash cow. In view of the relatively low potential for market share, a
relatively defensive RDT&E strategy may be necessary. Pressure from competing
products, such as product innovations, pricing pressure, or product availability,
may be countered through product innovations from RDT&E that match or exceed
competitive innovation or through process improvements that lower cost and
allow defensive pricing without significant loss of profitability. RDT&E may
also innovate through new applications of the product.

3. Reducing market share is appropriate for dogs, where profitability is modest or
negative. A decision to remain in the market could be based on an expected
breakthrough from RDT&E, with respect to either product or process, that would
improve quality or lower the cost of production.
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Figure 1.8 The wrong and right ways to picture life-cycle interrelationships (Sage, 1995).

The output of the RDT&E life cycle may also be viewed as input to the planning
and marketing life cycle. Successful candidates from the RDT&E life cycle provide
a principal input for the marketing function, in which a marketing plan is developed
based both on market research and on the characteristics of the product prototype.
Unsuccessful candidates from the RDT&E life cycle are also valuable, although their
value is not directly measurable. Virtually all RDT&E activities contribute valuable data
to the corporate knowledge base. In recognition of this contribution, Sage (1995) depicts
both a right and a wrong view of the interrelationships among RDT&E, acquisition,
and planning and marketing (Fig. 1.8).

1.4 SYSTEM ACQUISITION OR PRODUCTION LIFE CYCLES

A large number of life cycles have been proposed for systems production or acquisition.
For example, Cleland and King (1983) give a five-step USAF Systems Development
Life Cycle consisting of the following phases:

1. Conceptual phase
2. Validation
3. Full-scale development
4. Production
5. Deployment

King and Cleland (1983) also describe a slightly different five-phase life cycle con-
sisting of the following:

1. Conceptual phase
2. Definition phase
3. Production or acquisition phase
4. Operational phase
5. Divestment phase
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In addition, both the U.S. Department of Defense (DoD) and the National Aeronau-
tics and Space Administration (NASA) (Shishko, 1995) have multiphased acquisition
life cycles that have evolved over time and incorporated many expensive lessons. A
comparison of the DoD and NASA acquisition life cycles to each other and to a
generic six-phase commercial process model has been constructed by Grady (1993).
There are various other names for the acquisition process model: production cycle,
procurement process, project cycle,5 and implementation process are often used inter-
changeably. In this discussion, we refer to all of these as acquisition . The basic shape
of the acquisition life cycle follows the basic definition–development–deployment
shape that is the basis of many action models. During the definition phase, we create
and generally prefer to distinguish between its two basic products: requirements and
specifications. The requirements for a product or service form a statement of need that
is expressed by a person or group of persons who will be affected, either positively or
negatively, by the product or service. Hall (1977a) refers to requirements as the problem
definition:

One may start with problem definition, the logical conclusion of which is the setting of
definite objectives. Objectives function as the logical basis for synthesis. They also serve to
indicate the types of analyses required of the alternate systems synthesized, and finally they
provide the criteria for selecting the optimum system.

Requirements characteristically suffer from the ambiguity and imprecision usually
attributed to natural language. Nevertheless, the requirements are the most accurate
representation of actual need and should be treated as the standard by which the
resulting product or service will be judged or measured. Specifications are engineer-
ing products and mark the end, rather than the beginning, of the requirements life
cycle, a subset of the acquisition life cycle. This is a valid life cycle.6 It sets forth
steps in a process of eliciting requirements and then transforming them into a system
requirements specification. The transition points between any two successive phases
are well defined and represent a change in the activities of the requirements engineer
and usually a change in the product as well. We may identify five phases in this life
cycle, represented graphically in Figure 1.9:

1. Elicitation of requirements
2. Classification
3. Analysis
4. Prototyping
5. Requirements documentation and specification

An initial requirements list can be generated using a team approach or, for smaller
endeavors, by interviewing stakeholders and discussing their needs. In either case,

5Kerzner (1992) notes that “there is no agreement among industries, or even companies within the same
industry, about the life-cycle phases of a project. This is understandable because of the complex nature and
diversity of projects.”
6Although a life cycle for requirements is given here with a discrete beginning and end and steps in between,
we must keep in mind that requirements issues are persistent and arise throughout the development and
maintenance of the product.
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Figure 1.9 A requirements life cycle.

the starting point of the requirements engineering process is an elicitation process that
involves a number of people to ensure consideration of a broad scope of potential ideas
and candidate problems (Hill and Warfield, 1977). During requirements elicitation the
following questions must be addressed:

• Who are potential end users? What do they do?
• What is currently available? What is new? What is old?
• What are the boundary conditions? (This is determined by the customer and

governs the range of elicitation.)
• What work does the developer need to do?

The second step is the organization of the elicited requirements. In this step there
is no transformation of the requirements, but simple classification and categoriza-
tion. For example, requirements may be grouped into functional versus nonfunctional
requirements.

The third step is analysis of the requirements. This represents a transformation: a
transformation occurs if the requirements engineer makes any change that did not come
from the stakeholder. For example, the adding of detail is a transformation. During
this step, a number of checks are typically performed, such as to enable determination
of the following:

Ambiguity Performance
Completeness Redundancy
Conflict or consistency Reusability
Correctness Testability
Orthogonality Trade-off analyses

It is worth noting that if any of these analyses are done at all, they are usually done
manually. NASA (Radley and Wetherholt, 1996) has cataloged a number of significant
manual requirements analysis methods that are related to software safety.

The fourth step is the development of a prototype, a synthesis step in which some
part of the problem is developed to some level of completion. In this way, poorly
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understood requirements may be tested and perhaps strengthened, corrected, or refined.
This activity is often done as a proof of concept and serves to induce feedback from
both the stakeholders and engineers.

The fifth step represents the requirements as the finished product of the stakeholder
requirements team. The requirements are compiled into a requirements list or into some
equivalent document format. These collected requirements are then transformed into a
specification.

The transformation from a requirements list to a specification represents a significant
risk in the requirements engineering process. In this operation the requirements that
were elicited from the user and refined through analysis, synthesis, prototyping, and
feedback are transformed into a requirements specification. It is a transition of form
(according to some prescribed document standard), substance (through addition of
details necessary to support successful implementation), and language (through the use
of rigid requirements language and nonnatural language representations, such as state
charts and various mathematical notations).

The system specification is the engineering definition of the product to be devel-
oped or acquired. In the acquisition phase the specification is partitioned, enlarged, and
refined in accordance with the detailed life cycle that is used. Typically, the specifi-
cation is decomposed in the way that best utilizes the resources of the development
organization, unless specific guidance for decomposition is provided in the require-
ments definition. For systems that are primarily composed of hardware, the benefits in
terms of cost and quality of allowing the development organization a high degree of
freedom in interpreting the specification are passed along to the customer. Software
systems differ in that the product architecture must support the evolutionary nature of
software maintenance, the part of the software life cycle that predominates in terms of
both duration and cost. One of the principal advantages of in-house software develop-
ment, as opposed to acquisition of either custom or commercial off-the-shelf (COTS)
software, is that, because the development organization and the maintenance organi-
zation are the same, product cost and quality dividends are effectively realized twice,
once during development and again during the maintenance phase, over a much longer
time period.

There are several additional interesting points to be noticed about the require-
ments life cycle as depicted in Figure 1.9. First, we refer to the definition phase
of the systems engineering life cycle as containing the requirements life cycle. That
the requirements life cycle is a “proper life cycle” may be seen by noting that each
of the steps is well defined, each with a product that characterizes the step. More-
over, the steps may be grouped into the familiar definition–development–deployment
paradigm. Requirements elicitation defines the requirements. Classification, analysis,
and prototyping develop the requirements, which are then deployed as a requirements
list and transformed into a requirements specification. None of this is to say, however,
that activities that have been ascribed to one phase or step, rather than to another,
may not be performed or revisited in a subsequent phase or step. Decision making
through problem solving is the essential nature of engineering (Hazelrigg, 1996); the
more we know about a problem, the more we may define, develop, and deploy. Thus,
the partitioning of activities into phases, and the resultant linear ordering of activities,
is done to facilitate understanding, but certainly not to levy boundary conditions on
phased process activities. Second, we may note that the more transformations that are
performed on the elicited requirements, the less communication is possible with the
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stakeholders (represented as “users” in Fig. 1.9). This constraining influence represents
risk, in that the stakeholders may be unaware until a failure of possible misapplication
of requirements occurs. Figure 1.9 depicts lines of communication with the stakeholders
using solid and broken lines, where solid lines represent relatively good communica-
tion, and increasingly broken lines represent increasingly poor communication. Third,
we may note that Figure 1.9 associates the first three steps, frames them together,
and shows solid lines of communications to the stakeholders. This suggests that these
activities may all be done together as a stakeholder team activity, thus further invest-
ing the stakeholders in the process of developing high-quality requirements. Because
of the great potential benefits associated with keeping the stakeholder team involved,
it is important to discipline the requirements engineer to use the language (termi-
nology, examples, associations among requirements, etc.) of the stakeholder and to
refrain from introducing engineering models, templates, paradigms, and tools during
stakeholder involvement.

The definition phase of the system acquisition or production life cycle contains,
in addition to requirements definition, three other possible elements, each of which
creates a link to other processes in the enterprise:

1. Preparation of acquisition documents
2. Linkage with RDT&E life cycle
3. Linkage with planning and marketing life cycle

Acquisition documents create a link within the acquisition life cycle between the
requirements definition process and the development of the product. Jackson (1995)
describes specifications as the interface between the problem space (requirements)
and the solution space (implementation). In the case of in-house development, the
requirements specification is all that is required. In other cases, however, where two
or more different organizations must cooperate, formal structure may include a request
for proposal and a proposal containing a statement of work, a systems engineer-
ing management plan, a work breakdown structure, and a negotiated list of other
deliverables.

The linkage with the RDT&E process may be of two basic types. If the research
was directed by the requirements development process either to clarify requirements
or to solve a technical problem, then the research results are needed to complete the
requirements life cycle. Or, if the research product was the result of independent and
innovative work of an on going nature through which the organization creates new
products, then the product definition must be handed off to the requirements team to
allow the product to be brought to market.

Finally, requirements from planning and marketing may influence product defini-
tion, especially to incorporate plans for and the results of market research. Input from
the planning and marketing process is critical to setting and maintaining cost goals.
Michaels and Wood (1989) discuss “design to cost.” The basic idea of “design to
cost” is that, through the analysis of design alternatives (additional analysis that can
add 20% to design costs), trade-offs of functionality for affordability, and allocation
of cost goals to the work breakdown structure, and through dedication and discipline
on the part of management, cost goals can be built into a design-to-cost plan, and
the plan can be carried out successfully. Marketing studies that provide projections
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of sales, selling price, and sales life cycle7 allow such cost goals to be set intelli-
gently. Output from the acquisition process to the planning and marketing process
allows early product information to be used to create marketing plans, tools, and
schedules.

The second phase of the system acquisition life cycle is the development phase.
A great deal of work has been done in this area, and there are many life-cycle mod-
els. This phase begins with the system specification and ends with the delivery of
the developed system. Basically, a divide-and-conquer approach is almost universally
employed. In this, the system architecture represented in the system specification is
divided and subdivided into components that are individually specified, designed, built,
tested, and integrated to compose the desired system. We can say that systems are
designed from the top down, then implemented from the bottom up. Ould (1990) rep-
resents this approach as the “V” process model for software engineering, but which
clearly applies more generally to systems. It is sometimes argued that new software
requirements may be introduced throughout development; hence, the need for a flexi-
ble process model. As noted earlier, however, every stage of the development process
is itself a process that is amenable to an RAS approach that recognizes and satisfies
needs repeatedly. The conclusion that the software engineering process model is a
rediscovery and alternate description of the systems engineering process model seems
inescapable.

Figure 1.10 depicts the V as a composition of three layers or views of the system
in increasing engineering detail. The top view is the user model , which associates
system requirements with their realization as a delivered system. The user model is
the perspective of the customer or stakeholder, who is interested in submitting a list of
requirements and receiving a finished product that meets the requirements. The second
or middle layer of detail is the architectural model , which addresses the decomposition
of the system-level specification into system design and subsystem specifications and
designs; paired together with built and tested subsystems, and finally the tested system.
The architectural model is the perspective of the systems engineer, who is interested
in decomposing the whole into manageable parts, respecifying and designing the parts,
and integrating the parts to compose the finished system. The third and lowest level is
the implementation model , which couples component specifications and designs with
fully tested components. The implementation model is the perspective of the contrac-
tor, who is interested in component-level specifications, designs, and products. The
subtlety of these models lies in the role of the systems engineer, whose activities
must encompass three fundamental activities: recognizing the product or component
as a system, analyzing the system requirements, and synthesizing the system compo-
nents. These three activities—recognize, analyze, synthesize—are the necessary parts
of the systems engineering process, not only in development but also in definition and
deployment. For example, the reengineerability of a software system can be shown to
be directly related to the ability of the system to be recognized, analyzed, and synthe-
sized; and metrics may be ascribed to each of these dimensions, thus providing indirect
measures of reengineerability (Patterson, 1995a).

Ould (1990) also describes a variation of the V process model known as the VP,
where P refers to prototyping. When requirements are not well understood for system

7The sales life cycle refers to a set of phases through which the product moves after it has been placed into
the market. For example, a four-phase sales cycle contains (1) establishment, (2) growth, (3) maturation,
and (4) declining sales phases (King and Cleland, 1983).
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Figure 1.10 Acquisition process life-cycle V.

elements, prototypes may be developed to provide insights and answers to problems
and questions. The use of a prototype may be viewed as a form of directed research
and development, just as in the definition phase.

Both verification and validation (V&V) can be visualized using the V process
model (Whytock, 1993). Verification, a form of document tree analysis that ascer-
tains that every requirement in a higher level specification is decomposed successfully
into requirements at a lower level in the tree (and vice versa), follows the shape
of the V. It is essentially a vertical concern, as depicted in Figure 1.11. Accord-
ing to ANSI/IEEE Standard 729, software verification is “the process of determining
whether or not the products of a given phase of the software development cycle fulfill
the requirements established during the previous phase” (American National Stan-
dards Institute/Institute of Electrical and Electronics Engineers (ANSI/IEEE), 1983;
Boehm, 1990a). The horizontal dimension asks a different question: namely, whether
the built and tested product at some level of completion successfully represents the
specifications and designs at the same level of the model . This is validation. Again
according to the ANSI/IEEE standard definition, software validation is “the process
of evaluating software at the end of its software development process to ensure
compliance with software requirements” (ANSI/IEEE, 1983; Boehm, 1990a). These
software-specific definitions may be, and often are, generalized to systems. As shown
in Figure 1.11, considerations of risk often result in a departure in practice from
these definitions. In both the case of verification and the case of validation, the cost
of detecting and correcting problems later, rather than earlier, in the life cycle is
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Figure 1.11 Theory and practice of verification and validation in the acquisition life cycle.

nonlinear with the distance between the beginning of the project and the point of prob-
lem detection. As a result, the added overhead expense of reducing this distance by
validating at each stage and by verifying at each engineering step is likely to result
in cost savings.

Forsberg and Mooz (1991, 1995) have developed a more comprehensive V chart,
including a repeated V for incremental strategies (Shishko, 1995). On the downside of
the V, definition and development phase activities, including requirements specification
and design, lead to the fabrication activity, located at the bottom of the V. Inspection,
verification, integration, and validation activities are found on the upside.

The system development phase may be described as a complete process with its
own life cycle. The development phase begins with the principal products of the
definition phase, namely, the system specification, the systems engineering manage-
ment plan, and various contractual vehicles. The system specification is the ultimate
source of guidance for the development phase. A system architecture should be derived
from the system specification, and it should be consistent with the systems engi-
neering management plan. Both the specification and the plan determine the archi-
tecture both of the product and of the systems engineering organization. Thus, the
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derivation of architectural detail can be viewed as a management activity. The engi-
neering activity that corresponds to this management activity is the identification of
subsystems and the beginning of configuration control. To minimize effort and the asso-
ciated expense of testing and integration, subsystems should be largely self-contained.
Interfaces among subsystems should be few, small, and very well understood. This
understanding should be captured in the subsystem specifications and subsystem test
requirements.

The next level of detail comprises the specification and design of subsystem compo-
nents, including hardware, software, firmware, and test procedures. Following design
approval comes the fabrication and testing of hardware components, and coding and
unit testing of software and firmware components. These activities may include the
development of test equipment for hardware testing and scaffolding8 for software unit
testing.

Integration of components into subsystems is the next step, which involves not only
integration testing but also validation of the built and tested subsystems with respect
to subsystem specifications. Next, the subsystems are integrated into a system that can
be integration tested and validated against the system specification. Integration test
procedures are a product of this phase that may be useful in the system maintenance
part of the system life cycle. When system testing is complete, full attention can be
given to other aspects of preparing to deliver the system, such as installation materi-
als and procedures, training manuals and special training equipment and procedures,
maintenance equipment and manuals, and user’s guides.

The third part of the systems engineering life cycle is deployment. This part of the
life cycle begins with the actual delivery and installation of the system and ends with the
decision to decommission the system. As before, this phase can be viewed as a process
with its own life cycle. The deployment life cycle begins with delivery and installation,
acceptance testing, operational testing and evaluation, and acceptance by the customer.
The second phase accommodates changes to the system. The software community refers
to change as software maintenance. There may be a formal maintenance agreement with
a contractor that includes a maintenance plan, maintenance test plans, and maintenance
test procedures. The third and final phase of the deployment life cycle is the decision to
decommission the system. This phase is often preceded by a trade-off study to compare
options for continuing to support the business process, such as hardware upgrade or
replacement using existing, reengineered, or COTS products, or the acquisition of
a new system. This version of the systems engineering life cycle is summarized in
Figure 1.12.

The end of the deployment life cycle as depicted in Figure 1.12 is very much linked
to the planning and marketing process. This part of the life cycle is concerned with
how a deployed system is used to support a business process in some organization. In
step 6, the concept of a trade-off study to compare options for continuing to support
the business process is a very general notion. In the case of a manufacturing process,
market factors are the primary criteria for continuing, renovating, replacing, or retiring

8Scaffolding refers to software written to simulate the essential aspects of the environment of the software
that is to be tested. Normally, scaffolding is not a part of delivered software. Incremental and evolutionary
development, however, may deploy scaffolding as a part of an interim product. For example, in incremental
software reengineering, scaffolding may be delivered as part of early increments to provide an interface
between new software and a legacy system that is gradually being replaced.
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DEFINITION

2. classification of requirements 
1. elicitation of requirements

3. analysis of requirements 
4. prototyping of requirements 
5. requirements documentation and specification 
 6. preparation of transition documents: request for proposal and a proposal, containing a
    statement of work, a systems engineering management plan, a work breakdown structure, 
    and a negotiated list of other deliverables 

DEVELOPMENT
1. creation of a system architecture and an organizational structure consistent with the system
    engineering management plan 
2. establishment of configuration control 
3. identification of subsystems
4. production of subsystem specifications and subsystem test requirements 
5. specification of subsystem components 
6. design of subsystem components 
7. fabrication and testing of hardware components 
8. coding and unit testing of software and firmware components
9. the development of environments and test equipment for hardware testing and scaffolding 
    for software unit testing 

10. integration of components into subsystems 
11. integration testing of each subsystem 
12. validation of the built and tested subsystems 
13. integration of subsystems into a system 
14. integration testing of the system 
15. system validation against the system specification 
16. integration test procedures
17. provide product information to planning and marketing 
18. preparation of transition documents and other aspects of preparing to deliver the system, 
      such as installation materials and procedures, training manuals and special training 
      equipment, maintenance equipment and manuals, and user's guides 

DEPLOYMENT 
1. delivery and installation of the system 
2. acceptance testing of the system 
3. operational testing and evaluation of the system 
4. system acceptance by the customer 
5. formal maintenance agreement with a contractor that includes a maintenance plan, 
    maintenance test plans, and maintenance test procedures 
6. trade-off study to compare options for continuing to support the business process 
7. decision to decommission the system 
8. provision of current system description to requirements team (linkage to new cycle) 

Figure 1.12 Steps in a systems acquisition life cycle.

the system that supports the process. More subtly, in the case of nonmanufacturing
processes, the performance of the organization is the primary consideration. In both
cases, change in the business process drives change in the system that supports it,
although technological improvements alone may result in changes, especially where
improvements in economy, reliability, or safety are possible.

Sage (1992a) describes a 22-phase acquisition life-cycle model. The steps can be
organized into three general phases: (1) definition, (2) design and development, and
(3) operations and maintenance. The 22 steps are shown in Figure 1.13.
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SYSTEM DEFINITION
Perception of Need
Requirements Definition
Draft Request for Proposal (RFP)
Comments on the RFP
Final RFP and Statement of Work
Proposal Development
Source Selection

1.
2.
3.
4.
5.
6.
7.

SYSTEM DESIGN AND DEVELOPMENT
8. Development of Refined Conceptual Architectures
9. Partitioning of the System into Subsystems
10. Subsystem Level Specifications and Test Requirements Development
11. Development of Components
12. Integration of Subsystems
13. Integration of the Overall System
14. Development of User Training and Aiding Supports

SYSTEM OPERATION AND MAINTENANCE
15.
16.
17.
18.
19.
20.
21.
22.

Operational Implementation or Fielding of the System
Final Acceptance Testing
Operational Test and Evaluation
Final System Acceptance
Identification of System Change Requirements
Bid on System Changes or Prenegotiated Maintenance Support
System Maintenance Change Development
Maintenance Testing by Support Contractor.

Figure 1.13 The 22-step acquisition cycle in Sage (1992a).

1.5 THE PLANNING AND MARKETING LIFE CYCLE

According to Kast and Rosenzweig (1970), planning is the systematic, continuous
process of making decisions about the taking of risks, calculated on the basis of fore-
casts of future internal and external market conditions. Planning is modeled in several
dimensions:

1. Repetitiveness, for which the authors visualize a continuum from single event to
continuous

2. Organizational level
3. Scope, ranging from a functionally oriented activity to a total organizational

endeavor
4. Distance in time into the future

The model yields an eight-step approach to business planning. A similar list is given
by Briner and Hastings (1994), who refer to the steps as preconditions for effective
strategic management:

1. Appraising the future political, economic, competitive, or other environment
2. Visualizing the desired role of the organization in this environment
3. Perceiving needs and requirements of the clientele
4. Determining changes in the needs and requirements of other interested groups—

stockholders, employees, suppliers, and others
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5. Providing a system of communication and information flow whereby organiza-
tional members can participate in the planning process

6. Developing broad goals and plans that will direct the efforts of the total organi-
zation

7. Translating this broad planning into functional efforts on a more detailed
basis—research, design and development, production, distribution, and service

8. Developing more detailed planning and control of resource utilization within each
of these functional areas—always related to the overall planning effort

We can identify basic phases in the planning and marketing process and organize
the eight steps into twelve activities within the familiar framework of the generic
three-phase life-cycle model:

1. Definition
• Assessment of the market
• Perception of demand
• Strategic response to the market in the light of organizational goals
• Articulation of market demand into product requirements

2. Development
• Providing a system of communication
• Promoting the flow of information
• Research
• Design and development
• Production

3. Deployment
• Distribution
• Service
• Planning in greater detail

Effective planning requires careful external market analysis. This is a principal
reason that we treat planning and marketing as part of a single life cycle. While
an organization has a uniquely informed perspective on its own capabilities, goals,
and interests, a free market does not respect individual organizations. Demand is an
unbiased market force. Thus, an organization, especially its leadership,9 must per-
form exceptionally to recognize, analyze, and synthesize a unique response to market
demand. The first three steps of the Kast–Rosenzweig approach address assessment
of the market, perception of demand, the strategic response of the organization to the
market in the light of its own goals, and the articulation of market demand into product
requirements. Together with other similarly inspired activities, such as product proto-
typing, user testing, and test marketing, we can refer to these steps collectively as the
external market analysis phase.

9The leader’s role is essentially that of a politician. As Buckley (1979) noted: “The successful political leader
is one who ‘crystallizes’ what the people desire, ‘illuminates’ the rightness of that desire, and coordinates
its achievement.”
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There is also what can be called the internal market. This is the collection of interests
within the organization and its support environment, such as the stockholders, employ-
ees (individuals, formal groups, and informal groups), suppliers and other creditors,
governmental authorities, and other special interests. The responsiveness of the organi-
zation depends on a collection of internal market requirements that must be satisfied to
assure the success of the organization. By providing a system of communication, pro-
moting the flow of information, and encouraging broad intraorganizational participation
in goal development and planning, total quality management (TQM) (Deming, 1982;
Sage, 1992b, 1995) connects internal and external requirements in a manner designed
to promote growth in all areas of the internal marketplace, the goal of which is the
creation of high-quality products that satisfy requirements in the external marketplace.
Steps 4 and 5 of the Kast–Rosenzweig approach address these issues.

After having decided on the destination, the organization must plan its journey.
Goals must be formulated into functional efforts. Referring to steps 6, 7, and 8, these
efforts include research, design and development, production, distribution, and service.
Again, the internal organization must be consulted to develop more detailed planning
and control of resource utilization within each functional area. Kast and Rosenzweig
believe that providing organizational members with a voice in the planning process,
resulting in an investment in the plans, serves to integrate the organization.

Planning and marketing is tightly coupled with both RDT&E and with the acqui-
sition process. Blake and Mouton (1961, 1980) define a process for achieving an
objective that may be vague initially and that may change over time with refinement.
Given this statement of a goal, planning may proceed, leading to an action step. The
action step enables the fact-finding or feedback stage that is critical to a goals-oriented
management program, because it provides “steering data.” Three qualitative measures
may be evaluated as well: (1) progress toward the goal; (2) adequacy of planning; and
(3) quality or effectiveness of any given action step. These measures can be quanti-
fied using a 9-point scale system or some similar heuristic. Experience and feedback
using a prototype in the context of the RDT&E process is extremely useful for evalu-
ating both products and processes for eventual deployment. Mistakes corrected in the
RDT&E cycle are much less costly than those detected in the marketplace. In this
light, RDT&E can be seen as part of the overall definition phase for the organization’s
strategic planning process.

1.6 SOFTWARE ACQUISITION LIFE-CYCLE MODELS

It is our opinion that software engineering is a subdiscipline of systems engineering.
Some authors refer to software systems engineering (Sage and Palmer, 1990). Like
with many issues, however, there are two opposite points of view on this opinion.
Undoubtedly, software engineering, whose roots are in computer programming, has
been slow to emerge as a discipline at all and for many years was regarded more as art
than engineering. Even in recent years software development processes have seemed
to diverge rather than to converge to a single methodology.10 Different process models
have different life cycles. In this section we present several important representatives.

10A methodology is defined as a collection of three sets: (1) tools, (2) activities, and (3) relations among
the tools and activities (Warfield and Hill, 1972).
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Figure 1.15 Royce’s waterfall process model.

Many system acquisition or production life cycles have been proposed and used.
A three-level model, shown in Figure 1.14, defines the basic shape.

It is widely acknowledged that Royce (1970) presented the first published water-
fall model, depicted in Figure 1.15. The principal idea is that each phase results in a
product that spills over into the next phase. The model is pleasing for several impor-
tant reasons. First, the stages follow the basic systems engineering life-cycle template.
Requirements analysis and specification fit into the definition phase. Design and imple-
mentation make up the development phase, while test and maintenance constitute the
deployment phase. Second, the stepwise nature of the waterfall suggests that only one
phase is active at any one time, reducing the scope of possible interests, and thus sim-
plifying the engineering process. Third, the logical ordering and the temporal ordering
of the steps are identical. Fourth, and perhaps most importantly from an engineering
management point of view, each step is represented as being largely self-contained,
suggesting that different organizations may be designated for each phase without loss of
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continuity. Since the introduction of the waterfall model by Royce, many other software
process models have adopted a similar format. For example, at the Software Engineer-
ing Laboratory at NASA, a seven-phase life-cycle model is used as the basis for cost
estimation (McGarry et al., 1984). More recently, an essentially identical life cycle
was used as the basis of the NASA Software Configuration Management Guidebook
(National Aeronautics and Space Administration (NASA), 1995). The seven phases
are as follows:

1. Requirements analysis
2. Preliminary design
3. Detailed design
4. Implementation
5. System integration and testing
6. Acceptance testing
7. Maintenance and operation

The purpose of any model is to provide a framework that is better understood
than the reality that it models, and whose outcomes are sufficiently close to reality to
counter the easy, obvious, and devastating objection: “Does this reflect the way things
really are?” Most variations of the waterfall model may be represented as attempts to
overcome this objection.

When we apply the binary “reality measure” to the waterfall model of Royce, several
incongruities may be noticed. One problem is the duration of the phases: although
phases tend to begin in the logically predictable sequence, in reality they never end.
The products from each phase, if perfect, would indeed bring an end of the phase.

Yet all products are fatally flawed and must be dealt with throughout the software
development life cycle. To see that they are flawed, consider software requirements,
which are subject to many metrics. To present our case, we need only consider one:
completeness . Requirements are complete if they anticipate all needs of the user. This
is an impossible goal, one that is addressed by various techniques that are essential for
progress, but which constrain the engineering process, such as configuration manage-
ment, and verification and validation. Therefore, requirements are never complete and
are with us throughout the life cycle.

A second problem is the suggestion that only one phase is active at one time. Once
again, we need only consider requirements and recognize that this phase is active
throughout the development of the product. A third problem is the possible claim that
separate organizations may have complete control of the project at different times in
the development process without the loss of continuity. It is clear, however, that a
requirements team must remain intact throughout the development process to avoid
loss of information , subsequent retraining, and learning curve inefficiencies.

Boehm (1981) presents a waterfall model, shown in Figure 1.16, that addresses these
problems. It is based on nine products, the creation of which Boehm characterizes as
sequential, and which achieve necessary software engineering goals:

1. Concept. Concept definition, consideration of alternative concepts, and determi-
nation of feasibility.

2. Requirements. Development and validation of a complete specification of func-
tional, interface, and performance requirements.
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Figure 1.16 Boehm’s nine-level version of the waterfall life cycle.

3. Architectural Design. Development and verification of a complete specification
of the overall system architecture (hardware and software), including control and
data structures.

4. Detailed Design. Development and verification of a complete specification of the
control and data structures, interfaces, algorithms for each program component
(defined as a program element of 100 lines of code or less).

5. Code. Development and verification of a complete set of program components.
6. Integration. Development of a working software system.
7. Implementation. Development and deployment of a working hardware and soft-

ware system.
8. Maintenance. Development and deployment of a fully functional update of the

hardware and software system.
9. Phaseout. The retirement of the system and the functional transition to its

replacement.

In this version of the waterfall life-cycle model, as in Royce’s version, Boehm
includes a return path from each step in the model to the previous step to account for
the necessity to change the product of a previous step. This rendition offers an orderly
procedure for making changes as far back as necessary, both to meet the standards of
verification and validation and to satisfy the underlying concept definition.

Boehm’s waterfall life cycle is logically complete, insofar as that, at any given
step, it successfully deals with deficiencies of previous steps. Moreover, it does so
without violating the twin quality goals and constraints of configuration management
and of validation and verification. The inadequacies remaining in the waterfall model
are largely temporal and organizational.
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A temporal problem is created, as noted in the Royce waterfall model, when a
phase is deemed to have ended. The most striking example is the requirements phase.
This phase does in fact logically precede the design phase. However, the requirements
phase does not end when the design phase begins. It is of the nature of the waterfall
model that each step begins with a set of requirements upon which action is required.
This set of requirements is the result of actions in a previous step on a previous
set of requirements. Likewise, when the current step is complete, the result will be
requirements for the following step. Thus, at each successive step in the waterfall,
requirements beget requirements (as well as changes to previous sets of requirements),
the requirements for the whole governing the derivation of requirements for its parts.
Every step is a requirements step, and not one of them ever ends.

One can picture the organizational consequences of living with this problem over the
lifetime of a project. At least four scenarios can be generated, as shown in Figure 1.17,
depending on the size of the engineering problem and the size of the organization. For
simplicity, we can characterize problems, as well as organizations, as large or small,
examining each case in turn.

Case 1. This is the case in which a small organization has a small engineering
problem to solve. Provided that the organization has both the engineering knowl-
edge (skill) and the tools required, a small team can perform all life-cycle tasks
with great efficiency and with a very high probability of success. There are many
success stories about significant systems that have been specified, designed, built,
tested, and successfully marketed by entrepreneurs with meager, but adequate,
resources. There are doubtlessly countless untold success stories about more
typical efforts of small engineering organizations.

Case 2. In this case, a large organization has a small engineering problem to solve.
Management may decide to exploit the small problem size to advantage by using
the approach of Case 1. Alternately, several small teams may be engaged, thus
introducing additional learning curve costs, necessitating the continuous employ-
ment and communication among a larger number of engineers, and lowering the
probability of successful completion.

Case 3. When a small organization undertakes a large engineering task, manage-
ment must make several decisions based on available resources. If time is not a
critical factor, a small team approach offers the high quality, the low risk, and
the economy of Case 1. In effect, the large problem has become manageable
by subdivision into small problems without introducing the problems of using

small organization

large organization

small engineering problem large engineering problem

1. small team may perform all
    steps in the life cycle

3. small team may perform all steps
    in the life cycle; or other small
    teams may be employed

2. one or more small teams may
    perform the steps in the life
    cycle

4. one large team, many small
    teams, or a compromise
   organizational structure may be
   used to perform the steps in the
   life cycle

Figure 1.17 Organizational size versus problem size.
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subcontractors. Unfortunately, time is almost always a critical factor, and man-
agement is forced into the role of general contractor, and assuming the high risk
of using independent contractor teams, each with its own layer of management,
its own development process, and its own strategic goals.

Case 4. Assuming that the large organization has the required skills, methods, and
tools, the high risk of Case 3 can be mitigated somewhat by performing all tasks
without resort to external organizations. In this way, a single development pro-
cess, and a single set of strategic goals, improves communication and cooperation
among groups of engineers. However, large organizations are inherently plagued
by problems of management complexity and communication complexity (Brooks,
1975). Moreover, because of the need to retain the organizational expertise from
previous steps at each successive step in the life cycle, the total organization may
be very large, and largely unoccupied, at any given time.

We can see that problem management is a logical issue, and that organizational
management is a temporal issue. Partially in recognition of the organizational problem,
Boehm (1981, 1990b) devised the spiral model, depicted in Figure 1.18.

We have looked at the structure and the function of the waterfall. An insight into
the nature of the possible problems with the waterfall can be gained by reflecting on
the purpose. Life-cycle models represent an attempt to manage complexity through
division of resources. The ordering of processes and products into phases—the orga-
nizational structuring—is necessary to managing the complexity of the solution. The
complexity of the problem, however, cannot be reduced by dealing exclusively with the
resources assembled to solve the problem. The problem itself must also be reduced into
a tractable form and size, where tractability varies according to whether the domain
is well understood. The waterfall model is well able to be applied to manageable
problems in familiar domains.
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Figure 1.18 Boehm’s spiral development model.
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As noted previously, Boehm identified a repetitive aspect to the spiral model. Why-
tock (1993) describes the spiral as comparable to a repeated waterfall model. As shown
in Figure 1.18, the spiral model attempts to abstract a set of activities that every layer
of the spiral has in common. Boehm divides the model into four quadrants, shown
in Figure 1.18. Quadrant I is the beginning of each level of the spiral and is con-
cerned with identifying needs, possible ways of satisfying the needs, and factors that
may constrain the solution. If Quadrant I may be viewed as the early part of the
requirements development life cycle, Quadrant II represents the latter part, during
which requirements are analyzed, problems are resolved, and trade-offs are made.
These two quadrants represent the parts of the waterfall model concerned with defi-
nition of the system to be built. In Quadrant III, a partial product is developed and
verified, and this product is “deployed” in Quadrant IV, although such deployment
simply represents a stepping stone for beginning a new definition effort in a new layer
of the spiral model.

It should be noted that the spiral is a variation of the waterfall model that adds
generality by including repetition as its basic feature. By unwinding the spiral we may
recover the waterfall model, as well as solutions based on partial implementation, such
as incremental development and evolutionary development.

The waterfall process model can be seen to be most appropriate for the develop-
ment of products in a familiar domain, where the risk of building poor products is
reduced by an experience base that may include reusable specifications and designs.
In an unfamiliar domain, or in large or complex projects, an incremental approach
reduces risk, since the cost of each increment is relatively small. An increment may
even be discarded and redeveloped without catastrophic cost consequences. The great
strength of the spiral model is the capability to develop increments, or prototypes,
with each full turn of the spiral. The prototype that is specified, planned, built, tested,
and evaluated is now a working core version of the final system. Subsequent possible
failures in later turns of the spiral will likely not impact the successfulness of previous
increments.

Incremental development is a variation of the divide-and-conquer strategy in which
software is built in increments of functional capability. In this approach, as defined by
Boehm (1981), the first increment will be a basic working system. Each successive
increment will add functionality to yield a more capable working system. The several
advantages of this approach include ease of testing, usefulness of each increment, and
availability during development of user experiences with previous increments. Boehm’s
modification of the waterfall to allow incremental development is to provide a number
of successive copies of the section of the waterfall model, starting with detailed design;
followed by code, integration and product verification, implementation and system
test; and ending with deployment and revalidation. The spiral model provides a more
succinct representation in which each successive increment is assigned to the next
higher level of the spiral.

The evolutionary development model is an attempt to achieve incremental develop-
ment of products whose requirements are not known in advance (Rubey, 1993; U.S.
Department of Defense, 1994). Boehm discusses a process that can be used with iter-
ative rapid prototyping, especially automatic program generation, and user feedback
to develop a full-scale prototype (Boehm, 1981). This prototype may be refined and
delivered as a production system, or it may serve as a de facto specification for new
development. More generally, where evolutionary development is possible, it can be
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represented using a waterfall model in the fashion used by Boehm to represent incre-
mental development. This is the approach taken in MIL-STD-498 (U.S. Department of
Defense, 1994). However, representing evolutionary development entails repetition of
the requirements and specification development activities; thus, substantially more of
the waterfall must be repeated. Again, the spiral model is a more natural representa-
tion, since deployment for a given level of the spiral is directly linked to the definition
portion of the next higher level, allowing necessary requirements growth in an orderly
fashion.

From the standpoint of organizational management, the incremental software devel-
opment model affords a more economical approach than the “grand design” strategy
(U.S. Department of Defense, 1994) by allowing better utilization of fewer people over
a comparable period of time (Boehm, 1981). Referring again to the Stogdill model in
Figure 1.1, stability of processes is closely related to stability of structure in the orga-
nization. The changes in organizational size and structure that are suggested by the
use of the grand design model can have a destabilizing influence on the organization.
Davis et al. (1988a,b) suggest metrics for use as a possible basis for deciding among
alternative software process models.

A similar use of the prototyping concept is rapid development (Reilly, 1993). The
term rapid development refers to a sequence of prototype development efforts, each
brought to operational status using a waterfall process, and deployed into actual opera-
tional environments. This is not to imply that the entire system is built rapidly, but that
operational subsets are engineered in 10- to 18-month cycles. Each deployed system
after the first is a replacement for its predecessor. This incremental process ensures
that meaningful user feedback and operational testing will take place prior to the final
release of the system. Moreover, as new requirements emerge, stimulated by opera-
tional experience with previous deliveries, they can be incorporated into subsequent
iterations of the waterfall.

A standard released by the United States Department of Defense, MIL-STD-498,
Software Development and Documentation (1994), was designed to accommodate
three basic development strategies, discussed earlier: grand design, incremental , and
evolutionary development . These strategies are also found in related standards DoDI
5000.2 (U.S. Department of Defense, 1991) and DoDI 8120.2 (U.S. Department
of Defense, 1993). In this way, MIL-STD-498 represents an improvement over
its predecessors, such as DoD-STD-2167a (U.S. Department of Defense, 1988a),
DoD-STD-7935A (U.S. Department of Defense, 1988b), and DoD-STD-1703 (U.S.
Department of Defense, 1987). To achieve this flexibility, MIL-STD-498 abstracts
from all three development strategies the concept of a “build,” one or more of
which is necessary to implement the mature software product. Each successive build
incorporates new capabilities as specified and planned into an operational product.

In 1995 the joint standard, Software Life Cycle Processes (ISO/IEC 12207), was
approved by the International Organization for Standardization and the International
Electrotechnical Commission (1995). This standard contains 17 processes grouped into
three sets:

I. Primary Processes (5)
(1) Acquisition
(2) Supply
(3) Development
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(4) Operation
(5) Maintenance

II. Support Processes (8)
(6) Documentation
(7) Configuration management
(8) Quality assurance
(9) Verification

(10) Validation
(11) Joint review
(12) Audit
(13) Problem resolution

III. Organizational Processes (4)
(14) Management
(15) Infrastructure
(16) Improvement
(17) Training

Each process contains activities, and each activity contains tasks. There are 74 activities
and 224 tasks. Each process incorporates a TQM “plan–do–check–act” cycle. The
processes, activities, and tasks are building blocks that must be assembled according
to the project or organization. In the summer of 1998, MIL-STD-498 was replaced
by a new standard, IEEE/EIA 12207, which is an adaptation of ISO/IEC 12207 that
implements the intent of MIL-STD-498 (Sorensen, 1996).

1.7 TRENDS IN SYSTEMS ENGINEERING LIFE CYCLES

The essence of life-cycle management is division of resources (Buck, 1966). Kingsley
Davis (1949) recognized division of labor as one of the fundamental characteristics
of socialized humans. The division of tasks into subtasks and the documentation of
progress through intermediate products, these are important concepts that did not begin
in abstraction, but in concrete problems. The essence of engineering is problem solving;
and divide-and-conquer strategies, process definition and improvement, process model-
ing, and life-cycle management are all problem-solving methods that begin by reducing
complex challenges into tractable parts and conclude by integrating the results.

The failures of some systems engineering efforts have led some theoreticians to
criticize or abandon the traditional ways of dividing resources. The trend is broad and
can be seen in many areas. Life cycles are criticized for many reasons. For example,
the concept that a requirements phase is self-contained, self-supportive, and separable
from other phases has come under sharp attack from both academia and industry.
The deeply ingrained tradition in industry that requirements must not dictate any given
specific design is also coming into question. The justification for this belief may readily
be derived from our basic activity model, shown in Figure 1.19.

Each of the three orthogonal activities is necessary for successful systems engi-
neering. It is not clear, however, that separation in time, separation by assignment to
more than one action team, or separation in terms of any other resource based on the
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Figure 1.19 Engineering activity model.

orthogonality of a process model (i.e., a life cycle) is effective in reducing engineer-
ing complexity issues. In fact, the opposite seems to be true. In the natural course
of raising and resolving problems, it is much more efficient to solve problems when
and where they arise. The inefficiencies associated with following each life-cycle step
to completion before beginning the next step tend to result in a loss of information,
and this tendency is exacerbated in proportion not only to the size of the engineering
problem but also to the size of the engineering resources (Brooks, 1975). This is a
major obstacle in engineering big systems.

A solution based on partitioning big systems into a number of small systems reduces
the inefficiency inherent in life-cycle-based approaches. However, this solution does
not answer the emerging generation of systems engineering theorists who maintain
that life-cycle activities are dependent on each other in a nontrivial way that nei-
ther a waterfall model, nor even a spiral model in its full generality, can adequately
address. This suggests that specialties, such as requirements engineering , are undesir-
able, unless their scope of activity spans the entire life cycle: definition, development,
and deployment. An alternate way to view this suggestion is that the number of spe-
cialties is effectively reduced to one: systems engineering . The systems engineer is
ever cognizant that a system must be specified, built, tested, and deployed not only
in terms of its internal characteristics but also in terms of its environment . Thus, the
job of integrating becomes a global concern that subsumes all of the steps in the
life cycle.

1.7.1 Process Improvement

The trend away from the use of prescribed standard life cycles, while widespread
in the private sector, has only recently begun to affect government acquisitions. The
U.S. Department of Defense no longer supports the use of MIL-STD-499A (1974), the
successor of MIL-STD-499 (U.S. Department of Defense, 1969) for the acquisition of
systems. (MIL-STD-499B (U.S. Department of Defense, 1992), in “draft” form since
1992, has never been approved.) Moreover, the new software development standard,
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MIL-STD-498, after years of development, has been canceled, a loss that will be
unlamented because of the standard’s virtual replacement by the U.S. Commercial
Standard (Sorensen, 1996) as previously noted. Other military standards are receiving
similar treatment. Developers have their own processes that are specific to their own
organizations. Also, commercial standards are emerging. In terms of Stogdill’s model
of organizational dynamics (Fig. 1.1), it is no longer clear that process models should
precede the development of structure and interpersonnel attributes, since, without a
customer-mandated process model, a conceivably more efficient and efficacious process
may evolve naturally. This change in emphasis should not be viewed as freedom from
the use of a disciplined approach, but rather freedom to customize the approach to
optimize quality attributes.

The wide acceptance of ISO-9000 as an international standard is actually a trend
away from standardized process models. The basic philosophy of ISO-9000 has been
summarized as “say what you do; then do what you say” (Ince, 1994; Rabbitt and
Bergh, 1994). ISO-9000 certification (International Benchmarking Clearinghouse,
1992) is a goal to which many companies aspire in order to gain competitive advantage.
Certification demonstrates to potential customers the capability of a vendor to control
the processes that determine the acceptability of the product or service being marketed.

The Software Engineering Institute, in the late 1980s and early 1990s, developed
a family of models, known as the Capability Maturity Models (CMMs) (Humphrey,
1989; Paulish and Carleton, 1994; Software Engineering Institute, 1991), upon which
methods and tools for process assessment and improvement in the software develop-
ment arena have been based. As the name suggests, these model are based on the
existence of documented and dependable processes that organizations can use with
predictable results to develop products. In effect, the details of the process are of little
interest, as long as the process is repeatable.

The CMM family has evolved into the CMMI (CMMI Product Team, 2006). The
“I” refers to integration of a number of critical elements, each of which must stand
alone and effectively support other elements of an engineering organization. The CMMI
Version 1.2 contains 22 distinct, but interrelated, process areas (PAs):

1. Causal Analysis and Resolution (CAR)
2. Configuration Management (CM)
3. Decision Analysis and Resolution (DAR)
4. Integrated Project Management + Integrated Product and Process Development

(IPM + IPPD)
5. Measurement and Analysis (MA)
6. Organizational Innovation and Deployment (OID)
7. Organizational Process Definition + IPPD (OPD + IPPD)
8. Organizational Process Focus (OPF)
9. Organizational Process Performance (OPP)

10. Organizational Training (OT)
11. Product Integration (PI)
12. Project Monitoring and Control (PMC)
13. Project Planning (PP)
14. Process and Product Quality Assurance (PPQA)
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15. Quantitative Project Management (QPM)
16. Requirements Development (RD)
17. Requirements Management (REQM)
18. Risk Management (RSKM)
19. Supplier Agreement Management (SAM)
20. Technical Solution (TS)
21. Validation (VAL)
22. Verification (VER)

With the release of CMMI Version 1.2 (2006), the Software Engineering Institute
has made several changes that strengthen the CMMI level ratings. Both uniformity
and rigor characterize the new model. The SEI might be seen as leveraging years
(Chrissis et al., 2003) of very successful marketing of a “Have It Your Way” CMMI
into a more respectable, and arguably a preeminent, competitor to various ISO and
military standards worldwide (e.g., see ISO/IEC (2004) ). A number of changes to
the content of the model include increased attention to hardware issues, the inclusion
of two work environment practices (in Organizational Process Definition (OPD) and
Integrated Project Management (IPM)), and an increased emphasis on the importance
of project start-up. Other significant changes include planned enforcement of a “shelf
life” of ratings to a maximum of 3 years, and increased authority of CMMI appraisal
teams over the scope (choice of process areas) and applicability (choice of project
teams) of SCAMPI appraisals.

Originally, the CMM was adapted from the five-level model of Crosby (1979) to
software development by Humphrey. The five levels of the CMM model are as follows:

1. The Initial Level. Ad hoc methods may achieve success through heroic efforts;
little quality management, no discernible process; nothing is repeatable except,
perhaps, the intensity of heroic efforts; results are unpredictable.

2. The Repeatable Level. Successes may be repeated for similar applications; thus,
a repeatable process is discovered that is measurable against prior efforts.

3. The Defined Level. Claims to have understood, measured, and specified a repeat-
able process with predictable cost and schedule characteristics.

4. The Managed Maturity Level. Comprehensive process measurements enable inter-
active risk management.

5. The Optimization Level. Continuous process improvement for lasting quality.
According to Sage (1995): “There is much double loop learning and this fur-
ther supports this highest level of process maturity. Risk management is highly
proactive, and there is interactive and reactive controls and measurements.”

The CMM helps software project management to select appropriate strategies for
process improvement by (1) examination and assessment of its level of maturity,
according to a set of criteria; (2) diagnosis of problems in the organization’s process;
and (3) prescription of approaches to cure the problem by continual improvement.

Even though managers may be seasoned veterans, fully knowledgeable about the
problems and pitfalls in the engineering process, they may disagree with each other
on how to cope with problems as they occur. If agreement is difficult to produce in
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an organization, the resultant lack of focus is taxing on organizational resources and
may endanger the product. Thus, the management of an organization must be greater
than the sum of its managers by providing strategies for management to follow and
tools for management to utilize. Such strategies and tools will be the result of previous
organizational successes and incremental improvements over time, and measured by a
level of maturity. The CMM, developed at the Software Engineering Institute (SEI) at
Carnegie Mellon University, provides a framework that is partitioned by such levels
of maturity. Although the CMM was developed to measure the maturity of software
development processes, the ideas on which it is based are quite general, applying
well to systems engineering, and extensible to such processes as software acquisition
management and even unto the software engineer’s own personal software process
(Humphrey, 1995).

In analyzing the CMM, it is helpful to look closely at the five levels or stages in
quality maturity attributable to Crosby (1979):

1. Uncertainty. Confusion, lack of commitment. “Management has no knowledge of
quality at the strategic process level and, at best, views operational level quality
control inspections of finished products as the only way to achieve quality.”

2. Awakening. Management wakes up and realizes that quality is missing. “Statisti-
cal quality control teams will conduct inspections whenever problems develop.”

3. Enlightenment. Management decides to utilize a formal quality improvement pro-
cess. “The cost of quality is first identified at this stage of development which is
the beginning of operational level quality assurance.”

4. Wisdom. Management has a systematized understanding of quality costs. “Quality
related issues are generally handled satisfactorily in what is emerging as strategic
and process oriented quality assurance and management.”

5. Certainty. Management knows why it has no problems with quality.

In each of these environments, a particular kind of person is required. There is a
shifting in focus from one type of key individual to another as we move from one
CMM level to the next. The progression seems to be roughly as follows:

1. Heroes. Necessary for success in a relatively unstructured process, the hero is
able to rise above the chaos and complete a product.

2. Artists. Building on the brilliance of the heroes, the artists begin to bring order,
resulting through repetition in a codifiable process.

3. Craftspeople. These are the people who follow the process, learning from expe-
rience handed down from previous successes.

4. Master Craftspeople. These people are experts in their respective facets of the
development process, who understand and appreciate nuances of process and their
relationship to quality.

5. Research Scientists. Finally, master craftspeople appear, who, through experien-
tial learning and attention to process integration, are able to fine tune the process,
improving the overall process by changing steps in the process, while avoiding
harmful side effects.

The characteristics of the organizational culture are directly related to organizational
learning. The organization appears to depend primarily on two factors: (1) the people
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who compose the organization and (2) the environment internal to the organization.
Of course, a great case may be made for including the external environment, since
the overall success of the organization (and its probability of survival) are directly
related to its correct adaptation to external factors, including both the market and
technological factors. Following the CMM, some of the organizational characteristics
may be organized in five stages, as follows:

1. Heroes and Supporters. Dependent on the ability of heroes to rise above the
chaos, the organization grows up around the activities of each hero, each of
whom may require low-level support services. The hero’s processes are largely
self-contained and very loosely coupled with other heroes’ processes. While there
are very efficient aspects of this kind of organization (viz., the hero’s own activ-
ities), there is no overall efficiency induced by integration of activities into an
overall process. Thus, at this CMM level, there are really two levels of workers:
heroes and others.

2. Artist Colony. Through mutual respect and attention to the successful practices
of the previous generation of heroes, these people work together to recreate the
successes of the past, creating new processes along the way. Management begins
to be able to track progress.

3. Professional Cooperative Organization. Through long service and attention to
process, master craftspeople have emerged, creating more hierarchical structure
in the organization, as less experienced individuals are able to learn from the more
experienced. There now exists the concept of “the way to do the job,” a concept
that must be measurably adhered to. Management’s role is to control adherence
to the process by defining metrics and implementing a metrics program.

4. Society of Professionals. At this point, the organization is mature enough to be
able to receive from its individual members meaningful suggestions on how to
improve selected parts of its process and to implement them in the overall process.
This is largely a shift in the organization’s ability to learn.

5. Institute of Professionals. The organization is now so mature that it is able to look
continuously for ways to improve processes. Outside influences are no longer
repelled, but are welcomed and evaluated.

The trend away from rigid standardization of systems engineering process models
can be understood better when viewed in the context of system acquisition. A relatively
new trend in acquisition management is the widespread use of performance-based con-
tracting (PBC), a procurement tool based on the systems engineering approach that
emphasizes the purpose of the acquisition. Figure 1.20 is based on a systems engi-
neering model of Sage that relates three orthogonal dimensions of systems engineering
projects: purpose, structure, and function (Sage, 1992a, 1995). By focusing attention
on purposeful aspects (goals, needs of the consumer, the why), as opposed to the struc-
ture (the what) and function (the how ) of the solution, the vendor is not constrained
to life-cycle models, development tools, methodologies, and products specified by the
consumer.

In effect, the consumer and the vendor enter a partnership agreement at a higher
level of abstraction than in conventional contracting methods. Figure 1.21 depicts a
relationship among four acquisition strategies:
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Purpose
   problems
   goals
   needs

Structure
   process models
   (life cycles)
   organizational positions
   products

Function
   organizational roles
   development methods
   tools

Figure 1.20 Dimensions of systems acquisition.

1. In-house development, using contracting strategies such as “level of effort (LOE)”
2. Conventional strategies based on “cost plus” contracting
3. PBC
4. COTS acquisition

The key determinant in Figure 1.21 is the level of agreement between the consumer
and the vendor. In the case of in-house development, the needs of the consumer are
satisfied through internal means, and any externally procured components, personnel,
or other resources are managed by the consumer. The agreement of the consumer with
the vendor is at the product level.

In the case of conventional contracting strategies, the consumer and vendor enter
into a partnership at the process level of agreement. The consumer, driven by an
unsatisfied need, analyzes the problem, synthesizes a solution to the problem, and
creates a product specification. The specification is presented to the contractor, who
writes a development plan. It is agreement upon the vendor’s development plan that
is the basis of the transaction between consumer and vendor. The development plan
sets forth a process model (development life cycle), methods, tools, and, in some
cases, organizational roles and responsibilities that the vendor agrees to follow. The
consumer accepts an oversight role and a responsibility to convey to the vendor enough
information from the problem space (the purpose dimension) to ensure the successful
completion of the solution. Whenever a problem is reformulated in terms of a solution,
however, information is lost. All the answers to the “why” question have been replaced
by a specification. The “lost” information is retained by the consumer organization.
Unfortunately, the organization that needs this information is not the consumer, but the
vendor. While this lossy contracting procedure may work for the procurement of small
and well-understood systems, large, innovative efforts magnify the loss and improve
the probability of failure.

PBC reduces the loss of information by raising the level of abstraction of the infor-
mation handed off from the consumer to the vendor. As shown in Figure 1.21, the
organizational interface is at the management level. Both organizations address the
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2. Consumer identifies the need.

1. Consumer has strategic goal.
2. Consumer identifies the need.
3. Consumer defines solution.

1. Consumer has strategic goal.
2. Consumer identifies the need.
3. Consumer defines solutions.
4. Consumer plans and executes
 a development process.

Performance-Based
Contracting Consumer

Cost-Plus Contracting
 Consumer

The Consumer and the Vendor
reach agreement on the definition

of the solution.

The Consumer and the Vendor
reach agreement on the 
Vendor's process plan.

The Consumer and the Vendor
reach agreement on the quantity 

and type of resources to be
delivered.

COTS Consumer

1. Consumer has strategic goal.

The Consumer and the Vendor
reach agreement on the need.

1. Consumer has strategic goal.

The Consumer and the Vendor
reach agreement on the need.

Figure 1.21 A comparison of contracting strategies based on the level of agreement.

problem space. It is the role of the vendor to define, develop, and deliver a solution,
beginning with a vendor-developed specification. It is this specification that is the basis
of agreement between the consumer and the vendor. By reversing the roles of the con-
tracting parties, the vendor is responsible for the entire solution to the consumer’s
problem. The probability of failure has been reduced by eliminating an extremely
complex and difficult process, the communication of purpose from one organization
to another. Of course, both the consumer and the vendor can still fail, by reaching
agreement on a poor solution.

Even this risk can be reduced substantially by the fourth contracting strategy shown
in Figure 1.21. COTS procurement raises the level of communication to an even higher
level of abstraction, so that a product can be purchased that directly satisfies the purpose
for which it is desired.
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1.7.2 Concurrent Engineering

Concurrent (or simultaneous) engineering is a technique that addresses the management
of total life-cycle time (Carter and Baker, 1992; Rosenau, 1990; Slade, 1993), focusing
on the single most critical resource in a very competitive market: time to market (or time
to deployment). This is accomplished primarily by shortening the life cycle through
the realization of three engineering subgoals:

1. Introduction of customer evaluation and engineering design feedback during prod-
uct development

2. A greatly increased rate of focused, detailed technical interchange among orga-
nizational elements

3. Development of the product and creation of an appropriate production process in
parallel rather than in sequence

Concurrent engineering is a metaprocess in which domain experts from all the
departments concerned for developing a product at any stage of the life cycle work
together as a concurrent engineering (CE) team, integrating all development activities
into one organizational unit. The formation of the team does not per se shorten the
engineering life cycle; however, through early involvement with the CE team, orga-
nizational learning and analysis activities can be removed from the critical path to
market. There is an explicit trade-off of workers for time to market. That is, the CE
team involves more personnel for a greater fraction of the life cycle11 than in the
case of the waterfall model. However, the time to market can greatly be reduced. In
terms of the abstract life-cycle model, the activities labeled “recognize,” “analyze,”
and “synthesize” can occur concurrently for all organizational elements involved in
the development of the product. Of course, there will be some activities that have tem-
poral, as well as logical, sequential dependence on other activities (see Fig. 1.22a,b).
Marketing, drawing upon organizational expertise, including RDT&E products, begins
the process through the generation of an idea of a product, based on market analysis.
Marketing will generate targets for the selling price and the production costs of the
proposed product to support management in deciding whether to proceed with product

Definition

Development

Deployment

Synthesize

Analyze

Analyze

Recognize

Recognize

Synthesize

AnalyzeRecognize Synthesize

(a)

Definition

Development

Deployment

AnalyzeRecognize Synthesize

Analyze Synthesize

Synthesize

Recognize

Recognize Analyze

(b)

Figure 1.22 (a) Waterfall representation of abstract life cycle. (b) The compressing effect of
concurrent engineering on the waterfall model.

11Although the CE team remains together for a greater percentage of the total life cycle, the life cycle is
significantly shorter than in traditional models. Consuming a greater portion of a smaller resource may not
increase cost and, in some cases, may actually decrease cost.
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Figure 1.23 A concurrent engineering life-cycle model.

development. During development, the CE team works simultaneously with the design
team to generate in parallel a design for the manufacturing process .

A CE life-cycle model is shown in Figure 1.23. The principal feature of this process
model is the concurrent development of the product, the manufacturing process, and the
manufacturing system through the continuous participation of the CE team (Yeh, 1992).
A notable feature of the life cycle is the absence of a return path from production to
design. This deliberate omission is in recognition of the extremely high risk of losing
market share because of engineering delays due to design errors.

The organizational response to a change to concurrent engineering from traditional
methods is likely to be fraught with difficulty. An organization that has formed around
a particular life-cycle model and that has experienced a measure of success, perhaps
over a period of many years, will almost certainly resist change. Effort in several
specific areas appears to be basic to any transition:

1. We have noted that life-cycle models are purposeful, in that they reflect, organize,
and set into motion the organizational mission. A change of life-cycle model
should be accompanied by a clearly stated change of mission that may be digested,
assimilated, and rearticulated by all organizational elements: individuals, formal
and informal team structures, and social groups.

2. Formal team structures should be examined, destroyed and rebuilt, replaced, or
supplemented as necessary to conform to the new life-cycle model. Informal team
structures and individual expectation, such as those described by Stogdill, may be
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replicated, and thus preserved, by the formal organizational structure to minimize
loss.

3. Particular attention should be paid to intramural communication and cooperation
among individuals, teams, and departments in the organization (Carter and Baker,
1992). Communication and cooperation are essential elements of concurrency.
Acquisition or improved availability of communications tools, developed through
advances in communications technology, may reduce the cost and increase the
rate of concurrency.

The NASA Systems Engineering Handbook (Shishko, 1995) defines concurrent
engineering very generally as “the simultaneous consideration of product and process
downstream requirements by multidisciplinary teams.” A slightly more conservative
view is that of Grady (1993), who characterizes concurrent engineering as the correc-
tion of a mistake that has been made by many organizations, which he refers to as
“transom engineering,” wherein engineers working in isolation throw their respective
products over transoms to their successors in a linear process. Grady believes that this
is a gross distortion of the correct concept of systems engineering, and that concur-
rent engineering is merely a return to what systems engineering should be. Additional
discussions of concurrent engineering are presented in Chapter 9.

1.7.3 Software Reengineering for Reuse

On the basis of two types of reuse identified by Barnes and Bollinger (1991), it is
useful to distinguish between two different types of software reengineering (Chikofsky
and Cross, 1990) for reuse:

1. Software reengineering for maintenance (adaptive reusability) improves attributes
of existing software systems, sometimes referred to as legacy systems, which have
been correlated to corrections that improve software maintainability (Basili, 1990;
Sneed, 1995).

2. Software reengineering for reuse (compositional reuse) salvages selected portions
of legacy systems for rehabilitation to enable off-the-shelf reuse in assembling
new applications (Arnold and Frakes, 1992; Cimitile, 1992).

Both types of reengineering for reuse share a common life cycle (Patterson, 1995a)
(shown in Fig. 1.24 and discussed later) for reengineering to an object-oriented software
architecture.

Reengineering Product Development
Reengineering Concept

Development Reverse Engineering Forward Engineering
Deployment
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Figure 1.24 A software reengineering life cycle.
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The life cycle is divided into three successive phases: reengineering concept devel-
opment, reengineering product development, and deployment. During the concept
development phase, reengineering is considered as an alternative to new software
development. Considerations of scope and of level of reengineering allow planning
and cost estimation prior to the development phase.

Reengineering product development proceeds according to the scope and level of
reengineering planned in the previous phase. Reverse engineering of the old software
is followed by forward engineering to create a new product. During the reverse engi-
neering stage, products are recreated at the design and specification levels as needed
to recapture implementation decisions that may have been lost over the lifetime of
the legacy software. During the entire reverse engineering stage, candidate objects
are repeatedly created, modified, or deleted as necessary to provide the basis of an
object-oriented design for the forward engineering stage.

During the forward engineering stage, the candidate objects from the reverse engi-
neering stage are used to create an object-oriented specification and design. Imple-
mentation through coding and unit testing complete the development phase. During
the deployment phase, software integration and testing, followed by system integration
and testing, allow production and deployment to proceed.

Software reengineering is often associated with business process reengineering
(Davenport, 1993; Hammer and Champy, 1993; Morris and Brandon, 1993). A study
by Patterson (1995b) shows that there is a reciprocal relationship between business
process reengineering and software reengineering. The enabling role of information
technology makes possible the expansion of the activities of business processes. More-
over, changes in support software may influence changes in the business process. In
particular, changes in support software make the software more useful or less useful to
a given business process, so that the business process (or, indeed, the software) must
adapt. Changes in the potential for software functionality that are due to improve-
ments in the technology may enable changes in business processes, but must not
drive them. In general, successful technology follows, rather than leads, humans and
organizations.

Similarly, changes in the business process create changes in the requirements for
support software. However, this cause-and-effect relationship between business pro-
cess reengineering and software reengineering cannot be generalized and is inherently
unpredictable. Each case requires independent analysis. The effect of business pro-
cess reengineering on software can range from common perfective maintenance to
reconstructive software reengineering. New software may be required in the event that
the domain has changed substantially. Because the software exists to automate busi-
ness process functions, the purpose of the support software can be identified with the
functions making up the process. Therefore, reengineering the process at the func-
tion level will in general always require reengineering the software at the purpose
level. This is equivalent to changing the software requirements. Software reengineer-
ing can be the result of business process reengineering, or it can be the result of a need
to improve the cost-to-benefit characteristics of the software. An important example
of software reengineering that may have little impact on the business process is the
case of reengineering function-oriented software products into object-oriented prod-
ucts, thereby choosing the more reactive paradigm to reduce excessive cost due to poor
maintainability.
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There are many levels of business process reengineering and of software reengi-
neering, ranging from redocumentation to using business process reengineering as a
form of maintenance. In both there is a continuum between routine maintenance (minor
engineering) and radical, revolutionary reengineering. At both ends of the spectrum,
change should be engineered in a proactive, not a reactive, manner. As Sage (1995)
notes, reengineering “must be top down directed if it is to achieve the significant and
long-lasting effects that are possible. Thus, there should be a strong purposeful and sys-
tems management orientation to reengineering.” Additional commentaries on systems
reengineering are presented in Chapter 23.

1.7.4 Knowledge-Based Software Engineering

Lowry and Duran (1989), in assessing the adequacy of the waterfall model, cite the
lack of adequate support for incremental and evolutionary development, such as many
artificial intelligence applications. The spiral model is much more natural, especially as
computer-aided software engineering (CASE) tools shorten the production cycle for the
development of prototypes. In terms of the spiral model (Fig. 1.18), the amount of time
needed to complete one turn has been shortened for many of the turns through the use
of CASE tools. A potentially greater savings can be realized by reducing the number of
turns as well through the development and use of knowledge-based tools. Lowry (1992)
believes that much of the process of developing software will be mechanized through
the application of artificial intelligence technology. Ultimately, the specification to
design to code process will be replaced by domain-specific specification aids that will
generate code directly from specifications. This interesting vision is based on much
current reality, not only in the CASE arena, but also in the area of domain-based reuse
repositories (Gaffney and Cruickshank, 1992; Kozaczynski, 1990; Moore and Bailin,
1991). In terms of the life cycle implications, the waterfall will become shorter, and
the spiral will have fewer turns.

1.8 CONCLUSION

Use of the engineering term life cycle is relatively new, although the concept is as old
as humankind. One of the earliest uses of the term was Juran’s reference in 1951 to
life-cycle costs, which he referred to as a military term used to describe the operational
costs of a system (Juran et al., 1951), or the cost of ownership. The term “life-cycle
cost” has come to include the cost of system acquisition (Aslaksen and Belcher, 1992;
Blanchard, 1991; Blanchard and Fabrycky, 1998). Today the term “life cycle” is syn-
onymous with “process model.” Because of engineering failures, some spectacular, on
many systems engineering projects, the engineering community has given a great deal
of attention to both the structure and the function of life cycles and, to a lesser degree,
their purpose.

In this chapter we have examined basic types of life-cycle models and their vari-
ants: the waterfall, and the use of feedback and prototyping to improve the system
definition; the V model; the incremental and evolutionary approaches, such as the
repeated waterfall with feedback, the spiral model, and rapid development; concur-
rent engineering; and models that are specific to domains or organizations requiring
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process measurement for certification and for process improvement. We have iden-
tified the organization with the purpose of the life cycle and noted the interaction
of process models with other dynamic organizational forces. We have discussed the
life cycle as a tool for the division of resources: for the division and interrelation-
ships of the human resources, through formation of structural and interpersonnel
relationships both within and among organizations; for the division and interrelation-
ships of types of business process; and for division of business process into phases,
phases into steps, and for the orderly completion of steps through sequencing of
the definition, development, and integration of partial products. We have discerned
several fundamental relationships along a continuum of four fundamental types of
acquisition: commercial off-the-shelf, performance-based contracting, cost-plus con-
tracting, and in-house development. Finally, we have recognized several trends in
life cycles, such as those related to reengineering, reuse, and automated software
generation.

It seems apparent that we are moving to a more domain-specific way of conduct-
ing the business of systems engineering. We are seeing confirmation in the software
reuse area, also in the ISO-9000 standard and the CMM family of standards. We

TABLE 1.1. Five Frequently Cited Reasons for Systems Engineering Failures

Complaint Possible Cause Recommended Approach

1. Ineffective
management

Poor leadership, which could be
caused by many factors related
to organizational processes

Use in-house development, or
development by a single
organization

Shortage of domain knowledge,
which could be caused by either
unfamiliarity with the domain
or loss of information between
organizations

Use an organization with a
mature process for the
domain

Inject initial or early use of life
cycle with proven success in
the domain

2. Uncertain
funding

Long development cycles during
which no product is deployed or
demonstrated

Use a life cycle that fields or
demonstrates an early
prototype

Automate processes

3. Unmanaged
complexity

Addressed by division of labor;
division of the problem;
division of processes into
phases

Use a life cycle that divides the
problem as well as the
resources into manageable
parts

Inadequate process controls

4. Poor
requirements

Addressed by spiral and rapid
development models, which
enable incremental and
evolutionary approaches;
domain engineering

Use a life cycle that repeats or
extends the requirements
cycle (e.g., concurrent
engineering, spiral model)

5. Poor specification
or other products

Loss of information caused by
using several independent
organizations

Use acquisition strategy that
uses a single organization,
(e.g., in-house development)
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are seeing a move to associate the process with the product requirements from the
domain of choice. Ultimately, this leads to automation of the kind that Lowry (1992)
is advocating for automated software generation from requirements. But, meanwhile,
we are specifying a process, which in the most mature domains is most likely to be
well defined, when we specify our requirements. This is good news, since a mature
process moves system creation a step farther along the path from art to engineer-
ing. From an organization point of view this is also good, because an organization
is liberated in a sense to optimize processes according to its own strengths. This is
the same sense in which process standards are sometimes regarded as denigrating
to quality.

There are several persistent themes associated with systems engineering failures,
especially in large systems, including the five addressed in Table 1.1. Many of these
problems have their roots in the life-cycle issues that have been discussed in this
chapter. We have the luxury of having observed and having learned from many of the
mistakes of the past. We conclude that systems engineering life cycles are purposeful
tools that should not be substituted for the systems approach, but rather should be used
as part of an integrated systems approach that addresses not only the what and the
how, but also the why.
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