
1

INTRODUCTION

Optimization is, in essence, a search for the best objective when operating within
a set of constraints. For example you want the lightest car that can at least
deliver standard performance and possess good safety features while being pow-
ered a hybrid engine. Maybe you want to generate maximum shareholder return
on investment while meeting the 10 percent sales growth and holding inventory
at the minimum . Sometimes you want to minimize commuting time by choos-
ing alternate routes during peak traffic periods. You can come up with several
examples of this kind from everyday experience. What you have done is loosely
define an optimization problem that needs a solution. The procedure by which
you will establish a solution to the above examples uses optimization techniques .
A second read through these sentences will suggest you are really talking about
designs that are qualified by the words lightest, maximum, minimize. All of these,
and many others like it can be described by the word optimum. In addition, these
designs must be within a certain envelope or satisfy certain conditions or must
be limited, if they are to be acceptable. These are the constraints on the design.
With this basic definition you can identify problems of design optimization . Most
of the book is about formally expressing these kinds of problems and looking at
several techniques that can be employed to establish the solution.

Optimization is an essential part of design activity in all major disciplines.
These disciplines are not restricted to engineering. In product development,
competition demands producing economically relevant products with embedded
quality. Today, globalization demands that additional dimensions such as loca-
tion, language, and expertise must also merit consideration as new constraints
in the development process. Improved production and design tools coupled with
inexpensive computational resources have made optimization an important part
of the process. Even in the absence of a tangible product, optimization ideas

1

CO
PYRIG

HTED
 M

ATERIA
L

2 INTRODUCTION

provide the ability to define and explore problems while focusing on solutions
that subscribe to some measure of usefulness. Generally, the use of the word
optimization implies the best result under the circumstances. This includes the
particular set of constraints on the development resources, current knowledge,
market conditions, and so on. The ability to make the best choice is a perpetual
desire among us all. The techniques that are used in optimization are also used
for obtaining solutions to nonlinear problems in many disciplines—so the subject
has an attraction to a wider audience from many fields.

In this book, optimization is often associated with design, be it a product, ser-
vice or a strategy. Aerospace design was among the earliest disciplines to embrace
optimization in a significant way driven by a natural need to lower the tremendous
cost associated with carrying unnecessary weight in aerospace vehicles. Minimum
mass structures are the norm. It forms part of the psyche of every aerospace
designer. Just recently, Boeing introduced the Dreamliner to the world. The
aircraft uses more than 50% plastic in its structure, replacing metals, without com-
promising on safety. Today, an emerging discipline is multidisciplinary optimiza-
tion (MDO) of greater significance to aerospace designers, where structural design
and aerodynamics are combined to produce an optimal vehicle shape. A good
example is the Boeing blended wing-body design. Saving on fuel through trajec-
tory design was another problem that suggested itself. Very soon, the entire engi-
neering community could recognize the need to define solutions based on merit.

Recognizing the desire for optimization and actually implementing it has taken
some time to mature. In the past, optimization was usually attempted only in those
situations where there were significant penalties for generic designs. The applica-
tion of optimization demanded large computational resources. In the nascent years
of digital computation, these were available only to large national laboratories
and programs. These resources were necessary to handle the nonlinear problems
that are associated with engineering optimization. As a result of these constraints
most of the everyday products were designed without regard to optimization.

Today, it is inconceivable that current replacement products, such as the
car, the house, the desk, the pencil, and so on, are not designed optimally
in some sense or another. The most obvious contemporary example of the
use of optimization manifests in the same streamlined bubblelike look in all
cars from all manufacturers. Minimizing drag coefficient, particularly through
software, improves fuel consumption. This is an easier option for meeting fuel
consumption standards without requiring a change in the engine performance,
which has proved very stubborn.

Today, you would definitely explore procedures to optimize your investments
by tailoring your portfolio. You would optimize your business travel time by
appropriately choosing your destinations. You can optimize your commuting time
by choosing your time and route. You can optimize your necessary expenditure
for living by choosing your day and store for shopping. You can buy software
that will optimize your connection to the Internet. You can have affordable
access to resources that will allow you to perform all these various optimiza-
tions. Seeing the variety of problems that need to generate optimum solutions,

1.1 OPTIMIZATION FUNDAMENTALS 3

the study of optimization is actually more of a tool that can be applied to a vari-
ety of disciplines. If so, all of the optimization problems from many disciplines
should be described in a common way.

The partnership between design and optimization activity is still more
often found in engineering . This book recognizes that connection. Much
of the problems used for illustrations and practice are from engineering,
primarily mechanical, civil, and aerospace design. Nevertheless, the study of
optimization, particularly applied optimization , is not an exclusive property of
any specific discipline. It involves the discovery and design of solutions through
appropriate techniques associated with the formulation of the problem in a
specific manner . This can be done for example, in economics, chemistry, and
business management. A Google search on “optimization of ”, at the time of this
writing, resulted in 128 million hits, the first six of them related to optimization
in digital circuits, trading system, immunomagnetic separation, object-oriented
programming, risk measures, and chemical process.

1.1 OPTIMIZATION FUNDAMENTALS

Optimization was described as the process of search for the solution that is more
useful than several others. Qualitatively, this assertion implicitly recognizes the
necessity of choosing among alternatives. This book deals with optimization in
a quantitative way. This means that an outcome of applying optimization tech-
niques to the problem, design, or service must yield numbers that will define our
solution—in other words, numbers or values that will characterize the particular
design or service. Quantitative description of the solution requires a quantita-
tive description of the problem itself. This description is called a mathematical
model. The design, its characterization, and its circumstances must be expressed
mathematically prior to the application of the optimization methods. In many
situations, coming up with a mathematical model will prove to be very challeng-
ing. The development of a suitable mathematical model presupposes knowledge
of content in the particular design area that the optimization problem is being
formulated. Consider the design activity in the following cases:

1. New consumer research, with deference to the obesity problem among the
general population, suggests that people should drink no more than about
0.25 liter of soda pop at a time. The fabrication cost of the redesigned soda
can is proportional to the surface area, and can be estimated at $1.00 per
square centimeter of the material used. A circular cross-section is the most
plausible, given current tooling available for manufacture. For aesthetic
reason, the height must be at least twice the diameter. Studies indicate that
holding comfort requires a diameter between 5 and 8 cm. Create a design
that will cost the least.

2. Design a cantilevered beam, of minimum mass, carrying a point load F at
the end of the beam of length L. The cross-section of the beam will be

4 INTRODUCTION

in the shape of the letter I (referred to as an I-beam). The beam should
be sufficiently strong in bending and shear. There is also a limit on its
deflection.

3. MyPC Company has decided to invest $12 million in acquiring several
new component placement machines to manufacture different kinds of
motherboards for a new generation of personal computers. Three mod-
els of these machines are under consideration. Total number of opera-
tors available is 100 because of the local labor market. A floor-space
constraint needs to be satisfied because of the different dimensions of
these machines. Additional information relating to each of the machines
is given in Table 1.1. The company wishes to determine how many of
each kind is appropriate to maximize the number of boards manufactured
per day.

4. The first-order differential equation (t + 1)dy/dt − (t + 2)y = 0, subject
to the initial condition y(0) = 1, can be solved analytically using the power
series method. Set up an alternate procedure using optimization.

This list represents four problems that will be used to define the elements
of problem formulation. Each problem requires information from the specific
area or discipline it refers to. To recognize or design these problems assumes
that the designer is conversant with the particular subject matter. Such kinds
of problem are quite common, and they are expressed in far greater detail than
formulated here. The problems are kept simple to focus on optimization issues.
The last example is included to show that optimization ideas and techniques can
migrate very well to solve standard problems in a nontraditional manner. In fact,
with creative formulation, you should be able to solve most problems through
optimization. Optimization also provides an opportunity to establish useful values
for designs that are unique or one of a kind.

1.1.1 Elements of Problem Formulation

In this section, we will introduce the formal elements of the optimization prob-
lem. Please keep in mind that optimization presupposes the knowledge of the
design rules for the specific problem, primarily the ability to describe the design
in mathematical terms. For engineering problems this means that the designer
is aware of the relevant physics from the particular area, including all of the

Table 1.1 Component Placement Machines

Machine Board Boards/ Operators/ Operable Cost/
Model Types Hour Shift Hours/Day Machine

A 10 55 1 18 400,000
B 20 50 2 18 600,000
C 18 50 2 21 700,000

1.1 OPTIMIZATION FUNDAMENTALS 5

expressions and techniques used in mathematical analysis of the design. The
terms in optimization include design variables, design parameters, and design
functions. Traditional design practice—that is, design without regard to opti-
mization, includes all of these elements, except it is not necessary to formally
recognize them as such. It is also a good idea to recognize that optimization is
a procedure for searching the best design among candidates, each of which can
produce an acceptable product.

Design Variables: Design variables are entities that define a particular design.
The values of a complete set of these variables will establish a specific design. In
the search for the optimal design, the values of these entities will change over a
prescribed range, hence the tag variables . The number of these design variables
used to be very significant in the early days of optimization, with the recommen-
dation that the set be as small a possible. This prohibition was related to available
computational resources and is no longer a limitation in applied optimization. The
type of these variables, continuous , or discrete, or integer , or mixed , is important
in identifying and setting up the quantitative optimal design problem and the opti-
mization procedure. It is crucial that this choice capture the essence of the object
being designed and at the same time provide a quantitative characterization of
the design problem. We will develop the elements of optimization assuming the
variables are continuous. In applied mathematical terminology, design variables
serve as the unknowns of the problem being solved. Using an analogy from the
area of system dynamics and control theory, they are equivalent to defining the
state of the system—in this case, the state of design. Typically, design vari-
ables can be associated with describing the size of the object, like length and
height. In other cases, they may represent the number of items. The choice of
design variables is the responsibility of the designer guided by intuition, exper-
tise, and knowledge. There is a fundamental requirement to be met by this set of
design variables. They must be linearly independent. This means that you cannot
establish the value of one of the design variables viathe values of the remaining
variables through basic arithmetic (scaling or addition) operations. For example,
in a design having a rectangular cross-section, you cannot have three variables
representing the length, height, and area. If the first two are prescribed, the third
is automatically established. In complex designs, these relationships may not be
very apparent. Nevertheless, the choice of the set of design variables must meet
the criteria of linear independence for applying the techniques of optimization.
Many of these techniques are borrowed from linear algebra, where this property
is necessary for a solution. From a practical perspective, the property of linear
independence identifies a minimum set of variables that can completely describe
the design. This is significant because the effort in obtaining the solution varies
as an integer power of the number of variables, and this power is typically greater
than two.

The set of design variables is identified as the design vector. This vector will
be column vector in this book. In fact, all vectors are column vectors in this book,
unless indicated otherwise. The length of this vector, which is n , is the number

6 INTRODUCTION

of design variables in the problem. The design variables can express different
dimensional quantities in the problem, but in the mathematical model , they are
distinguished by the lowercase x for the variable and the uppercase X for the
vector. All the techniques of optimization in the book are based on the generic
mathematical model. The subscript on x , for example, x3 represents the third
design variable, which may be the height of an object in the characterization of
the product. This abstract model is only necessary for mathematical convenience.
This book will refer to the design variables in one of four ways:

1. [X]: (the square parenthesis defines a vector) the vector of design variables.
2. X or x (without subscripts): referring to the vector again, omitting the

square brackets for convenience if appropriate.
3. [x1, x2, . . . , xn]t: indicating the vector through its elements. Note the trans-

position symbol t to identify it as a column vector.
4. xi , i = 1, 2, . . . , n: referring to all the elements of the design vector.

The above notational convenience is extended to all vectors in the book. Once
again, vectors refer to a collection or a related set of values.

Design Parameters: In this book, design parameters identify constants that
will not change as different designs are generated and compared during opti-
mization. Expressing the design and its properties requires more than design
variables. Please be aware that many texts use the term design parameters to
represent the design variables we defined earlier and do not formally recognize
design parameters as defined here. The principal reason is that parameters have
no role to play in determining the optimal design. They are significant in the
discussion of modeling issues. The book will draw attention to these issues when
the occasion arises. Examples of parameters include material property, applied
loads, and choice of shape. The parameters in the generic mathematical model
are recognized similar to the design vector, except that we use the character p.
Therefore [P], P , p, [p1, p2, . . . , pq] represent the parameters of the problem.
Note the length of the parameter vector is q . It is important to restate that except
in the discussion of modeling, the parameters will not be explicitly referred, as
they are primarily predetermined constants in the evaluation of the design.

Design Functions: The design functions will define meaningful information
about the design. They are evaluated using the design variables and design param-
eters discussed earlier. They establish the mathematical model of the design
problem. These functions can represent design objective(s) and constraints. The
design objective, as its name implies, drives the search for the optimal design.
The satisfaction of the constraints establishes the validity of the design. The
designer is responsible for identifying the objective and constraints. “Minimize
the mass of the structure” will translate to an objective function. The stress in
the material must be less than the yield strength will translate to a constraint

1.1 OPTIMIZATION FUNDAMENTALS 7

function. In many problems, it is possible for the same function to switch roles
to provide different design scenarios.

Objective Function(s): This is a more specific name for the design objective
function. The traditional design optimization problem is defined using a single
objective function. The format of this statement is usually to minimize or
maximize some design function. This function must depend explicitly or
implicitly, on the design variables. In the literature, this problem is expressed
exclusively, without loss of generality, as a minimum or minimization
problem. A maximum problem can be recast as a minimization problem using
the negative or the reciprocal of the function used for the objective function in
a maximization problem. In the first example introduced earlier, the objective
is to minimize cost. Therefore, the design function representing cost will be
the objective function. In the second case, the objective is to minimize mass.
In the third case, the objective is to maximize machine utilization. The area of
single objective design is considered mature today. Today, much of the work in
applied optimization is directed at expanding applications to practical problems.
In many cases, this has involved creative use of the solution techniques. In the
generic mathematical model, the objective function is represented by the symbol
f . To indicate its dependence on the design variables it is frequently expressed
as f (x1, x2, . . . , xn). A more concise representation is f (X). Single objective
problems have only one function, denoted by f . It is a scalar (not a vector).
Note, although the objective function (and the other functions too) depends on
P (parameter vector), it is not explicitly included in the format since it does not
vary during the search for solution. We should recognize that if the parameter
value changes, then the optimization problem must be solved again. In other
words, the solution will be valid only for a defined parameter vector.

Multi-objective and multi-disciplinary designs are important developments
today. Multi-objective design, or multiple objective design, refers to using
several different design functions as objectives to drive the search for optimal
design. Essentially, they permit a noticeably larger set of design solutions by
permitting the mathematical model to represent design functions from several
disciplines. Generally, they are expected to be conflicting objectives. They
could also be cooperating objectives. The current approach to the solution of
these problems involves standard optimization procedures applied to single
reconstructed objective optimization problems based on the different multiple
objectives. A popular approach is to use a suitably weighted linear combination
of the multiple objectives. A practical limitation with this approach is the choice
of weights used in the model. This approach has not been embraced widely. An
alternative approach of recognizing a premier objective and solving it as a single
objective problem with additional constraints based on the remaining objective
functions can usually generate a good solution. In multi-objective problems the
objective function will be a vector.

Between the first and the second edition of this book, multi-disciplinary
optimization (MDO) problems were being seriously addressed. They are
predominantly addressed in aerospace industry, where people are reconciling

8 INTRODUCTION

different requirements from structural design and aerodynamic design together.
One of the requirements is to identify design variables that will define the
structure as well as directly affect the aerodynamic analysis leading to new
mathematical models. MDO optimization problems tend to be very large to
accommodate aerodynamic analysis of reasonable fidelity. External aerodynamic
problems are quite finicky and are difficult to deal with even without optimiza-
tion. Another feature of the coupling between structure and aerodynamics is
that objective function tends to have a large number of local minimums. In
such cases, global optimization techniques, which are notoriously slow, must be
part of the solution process. This is an exciting area, and definitely not for the
resource poor. Although it raises some new issues of coupling, it has not altered
the standard techniques of single objective optimization. This book will focus
primarily on single objective optimization.

Constraint Functions: Design functions will be dependent on the design
variables and parameters. A well-described optimization problem is expected to
include several such functions that will ensure that the design will exist and
interact well with its operating environment. Multiple constraint function can
be represented as a vector of constraint functions. The format of these func-
tions requires them to be compared to some numerical value that is established
by design requirement, or the designer. This value remains constant during the
optimization of the problem. The comparison is usually set up using the three
standard relational operators: =, ≤, and ≥.

Consider our first example. Let fun1(X) represent the function that calculates
the volume of the new soda can we are designing. The constraint on the design
can be expressed as:

fun1(X) = 250 cc

In the second example, let fun2(X) be the function that calculates the deflection
of the beam under the applied load. The constraint can be stated as:

fun2(X) ≤ 1 mm

The constraint functions can be classified as equality constraints [like the one
involving fun1(X) above] or inequality constraints [like the expression involving
fun2(X) above].

Problems without constraints are termed as unconstrained problems. If con-
straints are present, then meeting them is more paramount than optimization.
Constraint satisfaction is necessary for the design to be considered valid and
acceptable. If constraints are not satisfied, then there is no solution . The design
space enclosed by the constraints is called the feasible domain A feasible design
is one in which all the constraints are satisfied. An optimal solution is one that
has met the design objective. An optimal design must be feasible. Design space
is described a few paragraphs later.

Equality Constraints: Equality constraints are mathematically neat and
analytically easy to handle. Numerically, they require more effort to satisfy.

1.1 OPTIMIZATION FUNDAMENTALS 9

They are also more restrictive on the design as they limit the region from which
the solution can be obtained. The symbol representing equality constraints in the
abstract model is h . There may be more than one equality constraint in the design
problem. A vector representation for equality constraints is introduced through
the following representation. [H], [h1, h2, . . ., hl], and hk: k = 1, 2, . . . , l are
ways of identifying the equality constraints. The dependence on the design
variables X is often omitted for convenience. Note the length of the vector is l .
An important reason for distinguishing the equality and inequality constraints is
that they are manipulated differently in the search for the optimal solution. The
number of design variables in the problem, n , must be greater than the number of
equality constraints, l, (n > l), for a valid optimization problem. If n is equal to l,

(n = l), then the problem can be solved without any reference to the design
objective. If (n < l), then you have an over determined set of relations which
could result in an inconsistent problem definition. The set of equality constraints
must be linearly independent for a meaningful problem. Broadly, this implies
you cannot obtain one of the constraints from elementary arithmetic operations
on the remaining constraints. This is to ensure that the methods based on linear
algebra will not fail. In the standard format for optimization problems, the
equality constraints are written with a 0 on the right-hand side. This means that
the equality constraint in the first example will be expressed as:

h1(X): f un1(X) − 250 = 0

In practical problems, equality constraints are rarely employed as they are less
flexible compared to inequality constraints.

Inequality Constraints: Inequality constraints are more natural in problem
formulation. They provide more choices for the design. The symbol representing
inequality constraints in the abstract model is g . There may be more than one
inequality constraint in the design problem. The various vector representation
for inequality constraints are [G], [g1, g2, . . . , gm], and gj : j = 1, 2, . . . , m. m
represents the number of inequality constraints. All design functions explicitly
or implicitly depend on the design (or independent) variable X . g is used to
describe both less than or equal to (≤) constraints and greater than or equal to
(≥) constraints. The strictly greater than (>) and the strictly less than (<) are
not used in optimization because the solutions are usually expected to lie at the
constraint boundary (g = 0). In the standard format, all problems are expressed
with the (≤) relationship. Moreover, the right hand side of the ≤ sign is 0. The
inequality constraint from the second example fun2(X) is set up as:

g1(X): fun2(X) − 1 ≤ 0

In the case of inequality constraints a distinction is made whether the design
variables lie on the constraint boundary (g = 0) or in the interior of the region
bounded by the constraint (g < 0). If the design variables determine a solution

10 INTRODUCTION

on the boundary of the constraint the constraint acts like an equality constraint.
In optimization terminology, this particular constraint is referred to as an active
constraint. If the design variables determine a solution that does not lie on the
constraint boundary, that is they lie inside the region of the constraints, they
are considered inactive constraints. An inequality constraint can therefore be
either active or inactive.

Side Constraints: Side constraints are necessary part of the solution tech-
niques, especially numerical ones. It expresses the acceptable region for the
design variable. Each design variable must be bound by numeric values for
its lower and upper limit. The designer makes this choice based on anticipa-
tion of an acceptable design. The design space, the space that will be searched
for optimal design, is the Euclidean or Cartesian n-dimensional space gener-
ated by the n independent design variables X . This is a generalization of the
three dimensional physical space we are familiar with. For 10 design variables,
it is a 10-dimensional space. This is not easy to imagine. It is also not easy to
express this information through a figure or graph because of the limitation of
the three-dimensional world. However, if the design variables are independent,
then the n dimensional considerations are mere extrapolation of the three dimen-
sional reality. Although we cannot geometrically define them we can deal with
the numbers describing the design. The side constraints limit the search region,
implying that only solutions that lie within a certain region will be acceptable. It
defines an n dimensional rectangular region (hyper cube) from which the feasible
and optimal solutions must be chosen. Later, we will see that the mathematical
models in optimization are usually described by nonlinear relationships. The solu-
tions to such problem cannot be predicted, as they are typically governed by the
underlying numerical technique used to solve them. It is necessary to restrict the
solutions to an acceptable region. The side constraints provide a ready mechanism
for implementing this limit. Care must be taken that these limits are not imposed
over zealously. There must be a sufficient space for the numerical techniques to
conduct a robust search for the optimal design.

The Standard Format: These definitions allow us to assemble the generic
mathematical model for optimization through the various design functions:

Minimize f (x1, x2, . . . , xn) (1.1)

Subject to: h1(x1, x2, . . . , xn) = 0

h2(x1, x2, . . . , xn) = 0 (1.2)

hl(x1, x2, . . . , xn) = 0

g1(x1, x2, . . . , xn) ≤ 0

g2(x1, x2, . . . , xn) ≤ 0 (1.3)

1.1 OPTIMIZATION FUNDAMENTALS 11

gm(x1, x2, . . . , xn) ≤ 0

xl
i ≤ xi ≤ xu

i i = 1, 2, . . . , n (1.4)

The same problem can be expressed concisely using this notation:

Minimize f (x1, x2, . . . xn) (1.5)

Subject to: hk(x1, x2, . . . , xn = 0, k = 1, 2, . . . , l (1.6)

gj (x1, x2, . . . , xn) ≤ 0, j = 1, 2, . . . , m (1.7)

xl
i ≤ xi ≤ xu

i i = 1, 2, . . . , n (1.8)

The generic model in vector notation (length of vector is shown in the defini-
tion):

Minimize f (X), [X]n (1.9)

Subject to: [h(X)]l = 0 (1.10)

[g(X)]m ≤ 0 (1.11)

Xlow ≤ X ≤ Xup (1.12)

The previous mathematical model expresses the standard optimization problem
in natural language as:

Minimize the objective function f , subject to l equality constraints , m inequal-
ity constraints , with the n designx variables lying between prescribed lower and
upper limits.

The techniques in the book will apply to the problem described in the standard
format, which refers to a single objective function. To solve any specific design
problem, it is required to reformulate the problem in this manner so that the meth-
ods can be applied directly. Also in the book, the techniques are developed pro-
gressively, starting from the standard model without constraints. For example, the
unconstrained problem will be explored first. The equality constraints are consid-
ered next followed by the inequality constraints, and finally, the complete model.
This represents a natural progression, as prior information is used to develop
additional conditions that need to be satisfied by the solution in these instances.

1.1.2 Mathematical Modeling

In this section, the four design problems introduced earlier will be translated to
the standard format after first identifying the mathematical model. The second
problem requires information from a course in mechanics and materials. This
should be within the scope of most engineering students.

Example 1.1 New consumer research, with deference to the obesity problem
among the general population, suggests that people should drink no more than

12 INTRODUCTION

about 0.25 liter of soda pop at a time. The fabrication cost of the redesigned soda
can is proportional to the surface area, and can be estimated at $1.00 per square
centimeter of the material used. A circular cross-section is the most plausible,
given current tooling available for manufacture. For aesthetic reason, the height
must be at least twice the diameter. Studies indicate that holding comfort requires
a diameter between 5 and 8 cm. Create a design that will cost the least.

Figure 1.1 represents a sketch of the can. In most product designs, particularly
in engineering, it is necessary to work with a figure. The diameter d and the
height h are sufficient to describe the soda can. What about the thickness t of
the material of the can? What are the assumptions for the design problem? Is
t small enough to be ignored in the calculation of the volume of soda in the
can? Another important assumption could be that the can will be made using
a given stock roll. Another one is that the material required for the can will
include only the cylindrical surface area and the area of the bottom. The top will
be fitted with an end cap that will provide the mechanism by which the soda
can be poured. The top is not part of this design problem. In the first attempt
at developing the mathematical, we could start out by considering the quantities
identified, including the thickness, as design variables:

Design variables: d, h, t

Reviewing the statement of the design problem, one of the parameters is the
cost of material per unit area that is given as $1.00 per square meter. Let us
identify the cost of material per unit area as constant C . During the search for
the optimal solution this quantity will be held at the given value. Note, if this
value changes then our cost of the can will correspondingly change. This is what
we mean by a design parameter. Typically, change in parameters will require a
new solution to the optimization problem:

Design parameter: C

The design functions will include the computation of the volume enclosed
by the can and the surface area of the material used. The volume in the can is
πd2h/4. The surface area is πdh + πd2/4. The aesthetic constraint requires that

d

h

Figure 1.1 Example 1.1—Design of a new beverage can.

1.1 OPTIMIZATION FUNDAMENTALS 13

h ≥ 2d. The side constraints on the diameter are prescribed in the problem. For
completeness, the side constraints on the other variables have to be prescribed
by the designer. We can formally set up the optimization problem:

Minimize f (d, h, t): C(πdh + πd2/4) (1.13)

Subject to: h1(d, h, t)): πd2h/4 − 250 = 0 (1.14)

g1(d, h, t): 2d − h ≤ 0 (1.15)

5 ≤ d ≤ 8; 4 ≤ h ≤ 20; 0.001 ≤ t ≤ 0.01

In the mathematical model (1.13–1.15) of the optimization problem for the
first example the values of the design variables are expected to be expressed
in consistent units-centimeters. It is the responsibility of the designer to ensure
correct and accurate problem formulation including dimensions and units. Note
that the cost C was originally expressed as meter squared. Hence a scaling factor
must be used in (1.13). We will call this C1.

Intuitively, there is some concern with the problem as expressed by the
Equations (1.13–1.15) even though the description is valid. How can the value of
the design variable t be established? The variation in t does not affect the design.
Changing the value of t does not change f, h1, or g1. Hence it cannot be a design
variable (Note: The variation in t may affect the value of C , but we have already
decided this value will not change during optimization). If this were a serious
design example then the cans have to be designed for impact, stacking strength,
and stresses occurring during transportation and handling. In that case t will prob-
ably be a critical design variable. This will require several additional structural
constraints in the problem. Moreover, it is likely that development of these func-
tions will not be a simple exercise. This could serve as an interesting extension
to this problem for homework or project. The new mathematical model for the
optimization problem after dropping t , and expressing [d, h] as [x1, x2] becomes:

Minimize f (x1, x2): C1(πx1x2 + πx2
1/4) (1.16)

Subject to: h1(x1, x2): πx2
1x2/4 − 250 = 0 (1.17)

g1(x1, x2): 2x1 − x2 ≤ 0 (1.18)

5 ≤ x1 ≤ 8; 4 ≤ x2 ≤ 20

The problem represented by Equations (1.16)–(1.18) is the mathematical
model for the design problem expressed in the standard format. For this
problem, simple geometrical relations were sufficient to set up the optimization
problem.

Example 1.2 Design a cantilevered beam, of minimum mass, carrying a point
load F at the end of the beam of length L. The cross-section of the beam will

14 INTRODUCTION

cantilevered end

F
L

Figure 1.2 Example 1.2—Cantilever beam.

be in the shape of the letter I (referred to as an I-beam). The beam should be
sufficiently strong in bending and shear. There is also a limit on its deflection.

Figure 1.2 represents the side view of the beam carrying the load. Figure 1.3
describes a typical cross-section of the beam. The I-shaped cross-section is sym-
metric. The symbols d, tw, bf , and tf correspond to the depth of the beam,
thickness of the web, width of the flange, and thickness of the flange, respec-
tively. These quantities are sufficient to define the cross-section of the beam,
which is uniform along the length. A handbook on mechanical engineering or a
textbook on strength of materials can aid the development of the design functions.
An important assumption for this problem is that we will be working within the
elastic limit of the material, where there is a linear relationship between the stress
and the strain. All the variables identified in Figure 1.3 will strongly affect the
solution. They are good candidates for being design variables. The applied force
F will also directly affect the problem. So will its location L. How about the
material? Steel is definitely superior to copper for the beam. Should F, L, and
the material properties be included as design variables?

Intuitively, the larger the value of F , the greater is the cross-sectional area
necessary to handle it. Since the mass of the beam will be directly proportional
to the area of cross-section, it can be easily concluded that if F were a design
variable then it should be set at its lower limit, No techniques are required for
this conclusion. If we know the optimum value of F without effort, then F is a
good candidate for a parameter rather then a design variable. The larger the value
of L the greater is the moment that F will generate about the cantilevered end.
This will require an increase in the cross-section properties for strength of the
structure. By the same reason, L is not a good choice for the design variable since

bf

dtw

tf

Figure 1.3 Example 1.2—Cross-section shape.

1.1 OPTIMIZATION FUNDAMENTALS 15

it will be at its lowest value for an optimum design. To represent a material as a
design variable we need to use its set of structural properties in the formulation of
the design functions. Some useful material properties are: its specific weight, γ ;
the modulus of elasticity, E ; its modulus of rigidity, G ; its yield limit in tension
and compression, σyield; its yield in shear, τyield; its ultimate strength in tension,
σult; in tension; its ultimate strength in shear, τult. There are still more properties
like coefficient of thermal expansion, conduction coefficient, and fatigue limit that
will be useful is special problems. Optimization techniques will identify values
of the design variables at the solution. If E is the variable used to represent
the material design variable in a problem, then it is possible the solution can
require a material that does not exist, that is a value of E still undiscovered, or
a combination of material properties that are inconsistent with known ones. This
for all intents and purposes will not generate a useful solution and it is certainly
beyond the scope of the designer. Again, material as a parameter makes a lot
of sense. To summarize, the optimization problem should be reinvestigated if F ,
L, or if the material changes. Concluding from this discussion on modeling, the
following are defined:

Design parameters: F, L, {γ, E,G, σyield.τyield, σult, τult}
Design variables: d, tw, bf , tf

In the development of the mathematical model, standard technical definitions
are used. Much of the information can be obtained from a mechanical engineering
handbook, or an elementary book on mechanics of materials. The first design
function is the weight of the beam. This is the product of γ , L, and Ac, where Ac

is the area of cross-section. The Ac of the cross-section of the beam is (2bf tf +
tw(d − 2tf)). The maximum stress due to bending, σbend, can be calculated as
the product of FLd/2Ic, where Ic, is the moment of inertia about the centroid
of the cross-section along the axis parallel to the flange. The moment of inertia
Ic, in terms of the design variables, is (bf d3/12) − ((bf − tw)(d − 2tf)3/12).
The maximum shear stress in the cross-section is expressed as FQc/Ictw, where
Qc is first moment of area about the centroid parallel to the flange. The first
moment of area Qc can be calculated as (0.5bf tf (d − tf) + 0.5tw(d − tf)2). The
maximum deflection (δL) of the beam will be at the end of the beam calculated
by the expression FL3/3EI c. In the following, for ease of representation we
will continue to use Ac, Qc, and Ic instead of detailing their dependence on the
design values. Associating x1 with d, x2 with tw, x3 with bf , and x4 with tf , so
that X = [x1, x2, x3, x4] and the problem in standard format is as follows:

Minimize f (X): γLAc (1.19)

Subject to: g1(X): FLx1/2Ic − σyield ≤ 0 (1.20a)

g2(X): FQc/Icx2 − τyield ≤ 0 (1.20b)

16 INTRODUCTION

g3(X): FL3/3EIc − δmax ≤ 0 (1.20c)

0.01 ≤ x1 ≤ 0.25; 0.001 ≤ x2 ≤ 0.05; (1.20d)

0.01 ≤ x3 ≤ 0.25; 0.001 ≤ x4 ≤ 0.05 (1.20e)

The designer must ensure that the problem definition is also consistent with
the unit system chosen for the parameters and variables. To solve this problem, F
must be prescribed (10,000 N), L must be given (3 m). Material must be selected
(steel : γ = 7860 kg/m3; σyield = 250E + 06 N/m2; τyield = 145E + 06 N/m2).
Also the maximum deflection is prescribed (δmax = 0.005 m).

This is an example with four design variables, three inequality constraints, and
no equality constraints. Other versions of this problem can easily be formulated.
It can be reduced to a two-variable problem if symmetry was imposed. Standard
failure criteria with respect to combined stresses or principal stresses can also
be included through additional functions. If the cantilevered end is bolted, then
additional design functions regarding bolt failure needs to be examined.

Example 1.3 MyPC Company has decided to invest $12 million in acquiring
several new component placement machines to manufacture different kinds of
motherboards for a new generation of personal computers. Three models of these
machines are under consideration. Total number of operators available is 100
because of the local labor market. A floor-space constraint needs to be satisfied
because of the different dimensions of these machines. Additional information
relating to each of the machines is given in Table 1.1. The company wishes to
determine how many of each kind is appropriate to maximize the number of
boards manufactured per day.

It is difficult to use a figure in this problem to set up our mathematical model.
The number of machines of each model needs to be determined. This will serve
as our design variables. Let x1 represent the number of component placement
machines of model A. Similarly, x2 will be associated with model B, and x3 with
model C.

Design variables: x1, x2, x3

The values in the tables can be regarded as parameters. For this problem, it
is more useful to work with the values directly and hence identifying them as
parameters does not serve any useful purpose. The information in Table 1.1 is
used to set up the design functions in terms of the design variables directly.
An assumption is made that all machines are run for three shifts. The cost of
acquisition of the machines is the sum of the cost per machine multiplied the
number of machines (g1). The machines must satisfy the floor space constraint
(g2). The constraint on the number of operators is three times the sum of the
product of the number of machines of each model and the operator per shift
(g3). The utilization of each machine is the number of boards per hour times the
number of hours the machine operates per day. The optimization problem can be

1.1 OPTIMIZATION FUNDAMENTALS 17

assembled in the following form:

Maximize f (X) : 18∗55∗x1 + 18∗50∗x2 + 21∗50∗x3 (1.21)

or

Minimize f (X): − 18∗55∗x1 − 18∗50∗x2 − 21∗50∗x3

Subject to: g1(X): 400,000x1 + 600,000x2 + 700,000x3 ≤ 12,000,000
(1.22a)

g2(X): 3x1 − x2 + x3 ≤ 30 (1.22b)

g3(X): 3x1 + 6x2 + 6x3 ≤ 100 (1.22c)

x1 ≥ 0; x2 ≥ 0; x3 ≥ 0 (1.22d)

Equations (1.21) and (1.22) express the mathematical model of the problem.
Note in this problem that there is no product being designed. Here, a strategy
for placing order for the number of machines is being determined. Equation
(1.21) illustrates the translation of the maximization objective into an equiva-
lent minimizing one. The inequality constraints in (1.22) are different from the
previous two examples. Here, the right-hand side of the less than and equal to
operator is nonzero. Similarly, the side constraints are bound on the lower side
only. This is done deliberately . There is a significant difference between this
problem and the previous two. All of the design functions here are linear . This
problem is classified as a linear programming problem. The solution technique
for this type of problem is very different than the solution to first two examples,
which are recognized as nonlinear programming problems. Linear program-
ming problems are essential in decision making in commerce and business. They
are critically explored in those disciplines. Before moving on to the next section,
the inequality constraint in (1.22a) stands out because of the large numbers in all
of the terms. Dividing the constraint through by 1,000,000 will not change the
problem. This is termed scaling, and is an important step in optimization.

Example 1.4 The first-order differential equation (t + 1)dy/dt − (t + 2)y = 0,
subject to the initial condition y(0) = 1, can be solved analytically using the
power series method. Set up an alternate procedure using optimization.

The differential equation and initial condition is rewritten as follows:

(t + 1)y′ − (t + 2)y = 0; 0 ≤ t ≤ 3 (1.23)

y(0) = 1 (1.24)

The solution, in terms of power series, can be expressed as

y(t) =
∞∑

m=0

cmtm = c0 + c1t + c2t
2 + · · · (1.25)

18 INTRODUCTION

The initial condition in (1.24) will determine the value of c0 as 1. That leaves
the determination of the remaining coefficients. These will be our design variables
of the problem. Let us consider the series solution for this problem to 10 terms.
We require nine design variables . We will also monitor the differential equation
at 100 points in the interval of t , labeled as ti . The solution, at each ti :

y(ti) = yi = 1 + x1ti + x2t
2
i + · · · + x9t

9
i ; i = 1..100 (1.26a)

where the xj are the design variables. The derivatives at each i can be
expressed as

y′(ti) = y′
i = x1 + 2x2ti + · · · + 9x9t

8
i ; i = 1..100 (1.26b)

At each ti Equation (1.23) will measure the error in the series solution (if the
term is nonzero).

Ei = (ti + 1)y′
i − (ti + 2)yi

We will drive this error to zero by setting up our objective function as

f (X) =
100∑

i=1

E2
i (1.27)

This can be stated as the minimum of the square error over the range of
the variable indicated at the 100 points. This is an unconstrained optimization
problem. The exact solution to the problem is

y(t) = (1 + t)et = 1 + 2t + 3

2
t2 + 2

3
t3 + 5

24
t4 + 1

20
t5 · · ·

+ 7

720
t6 + 1

630
t7 + 1

4480
t8 + 1

36288
t9 + 1

329891
t10 (1.28)

As formulated, the optimization problem has nine design variables. You could
do this to other classical methods of solution, too. If it works, you are numerically
identifying an analytical solution. Another advantage is that it is a simple matter
to identify a different example by this method, but the analytical procedure must
be worked out in detail for each different example. Chapter 11 addresses using
optimization in nontraditional ways to solve nonlinear differential equations using
Bezier surfaces, using exactly this idea.

1.1.3 Nature of Solution

We will look at the nature of solutions to the optimization problem using the first
three examples we have modeled. Examples 1.1 and 1.2 describe a nonlinear pro-
gramming problem. This means that some of the design functions in the model are
nonlinear. They contain terms that include the product of design variables, or the
variables themselves raised to powers other than 1. Example 1.3, as noted earlier

1.1 OPTIMIZATION FUNDAMENTALS 19

is a linear programming problem, which is very significant in decision sciences,
but rare in product design. Its inclusion here, while necessary for completeness,
is also important for understanding contemporary optimization techniques for
non-linear programming problems. Example 1.4 is a nonlinear problem in nine
variables because the terms are squared. It is quite simple to solve numerically,
especially using the optimization toolbox. In this chapter it has served to showcase
how optimization can provide an alternative to a classical method of solution to
math problems. Examples 1.1 and 1.2 are dealt first. Between the two, we notice
that Example 1.1 is quite simple in comparison to Example 1.2. Second, the four
variables in Example 1.2 make it difficult to use illustration to establish some of
the discussion. We will use Example 1.1 in the following discussion.

Solution to Example 1.1 The simplest determination of nonlinearity is through a
graphical representation of the design functions involved in the problem. This can
be done easily for one or two variables. If the function does not plot as a straight
line or a plane, then it is nonlinear. Figure 1.4 represents the three-dimensional
plot of Example 1. The figure is obtained using MATLAB. Chapter 2 will pro-
vide detailed instructions for drawing such plots for graphical optimization. The
three-dimensional representation of Example 1.1 in Figure 1.4 does not really
enhance our understanding of the problem or the solution. The region of the
solution, which is at the intersections of the functions, is hidden and difficult to
see. Figure 1.5, the contour plot, is an alternate representation of the problem. The
solution will be clearer in this figure. The horizontal axis represents the diameter
(d, x1), The vertical axis represents the height (h, x2). In Figure 1.5 the equality

Example 1.1

h(d,h)

f(d,h)

g(h,d)

f,
 g

, h

h (cm)
d (cm)

Figure 1.4 Graphical representation of Example 1.1.

20 INTRODUCTION

Figure 1.5 Contour plot of Example 1.1.

constraint h(x1, x2) is marked appropriately as h on the figure. Since there is
only one constraint the subscript is unnecessary. Any pair of values on this line
will give a volume of 250 cc. The inequality constraint g is also identified. The
pair of values on this line exactly satisfies the aesthetic requirement. The dashed
lines on the side of the inequality constraint establish the disallowed region for
the design variables. The constraints are drawn thicker for emphasis. The feasible
region is on the other side of the dashed lines. The objective function is repre-
sented through several contours. Each contour is associated with a fixed value of
the objective function and these values are shown on the figure. Since this is a
minimum problem we are interested in the decreasing cost. The range of the two
axes establishes the side constraints . The objective function f , and the equality
constraint h are non-linear and therefore they are not drawn as straight lines. This
is substantiated by the products of the two unknowns (design variables) in both
these functions. The inequality constraint g is linear. In Equation (1.18) this is
evident because the design variables appear by themselves without being raised
to a power other than 1. As we develop the techniques for applying optimization,
this distinction is important to keep in mind. It is also significant that graph-
ical representation is typically restricted to two variables. For three variables,
we need a fourth dimension to resolve the information while three-dimensional
contour plots are not easy to illustrate. The power of imagination is necessary to
overcome these hurdles.

The problem represented in Figure 1.5 is a graphical solution to the opti-
mization problem. First, the design space is the region spanned by the side

1.1 OPTIMIZATION FUNDAMENTALS 21

constraints—the boxed area. The feasible region is the space of acceptable
designs. The presence of equality constraints complicates this discussion, since
the solution must lie on the constraint. In this problem the feasible region is on
the equality constraint above the intersection with the inequality constraint and
limited by the y axis. The optimal solution is the feasible solution with the min-
imum value for the objective function. For this example, there are many feasible
solutions (points on the feasible portion of the equality constraint) but only one
optimal solution. There are infinite feasible solutions but a unique optimal solu-
tion. In this problem/figure, the smallest value of f is desired. The lowest value
of f is about 82. Since this is in dollars, this can is quite expensive. Maybe there
was an error in the cost. It should have been per square meter. Will it change the
optimum solution? We will look at this and other answers later (you can run the
code and see if it changes the solution). The solution to the optimization problem
is at the intersection of the two constraints. While the value of f needs to be
calculated, the optimal values of the design variables, read from the figure, are
about 5.5 and 11 cm, respectively. From Figure 1.5, it can be seen that g is an
active constraint.

Solution to Example 1.3 In contrast to Example 1.1, all the relationships in the
mathematical model, expressed by Equations (1.21) and (1.22), are linear. The
word equation is generally used to described the equivalence of two quantities
on either side of the equal (=) sign. In optimization, we come across mostly
inequalities . The word equation will be used to include both of these situa-
tions. In Example 1.1, the nature of solution was explained using Figure 1.5. In
Example 1.3, the presence of three design variables denies this approach. Instead
of designing a new problem, suppose that the company president has decided to
buy five machines of the third type. This reduces the problem to two design vari-
ables allowing a graphical solution to be constructed. The mathematical model,
with two design variables x1, x2, is reconstructed using the information that x3

is now a parameter with the value of five. Substitute for x3 in the model for
Example 1.3, and cleaning up the first constraint:

Maximize f (X): 990∗x1 + 900∗x2 + 5,250 (1.29)

Subject to: g1(X): 0.4x1 + 0.6x2 ≤ 8.5 (1.30a)

g2(X): 3x1 − x2 ≤ 25 (1.30b)

g3(X): 3x1 + 6x2 ≤ 70 (1.30c)

x1 ≥ 0; x2 ≥ 0 (1.30d)

An interesting observation in this set of equations is that there are only two
design variables but three constraints. This is a valid problem. If the constraints
were equality constraints, then this would not be an acceptable problem defini-
tion, as it would violate the relationship between the number of variables and

22 INTRODUCTION

Figure 1.6 Contour plot of modified Example 1.3.

the number of equality constraints. Therefore, the inequality constraints are not
related to the number of design variables used. This fact also applies to nonlinear
constraints. Figure 1.6 is the plot of the functions (1.29) and (1.30). Choosing the
first quadrant also satisfies the side constraints. The linearity of all the functions
is indicated by the straight lines on the figure. Again, several contours of f
are shown to aid the recognition of the solution. The figure was generated by
MATLAB. A special piece code will generate the hash marks in MATLAB. In lien of
hash marks, sometimes a thicker line is drawn parallel to the constraint ahead of
the hash lines—or the forbidden region. The feasible region is enclosed by the
two axes and the constraints g2 and g3. The objective is to increase the value of
f , which is indicated by the contour levels, without leaving the feasible region.
The solution can be spotted at the intersection of the constraints g2 and g3. The
values of the design variables at the solution can be read off from the plot. We
are not done yet. Before proceeding further it is necessary to acknowledge that
a solution of 11.5 machines for model A is unacceptable. The solution must be
adjusted to the nearest integer values. In actual practice, this adjustment has to
be made without violating any of the constraints. The need for integer variables
is an important consideration in design. Variables that are required to have only
integer values belong to the type of variables called discrete variables . This
book mostly considers continuous variables . Almost all of the mathematics an
engineer encounters, especially academically, belong to the domain of contin-
uous variables. The assumption of continuity provides very fast and efficient
techniques for the search of constrained optimum solutions, as we will develop in
this course. Many real-life designs, especially in the use of off-the-shelf materials
and components determine discrete models. Discrete/integer programming is
the area that addresses these problems. The nature of the methods searching

1.1 OPTIMIZATION FUNDAMENTALS 23

the optimal solution in discrete programming is very different from those in
continuous programming. Many of these methods are based on the scanning and
replacement of the solutions through exhaustive search of the design space in
the design region. In this book discrete problems, except in the Chapter 8, are
handled as if they were continuous problems. The conversion to the discrete
solution is the final part of the design effort and is usually performed by the
designer outside of any continuous optimization technique we develop in this
book. Chapter 8 discusses discrete optimization with examples.

Getting back to the linear programming problem we just discussed, it can be
observed that only the boundary of the feasible region will effect the solution.
Here is a way that will make it apparent. Note that the objective function
contours are straight lines. A different objective function will be displayed by
parallel lines with a different slope. Imagine these lines on the figure instead
of the current objective function. Note the solution always appears to lie at
the intersection of the constraints or the corners . Solution can never come
from inside of the feasible region, unlike in nonlinear programming problem
which accommodates solution on the boundary and from within the feasible
region. Recognizing the nature of solutions is important in developing a search
procedure. For example, in linear programming problems, a technique employed
to search for the optimal design need only search the boundaries, particularly
the intersection of the boundaries. Whereas in nonlinear problems, the search
procedure cannot ignore interior values.

1.1.4 Characteristics of the Search Procedure

The search for the optimal solution will depend on the nature of the problem being
solved. For nonlinear problems, it must consider the fact that the solution could
lie inside the feasible region. Figure 1.7 will provide the context for discussing
the search procedure for nonlinear problems. Similarly, the characteristics of the
search process for linear problems will be explored using modified Example 1.3
and Figure 1.6.

Nonlinear Problems: In practice, solutions to nonlinear problems are obtained
through numerical techniques that are applied iteratively. The methods or tech-
niques for finding the solution to optimization problems are called search meth-
ods . These methods will require the following:

• Several iterations before the solution can be obtained.
• Each iteration or search is executed in a consistent manner where infor-

mation from the previous iteration is utilized in the compute values in the
present sequence.

• This consistent manner or process by which the search is carried out is
called an algorithm . This term also refers to the translation of the particular
search procedure into an ordered sequence of step by step actions.

24 INTRODUCTION

Figure 1.7 A typical search method for nonlinear problems.

• The algorithm is applied by converting these steps, through some computer
language, into code that will execute on the computer. In this book, the
algorithm is developed and translated into MATLAB code.

The search process is started typically by trying to guess the initial design
solution. The designer can base this selection on his experience. On several
occasions given the nonlinear nature of the problems, the success of optimization
may hinge on his ability to choose a good initial solution. Any search method,
even when used consistently, may fail to solve a particular problem. The degree
and type of nonlinearity may frequently cause the method to fail, assuming there
are no inconsistencies in problem formulation. Another method may yet solve
the problem. This has led to the creation of several different techniques for
optimization. Practical experience has also suggested that a class of problems
respond well to certain algorithms.

These iterative methods are currently the only way to implement numerical
solutions to nonlinear problems, irrespective of the discipline in which these
problems appear or the nature of the problems they define. Nonlinear problems
are plentiful in optimization, optimal control, structural and fluid mechanics,
quantum physics, and astronomy. Although optimization techniques are applied
in all of the noted disciplines, in traditional design optimization the problems are

1.1 OPTIMIZATION FUNDAMENTALS 25

mainly characterized by nonlinear algebraic equations. In optimal control they
can be nonlinear dynamics systems, which are described by non-linear differential
equations. In structural mechanics, there is the possibility of nonlinear integral
equations. Computational fluid dynamics deals mostly with nonlinear partial dif-
ferential equations. The principal aim of search methods is to get closer to the
solution with every iteration. This is referred to as converging to the solution. In
optimization techniques, this could also mean determining a feasible solution.

The graphical representation of a problem similar to Example 1.1 can be
seen in the background of Figure 1.7. It is embellished with several iterations
of a hypothetical search method. The initial starting guess is the point marked
X0. The solution is at X∗. Remember, when solving the optimization problem
such a figure does not exist . If it did, then we can easily obtain the solution by
inspection. This statement is especially true if there are more than two variables.
In the event there are two variables, there is no reason not to obtain a graphical
solution (Chapter 2). The methods in optimization rely on the direct extrapolation
of the concepts and ideas developed for two variables to any number of design
variables. That is the reason we will use two variables to discuss and design most
of the algorithm and methods. Using two variables also allow the concepts to be
reinforced using geometry and graphics.

The design at the point X0 is not feasible. It is not useful to discuss if it is an
optimal solution. At least one more iteration is necessary to obtain the solution.
Consider the next solution at X1. Most methods in optimization will attempt to
move to X1 by first identifying a search direction,S1. This is a vector (same
dimension as design variable vector X) pointing from X0 to X1. The actual
displacement from X0 to X1, call it �X1 is some multiple of S1, say αS1. X1

once again is not feasible though it as improvement on X0 since it satisfies the
inequality constraint g1 (lying in the interior of the constraint). Alternately, using
the same search direction S1, another technique/method may choose for its next
point, X1′ , at a distance βS1. This point satisfies the constraint h1 but violates g1.
A third strategy would be to choose X1. This lies on the constraint boundary of
g1. Please note that all the three choices are not feasible. Which point is chosen
is decided by the particular implementation of the algorithm. Assume point X1

is the next point in this discussion.
Point X1 now becomes the new point X0. A new search direction S2 is

determined. Point X2 is located. Another sequence of calculations locates X3.
The next iteration yields the solution. The essence of updating the design during
successive iteration lies in two major computations, the search direction S i and
stepsize α. The change in the design vector, defined as �X, which represents
the vector difference, for example, (X2 − X1), is obtained as αSi . For each
iteration, the following sequence of activity can be identified:

Step 0: Choose X0

Step 1: Identify S
Determine α

�X = αS

26 INTRODUCTION

Xnew = X0 + �X

Set X0 ← Xnew

Go to Step 0

This is the basic structure of a typical optimization algorithm. A complete one
will indicate the manner in which S and α are computed. It will include tests,
which will determine if the solution has been reached (convergence), or if the
procedure needs to be suspended or restarted. The different techniques we will
explore in this book are mostly different by the way S is established. Take a
look at Figure 1.7 again. At X0 there are infinite choices for the search direction.
To reach the solution in reasonable time, an acceptable algorithm will try not
to search along directions that do not improve the current design. There will be
several ways to satisfy this condition.

Linear Programming Problem: It was previously mentioned that the solution
to these problems would be on the boundary of the feasible region (also called
feasible domain). In Figure 1.6, the axes and some of the constraints determine
this region. This region is distinguished also by the points of intersection of
the constraints among themselves, the origin, and the intersection of the binding
(active) constraints with the axes. These are vertices or corners of the quadri-
lateral. Essentially the design improves by moving from one of these vertices to
the next one through improving feasible designs. You have to acquire a feasible
corner to start the iteration. This will be explored more fully in the chapter on
linear programming. A reminder here once again that only with two variables can
we actually see the geometric illustration of the technique, that is the selection
of vertices as the solution converges.

So far, Chapter 1 has dealt with the introduction of the optimization problem.
It was approached from an engineering design perspective, but the mathematical
model, in abstract terms, is not sensitive to any particular discipline. A few design
rules with respect to specific examples were included in the discussion. The stan-
dard mathematical model for optimization problem was established. Two broad
classes of problems, linear and nonlinear were introduced. The geometrical char-
acteristics of the solution for these problems were shown through the graphical
representation of the model. An overview of the search techniques for obtain-
ing the solution to these problems was also illustrated. It was also mentioned
that the solutions were to be obtained numerically , primarily through iterative
computation.

The numerical methods used in this area are iterative methods. Numerical solu-
tions are obtained through running computer programs. These programs involve
two components. The first is an algorithm that will establish the iterative set of
calculations. The second is the translation of the algorithm into computer codes,
using a programming language. This finished code is referred to as software. The
early software in optimization ran on mai frames , or large computer systems,
using legacy programs written in FORTRAN, Pascal, or C. Since the mid-1990s
the standard computation environment has transformed to individual personal

1.2 INTRODUCTION TO MATLAB 27

computers (PCs), running Windows, Macintosh, Linux, or other flavors of UNIX,
operating systems. They are more powerful than old mainframe computers and are
inexpensive to boot. Users interact with their PCs through a graphical user inter-
face (GUI) avoiding time and tedious effort in learning the software and as well as
setting up the problem. New programming paradigms , especially, object-oriented
programming , has thrown up a lot of new and improved ways to develop soft-
ware. Today engineering software is created by general programming languages
such as C, C++, Java, Pascal, and Visual Basic. Many software vendors develop
their own extensions to the standard language, providing a complete environment
for specific deployment by the user. This makes it very convenient for users, who
are not necessarily programmers, to get their job done in a reasonably short time.

One such vendor is Mathworks, Inc. with their flagship products MATLAB and
Simulink. They also provide a complementary collection of Toolboxes, which
deliver software for specific disciplines and applications. Between the first and
the second edition of this book, the use of MATLAB has grown exponentially
in academia and industry. It has also evolved from core mathematical areas to
envelop almost every discipline. Of specific note is the Optimization Toolbox ,
which implements most of the concepts developed in the book. Knowledge of
MATLAB is a skill that is in demand from those entering the workforce to work
in analytical areas. In this book, MATLAB is used for numerical and graphical
support. No prior familiarity with MATLAB is expected, though familiarity with
the PC is required. Like all higher-level languages, effectiveness with this new
programming resource comes with effort, frequency of use, original work, and a
consistent manner of application. By the end of the book, the reader will become
very familiar with the use of MATLAB to develop programs for optimization. The
experience gained from this book will be substantial, and sufficient for the use
of MATLAB in other settings. Nevertheless, an enormous part of MATLAB will not
be used. It should be possible to explore those with the experience gained in
this course. All of the code in this book is developed only after identifying a
need for its implementation. New commands will be recognized and explained
(commented on) when they appear for the first time. The code will be kept
simple, as this book is also a means for understanding MATLAB through writing
numerical techniques for optimization. The author welcomes suggestions from
new users and those familiar with MATLAB who have considerable experience in
programming, for ways to make the learning process more effective. The next
part of this chapter deals with MATLAB, establishing its appropriateness for this
book, as well as getting started with its use. The reader will need access to
MATLAB to be able to use this book effectively.

1.2 INTRODUCTION TO MATLAB

MATLAB is introduced by Mathworks as the language for technical comput-
ing. Borrowing from the description in an earlier brochure, valid even now,
MATLAB integrates computation, visualization, and programming in an easy-to-use

28 INTRODUCTION

environment where problems and solutions are expressed in familiar mathematical
notation. The typical uses for MATLAB include the following:

• Math and computation
• Algorithm development
• Modeling, simulation, and prototyping
• Data acquisition, analysis, exploration, and visualization
• Scientific and engineering graphics
• Application development, including graphic user interface building

The use of MATLAB has exploded recently and so has its features. This con-
tinuous enhancement makes MATLAB an ideal vehicle in exploring problems in
all disciplines that manipulate mathematical content. This ability is multiplied by
application-specific solutions through toolboxes . To know more about the latest
MATLAB, its features, the toolboxes, collection of user-supported archives, infor-
mation about Usenet activities, other forums, information about books, and so
on, please visit MATLAB at http://www.mathworks.com.

1.2.1 Why MATLAB?

An answer may have been necessary at the time of the first edition of this book.
Today, with MATLAB being used in over 3,500 universities and over 1,000 research
and industrial institutions across the globe, it would be a serious omission not
to incorporate its support in learning about applied optimization. MATLAB is a
standard tool for introductory and advanced courses in mathematics, engineering,
and science in many universities around the world. In industry, it is a tool of
choice for research, development and analysis. In this book, MATLAB’s basic
array element is exploited to manipulate vectors and matrices that are natural
to the subject. In the next chapter, its powerful visualization features are used
for graphical optimization. In the rest of the book the other built in features of
MATLAB is utilized to translate algorithms into functioning code, in a fraction of
the time needed in other languages such as C or FORTRAN. At the end, we will
see some examples from its optimization toolbox.

Most books on optimization provide excellent coverage of the techniques and
algorithms, and some provide a printed version of the code. Almost all new
editions have moved away from legacy environments to embrace new software
environments that are user friendly, with shallower learning curves. These soft-
ware systems are feature rich and very resourceful in delivering various aspects
of computation. MATLAB’s code is compact, and it is reasonably intuitive. To make
problems work requires only few lines of code compared to traditional computer
languages. Instead of programming from the ground up, standard MATLAB pieces
of code can be threaded together to develop the new algorithm. It avoids the stan-
dard separate compilation, link, and execution sequence by using an interpreter.
Another important reason is code portability. The code written for the PC version

1.2 INTRODUCTION TO MATLAB 29

of MATLAB does not have to be changed for the Macintosh or the Unix systems
as they are text files. This will not be true if system dependent resources are
used in the code. As an illustration of MATLAB’s learning agility, both MATLAB

and applied optimization are covered in this book, something very difficult to
accomplish with say, FORTRAN and optimization, or C++ and optimization.
MATLAB is a globally relevant product and can work with C and Java if desired.

1.2.2 MATLAB Installation Issues

The code in this book will work on MATLAB installed on an individual PC or Mac,
a networked PC or Mac, or individual or networked UNIX workstations. MATLAB

takes care of the issue of portability as user-created code is in ASCII text. The
book assumes you have a working and appropriately licensed copy of MATLAB in
the machine in front of you. This book uses MATLAB Version 7.2 (R2006a), as this
was the current version when the manuscript was started. The version shipping
during the first print is R2008a. The code was developed on a PC. During the
development of the previous edition, the author had access to UNIX and Mac
platforms. This time the development is based on a 32-bit Windows PC. New
releases of MATLAB are supposed to be seamless across platforms in terms of user
use and experience. If there are issues that are different, the author solicits feed-
back from the user. In terms of code itself, newer versions of MATLAB should not
be a problem. There was however some significant changes in some commands
with version 7. The same command can be run in a backwards-compatible form
by including ‘V6’ as the first item in the Command. Installing MATLAB on your
machine should not be a problem, as the software is accompanied by detailed
installation instructions. If you are using a networked version, please consult your
system administrator. While many of you may have been exposed to MATLAB,
this book assumes that you are new to MATLAB. You are strongly urged to use the
MATLAB help resources through its excellent documentation system, particularly
the Help browser.

Start MATLAB from the start menu on the PC or through an icon on the desktop
(Mac, UNIX, Linux users should find the program as a menu item in the appro-
priate menu). It is a good idea to click the various menus on the top menubar. You
will see various menu sub-items that are some of the common commands you are
likely to use. You can also customize how MATLAB will tile the various windows
when it opens. My personal preference is using only the Command window and
the Editor window in stand-alone mode instead of the default appearance, since
it will be less distracting. If you are already a MATLAB user, you are welcome
to use your favorite setup. You can change the way MATLAB opens by clicking
through the menus Desktop → Desktop Layout → Command Window Only .

The MATLAB window, Figure 1.8, also called the Command window, is the
means through which commands are issued to MATLAB during interactive use.
Note that MATLAB command prompt is �. The second graphical window that
will be very useful is the MATLAB M-file Editor/Debugger window, shown in
Figure 1.9. This window is opened by clicking the new file icon in the Command

30 INTRODUCTION

Figure 1.8 MATLAB Command window in the PC.

window under the File menu. This is the window where we will write the code.
The editor uses color for enhancing code readability. It is also a debugger; it
helps us find and correct errors in code. The Command window and the Editor
window can spawn additional dialog boxes (if necessary) for setting additional
features during the MATLAB session, like the path browser and workspace browser .
These windows are very similar in other platforms.

Although this is not so much an installation issue, it would be appropriate to
discuss the way the book plans to write and execute MATLAB code. Generally,
there are two ways to work with MATLAB: interactively and through scripts .
In interactive mode, the commands are entered and executed one at a time in
the MATLAB Command window. Once the session is over and MATLAB exited,
the set of commands that were used and what worked is stored in the History
window. Large sequences of commands are usually difficult to keep track off in
an interactive session. Another option is to store the sequence of commands in a
text-file (ASCII), and execute the complete file in MATLAB. This is called a script
m-file and can be considered a batch execution—a batch of commands. Most
MATLAB files are called m-files. The .m is a file extension usually reserved for
MATLAB. Any code changes are made through the editor, the changes to the file
are saved, and the file is executed in MATLAB again. Executing MATLAB through
script files is predominantly followed in the book. MATLAB allows you to revert
to interactive mode any time by just typing in the Command window. In order
to enhance the programming experience and expose you to more features of
MATLAB, a lot of bookkeeping activities are done through code rather than the
rich resources provided by newer versions of MATLAB. In a sense, interactive use

1.2 INTRODUCTION TO MATLAB 31

Figure 1.9 MATLAB editor/debugger window on the PC.

of MATLAB is eschewed so that code will run faster and the user is introduced to
more programming.

1.2.3 Using MATLAB the First Time

MATLAB will be used interactively in this section. The author strongly recom-
mends a hands-on approach to understanding MATLAB. This means typing the
code yourself. This is essential to understand the syntax errors, the debugging,
and rectifying of the code. The author is not aware of a single example where
the reader learned programming without typing/entering code. Moreover, your
intuitive understanding of MATLAB commands and programming is based on your
practice and not the authors. In this book, MATLAB code segments are courier
font with the boldface style used for emphasizing commands or other pieces of
information. Anything else is recommendations, suggestions, or exercises. The
script file name containing the commands is in italic.

Before We Start: Table 1.2 includes a few punctuation and special characters
that you will use often. It is a good idea to become familiar with them. For
those of you programming for the first time, the equal to sign (=) has a very
special meaning in all programming languages, including MATLAB. It is called the
assignment operator. The variable on the left-hand side of the sign is assigned
the value of the right-hand side. The actual equal-to operation in MATLAB is
usually accomplished by a double equal-to sign, which is (==).

32 INTRODUCTION

Table 1.2 Some Punctuation and Special Characters

Punctuation/ What It Does
Characters

>> MATLAB command prompt.
You have to wait for the prompt before MATLAB will listen to

you. It applies mostly for interactive sessions or when
MATLAB is busy computing (see ∧c).

% All text to the right of the % is a comment and is ignored by
MATLAB.

Commenting your code seriously helps you remember what
you were trying to achieve when you wrote the piece of
code.

Comments are used liberally in the code in the book. Without
comments you will have difficulty understanding what you
coded just a week ago.

%% Together, they give you a bold comment.
; A semicolon prevents information echoing to the screen.

Removing it will cause information to be printed to the screen.
This is useful when you want to debug the code.

, A comma is used as a command separator and will cause
information to be printed to the screen. You can also use a
semicolon as a command separator.

: A colon is used to establish a range of values. By itself, it
implies all of the values.

. . . A succession of three periods at the end of the line implies
that the code will continue to the next line.

You cannot continue variable name across lines. You cannot
continue a comment on another line.

∧c Ctrl C (hold down Ctrl and C together) will stop MATLAB

execution and return the control prompt.

Some Additional Features:

• MATLAB is case sensitive. An a is different than A. This is difficult for
persons who are used to FORTRAN. All MATLAB built-in commands are in
lowercase. Hence, you can define your own variables in uppercase so that
they do not coincide with built-in functions or variable names.

• MATLAB does not need a type definition or a dimension statement to use
and introduce variables. It automatically creates one on first encounter in
code. The type is assigned in context

• Variable names start with a letter and contain up to any number of characters
which can only include letters, digits, and underscore. Only the first 63
characters are used by MATLAB.

1.2 INTRODUCTION TO MATLAB 33

• MATLAB uses some built-in variable names and keywords. Avoid using built
in variable names. For example the variable pi has the value of π or 3.14.
It is probably a good idea to declare all your constants in the code.

• All numbers are stored internally using the long format specified by IEEE
floating-point standard. These numbers have roughly a precision of 16 dec-
imal digits (32-bit operating system). They range roughly between 10E −
308 and 10E+308. However they are displayed differently, depending on
the context.

• MATLAB uses conventional decimal notation for numbers using decimal
points and leading signs optionally (e.g., 1, −9, +9.0, 0.001, 99.9999).

• Scientific notation is expressed with the letter e, (e.g., 2.0e-03, 1.07e23,
−1.732e+03

• Imaginary numbers use either i or j as a suffix, for example, 1i, -3.14j, 3e5i

Operators: The following are the arithmetic operators in MATLAB.

+ Addition (when adding matrices/arrays subscripts must match)
− Subtraction (same as above)
* Multiplication (the size of arrays must be consistent when

multiplying them)
/ Division
∧ Power
′ Complex conjugate transpose (also array transpose)

In the case of arrays, each of these operators can be used with a period
prefixed to the operator; for example, (.*) or (.∧) or (./). This has a special
meaning only in MATLAB. It implies element-by-element operation. It is useful
for quick computation. It has no relevance in mathematics or anywhere else. We
will use it a lot in the next chapter for generating data for graphical optimization.

1.2.4 An Interactive Session

Start MATLAB. In the MATLAB Command window, there should be the MATLAB

prompt followed by a blinking cursor. MATLAB is ready to go to work. Please hit
return at the end of the line (or before the comment, as you do not need to type
the comments in this exercise). Please do read the comments as they contain
useful information. Please feel free to try your own variations and extend the
exercise. In fact, to understand and reinforce the commands, it is recommended
that you make up your own examples often in this exercise.

>> a = 1.0; b = 2.0; c = 3.0, d = 4.0; e = 5.0

>> % why did only c and e echo on the screen?

>> who % lists all the variables in the workspace

34 INTRODUCTION

>> a % echoes the value stored in a

>> A = 1.5; % another variable A

>> a, A % echoes a and A - Note case matters

>> aA = a*A % multiplying a and A and a new variable

>> one = a; two = b; three = c; % new variables

>> % assigns the values of a, b, c to new variables

>> four = d; five = e; six = pi % value of pi is available

>> A1 = [a b c ; d e f]

>> % A1 is a 2 by 3 matrix

>> % space or comma separates columns

>> % semi-colon separates rows

>> A1(2,2) % accesses the Matrix element on the second

>> % row and second column

>> size(A1) % gives you the size of the matrix

>> % (row, columns)

>> AA1 = size(A1) % What should happen here?

>> % from previous statement the size of A1

>> % contains two numbers organized as a row

>> % matrix. This size information is assigned to AA1

>> size(AA1) % AA1 is a one by two matrix

>> B1 = A1' % the transpose of matrix A1

>> % is assigned to B1. B1 is a three by two matrix

>> C1 = A1 * B1 % Since A1 and B1 are matrices this is a

>> % matrix multiplication

>> % Should this multiplication be allowed?

>> C2 = B1 * A1 % How about this?

>> C1 * C2 % What about this?

>> % read the error message

>> % it is quite informative

>> D1 = [1 2]' % D1 is a column vector

>> % by default row vectors are created

>> C3 = [C1 D1] % C1 is augmented by an extra column

>> C3 = [C3 ; C2(3,:)]

>> % means do the right hand side and overwrite the

>> % old information in C3 with the result of the right

>> % hand side calculation

>> % On the right you are adding a row to current

>> % matrix C3. This row has the value of

1.2 INTRODUCTION TO MATLAB 35

>> % the third row of C2 - Notice the procedure of

>> % identifying the third row. The colon represents all

>> % the column elements

>> C4 = C2 * C3 % permissible multiplication

>> % Note the presence of a scaling factor

>> % in the displayed output

>> C5 = C2 .* C3 % seems to multiply!

>> % Is there a difference between C4 and C5?

>> % The .* is represents the product of each element

>> % of C2 multiplied with the corresponding

>> % element of C3. Such a multiplication is

>> % not defined mathematically

>> C6 = inverse(C2) % find the inverse of C2

>> % apparently Inverse is not a command in Matlab

>> % if command name is known it is easy to obtain help

>> lookfor inverse % this command will find all files

>> % where it comes across the word "inverse" in the

>> % initial comment lines

>> % The command we need appears to be INV which says

>> % Inverse of a Matrix

>> % The actual command is in lower case. To find out how

>> % to use it - Now

>> help inv % shows how to use the command

>> inv(C2) % inverse of C2

>> for i = 1:20

f(i) = i^2;

end

>> % This is an example of a for loop

>> % the index ranges from 1 to 20 in steps of 1(default)

>> % the loop must be terminated with "end"

>> % the prompt does not appear until "end" in entered

>> plot(sin(0.01*f),cos(0.03*f))

>> % plots an x-y plot in the Figure Window

>> % the Figure window is the third MATLAB window

>> % you will use often to display graphics

>> % it is also loaded with rich features

>> % that you can explore by yourself

>> % about the MATLAB command used above - plot

>> % all commands in MATLAB are between regular parenthesis

>> % first element of plot is the x information

>> % second element of plot is the y information

36 INTRODUCTION

>> xlabel('sin(0.01*f)') % text appear in single quotes

>> % text is also called strings

>> ylabel('cos(0.03*f)')

>> legend ('Example')

>> title ('A Plot Example')

>> grid

>> % The previous set of commands will create plot

>> % label axes, write a legend, title and grid the plot

>> exit % finished with MATLAB

>> % you can exit using the exit button on the top right

This completes the first session with MATLAB. Additional commands and fea-
tures will be encountered throughout the book. In this session, it is evident that
MATLAB allows easy manipulation of matrices, definitely in relation to other pro-
gramming languages. Plotting is not difficult either. These advantages are quite
substantial in the subject of optimization.

This session introduced

• The MATLAB Command Window and Workspace
• Variable assignment
• Basic Matrix operations
• Accessing rows and columns
• Suppressing echoes
• Who, inverse commands
• .* multiplication
• Figure window
• Basic plotting commands

In the next session, we will use the m-file editor to gain additional experience
in using MATLAB. In this case we will not be interactively using MATLAB.

1.2.5 Using the Editor

In this section, we will use the MATLAB editor to create and run a script file. A
script file is a collection of commands executed in sequence by MATLAB. This is
also called batch execution. The file has to be saved before execution. Normally,
the editor is used to generate two kinds of MATLAB files. These files are termed as
script files and function files. Both these files contain MATLAB commands like the
ones we have used. However, the second type of files has a specified format. Both
file types should have the extension .m. Though these files are ASCII text files,
and can be generated in any text editor, the generic .m extension should be used
because MATLAB searches for this extension. The MATLAB editor will append this
extension automatically as the file is saved. This extension is unique to MATLAB.

1.2 INTRODUCTION TO MATLAB 37

This is different from the interactive session of the previous section where MATLAB

responded to each command immediately. The script file is more useful when
there are many commands that need to be executed to accomplish some objective,
like running an optimization technique. It is important to remember that MATLAB

allows you to switch back to interactive mode by just typing commands in the
workspace window after the prompt. You can also work with the variables created
by the script file.

The MATLAB editor uses color to identify MATLAB statements and elements.
It also provides the current values of the variables (if/after they are available
in the workspace) when the mouse is over the variable name in the editor.
There are two ways to access the editor through the MATLAB Command window
on the PCs. Start MATLAB. This will open a MATLAB Command or Workspace
window. In this window, the editor can be started by using the menu or the
toolbar. On the File menu, click on New and choose M-file. Alternately, click
on the leftmost icon on the toolbar (the tooltip reads New File). The icon for
the editor can also be placed on the desktop, in which case the editor can be
started by double-clicking the icon. In this event, a MATLAB Command window
need not be opened. The Editor provides its own window for entering the script
statements.

The commands are the same as in the interactive session, except there is
no MATLAB prompt prefixing the expressions. To execute these commands you
will have to save them to a file. We will save the commands in a file called
script1.m . The .m extension need not be typed if you are using the MATLAB

editor. You can save the file using the Save or Save As command from most
editors. This will open an explorer type window where you can save the file,
including creating a directory to save it in. If you want to break this session
in segments, you can save your current work and continue where you left off,
by traversing to the directory where you stored it and opening it in the editor.
You can also open the file by typing line commands in the Command win-
dow. You will need the full path to this file. We plan to save this file in the
sub-directory Ch1 of the directory Opt book , which is off the main file directory
C. The path for the file is therefore C:\Opt book\Ch1\script1.m. Note, the
path here is specified as a PC path description. In UNIX, usually the slashes
are forward slashes. The reason we need this information is to inform MATLAB

where to find the file. We do this in the MATLAB Command window using an
addpath command to inform MATLAB of the location of the directory to search
for the file:

>> addpath C:\Opt_book\Ch1\

The simpler way to do this is to open the Editor window, find the file script1.m
by traversing the directory, and open it. When you try and run the file, MATLAB

will ask you if you want to add the directory to the path, and you can accept the
choice. This way you will not need to know about the addpath command. The

38 INTRODUCTION

script that was created in script1.m can be run by typing (note the extension is
omitted).

>> script1

It can also be saved and run by clicking the icon that represents a written page
with a down arrow , called the RUN icon, located at the right of the group of
icons below the menu bar in the Editor window. If you just created the file and
are clicking it for the first time a save file window will appear before the code
is executed.

To understand the programming concepts in the script, particularly for users
with limited programming experience, it is recommended to run the script after
a block of statements have been written rather than typing the file in its entirety.
You can run by clicking the RUN icon, so that the changes in the file are recorded
and the changes are current. Another recommendation is to deliberately mistype
some statements and attempt to debug the error generated by the MATLAB debugger
during execution. Open the MATLAB editor and type the following code. The code
is in courier font.

Creating the Script M-file: The following will be typed/saved in a file.

% script1.m - (second edition)

clear % clear all values - clean start

clc % position curser at the top of the screen

format compact % print single spacing on the screen

% default is double spacing

% example of using script

A1 = [1 2 3]; % a row vector

A2 = [4 5 6]; % another row vector

% the commands not terminated with semi-colon will display

% information on the screen

A = [A1; A2] % a 2X3 matrix

B = [A1' A2'] % a 3x2 matrix

C = A*B % matrix multiplication

% press the run icon and save file as script1.m in

% a directory. Look at the output in command window

% you should see A, B, C

% you can use blank lines to make the code readable

% now recreate the matrix and perform matrix

% multiplication as in other programming languages

% example of for loop

1.2 INTRODUCTION TO MATLAB 39

for i = 1 : 3 % variable i ranges from 1 to 3 in steps

% of 1 (default)

a1(1,i) = i;

end % loops must be closed with end

a1 % print a1 on the screen

% press the run icon and look at the output

% in command window

for i = 6:-1:4 % note loop is decremented

a2(1,i-3) = i; % filling vector from rear

end

a2

% press the run icon and look at the output

% in command window

% creating matrix AA and BB

for i = 1:3

AA(1,i) = a1(1,i);

AA(2,i) = a2(1,i);

BB(i,1) = a1(1,i);

BB(i,2) = a2(1,i);

end

AA % print the value of AA in the window

BB % print the value of BB

% press the run icon and look at the output

% in command window

% instead of the for statement we could have

AAA(1,:) = a1; % first row of AAA is the vector a1

AAA(2,:) = a2; % second row of AAA is vector a2

BBB(:,1) = a1';% first column of BBB is transpose of a1

BBB(:,2) = a2';% second column of BBB is transpose of a2

AAA

BBB

% press the run icon and look at the output

% in command window

40 INTRODUCTION

who % list all the variable in the workspace

whos % list all variables with their type and storage

% press the run icon and look at the output

% in command window

% consider writing code for Matrix multiplication

% in most programming languages

% multiply two matrices (only if column of first matrix

% must match row of second matrix)

szAA = size(AA) % size of AA

szBB = size(BB);% size of BB

if (szAA(1,2) == szBB(1,1))% ONLY if column and row match

for i = 1:szAA(1,1)

for j = 1:szBB(1,2)

CC(i,j) = 0.0; % initialize value to zero

for k = 1:szAA(1,2)

CC(i,j) = CC(i,j) + AA(i,k)*BB(k,j);

% add to the variable and replace it

end % end of k - loop

end % end of j - loop

end % end of i - loop

end % end if - loop

CC

% press the run icon and look at the output

% in command window

% % Note the power of MATLAB derives from its ability to

% % handle matrices very easily

CCC = AA*BB

% % this completes the script session

If you have been running the commands as you have been typing the file is
already saved. Otherwise save the above file (script1.m). Add the directory to
the MATLAB path as indicated before. Run the script file by typing script1 at the
command prompt. The commands should all execute and you should finally see
the MATLAB prompt in the Command window.

Note: You can always revert to the interactive mode by directly entering
commands in the MATLAB window after the prompt. In the Command window:

>> who

>> clear C % discards the variable C from the workspace

>> % use with caution. Values cannot be recovered

1.2 INTRODUCTION TO MATLAB 41

>> help clear

>> exit

This session illustrated the following:

• Use of the editor
• Creating scripts
• Running scripts
• Error debugging (recommended activity)
• Programming concepts
• Loop constructs, if and for loops
• Loop variable and increments
• Array access
• Clear statement

1.2.6 Creating a Code Snippet

In this section, we will examine the other type of m-file, which is called the
function m-file, which will define a function in MATLAB. For those familiar with
other programming languages such as C, Java, or FORTRAN, these files represent
functions or subroutines. They are primarily used to handle some specific set of
calculations. They also provide a way for the modular development of code, as
well as code reuse. These code modules are used by being called or referred in
other sections of the code, say through a script file we looked at earlier. The
code that calls the function m-file is the calling program/code. There are three
essential parameters in developing the function m-file:

1. What input is necessary for the calculations (information passed to the
function)

2. What are the specific calculations that must take place (code in the function)
3. What information must be returned to the calling program (information

returned after processing in the function)

MATLAB requires the structure of the function m-file to follow a prescribed
format. The variables used in the function files are created when the function is
entered and dies when the value is returned from the function. Variables with the
same names outside the function are unaffected.

We will use the editor to develop two files: the script m-file that will contain
the command, which will call the function m-file. The function m-file will perform
a polynomial curvefit. This exercise is called curve fitting. A couple of chapters
later this problem will be identified as a problem in unconstrained optimization.
The function m-file will require a set of x,y data , together with the order of the
polynomial to be fit. The technique is based the method of least squares. For now,
the calculations necessary to accomplish the exercise are considered known. It
involves solving a linear equation with the normal matrix and a right-hand vector

42 INTRODUCTION

obtained using the data points. The output from the m-file will be the coefficients
representing the polynomial. The responsibility of the script m-file is to acquire
the information needed, and use the output to compare the curve against the data
through a plot, and evaluate the quality of the fit.

Before we start to develop the code, the first line of this file must be format-
ted as specified by MATLAB. In the first line, the first word starting from the first
column is the word function . It is followed by the set of values returned by the
function [returnval]. Next, an equal to sign is followed by the name [mypolyfit]
of the function, with the parameters passed to the function within parenthesis (XY,
N). The file is recommended to be saved with the same name as the name of the
function [(mypolyfit.m)]. The comments between the first line and the first exe-
cutable statement will appear if you type help name (help mypolyfit) in the Com-
mand window. The reason for the name mypolyfit.m is that MATLAB has a built-in
function polyfit. Open the editor to create the file containing the following code:

function returnval = mypolyfit(XY, N)

%

% These comments will appear when the user types

% help myployfit in the Command window

% This space is intended to inform the user how to interact

% with the program, what it does and what are the input

% and output parameters

%%%

% mypolyfit performs the Least Square Error

% fit of polynomial of order N

%

% x vs y - data found is [:,2] matrix XY

%

% It returns the vector of N + 1 coefficients

% starting from the constant term

%%%

% Applied Optimization with MATLAB Programming

% P. Venkataraman

% Second Edition, John Wiley and Sons.

%%

%

for i = 1:N+1

a(i) = 0.0; % initialize the coefficient to zero

% this will be returned if there are

% insufficient data points

end

sz = size(XY); % find the number of data points

NDATA = sz(1,1); % number of data points

if NDATA == 0

1.2 INTRODUCTION TO MATLAB 43

fprintf('Error: There is no data to fit');

returnval = a; % zero value returned

return; % return back to calling program

end

% the fprintf prints formatted information to the screen

if NDATA < N

fprintf('Too few data points for good fit');

fprintf('\nError: Returned without execution');

returnval = a; % zero value returned

return

end

%%

% The processing starts here.

% The coefficients are obtained as solution to

% the Linear Algebra problem

% [A][c] = [b]

% Matrix [A] is the Normal Matrix

% Please consult any refernce on Numerical Analysis

%%%

for i = 1:N+1;

% set up the right hand side

b(i) = 0.0;

for m = 1:NDATA; % loop over all data points

b(i) = b(i) + XY(m,2)*XY(m,1)^(i-1);

end % loop m

% set up the normal matrix

for j = 1:N+1;

if j >= i

power = (i-1) + (j-1);

A(i,j) = 0.0; % initialize

for k = 1:NDATA; % sum over data points

A(i,j) = A(i,j) + XY(k,1)^power;

end % k loop

end % close if statement

A(j,i) = A(i,j); % exploiting Matrix symmetry

end % end j loop

end % end i loop

% if the x-points are distinct then inverse is not a

% problem. Otherwise debug the matrix [A]

returnval = inv(A)*b';

44 INTRODUCTION

Save the file as mypolyfit.m . To use the function we will use the following
script file ScriptPolyfit.m .

% ScriptPolyfit.m

%

% This is a script file for the running mypolyfit.m

% Chapter 1. Section 1.2.5 Creating a Code Snippet

%

%%%

% Applied Optimization with MATLAB Programming

% P. Venkataraman

% Second Edition, John Wiley and Sons.

%%

% The script will:

%

% create x - y data (a polynomial of order 3)

%

% calls mypolyfit function to obtain coefficients

%

% Compares the original and fitted data on a plot

%

% calculates the error

%

% Also saves the data in an existing directory

%

clear % clear all values - clean start

clc % position cursos at the top of the screen

format compact % print single spacing on the screen

% default is double spacing

% Examine the help available with mypolyfit that you set up

help mypolyfit

% create data points for fitting

for i = 1: 20;

x = i/20;

XY(i,1) = x;

XY(i,2) = 2 + 3.0*x - x*x - 3*x^3;

end

coeff = mypolyfit(XY,3)' % prints the coefficients on

% the screen

% a cubic polynomial was deliberately created to

% check the results. You should get back

1.2 INTRODUCTION TO MATLAB 45

% the coefficients you used to generate the curve

% this is a good test of the program

% MATLAB provides a function called polyval that

% will evaluate the polynomial. However to use it we must

% reverse the coefficient vector. We cam use the

% MATLAB function "fliplr" on the coefficient

% vector

cflip = fliplr(coeff) % flip the coefficient vector

yfit = polyval(cflip,XY(:,1)); % values of y at the

% same x values

error = sum((yfit - XY(:,2)).^2);

% sum of the square of the difference between

% fitted value and original value

% NOTE: element by element operator .^

% Plot the original data and the fitted data

plot(XY(:,1),XY(:,2),'ro',XY(:,1),yfit,'b-');

% original data is red circles

% fitted data is the blue line

xlabel('x'); % label x axis

ylabel('y'); % label y axis

legend('Original data','fitted data'); % the legend

text(0.1,1.2,strcat('Error squared =',num2str(error)));

% drop a piece of text at the location x = 0.1, y = 1.2

% the text will combine the string'Error squared" and

% the error value after converting it into a string

title('Using function mypolyfit.m');

save C:\OptBook\Chapter1\XY.dat XY -ascii -double

% (] (line continued from above)

% this will save the values of XY in the file XY.dat

% as ascii text file in double precision values in the

% directory

% C:\OptBook\Chapter1\
% Be sure to create the directory before you run this

% script

This concludes the exercise where a function was written to calculate the
coefficients of the polynomial used to fit a curve to some x-y data. The type of
file is the function m-file. It needs to be used in a certain way. The code was
tested using a cubic polynomial using data generated by a cubic polynomial so
the same coefficients are obtained if the code is correct. A plot is used to compare
the results. The error is printed on the plot.

46 INTRODUCTION

1.2.7 Creating a Program

This section introduces some user interface elements that you can use as part
of your programs. This section is optional and can be considered as advanced
programming. If you were a C++ programmer you would be doing this after
many months of experience. It is included here to illustrate that it is not difficult,
even for those starting out programming in MATLAB, to think about incorporat-
ing advanced resources available in MATLAB. In this section, we will essentially
be performing the same calculations as in the last section, including calling
mypolyfit.m. We will develop a program that will read x-y data, curvefit
the data using a polynomial, and compare the original and fitted data graphi-
cally. There are several ways for you or the users to interact with the code you
develop. The basic method is to prompt users for information at the prompt
in then Command window. This is the quickest. This is probably what you
will use when developing the code. Once the code has been tested, depending
on usefulness it might be relevant to consider using more sophisticated custom
elements like input boxes and file selection boxes. The book will continue to
use these elements throughout as appropriate. While the input elements used in
this code are new commands, the program will mostly use commands that have
been introduced earlier. In sequential order, the events in this program are as
follows:

1. To read the x-y data saved earlier using a file selection box
2. To read the order of fit using an input dialog box
3. To use the mypolyfit function developed in the last section to obtain the

coefficients
4. To obtain the coordinates of the fitted curve
5. To graphically compare the original and fitted data
6. To report on the fitted accuracy on the figure itself. The new script file will

be called prog_pfit.m.

Start the text editor to create the file called prog_pfit.m. In it, enter the
following code:

% Program for fitting a polynomial curve to xy data

% Name: prog_fit.m (a script file)

%%%

% Applied Optimization with MATLAB Programming

% P. Venkataraman

% Second Edition, John Wiley and Sons.

%%

%

% Chapter 1, Section 1.2.6

% The program looks for a file with two column ascii data

1.2 INTRODUCTION TO MATLAB 47

% with extension .dat. The order of the curve is obtained

% from user. The original and fitted data are compared with

% relevant information displayed on the same figure.

% The program demonstrates the use of the file selection

% box, an input dialog box, creating special text strings

% and displaying them

clear % clear all values - clean start

clc % position cursos at the top of the screen

format compact % print single spacing on the screen

% default is double spacing

[file,path] =uigetfile('*.dat','All Files');

% uigetfile opens a file selection box

% checkout help uigetfile

% the string variable file will hold the filename

% the string variable path will have the path information

% open the file saved in the last session

if isstr(file) % if a file is selected

loadpathfile = ['load ',path file];

% creates a string that will be evaluated using eval

% loadpathfile is a string variable concatenated with

% three strings "load ", path and file

% note the space after load is important

eval(loadpathfile)

% evaluates the string enclosed -

% It executes Matlab load command. This will import the

% xy-data

% the data will be available in the workspace as a

% variable with the same name as the filename without

% the extension (this assumes you selected the xy-data

% using the file selection box)

% XY matrix is avaiable in the workspace

NDATA = length(XY(:,1)); % number of data points

clear path loadpathfile

% we will not need these variables

% get rid of these variables to free memory

end % if statement

% Use of an input dialog box to get the order

% of polynomial to be fitted

PROMPT = {'Enter the Order of the Curve'};

48 INTRODUCTION

% PROMPT is a string Array with one element

% note the curly brackets

TITLE = 'Order of the Polynomial to be Fitted';

% a string variable

LINENO = 1; % a data variable

% lets get the value of order of polynomial to

% be fitted from the user

NS = inputdlg(PROMPT, TITLE, LINENO);

% the input dialog captures the user input in NS

% NS is a string Array

% check help input dialog for more information

N = str2num(NS{1,1});

% the string is converted to a number- the order

clear PROMPT TITLE LINENO % deleting variables

% call function mypolyfit and obtain the coefficients

coeff = mypolyfit(XY,N);

% generate the fitted curve and obtain the squared error

% Here is another (inefficient) way to evaluate

% the y values of fit and the error

err2 = 0.0;

for i = 1:NDATA % for each data point

for j = 1:N + 1

a(1,j) = XY(i,1)^(j-1);

end

y(i) = a*coeff; % the data for the fitted curve

err2 = err2 + (XY(i,2) -y(i))*(XY(i,2)-y(i));

% the square error

end

% plotting

plot (XY(:,1),XY(:,2),'ro',XY(:,1),y,'b-');

% original data are red o's

% fitted data is blue solid line

xlabel('x');

ylabel('y');

% create strings using available information

% for the title

strorder = setstr(num2str(N));

% convert the order of curve to a string

1.2 INTRODUCTION TO MATLAB 49

% setstr assigns the string to strorder

titlestr = ['Polynomial curvefit of order ',strorder, . . .

' of file ', file];

% the three dots at the end are continuation marks

% the title will have the order and the file name

title(titlestr)

legend('original data', 'fitted data');

% you should see the same plot as in the previous exercise

errstr1 = num2str(err2);

errstr2 = ['squared error = ', errstr1];

gtext(errstr2);

% this places the string errstr2 which is obtained

% by combining the string 'squared error' with

% the string representing the value of the error,

% wherever the mouse is clicked on the plot.

% moving the mouse over the figure you should

% see location cross-hairs

clear strorder titlestr errstr1 errstr2 a y x i j

clear NDATA NS coeff XY file err2

% This finishes the exercise

Run the program by first running MATLAB in the directory where these files
are, or adding the path to locate the files. At the command prompt, type prog pfit .
The program should execute, require interactions, and display a figure similar to
Figure 1.10. The appearance may be slightly different, depending on the platform
MATLAB is being run.

This finishes the MATLAB section of the chapter. The section has introduced
MATLAB in a robust manner. A broad range of programming experience has been
initiated in this chapter. All new commands have been identified with a brief
explanation in the comments. It is important that you use the opportunity to
type in the code yourself. That is the only way the use of MATLAB will become
familiar. The practice also will lead to fewer syntax errors. The writing of code
will significantly improve the ability to debug and troubleshoot. Although this
section has maintained a separate section on the use of MATLAB in different ways,
subsequent chapters will see an integration of the use of various resources that
MATLAB contains.

1.2.8 Application Bibliography

The following listing is a small sample of titles that explore in greater detail, the
spread of the application of optimization to new areas. All of books appeared in
the period between the two editions of this book.

50 INTRODUCTION

Figure 1.10 Original and fitted data.

Allstot, David James, Kiyong Choi, Lenn Schramm, and Jinho Park, Parasitic-Aware
Optimization of CMOS RF Circuits . New York: Springer, 2003.

Baldick, Ross, Applied Optimization: Formulation and Algorithms for Engineering Sys-
tems . London: Cambridge University Press, 2006, 786 pages.

Bellingham, Richard and Russell J. Campanello, “HR Optimization: From Personnel
Administration to Human and Organizational Capital Development,” HRD Products ,
2004.

Biegler, Lorentz T., Large-Scale Pde-Constrained Optimization. New York: Springer,
2003.

Craven, Bruce Desmond, M. Sardar, and N. Islam, Optimization in Economics and
Finance: Some Advances in Nonlinear, Dynamic, Multicriteria and Stochastic Meth-
ods . New York: Springer, 2005.

Dorigo, Marco and Thomas Stutzle, Ant Colony Optimization . Boston: MIT Press,
2004.

Du, Ding-Zhu, Combinatorial Optimization in Communication Networks . New York:
Springer, 2006.

Fullér, Róbert, and Christer Carlsson, Fuzzy Reasoning in Decision Making and Opti-
mization . New York: Springer, 2002.

Hartmann, Alexander K. and Rieger Heiko, New Optimization Algorithms in Physics .
Hoboken, NJ: Wiley-VCH, 2004.

Laporte, Emmanuel and Patrick Le Tallec, Numerical Methods in Sensitivity Analysis
and Shape Optimization . New York: Springer, 2003, 216 pages.

Leondes, Cornelius T., “Methods in Diagnosis Optimization,” World Scientific. 2005.
Lu, Bing, Sachin S. Sapatnekar, and Dingzhu Du, Layout Optimization in VLSI Design .

New York: Springer, 2001.

PROBLEMS 51

Momoh, James A., Electric Power System Applications of Optimization. Marcel Dekker,
2001.

Narayan, S. Rau, Optimization Principles: Practical Applications to the Operation and
Markets of the Electric. Power Industry . Hoboken, NJ: Wiley-IEEE, 2003, 360 pages

Pardalos, Panos M. and Christodoulos A. Floudas, Optimization in Computational
Chemistry and Molecular Biology: Local and Global Approaches . New York:
Springer, 2000.

Putman, Richard E., Industrial Energy Systems: Analysis, Optimization, and Control ,
ASME Press, 2004.

Ralf Korn, Elke, Option Pricing and Portfolio Optimization: Modern Methods of Finan-
cial Mathematics . American Mathematical Society, 2001.

Rhyder, Robert F., Manufacturing Process Design and Optimization . Marcel Dekker,
1997.

Torres, Nāestor V. and Eberhard O. Voit, Pathway Analysis and Optimization in
Metabolic Engineering , London: Cambridge University Press, 2002.

Vofs, Stefan, Stefan Voss, and David L. Woodruff, Introduction to Computational
Optimization Models for a Production Planning in a Supply Chain. New York:
Springer, 2006.

PROBLEMS

Many problems here were defined by students in my course on optimization as
part of their projects. (For problems 1.1 to 1.5 please use your imagination
for domain knowledge.)

1.1 Identify several possible optimization problems related to an automobile.
For each problem, identify all the disciplines that will help establish the
mathematical model.

1.2 Identify several possible optimization problems related to an aircraft. For
each problem, identify all the disciplines that will help establish the math-
ematical model.

1.3 Identify several possible optimization problems related to a ship. For each
problem, identify all the disciplines that will help establish the mathemat-
ical model.

1.4 Identify several possible optimization problems related to a microsystem
used for control. For each problem, identify all the disciplines that will
help establish the mathematical model.

1.5 Define a problem with respect to your investment in the stock market.
Describe the nature of the mathematical model.

1.6 Define the problem and establish the mathematical model for the I-beam,
holding up an independent single family home. Assume a single beam in
the middle of the basement parallel to the long side of the house.

1.7 Define the mathematical model for an optimum overhanging traffic light.
Decide what you want to optimize. Define your parameters. (See
Figure Problem 1.7.)

52 INTRODUCTION

Figure Problem 1.7

1.8 Define the problem and identify a mathematical model for scheduling
and optimization of your daily routine activity. Plan around six routine
activities. Associate each with cost. Identify a couple of constraints. Keep
the model linear.

1.9 Define the problem for a laminar flow in a pipe for maximum heat transfer
driven given a specific pump.

1.10 Define a chemical engineering problem to mix various mixtures based on
ingredients of limited availability to meet specified demands.

1.11 Find the rectangle of the largest area that can fit within an ellipse of
semi-major axis a and semi-minor axis b. Set up the optimization problem,
Make any assumptions you need. Refer to Figure Problem 1.11.

1.12 Find the circle of the largest area in a semi-ellipse (right of the y-axis)
with semi-major axis a and semi-minor axis b. Set up the optimization
problem, Make any assumptions you need (Figure Problem 1.12.)

1.13 Find the quadratic polynomial between the limits x = 0 and x = 3, enclos-
ing minimum area with x-axis, with a slope of 3 at x = 0 and a slope of
−1 at x = 3. Set up the optimization problem.

1.14 Consider a beam with given material properties (E and I), known
cross-section area (A), and of length L. Design the triangular load
distribution spread over the entire length of the beam, with the total

y

x

b

a

(x, y)

Figure Problem 1.11

PROBLEMS 53

y

xa

b

Figure Problem 1.12

W (area)

E, I

d

Figure Problem 1.14

load of W , which will cause the least deflection of the end. (See
Figure Problem 1.14.)

1.15 The energy crisis of 2008 is forcing the gas company to consider ways to
provide short time relief to consumers by trying to use the same infras-
tructure, with minor modification like a new pump, to increase the flow of
gas from the wells. The gas flows from the wells to the utilities through
large pipes with pumping stations placed at equidistant locations (L). The
pressure difference between two pumping stations can be considered to be
p1 − p2. Figure (Problem 1.15) illustrates the layout and the cross-section
description. The volume flow rate Q (cubic feet/hr) can be calculated as:

Q = 1350D2.5
(

p1 − p2

LG

)0.5

Where D is the diameter of the pipe; G is the specific gravity of the gas
(dimensionless); L is the pipe length (yards); p1 is the inlet pressure (in
of H2O); p2 is the outlet pressure (in of H2O); This simple equation is
accredited to Dr. Pole in 1851 (Ref: www.psig.org/papers/2000/0012.pdf).
However, for any cross section of the flow/pipe (see figure), if the out-
side pressure is ignored, the tangential and radial stresses are calculated

54 INTRODUCTION

a

Q D

a L

pumping
stations

section a-a

P1 P2
ro

po

pi

r i

Figure Problem 1.15

(Shigley, Mischke, Budynas, Mechanical Engineering Design) as:

σt = pir
2
i

r2
o − r2

i

(
1 + r2

o

r2

)

σr = pir
2
i

r2
o − r2

i

(
1 − r2

o

r2

)

Note that σt > σr and σt is maximum at ri , set up an optimization prob-
lem for increasing the flow rate. Identify parameters for the problem based
on existing infrastructure (use the library or internet) and make suitable
assumptions.

1.16 A thin-walled spherical gas container (radius: r , thickness: t) is required
to be designed for an internal pressure of 5 MPa. Find the smallest mass of
the container if the factor of safety is 3 and the material used is structural
steel. The stresses in the thin-walled structure can be evaluated as follows:

σ(normal) = pr

2t
; τ(shear) = pr

4t

Set up the optimization problem in standard format.
1.17 A closed-end, thin-walled cylindrical pressure vessel is to be designed for

minimum mass. It should contain at least 25 m3 of gas at a pressure of
3.5 MPa. The circumferential/hoop stress is not to exceed 210 MPa, while
the circumferential strain is not to exceed 0.001. The material is structural
steel. The design variables are inside radius r and thickness t . Draw the
figure expressing the problem. Take the maximum hoop stress as follows:

σt |max = p(2r + t)

2t

Set up the optimization problem in standard format.

PROBLEMS 55

1.18 A chrome vanadium spring (G = 79.3 GPa; ρ = 7,860 kg/m3), of mini-
mum mass is needed to carry a uniform pressure load p = 250 kPa acting
over a diaphragm of diameter of 0.1 m as shown in Figure Problem 1.18
giving a compressive load of F . The maximum shearing stress is 1.5 GPa.
The maximum compression of the spring is 0.1 m. The surge frequency
should be 60 Hz or higher to avoid resonance. The solid length of the
spring (compressed fully) must be larger than L = 40 mm because of the
block. The spring is fully compressed when carrying the load. The design
variables are n the number of coils; d the spring wire diameter, D the
mean diameter of the spring. The outer limits on the spring are 0.1m. We
define three relations before assembling the constraints.

C = D

d
; spring index

k = Gd4

8D3(n − 2)
; spring constant

K = (4C + 2)

(4C − 3)
; Bergsträsser factor

The constraint equations are

nd ≥ 0.04; d + D ≤ 0.1

KF 2D

πkd3
≤ 1.5 GPa (shear stress)

F 2D3(n − 2)

kd4G
≤ 0.1m (maximum compression)

0.1 m

p

diaphragm

d-wire

block L

D

Figure Problem 1.18

56 INTRODUCTION

d

2πD2(n − 2)

√
G

2ρ
≥ 60 Hz; (surge frequency)

And the side constraints:

4 ≤ n ≤ 12; 0.06 ≤ D ≤ 0.09[m]; 0.001 ≤ d ≤ 0.012[m]

Set up the optimization problem in the standard format.
1.19 Bellville springs, or conical disc springs, can handle large loads in tight

spaces. Linear, regressive, and progressive load-deflection characteristics
can be designed through stacking (SAE Spring Design Manual , Trans-
actions SAE, 1990). They have nonlinear load-deflection and load-stress
characteristics. A single spring is used in the following problem and the
geometry is defined in the Figure (Problem 1.19). There are four design
variables: Di , Do , h, t . The assumptions in the following development
are: the angle α is small; cross-section do not warp throughout the range
of deflection; fully elastic behavior during deflection; maximum stress at
the inside joint as shown in the Figure Problem 1.19 (Almen and Lazlo,
The Uniform—Section Disc, Transactions of ASME, 1936). The functions
involved in the problem are:

W = ρπt

(
Do + Di

2

) √

h2 +
(

Do − Di

2

)2

(Weight)

Almen and Lazlo define the load-deflection and stress-deflection formulas
for the spring as

P = Ey

(1 − ν2)M(Do/2)2
[(h − y/2)(h − y)t + t3]

S = Eh

(1 − ν2)M(Do/2)2
[C1(h/2) + C2t]

Bellville Spring

Di

Do

max stress
region

α h

t

Figure Problem 1.19 Bellville spring optimization.

PROBLEMS 57

P is the axial load (lb); y is the deflection (inches); E is the modulus
of elasticity (psi); S is the maximum tensile stress (psi); ρ is the specif
weinght (lb/in3); ν is the Poisson’s ratio. The values for M , C1, C2 can
be calculated by

M = 6.0

π ln
Do

Di

[
Do/Di − 1

Do/Di

]

C1 = 6.0

π ln
Do

Di

[
Do/Di − 1

ln(Do/Di)
− 1

]

C2 = 6.0

π ln
Do

Di

[
Do/Di − 1

2

]

Set up an optimization problem for minimum weight, with a capacity of
generating an axial load of at least 200 lb for a deflection of 0.08 in. The
stress must be less than the tensile stress of the material. Take the factor of
safety as 2.2. The range of Do is between 3 in and 10 in. Use appropriate
side constraints for the other variables. Choose a material too.

1.20 This is a variation on Example 1.2. Rectangular planks of any cross-section
dimensions a and b can be nailed to construct an I-beam like that in
Figure Problem 1.20. The nail spacing is 4 in. The wood is Douglas fir
(E = 1.6 106 psi, G = 0.6 106 psi, ν = 0.33, γ = 0.016 ib/in3). Find the
allowable tensile and shear stress for design. Consider the load of 500 lb
being carried at the end of 48 in. It is cantilevered at the other end. Design
the beam of minimum weight. The maximum load is at the fixed end. The
shear in the nails is limited to 100 lb. Develop the mathematical model.
You can follow Example 1.2, except that the shear stress constraint is
replaced by the shear in the nail. The shear force in the nail is the shear
flow at the junction, multiplied by the nail spacing.

a

a nails

a

b

b
b

Figure Problem 1.20

58 INTRODUCTION

1.21 What is the smallest gear ratio (rC /rB) for the transmission shafts in
Figure Problem 1.21 if shear stress in AB and AC are less than 1,200 psi,
and the twist of the end D must be less than 0.16 rad. The length of the
shaft AB is 12 inches and its diameter is 0.25 in. The length of the shaft
CD is 24 inches and its diameter is 0.12 in. Use your own additional
information if required.

1.22 In July, Venkat’s Fruit Orchard usually sees a scheduling problem. Both
cherries and blueberries ripen around the same time. A cartload of cherries
sells for $2,750 while the cartload of blue berries fetches $1,750. The
farm must deliver at least a half cartload of cherries and one cartload of
blueberries to the local supermarket. Three persons can pick two cartloads
of cherries in a day while one person will pick a cartload of blueberries
in the same time. Only 46 people show up for work during the day. One
cartload of cherries is contained in 4 pallets, while the same amount of
blueberries occupies 6 pallets. There are 251 pallets. Each picker is paid
$45 per day. The packaging and storage can handle, at most, 30 cartloads
per day. Set up the LP problem for the Orchard to maximize profits.

1.23 The energy crisis of 2008 is keeping the refineries very active trying to
adjust the product mix due to demand and supply. Largely, the decision is
about buying two varieties of crude oil and selling two kinds of product:
gasoline and diesel. They can buy light crude at $135 per barrel, while
heavy crude is discounted at $95 per barrel. Consider one barrel as 40
gallons. They can sell gasoline at $4.25/gallon and diesel at $4.85 a gallon.
A barrel of light crude will yield 0.5 barrels of gasoline and 0.4 barrels of
diesel. A barrel of heavy crude will yield 0.4 barrels of gasoline and 0.2
barrels of diesel. Totals supply of light crude is limited to 500,000 barrels,
while heavy crude is unlimited in supply. In a day the refinery can only
handle 2 million gallons of gasoline and 3 million gallons of diesel. Set
up the LP programming problem to maximize daily profits.

1.24 Consider the standard bridge circuit shown in Figure Problem 1.24. The
power delivered by the batteries is P b and the power consumed by the
resistors is P r . Matching the two sets up the constraint

Pb − Pr = 0

DC

A
B

LCD

dCD

dAB
LAB

Figure Problem 1.21

PROBLEMS 59

R1

R4

R2

R5

R6R3

E2

E1

i1 i2

i3

Figure Problem 1.24 A bridge circuit.

Show that the solution to the optimization problem of Minimizing P r with
respect to the currents (i1, i2, i3) and subject to the constraint will yield
the Kirchhoff’s loop equation (Donald A. Pierre, Optimization Theory with
Applications). The expression for the power is the following:

Pb = E1i1 + E2(i3 − i2)

Pr = i21R1 + (i2 − i3)
2R2 + (i1 − i3)

2R3 + (i1 − i2)
2R4 + i22R5 + i23R6

1.25 A gating circuit using a switch and two diodes is shown in Figure Problem
1.25. When the switch (S1) is open the load current iL flows through the
load RL. When the switched is closed the power (P R) is dissipated through
the resistor R. It is necessary to limit this power dissipation to Pm. The
current and the dissipated power (Donald A. Pierre, Optimization Theory
with Applications) are:

iL = V

R + RL

; PR = V 2

R

V

R

open
S1

d1
iL RL

d2

closed

Figure Problem 1.25 A gate circuit.

60 INTRODUCTION

Set up an optimization problem to maximize the load current with respect
to R and V subject to the constraint on the dissipated power.

1.26 A clipping circuit with the given input-output characteristics is shown
in the Figure Problem 1.26. For specified levels of V o1, V o2, and RL

the resistances R1, R2, and the voltage E are to be selected so that the
desired input-output characteristics must be obtained. Furthermore, the
power drain (P) from the voltage supply (E) must be as low as possible
(Donald A. Pierre, Optimization Theory with Applications). The functional
relations are:

P = (E − Vo1)
2

R2
+ V 2

o1

R1
+ V 2

o1

RL

Vo1 = R1

[
E − Vo1

R2
− Vo1

RL

]
; Vo2 = (E − Vo2)RL

R2

Obtain the relations above. Set up the optimization problem in standard
format.

1.27 The ratio of the |V 2(s)/V 1(s)| needs to be maximized for the circuit
shown in the Figure Problem 1.27. Note that s = jω. However, the ratio
of the voltages must match at two given frequencies. Hence the constraint:

∣∣∣∣
V2(jω1)

V1(jω1)

∣∣∣∣ =
∣∣∣∣
V2(jω2)

V1(jω2)

∣∣∣∣

must be satisfied. The resistances are fixed while the capacitors and induc-
tors are variables. Set up the constrained optimization problem and express
the voltage ratio as a real valued function.

1.28 Consider a plane in level flight where lift (L) is equal to weight (W) and
thrust (T) is equal drag (D). The forces are shown in Figure Problem 1.28.
The lift and drag can also be calculated from the nondimensional lift and

d1 d2

R2

RL

E

R1Vi

Vi

Vo

Vo

Vo1

Vo2

0

Figure Problem 1.26 A clipping circuit.

PROBLEMS 61

R1

R2
V2(s)

V1(s)

+

−

C1
L1

L2

C2

Figure Problem 1.27 Matching transfer function.

V

T D

L

W

Figure Problem 1.28 Aircraft in level flight.

drag coefficients (CL and CD) through

L = 1

2
ρV 2SCL; D = 1

2
ρV 2SCD

In standard design, the relation between the coefficients can be expressed
through the parabolic drag polar:

CD = CD0 + KC2
L

where ρ is the atmospheric density at the flight altitude; V is the speed of
flight; S is the reference area of the wing; CD0 is the zero lift drag; and
K is induced drag factor, all of which are constants for the flight. Find
the speed for minimum drag. See Figure Problem 1.28.

1.29 Since the shown aircraft is powered by a piston propeller engine, maybe
it is better to fly at the speed for minimum power, where the power is
calculated as

P = DV

Find the speed for minimum power.

62 INTRODUCTION

1.30 Another way of looking at Problem 1.28 is to work with the nondi-
mensional relations. A measure of aircraft performance is aerodynamic
efficiency E , which is the ratio of CL over CD . Find the maximum aero-
dynamic efficiency and the speed corresponding to this efficiency.

Problems 1.31 to 1.33 can be handled by assuming a series solution as in
Example 1.4, or using Bezier functions (Chapter 9, Chapter 11), or any other
type of parametric representation for the variables. These problems are more
naturally defined through the calculus of variation. These problems can be
postponed until those chapters if only Bezier functions are going to be used.

1.31 The problem involves designing a two-dimensional wing for minimum
drag (Miele, Theory of Optimum Aerodynamic Shapes). The linearized
theory for a 2D symmetrical wing, at zero angle of attack, at a given free
stream Mach number (M) leads to the pressure coefficient described by

Cp =
2
dy

dx√
M2 − 1

The function y(x) is the description of the airfoil upper surface, as shown
in Figure Problem 1.31. The aerodynamic drag, for a given free stream
dynamic pressure (q) can then be expressed as follows:

D = 2q

xf∫

xi

Cp

dy

dx
dx = 4q√

M2 − 1

xf∫

xi

(
dy

dx

)2

dx

From the figure

xi = 0; xf = L; yi = 0; yf = 0

Consider that the airfoil volume (A) is given, leading to the constraint

A

2
=

xf∫

xi

y(x) dx

flow
direction

y

xi xf
x

t /2

L

Figure Problem 1.31 Minimum pressure drag.

PROBLEMS 63

If the torsional stiffness (I c) of the thin-skin structure is also given, then

Ic

2
=

xf∫

xi

y2(x) dx

If the bending stiffness is prescribed (I b) is prescribed then

3Ib

2
=

xf∫

xi

y3(x) dx

Express the surface as a Bezier function and identify the optimization
problem for minimum drag subject to

a. given volume
b. given torsional stiffness
c. given bending stiffness
d. given volume and torsional stiffness
e. given volume and bending stiffness

Note that this problem suggests that using a parametric definition for the
function/trajectory we can convert problem from the calculus of variations
to design optimization problems.

1.32 Here, we set up a problem in designing a body of revolution for minimum
drag under the Newtonian pressure law as illustrated in the Figure Problem
1.32. The Newtonian pressure law in hypersonic aerodynamics is (Miele,
Theory of Optimum Aerodynamic Shapes)

Cp = 2 sin2θ

where θ is the local inclination of the body shape. Nevertheless, the func-
tional to be minimized is

I =
xf∫

xi

y(y′)3

1 + (y′)2
dx + y2

i

2
; xi = 0; xf = L; yf = d/2

body of
revolution

y(x)y

L
x

d/2
(x i, y i)

(x f, y f)

Figure Problem 1.32 Minimum pressure drag for body of revolution.

64 INTRODUCTION

Express the surface as a Bezier function and identify the optimization
problem for minimum drag.

1.33 Consider the RL circuit shown in Figure Problem 1.33. The initial time is
0. The final time T is specified. It is required to maximize the output volt-
age at the final time. There are two constraints. The first is the differential
constraint due to the circuit equation. The second is that the energy deliv-
ered over the time interval T is specified as Es . The following functional
equations can be easily derived:

vo(T) =
T∫

0

R
di

dt
dt; di

dt
= vi

L
− R

L
i; Es =

T∫

0

vii dt

For a fixed R and L, find the functions vi(t) and i(t) that will solve the
optimization problem. Represent vi(t) and i(t) as Bezier functions.

1.34 The �X� fraternity is going to capitalize on the mouth-watering pizza
sauce, accidentally created by one of its members, by organizing a weekly
fundraiser for its charities. It plans two varieties of pizza based on two
ingredients, sausage and cheese. Of course, each pizza will have the pie,
base sauce, sausage, and cheese. The ingredients are in cups for each type
of pizza. A cup of sausage costs $0.75, a cup of cheese $0.5, while a cup
of sauce is $1.00. The pie costs $0.50 each.

Pizza Sell Price Sausage Cheese Sauce

Supergooey $ 7.50 1.5 2.75 2.0
Justgooey $ 7.50 2.5 1.5 1.5

The fraternity can obtain only 120 cups of sausage, 100 cups of cheese,
and 120 cups of sauce, and any amount of pies. Find how many pizzas of
the two kinds it must sell for maximum profit.

1.35 A two-dimensional aluminum truss is shown in Figure Problem 1.35. All of
the members have the same annular cross-section. For the loading shown

L

+

−
i (t)

R
vi(t)

vo(t)

Figure Problem 1.33 A circuit problem.

PROBLEMS 65

40,000 N

100,000 N

E F

4 m 4 m

4 m 4 m 4 mB C
DA

Figure Problem 1.35 Truss Problem.

determine the truss of minimum mass. Ensure that the normal stresses are
within the elastic limit, while the truss does not fail in buckling.

1.36 A shell and tube heat exchanger is a popular device to transfer energy.
The cross-section of one is shown in Figure Problem 1.36. The diameter
of the shell (D) is specified as 0.75 m. The length of the exchanger (L) is
2.5 m. The shell is made from a plate that costs $9.50 per unit area. The
tubes are cut from stock and cost $1.25 per meter. The energy exchanged
by the device can be calculated as 0.5∗sqrt (n)∗L0.75/d0.2 kW. Here n is
the number of tubes and d is the diameter of the tube. To make sure the
tubes fit in the shell we impose an area constraint that the total area of the
tubes must be less than half the cross-sectional area of the shell. Just to be
sure, we constrain the diameter by requiring sqrt (n)∗d must be less than
the diameter of the shell. Set up an optimization problem for minimum
cost with the understanding that the heat exchanger must transfer at least
10 kW of energy.

shell

D

d

tube

Figure Problem 1.36 Heat exchange design.

1.37 Fred wants to invest his $100,000 in four mutual funds whose holdings and
return is shown in the Table Problem 1.37. He wants his choice to reflect
a growth strategy that requires that he has at least 60 percent invested in
domestic stocks, at most 20 percent in international stock, and wants his
exposure to real estate to be at most 10 percent. How should he invest his
money for maximum return?

66 INTRODUCTION

Table Problem 1.37

Mutual Domestic International Bonds Real Expected
Fund Stocks Stocks Estate Return

F1 0.2 0.6 0.2 0.0 6 %
F2 0.6 0.1 0.3 0.1 3 %
F3 0.4 0.5 0.0 0.1 4 %
F4 0.5 0.1 0.1 0.3 1 %

1.38 The four-bar link is shown in Figure Problem 1.38. Find the link length
L1 and L2 to maximize the velocity at D when θ is 90o and ω is 50 rad/s.
Use reasonable side constraints.

1.39 Solve Problem 1.38 with a constraint on acceleration while the angular
velocity ω is increasing at a rate of 2 rad/sec2.

1.40 The local Pizza Shoppe wants to create a template it can use to cut three
different sizes of the pie base each time it rolls out the rectangular area of
the dough as shown in Figure Problem 1.40. The Shoppe is experimenting
with metric pizzas to combat obesity. The three sizes are grande (R1 =
0.2 m), medium (R2 = 0.15 m), and personal (R3 = 0.1 m). Set up an
optimization problem for locating the three bases (one each) such that
there is the least wastage.

D

C

A B
0.3 m

0.1 m

q

wL1

L2

Figure Problem 1.38 Four bar linkage.

0.22 m

0.44 m

y

R2 R1

R3

x

Figure Problem 1.40 Pizza base problem.

