PART 1

SOFTWARE ARCHITECTURES

EVOLUTION OF SOFTWARE
COMPOSITION MECHANISMS:
A SURVEY

Carlo Ghezzi and Filippo Pacifici

1.1. INTRODUCTION

In engineering, developing a system always implies designing its structure, by providing
a proper decomposition into separate parts and relationships among them. This approach
allows engineers to address the complexity of a system by applying a divide-and-
conquer approach—that is, by recursively focusing on limited subsystems and on the
interaction between them.

In this setting, it is possible to identify two phases: the definition of the behavior of
single parts and the composition of parts. Composition is the way the whole system is
constructed by binding components together. In this phase, engineers focus on how
the relations among parts are established, rather than on the specific internal structure
or behavior of the components.

Software systems evolved from small and monolithic systems to increasingly large
and distributed systems. Accordingly, composition gained greater importance because
soon software engineers realized that software development could not be considered
as a one-person, monolithic task. Instead, software systems had to be described as
complex structures, obtained through careful application of specific composition
mechanisms.

Software composition can be analyzed along two directions: process and product
architecture. From a process viewpoint, composition has to do with the way software

Emerging Methods, Technologies, and Process Management in Software Engineering. Edited by
De Lucia, Ferrucci, Tortora, and Tucci
Copyright © 2008 John Wiley & Sons, Inc.

4 EVOLUTION OF SOFTWARE COMPOSITION MECHANISMS: A SURVEY

development is structured in terms of work units and organizations. From a product
architecture viewpoint, it refers to the way products are structured in terms of com-
ponents and their connections.

This chapter focuses on the evolution of software composition principles and
mechanisms over the past decades. The evolution has been consistently in the direction
of increasing flexibility: from static to dynamic and from centralized to decentralized
software compositions. For example, at the code level, there has been an evolution
from monolithic program structures to functional and then object-oriented program
decompositions. At a more abstract and higher level, software architectures evolved
from tightly coupled and structured composites, as in the case of multi-tier architec-
tures, to decentralized, peer-to-peer composites. In a similar way, software processes
evolved from fixed, sequential, and monolithic to agile, iterative, and decentralized
workflows (9).

This chapter surveys several concepts from software engineering and puts them in a
historical perspective. It can be considered as a tutorial on software composition.

This chapter is organized as follows. Section 1.2 provides some basic foundational
concepts for software composition. Sections 1.3 and 1.4 set the stage by discussing when
the problem of software composition originated and how it was initially tackled. Section
1.5 focuses on some milestone contributions to concepts, methods, and techniques sup-
porting design of evolvable software. Section 1.6 is about the current stage. It argues that
our main challenge is to write evolvable software that lives in an open world. It identifies
where the main challenges are and outlines some possible research directions.

1.2. BASIC CONCEPTS

The concept of binding (21) is a recurring key to understanding software composition
at the code and architecture level. Binding is the establishment of a relationship
among elements that form a structure. Binding time is the time at which such a
relationship is established. For example, these concepts may be used to describe
the semantic properties of programming languages, which may differ in the policy
adopted to bind variables to their type, subclasses to their superclasses, function invo-
cations to function definitions, or executable code to virtual machines. At an architec-
tural level, a server may be bound to several clients. Typical binding times are: design
time, translation time, deployment time, and run time. A design-time binding is, for
example, an association that links a class in a UML class diagram to its parent class.
A translation-time binding is established when the source description is processed.’
For example, there are languages that bind variables to their type and function
calls to function definitions at translation time. Object-oriented languages perform
the binding at run time. Likewise, there are cases where the binding between a
certain executable program unit and the node of distributed system on which it is

"We use this term instead of the most common, but more restricted, term “compile-time” to also include other
languages processing aspects like link/load and preprocessing.

1.2. BASIC CONCEPTS 5

executed is set at deployment time; in other cases, it is set at run time to support
system reconfiguration.

Another important orthogonal concept is binding stability. A binding is static if it
cannot vary after being established; otherwise, it is dynamic. In most cases, design-
time, translation-time, and deployment-time bindings are static and run-time bindings
are dynamic, although there are exceptions. The key difference is thus between pre-
run-time binding and run-time binding: Run-time binding adds much flexibility to the
system with respect to pre-run-time binding because of the change policies it can be
based upon. In the case of dynamic binding, one may further distinguish between expli-
cit and automatic binding. In the former case, for example, the user asks the system to
change a binding and specifies the new component that has to be bound, while in the
second case the system has some autonomy in deciding when the binding has to be
changed and is provided with mechanisms to find the new element to be bound. In prac-
tice, there is a spectrum of possible solutions that stay in between fully dynamic run-time
binding and static pre-run-time binding.

These concepts may also be applied at process level, to describe or specify how
software development is organized. For example, one may bind people to specific
roles (such as tester) in an almost static way, or this can change as process development
proceeds. Similarly, a development phase (such as detail design may be required
to be completed before the next phase (coding) can be started. In this case,
the binding between a phase and the next is established through a predefined,
sequential control flow. Alternatively, one may organize the two phases as finer-grain
concurrent steps.

Binding characterization is useful to understand the evolution of the software, both
in the way engineers develop software and in the way they structure the architecture of
applications. This evolution brought software systems from static, centralized, and
monolithic structures, where bindings were defined at design time and frozen during
the whole system life cycle, to modular, dynamic, and decentralized designs and
design process, where bindings define loosely coupled structures, can change without
stopping the system, and can cross interorganizational borders.

It is worthwhile to try to identify the ultimate sources and driving forces of this
evolution. Advances in software technology are of course an endogenous force.
Indeed, modern languages and design methods provide support for dynamic bindings
and continuous change. However, the demand for dynamism and evolution mainly orig-
inates in the environment in which software systems live. The boundaries between the
software system and the external environment are subject to continuous change. We
have used the term open-world software to describe this concept (7). In the early days
of software development, a closed-world assumption was made. It assumed that the
requirements specifying the border between environment and systems to develop were
sufficiently stable and they could be fully elicited in advance, before starting design
and development. As we will illustrate in the rest of this chapter, this assumption
proved to be wrong. Software increasingly lives in an open world, where the boundaries
with the real world change continuously, even as the software is executing. This
demands change management policies that can support dynamic evolution through
run-time bindings.

6 EVOLUTION OF SOFTWARE COMPOSITION MECHANISMS: A SURVEY

1.3. EARLY DAYS

Up to the 1960s,” software development was mainly a single-person task; the problem to
be solved was well understood, and often the developer was also the expected user of the
resulting application. Thus, often there was no distinction between developers and users.
The problems to solve were mainly of a mathematical nature, and the programmers had
the needed mathematical background to understand the problem being solved. Programs
were relatively simple, compared to today’s standards, and were developed by using
low-level languages, without any tool support. As for process, engineers did not
follow any systematic development model, but rather proceeded through continuous
code and fix—that is, an iteration of the activities of writing code and fixing it to elim-
inate errors.

Soon this approach proved to be inadequate, due to (a) the growing complexity of
software systems and (b) the need for applying computing not only to scientific problems
but also to other domains, like business administration and process control, where pro-
blems were less understood.

At the beginning of the 1970s, after software engineering was recognized as a
crucial scientific topic (8, 31), the waterfall development process was developed (38)
as a reference process model for software engineers. It was an attempt to bring discipline
and predictability to software development. It specified a sequential, phased workflow
where a requirements elicitation phase is followed by a design phase, followed by a
coding phase, and finally by a validation phase. The proposed process model was
fixed and static: The decomposition into phases and the binding between one phase
and the next were precisely defined. The conditions for exiting a phase and entering
the next were also precisely formulated, with the goal of making any rework on pre-
viously completed phases unnecessary, and even forbidden. The underlying motivation
was that rework—that is, later changes in the software—was perceived as detrimental
to quality, responsible for high development costs, and responsible for late time to
market. This led to investing efforts in the elicitation, specification, and analysis of
the needed requirements, which had to be frozen before development of the entire
application could start.

This approach made very strong implicit assumptions about the world in which the
software was going to be embedded. This world was assumed to be static; that is,
the system’s requirements were assumed not to change. The problem was just to elicit
the requirements right, so that they could be fully specified prior to development.
Completely and precisely specified requirements would ensure that that no need for soft-
ware changes would arise during development and after delivery.

Another assumption was that the organizations in which the software had to be used
had a monolithic structure. Companies were isolated entities with centralized operations
and management. Communication and coordination among different companies were
limited and not crucial for their business. Centralized solutions were therefore natural
in this setting.

2For a short history of software engineering, the reader can refer to reference 22.

1.4. ACHIEVING FLEXIBILITY 7

Based on these assumptions and on the software technology available at the time,
engineers developed monolithic software systems to be run on mainframes. Even
though the size of the application required several people to share the development
effort, little attention was put on the modular structure of the application. Separately
developed functions were in any case bound together at translation time, and no features
were available to support change in the running application. To make a change, the
system had to be put in offline mode, the source code had to be modified, each
module had to be recompiled, rebound, and redeployed. Because little or no attention
was put on the modular structure, changes were difficult to make and their effect was
often unpredictable.

1.4. ACHIEVING FLEXIBILITY

The need to accommodate change and software evolution asked for more flexible
approaches. It became clear that in most practical circumstances, system requirements
cannot be fully gathered upfront, because sometimes customers do not know in
advance what they actually require. If they do, requirements are then likely to change,
maybe before an application that satisfies their initial specification has been developed
completely. This of course questions the implicit assumptions on which the waterfall
model is based. Moreover, software architectures turned out to be difficult to modify,
because the tight coupling among the various parts made it impossible to isolate the
effect of changes to restricted portions of the application. Seemingly minor changes
could have a global effect that disrupted the integrity of the whole system.

Finally, the evolution of business organizations also asked for more flexibility. The
structure of monolithic and centralized organizations evolved toward more dynamic
aggregates of autonomous and decentralized units. Software development processes
also changed, because off-the-shelf components and frameworks became progressively
available. Software development became distributed and decentralized over different
organizations: component developers and system integrators.

In the sequel we discuss the major steps and the landmark contributions on the road
that led to increasing levels of flexibility.

1.4.1. Design for Change

A first conceptual contribution toward supporting evolution of software systems was
the principle of design for change and the definition of techniques supporting it.
Parnas (35-37) suggested that software designers should pay much attention in the
requirements phase to understand the future changes a system is likely to undergo. If
changes can be anticipated, design should try to achieve a structure where the effect
of change is isolated within restricted parts of the system. Examples of possible
changes to be taken into account are: changes in the algorithms that are used for a
specific task; changes in data representation; and changes in the specific devices used
by a program, such as sensors or actuators, with which the system interacts.

8 EVOLUTION OF SOFTWARE COMPOSITION MECHANISMS: A SURVEY

Parnas elaborated a design technique, called information hiding, through which an
application is decomposed into modules, where the major sources of anticipated require-
ments changes are encapsulated and hidden as module secrets and unaccessible to other
modules. A clear separation between module interface and module implementation
decouples the stable design decisions concerning the use of a module by other
modules from the changeable parts that are hidden inside it. Module clients are unaf-
fected by changes as long as changes do not affect the interface. This great design prin-
ciple enables separation of concerns, a key principle that supports multi-person design,
and software evolution.

Information hiding allows the design of a large system to be decomposed in a series
of modules, each of which has an interface separated from the implementation. If the
binding between interface and implementation is established statically at translation
time, interfaces can be statically checked for consistency both against their implemen-
tation and against their use from client modules. Static checks prevent faults from
remaining undetected in running systems.

The concepts of information hiding and interface versus implementation were incor-
porated in programming languages and supported separate development and separate
compilation of units in large systems (39). As an example, let us consider the Ada pro-
gramming language, which was designed in the late 1970s. Ada modules (21), called
packages, support information hiding and separate compilation of interfaces and
implementations. Once an interface is defined and compiled, both its implementation
and its client modules’ implementation can be compiled. In general, a unit can be
compiled if all the modules it depends on have already been compiled. This allows
the compiler to perform static type checking among the various units (see Fig. 1.1).

Interface type Interface
checking
Cﬂ;n Opdour}g;wt C(O rrr'nnopc?ur}g?t
i Implementation
type Implementation
checking

Interface

Interface
Camponent Component
{module} {mcpdule)
Implementation Implementation

Figure 1.1. Structure of a modularized program.

1.4. ACHIEVING FLEXIBILITY 9

There are many examples of languages that provide, at least in part, similar features.
For example, in C programs it is possible, though not mandatory, to separate the declara-
tions of function prototypes from the implementation and to place them in different files
(from the implementation). In this way it is possible to define the interface exported by a
module, though it is not possible to specify exactly which functions a module imports
from another one.

Although changes are conceptually facilitated if they can be isolated within
module implementations, the resulting implementation structure is fixed. All bindings
are resolved prior to run time and cannot change dynamically. To make a change,
the entire application has to be moved back to design time, changes are made
and checked by the translation process, and then the system is restarted in the
new configuration.

1.4.2. Object-Oriented Languages

The direct way information hiding was embedded into modular languages provided only
a limited support to software evolution and flexible composition of software systems.
Object-oriented design techniques and programming languages provided a further
major step in this direction. Object orientation aims at providing improved support to
modularization and incremental development; it also supports dynamic change.

According to object-oriented design, a software system is decomposed into classes,
which encapsulate data and operations and define new abstract data types, whose oper-
ations are exported through the class interface. A major contribution of object-oriented
languages is that the binding between an operation requested by a client module and the
implementation provided by a server module can change dynamically at run time. This is
a fundamental feature to support software evolution in a flexible manner. Moreover, most
object-oriented languages provide it in a way that retains the safety of static type
checking (21).

As an example, consider an application, in the field of logistics, that tracks contain-
ers. The operations available on a container allow its users to load an item into the con-
tainer, to get the list of contained items, and to associate the container with a carrier. The
carrier may be a train or a truck where the container is loaded for transportation, or it may
be the parking area where the container is temporarily stored. The container provides an
operation to get its geographical position, which is implemented by asking its carrier to
provide it. A parking area has a fixed position, while the truck and the train have their
own way of providing the position dynamically. Consider an evolution of the system
where containers are equipped with a GPS antenna that can be used to provide their pos-
ition. This can be implemented as a change in the implementation of the get_position()
operation, which now uses the data provided by the GPS instead of asking its carrier.
A client that uses a container would be unaffected by this new way of implementing
the operation: An invocation of get_position() would be automatically redirected to
the redefined operation (Fig. 1.2).

In general, given a class that defines an abstract data type, it is possible to define
changes by means of a subclass. A subclass is statically bound to the originating
class (its parent class) through the inheritance relation. A subclass, in turn, may have

10 EVOLUTION OF SOFTWARE COMPOSITION MECHANISMS: A SURVEY

Contalner
Container ct = new Container();
ct.getPosition(); +getPosition()
binding extension
¢t = any0bj.getContainer();
t. Positi ;
ct.getPosition() [ContainerWithGPS
— qefl’osiﬁonl]
binding +initGPS()

Figure 1.2. At run time we can’t be sure on what version of a method will be called.

subclasses; this generates a hierarchy of classes. A subclass may add new features to its
parent class (such as new operations) and/or redefine existing operations. Adding new
operations does not affect preexisting clients of the class, because clients may continue
to ignore them. Redefining an operation is also guaranteed not to affect clients if certain
constraints are enforced by the programming language, as in the case of Java. The key
composition features that support evolution are polymorphism and dynamic binding.
With polymorphism, it is possible to define variables that may refer to different
classes; that is, the binding between a variable and the class of the object it refers to
is set at run time. These variables (called polymorphic variables) are defined as a refer-
ence to a class, and they can refer to objects of any of its subclasses. In other words, the
static type of a variable is defined by the class it refers to in the variable’s declaration. Its
dynamic type is determined by the class of the object it currently refers to. The dynamic
type can be defined by any subclass of the class that defines the static type. With dynamic
binding, the operation invoked on an object is determined by the class that defines its
dynamic type.

The flexibility ensured by dynamic binding may raise type safety problems: Since
the invoked operation cannot be determined at compile time, how can one be sure that it
will be correctly called at run time? Most object-oriented languages, including Java,
retain the benefits of type safety in the context of dynamic binding by restricting the
way a method may be redefined in a subclass. Because type checking is performed at
compile time by considering the static type of a variable, a possible solution consists
of constraining a redefinition not to change the interface of the method being redefined.’
Software composition can thus be type checked statically even if bindings among objects
may change dynamically at run time.

1.4.3. Components and Distribution

Off-the-shelf components (41) became progressively available to software developers.
This asked for changes in the methods used to design applications: The traditional domi-
nant design approaches based on top-down decomposition were at least partly replaced
by bottom-up integration. With the advent of off-the-shelf components, process devel-
opment became decentralized, since different organizations at different times are in

3References 11 and 27 provide a thorough analysis of these issues and give general criteria for type safety.

1.4. ACHIEVING FLEXIBILITY 1

charge of different parts of a system. This has clear advantages in terms of efficiency
of the development process, which can proceed at a higher speed, since large portions
of the solution are supported by reusable components. Decentralized responsibilities
also imply less control over the whole system, because no single organization is in
charge of it. For example, the evolution of components to incorporate new features or
replace existing features is not under control of the system integrator.

Components are often part of a system that is distributed over different machines.
Indeed, distribution has been another major step in the evolution of software compo-
sition. With distribution, the binding between a component and the virtual machine
that executes it becomes an important design decision. The requirement to distribute
an application over different nodes of a network often comes from the need to reflect
a distributed organization for which the application is developed. Often, however, the
binding of functions to nodes can be ignored during system development and can be
delayed to deployment time.

In a distributed system, the binding among components is performed by the middle-
ware (18). Java RMI (28) is a well-known example of a middleware that supports client—
server architectures by means of remote method invocations (Fig. 1.3). A Java object can
be accessed by a remote machine as if it were executed on the same machine. The client
invokes methods as if it was invoking them on a local object. The RMI middleware rea-
lizes the binding by marshaling the request and then sending it via TCP/IP. Then the
server unmarshals the request, executes the method, and sends back the result in the
same way. CORBA (33) is another middleware that supports distributed components
written in different programming languages.

Different binding policies may be adopted to support distribution. One possibility is
to perform a static deployment-time binding between a component and a virtual
machine. Alternatively, one may think of dynamically binding a component to a
virtual machine at run time. This is the case of dynamic system reconfiguration,

interface =
RemoteObject
Iclgica_l . CIIentDb]ec (C "'_WTW
description
physical
description
client object remote object
i
? -
Qinterface é interface
stub stub
‘ A
ITm:*ket_l [socket]

Figure 1.3. Distinction between logical and physical description with Java RMI.

12 EVOLUTION OF SOFTWARE COMPOSITION MECHANISMS: A SURVEY

whose purpose is to try to achieve better tuning of the reliability and performance of a
distributed application by rebinding components to network nodes at run time.

1.5. SOFTWARE COMPOSITION IN THE OPEN WORLD

As we discussed, software development evolved toward flexible and decentralized
approaches to support continuous requirements evolution. This was achieved by
trying to anticipate change as far as possible, as well as by shielding large portions of
an existing application from certain kinds of changes occurring in other parts. This
approach continues to be a key design principle that software engineers should
master. However, the speed of evolution is now reaching unprecedented levels: The
boundary between the systems to develop and the real world they interact with
changes continuously. In some cases, changes cannot be anticipated; they occur as the
system is executing, and the running system must be able to react to them in some mean-
ingful manner. Earlier we called this an open-world scenario.

Open world scenarios occur in emerging application areas, like ambient intelligence
(17) and pervasive computing (40). In these frameworks, computational nodes are
mobile and the physical topology of the system changes dynamically. The logical struc-
ture (i.e., software composition) is also required to change to support location-aware
services. For example, if a person equipped with a PDA or a phone moves around in
a building and issues a command to print a document, the binding should be dynami-
cally redirected to the driver of the physically closest printer.

Location-aware binding is just a case of the more abstract concept of context-aware
binding. In the case of ambient intelligence, context information may be provided by
sensors. As an example, an outdoor light sensor may indicate daylight; a request for
more light in a room may be bound to a software module that sends signals to an actuator
that opens the shutters. Conversely, outdoor dark conditions would cause binding the
request to switching the electric light on. Other examples of context-aware binding
may take into account the current status of the user who interacts with the environment.

New enterprise-level applications are also subject to continuously changing require-
ments. Emerging enterprise models are based on the notion of networked organizations
that dynamically federate their behaviors to achieve their business goals. Goal-oriented
federated organizations may be supported by dynamic software compositions at the
information system level. In this case, the composition of the distributed software is
made out of elements owned and run by different organizations. Each individual organ-
ization exposes fragments of its information system that offer services of possible use for
others; and, in turn, it may exploit the services offered by others. The binding between a
requested and a provided service may change dynamically.

Moving toward these scenarios requires both new software composition mechan-
isms and new levels of autonomy in the behavior of the systems, which should be
able to self-adapt to changes by reorganizing their internal structure. This implies that
composition mechanisms should be self-healing; and, more generally, they should be
based on monitoring and optimizing the overall quality of service, which may vary
over time due to changes in the environment.

1.5. SOFTWARE COMPOSITION IN THE OPEN WORLD 13

The rest of this section describes some examples of composition mechanisms
that aim at a high degree of decoupling and dynamism to cope with open-world
requirements.

1.5.1. Global Coordination Spaces

A middleware can provide a Global Coordination Space (GCS, Fig. 1.4), through which
components may interact with one another and coordinate their behaviors in a highly
decoupled manner. The GCS acts as a mediator. Each component participating in the
architecture may produce data of possible interest for other components. However, com-
ponents do not interact directly to coordinate and exchange the data. Coordination and
data exchange are mediated by the GCS. Thus, data producers have no explicit knowl-
edge of the target consumers, nor have they any direct binding with one another. The
mediator acts as an intermediary between producers and consumers of the data.

There are two main kinds of architectures based on GCSs: publish—subscribe
architectures and tuple—space architectures. Both of them allow the system to be very
dynamic since components can come and go without requiring any system reconfigura-
tion and without requiring changes that affect the components that are already part of the
architecture. Communication here is intrinsically asynchronous since producers send
their data to the mediator and continue to execute without waiting for the target
consumers to handle them.

Publish—Subscribe Systems. Publish—Subscribe (PS) systems (19) support a
GCS where components may publish events, which are delivered to all the components
that registered an interest in them through a subscription. The middleware thus provides
facilities for components to register their interest in certain events, via a subscription, and
to be notified when events of interest for the component are generated. The GCS, here an
event dispatcher, is a logically global facility, but of course it may be implemented as a
fully distributed middleware infrastructure. Many examples of PS middlewares have
been described in the literature (13, 14, 16, 25). Some of them are industrial products,
others are research prototypes providing advanced features. Some have a centralized

Global Coordination Space

A A
N Y A 4
compenent component component

Figure 1.4. Global Coordination Spaces.

14 EVOLUTION OF SOFTWARE COMPOSITION MECHANISMS: A SURVEY

dispatcher; others have a distributed dispatcher. They may also differ both in the func-
tionality they provide and in the quality of service they support. Regarding functionality,
they may differ in the kinds of events they may generate and in the way subscriptions
may be specified. For example, it is possible to distinguish between content-based
and subject-based (or topic-based) PS systems. In the former case, an event is an
object with certain attributes on which subscriptions may predicate. For example, an
event may signal the availability of a new flight connecting two cities (Milano and
Chicago) starting from a certain date (e.g., December, 1) and at a certain fare (e.g.,
400 EUROs). A subscription may state an interest in flight information about flights
from, say, Madrid to Dublin at a low fare (below 70 EUROs). In a topic-based PS
system, instead, events are indivisible entities. For example, an event would be generated
by an airline (say, for example, Alitalia) when a new flight announcement is published.
Thus, for example, we might have “Alitalia” or “Continental” or “United” events. The
events in this case do not carry a value.

Tuple-Space Systems. Tuple—Space (TS) systems support coordination via per-
sistent store: The GCS provides features to store and retrieve persistent data. This coordi-
nation style was pioneered by Linda (12). Linda supports persistent data in the form of
tuples. Tuples may be written into the tuple space; they can also be read (nondestruc-
tively) and deleted. Read and delete operations specify a tuple via a template. The tem-
plate is used to select a tuple via pattern matching. If the match procedure identifies more
than one tuple, one is chosen nondeterministically. If none match, the component that
issued the read or the delete remains suspended until a matching tuple is inserted in
the tuple space.

Many variations of the original Linda approach have been implemented by TS-
based middleware, such as Javaspaces (20). There are also implementations, such as
Lime (29), that fit the requirements of mobile distributed systems even more closely.

PS and TS systems have similar goals. Both aim at providing flexible support to
distributed and dynamic software architectures. PS middleware is more lightweight:
Persistence may be added as a service, but it is not directly supported as a native feature.

1.5.2. Service-Oriented Architectures

GCSs support decoupling and dynamism by removing any direct binding between
sources and targets of a message. Service-Oriented Architectures (SOAs) (34) reach
similar goals by providing facilities that allow components to register their availability
and the functions they perform, and support discovery of the components that can
perform the requested functions. Once it has been discovered, a component can be
used remotely through direct binding. In principle, registration, discovery, and binding
can be performed dynamically at run time.

SOAs are composed mainly of three types of components (Fig. 1.5): service consu-
mer, service provider, and service broker. The service provider provides a service. The
service is described through a specification (which we may assume to consist roughly of
its interface description). The provider advertises the presence of the service to the

1.5. SOFTWARE COMPOSITION IN THE OPEN WORLD 15

Service
2) query Broker 1) advertise

3] service
reference

\//

4) invoke

Service
Producer

Service
Consumer

Figure 1.5. Service-oriented architecture.

broker, which maintains a link to the service and stores its interface. The consumer who
needs a service must submit a request to a broker, providing a specification of the
requested service. By querying the broker for a service, it gets back a link to a provider.
From this point on, the consumer uses the operations offered by the provider by commu-
nicating with it directly.

SOAs provide a nice solution in the cases where complex interactions are needed
between loosely coupled elements and where the requirements are subject to changes,
thus requiring fast and continuous system reorganizations. Earlier we mentioned the
example of ubiquitous mobile applications, where the discovery phase may be per-
formed dynamically to identify the available local facilities to bind to, as the physical
location changes during execution. We also mentioned the case of information
systems for networked enterprises—that is, dynamic enterprise federations that are
formed to respond to changing business opportunities. In this case, each organization
participating in the federation exports certain functionalities, which grant a controlled
access to internal application. In turn, it may use services offered by others and possibly
choose among the different providers that provide similar services, based on some expli-
cit notion of requested and offered quality of service.

Many middleware solutions exist which implement support for SOAs—for
example, JINI network technology (43) or OSGI (3). At the enterprise level, Web ser-
vices (4), and the rich set of standard solutions that accompany them, are emerging as
a very promising approach, not only in the research area but also among practitioners.

IBM (43) defines a Web service as

... anew breed of Web application. They are self-contained, self-describing, modular appli-
cations that can be published, located, and invoked across the Web. Web services perform
functions, which can be anything from simple requests to complicated business processes.
... Once a Web service is deployed, other applications (and other Web services) can dis-
cover and invoke the deployed service. . ..

Web service (WS) technology offers a big advantage over other service-oriented
technologies in that it aims at making interoperation between different platforms easy.
This is particularly useful in an open-world environment, where it is impossible to

16 EVOLUTION OF SOFTWARE COMPOSITION MECHANISMS: A SURVEY

force all the actors to adopt a specific technology to develop their systems. WS technol-
ogy consists of a set of standards that specify the communication protocols and the inter-
faces exported by services, without imposing constraints on the internal implementation
of the services. Conversely, other solutions, like Jini, are based on Java both for the com-
munication and for the implementation of services. Interoperability allows a seamless
integration of the web service solutions developed by different enterprises.

Communication among Web services is based on the Simple Object Access
Protocol [SOAP (10)], which describes the syntax of messages that can be exchanged
in the form of function calls. It is an XML-based protocol and interaction is usually per-
formed over the http protocol, thus allowing a less intrusive intervention in information
systems to export services. After discovery, once the binding between a service consu-
mer and a service provider is established, communication is achieved by sending a
message through the SOAP protocol.

Services can be seen as an evolution of off-the-shelf components. Both implement
functions of possible use and value for others; both go in the direction decentralized
developments, since the organization in charge of developing the off-the-shelf com-
ponent or the service is, in general, different from the organization that uses them. In
both cases, this has obvious advantages (reduced development time, possible enhanced
reliability), but also possible disadvantages (dependency on other parties for future evol-
utions) over complete in-house developments. The main difference between services and
off-the-shelf components is that the latter become part of the application and are exe-
cuted in the application’s domain. Services, on the other hand, are owned and run by
the provider. Another difference concerns the composition mechanisms. In the case of
services, the choice of possible targets for a binding and the establishment of the
binding can be performed dynamically at run time.

The most striking difference, however, is in the degree of control and trust. Off-the-
shelf components cannot change after they become part of the application, unless they
are explicitly replaced by the owner of the application. On the other hand, services are
owned by the providers, who control their evolution. Thus services can change unex-
pectedly for the users.

Although web services are becoming a real practical approach to evolvable system
architectures, many problems are still to be solved before they can be applied in open
environments or in the case where systems have to meet stringent dependability require-
ments. The next section outlines the main challenges that must be met by architectures
supporting dynamic software compositions in general, and in particular by SOAs.

1.6. CHALLENGES AND FUTURE WORK

We discussed a number of existing and promising approaches supporting software com-
position in the open world. As we observed, as solutions become more dynamic and
decentralized, many problems have to be solved to reach the necessary degree of depend-
ability that is required in practice. In this section, we try to identify where the main pro-
blems are and possible research directions. Some of these are new problems; many have
always been with us and are just getting more difficult in the new setting.

1.6. CHALLENGES AND FUTURE WORK 17

Challenge 1: Understand the External World. Requirements have always
been a crucial problem for software engineers (32, 42). Eliciting and specifying them
in continuous change conditions is even harder. In the case of pervasive systems, it is
often required that solutions are highly adaptable. For example, support to elderly or
physically impaired people in their homes requires developing solutions that can be
adapted and personalized to the specific needs of their expected users. At the business
level, the requirements of federated enterprises need to be properly captured to
support their interoperation. It is important to identify what should be exposed as
service for others and what should be kept and protected as proprietary. Easy and
dynamic integration is then necessary to capture business opportunities quickly.
Although this is a research topic in business organization, software engineers should
be aware of these trends. They should be able to capture the requirements of dynamic
organizations and shape architectural solutions accordingly.

Challenge 2: Software Process Support. Business organizations are increas-
ingly agile in the way they respond to business opportunities. Software development
must also proceed in an agile fashion, to provide fast solutions to achieve competitive
advantages and reduced time to market. It is still an open issue as to how agile develop-
ment methods can comply with the high dependability standards that may be required by
the applications. Problems become even harder because development teams are increas-
ingly distributed and autonomous (1, 9, 24). How can standardized practices be
enforced? What are the key drivers of productivity? How can process quality be
defined and measured?

Challenge 3: Service Specification. The continuous evolution toward services
that can be developed and then published for use by other parties makes it necessary to
provide a specification for the service that possible users may understand. Software
specification has been and still is an active research area. The need for precise module
specifications that client modules could use dates back to reference 35. The problem,
however, is crucial in the case of services, because of the sharp separation between pro-
vider and user and because specifications need to be a stronger and enforceable contrac-
tual document. Being a contract, the specification must provide a precise statement that
goes beyond a purely syntactic interface definition and even beyond a mere definition of
functionality. It must also state the quality of service (QoS) assured by the service.
Specifications should be searchable. They should be stated in terms of shared ontologies
(2). Finally, they should be composable; that is, it should be possible to derive the spe-
cification of a composition of services whose specifications are known.

Challenge 4: Programming and Composition. We described different para-
digms for dynamic service composition, such as PS, TS, and SOAs. Coordination
among components range from orchestrated compositions, where a workflow coordi-
nates the invocation of services, once they have been discovered and bound, to choreo-
graphed compositions, like in a PS or TS style, where services must comply with a
common protocol of exchanged messages and proceed in a peer-to-peer fashion (26,
30). How can different composition mechanisms be integrated in programming

18 EVOLUTION OF SOFTWARE COMPOSITION MECHANISMS: A SURVEY

language? How can such language support a full range of flexible binding mechanisms,
from static and pre-run time to fully dynamic? How can binding policies include nego-
tiation and even rebinding strategies in case of deviations from a stated target for service
quality? How can self-healing or even self-organizing behaviors arise through proper
compositions?

Challenge 5: Trust and Verification. Services are developed and run in their
own domains. Service users have no control over them; they do not have access to
their internals. If services can only be bound at translation or at deployment time, and
no change occurs afterwards, then applications can undergo traditional verification
and validation procedure. But in the case of dynamic binding, and because service
implementations may change in an unannounced manner, traditional approaches fail.
Verification and validation must extend to run time. Continuous service monitoring
(6) must ensure that deviations from the expected QoS is detected, and proper reactions
are put in place. In general, one must be able to find ways to make the service world as
dependable and secure as required by the requirements. Building sufficiently dependable
and secure systems out of low-trust services is a major challenge.

Challenge 6: Consistency. In a closed-world environment, a correct application
is always in a consistent state with the environment. In an open-world setting, environ-
ment changes trigger changes in the software and generate inconsistencies.
Inconsistency management has been recognized as problematic by many researchers
in the past (5, 15, 23). It is necessary to deal with it in the case of dynamically evolvable
systems.

This is just a short list of important challenges that should be part of the future
agenda of software engineering research, By no means should the list be viewed as
exhaustive. It just focuses on some of the problems our group is currently working
on. Progress in these and other related areas is needed to continue to improve the
quality of software applications in the new emerging domains.

ACKNOWLEDGMENTS

This work has been influenced by the experience gained in the National project ART
DECO and the EU funded project SeCSE.

Elisabetta Di Nitto and Luciano Baresi helped develop our view of software
composition.

REFERENCES

1. Flexible and distributed software processes: Old petunias in new bowls?
2. Owl specification. http://www.w3.org/TR /owl-ref/.

3. OSGI Alliance. OSGI Service Platform: Release 3, March 2003. 10S Press, Amsterdam,
2003.

REFERENCES 19

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

G. Alonso, H. Kuno, F. Casati, and V. Machiraju. Web Services: Concepts, Architectures and
Applications. Springer, Berlin, 2004.

. R. Balzer. Tolerating inconsistency. In Proceedings of the 13th International Conference on

Software Engineering, pages 158—165, 1991.

. L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services. In Proceedings of

the 2nd International Conference on Service Oriented Computing, pages 193-202, 2004.

. L. Baresi, E. Di Nitto, and C. Ghezzi. Toward open-world software: Issue and challenges.

IEEE Computer 39(10):36-43, 2006.

. F. L. Bauer, L. Bolliet, and H. J. Helms. Report on a Conference Sponsored by the NATO

Science Committee. In NATO Software Engineering Conference 1968, page 8.

. B. W. Boehm and R. Turner. Balancing Agility and Discipline: A Guide for the Perplexed.

Addison-Wesley, Reading, MA, 2004.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, HF Nielsen, S. Thatte, and
D. Winer. Simple Object Access Protocol (SOAP) 1.1.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. ACM
Computing Surveys (CSUR) 17(4):471-523, 1985.

N. Carriero and D. Gelernter. Linda in context. Communications of the ACM 32(4):444 458,
1989.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and expressiveness in
an Internet-scale event notification service. In Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing, pages 219-227, 2000.

G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its appli-
cation to the development of the OPSS WEFMS. IEEE Transactions on Software
Engineering 27(9):827-850, 2001.

G. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi. A framework for formalizing inconsis-
tencies and deviations in human-centered systems. ACM Transactions on Software
Engineering and Methodology 5(3):191-230, 1996.

G. Cugola and G. P. Picco. REDS: A Reconfigurable Dispatching System. Technical report,
Politecnico di Milano, 2005.

K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. C. Burgelma. Scenarios for
ambient intelligence in 2010 (ISTAG 2001 Final Report). IPTS, Seville, 2000.

W. Emmerich Engineering Distributed Objects. John Wiley & Sons, New York, 2000.

P. T. H. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec. The many faces of
publish/subscribe. ACM Computing Surveys 35(2):114—131, 2003.

E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley Longman Ltd., Essex, UK, 1999.

C. Ghezzi and M. Jazayeri. Programming Language Concepts. John Wiley & Sons,
New York, 1997.

C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering. Prentice-
Hall, Englewood Cliffs, NJ, 2003.

C. Ghezzi and B. A. Nuseibeh. Special issue on managing inconsistency in software develop-
ment. I[EEE Transactions on Software Engineering 24(11):906-907, 1998.

J. D. Herbsleb and D. Moitra. Global software development. Software, IEEE 18(2):16-20,
2001.

Tibco Inc. TIB/Rendezvous White Paper, 1999.

20

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

EVOLUTION OF SOFTWARE COMPOSITION MECHANISMS: A SURVEY

N. Kavantzas, D. Burdett, and G. Ritzinger. WSCDL: Web Service Choreography
Description Language, 2004.

B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems (TOPLAS) 16(6):1811-1841, 1994.

Sun Microsystems. Java Remote Method Invocation Specification, 2002.

A. L. Murphy, G. P. Picco, and G. C. Roman. Lime: A Middleware for Physical and Logical
Mobility. In Proceedings of the 21st International Conference on Distributed Computing
Systems, pages 524—533, 2001.

N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration
conformance for system design. In Proceedings of Sth International Conference on
Coordination Models and Languages (COORDINATIONO6) LCNS 4038, pages 63—81, 2006.
P. Naur, B. Randell, and J. N. Buxton. Software Engineering: Concepts and Techniques:
Proceedings of the NATO Conferences. Petrocelli/Charter, New York, 1976.

B. Nuseibeh and S. Easterbrook. Requirements engineering: A roadmap. In Proceedings of
the Conference on The Future of Software Engineering, pages 35—46, 2000.

R. Orfali and D. Harkey. Client/Server Programming with Java and CORBA. John Wiley &
Sons, New York, 1998.

M. Papazoglou and D. Georgakopoulos. Service-oriented computing: Introduction.
Communications of ACM 46(10):24-28, 2003.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12):1053—-1058, 1972.

D. L. Parnas. On the design and development of program families. /[EEE Transactions on
Software Engineering 2(1):1-9, 1976.

D. L. Parnas. Designing software for ease of extension and contraction. In Proceedings of the
3rd International Conference on Software Engineering, pages 264—-277, 1978.

W. W. Royce. Managing the Development of Large Software Systems. In Proceedings of
IEEE WESCON, pages 1-9, 1970.

B. G. Ryder, M. L. Soffa, and M. Burnett. The impact of software engineering research on
modern programming languages. ACM Transactions on Software Engineering and
Methodology (TOSEM) 14(4):431-477, 2005.

M. Satyanarayanan. Pervasive computing: Vision and challenges. Personal Communications,
IEEE [see also IEEE Wireless Communications] 8(4):10-17, 2001.

C. Szyperski. Component Oriented Programming. Springer, Berlin, 1998.

A. van Lamsweerde. Requirements Engineering in the Year 00: A Research Perspective.
In Proceedings of the 22nd International Conference on Software Engineering, pages
5-19, 2000.

J. Waldo. Jini architecture for network-centric computing. Communications of the ACM
42(7):76-82, 1999.

