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Introduction

Our aim is to provide an introduction to symbolic data and how such data can be
analyzed. Classical data on p random variables are represented by a single point in
p-dimensional space �p. In contrast, symbolic data with measurements on p random
variables are p-dimensional hypercubes (or hyperrectangles) in �p, or a Cartesian
product of p distributions, broadly defined. The ‘hypercube’ would be a familiar
four-sided rectangle if, for example, p = 2 and the two random variables take values
over an interval �a1� b1� and �a2� b2�, say, respectively. In this case, the observed data
value is the rectangle R = �a1� b1�×�a2� b2� with vertices �a1� a2�� �a2� b2�� �b1� a2�,
and �b1� b2�. However, the p = 2 dimensional hypercube need not be a rectangle; it
is simply a space in the plane. A classical value as a single point is a special case.
Instead of an interval, observations can take values that are lists, e.g., {good, fair}
with one or more different values in the list. Or, the observation can be a histogram.
Indeed, there are many possible formats for symbolic data. Basic descriptions of
symbolic data, the types of symbolic data, how they contrast with classical data,
how they arise, and their inherent internal properties are covered in Chapter 2,
before going on to specific analytic methodologies in the chapters that follow.

At the outset, however, it is observed that a symbolic observation in general
has an internal variation. For example, an individual whose observed value of a
random variable is �a� b�� a �= b, is interpreted as taking (several) values across that
interval. (This is not to be confused with uncertainty or impression when the variable
takes a (single) value in that interval with some level of uncertainty.) Unless stated
otherwise, this interpretation applies throughout this volume. Analogous arguments
apply for other types of symbolic data. A classical observation with its single point
value perforce has no internal variation, and so analyses deal with variation between
observations only. In contrast, symbolic data deal with the internal variation of each
observation plus the variation between observations.
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2 INTRODUCTION

Symbolic data arise in a variety of different ways. Some data are inherently
symbolic. For example, if the random variable of interest is ‘Color’ and the popu-
lation is ‘Species of birds’, then any one realization for a given species can take
several possible colors from the set of all colors, e.g., a magpie has colors {white,
black}. An all-black bird is not a magpie, it is a different kind of bird. A different
kind of species, not a magpie, may be such that some birds are all white, some all
black, or some both black and white. In that case, the possible colors are {white,
black, white and black}. Or, it may not be possible to give the exact cost of an
apple (or shirt, or product, or � � � ) but only its cost that takes values in the range
[16, 24] cents (say). We note also that an interval cost of [16, 24] differs from that
of [18, 22] even though these two intervals both have the same midpoint value of
20. A classical analysis using the same midpoint (20) would lose the fact that these
are two differently valued realizations with different internal variations.

In another direction, an insurance company may have a database of hundreds
(or millions) of entries each relating to one transaction for an individual, with each
entry recording a variety of demographic, family history, medical measurements,
and the like. However, the insurer may not be interested in any one entry per se
but rather is interested in a given individual (Colin, say). In this case, all those
single entries relating to Colin are aggregated to produce the collective data values
for Colin. The new database relating to Colin, Mary, etc., will perforce contain
symbolic-valued observations. For example, it is extremely unlikely that Mary
always weighed 125 pounds, but rather that her weight took values over the interval
[123, 129], say. Or, in a different scenario, when a supermarket keeps track of the
sales of its products, it is not really interested in the sale of any one item (e.g., my
purchase of bread yesterday) but more interested in the variation of its sales of
bread (or cheese, or meat, or � � � ) in a given period. It may also be interested
in patterns of purchases, e.g., are the two products bread and butter often bought
at the same time? Likewise, a drug company is interested in the overall patterns
of purchases of certain medications rather than Frank’s particular use; a hospital
wants to track different types of patient ailments; an automotive insurance company
is less interested in a single car accident but more interested in car accidents of
different driver demographic categories, or of different types of vehicles. Rather
than focusing on a single DNA sequence, a geneticist may be interested in tracking
the occurrences of a particular amino acid in a protein chain instead of one single
DNA sequence. For example, CCU, CCC, CCA, and CCG all code for proline;
similarly, GCU, GCC, GCA, and GCG code for alanine.

In all these and similar situations, there is a basic concept of interest, in effect
a second level of observations, whose values are obtained by aggregation over the
observations for those individuals (at a first level) who constitute the descriptor
of that concept. By ‘aggregation’, it is meant the collection of individuals who
satisfy the descriptor of interest. For example, suppose the variable is farm acreage,
and Drew and Calvin have acreages of 7.1 and 8.4, respectively, both in the
northeast region. Then, if the concept of interest is acreage of farms in the northeast,
aggregating Drew and Calvin produces an acreage of [7.1,8.4]. How aggregation
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is implemented is discussed in Chapter 2. We note that the original dataset may
itself contain symbolic data. The aggregated dataset, however, will almost certainly
contain symbolic data regardless of whether the first-level entries are classical or
symbolic values.

In these two types of settings, the original database can be small or large. A third
setting is when the original database is large, very large, such as can be generated
by contemporary computers. Yet these same computers may not have the capacity
to execute even reasonably elementary statistical analyses. For example, a computer
requires more memory to invert a matrix than is needed to store that matrix. In
these cases, aggregation of some kind is necessary even if only to reduce the dataset
to a more manageable size for subsequent analysis. There are innumerable ways
to aggregate such datasets. Clearly, it makes sense to seek answers to reasonable
scientific questions (such as those illustrated in the previous paragraphs) and to
aggregate accordingly. As before, any such aggregation will perforce produce a
dataset of symbolic values.

Finally, we note that the aggregation procedures adopted and their emergent
symbolic datasets are not necessarily obtained from clustering procedures. However,
standard (classical, and indeed also symbolic) clustering methods do produce clus-
ters of observations whose values when summarized for the respective random vari-
ables are symbolic in nature (unless the analyst chooses to use classical summaries
such as average values, which values as we shall see do not retain as much infor-
mation as do the symbolic counterparts).

Chapter 3 presents methodologies for obtaining basic descriptive statistics
for one random variable whose values are symbolic valued such as intervals,
namely, a histogram and its empirical probability distribution relative, along with
the empirical mean and variance. Descriptive statistics are extended to p = 2
dimensions in Chapter 4. A key feature in these calculations is the need to
recognize that each observation has its own internal variation, which has to
be incorporated into the respective methodologies. Thus we see, for example,
that a single observation (a sample of size 1) whose value is the interval
�a� b� = �2� 8�, say, has a sample variance of 3, whereas a single classical
observation (the midpoint 5, say) has sample variance of 0. That is, the clas-
sical analysis loses some of the information contained in the datum. In both
Chapter 3 and Chapter 4, methodologies are developed for multi-valued, interval-
valued, modal multi-valued and modal interval-valued (i.e., histogram-valued)
observations.

A second distinctive feature is the presence of so-called rules. In addition to
the internal variation mentioned in the previous paragraph, there can be structural
variations especially after aggregation of a larger dataset. For example, in studying
batting performances of teams in a baseball league, the numbers of hits and at-bats
are aggregated over the players of the respective teams. While for each individual
player the number of hits would not exceed the number of at-bats, it is possible
that when aggregated by team the number of hits could exceed the number of
at-bats for some regions of the resulting hypercube. Clearly, it is necessary to add
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a rule to the team data so as to retain the fact that, for the individual players,
the number of hits does not exceed the number of at-bats (see Section 4.6 for a
more detailed discussion of this example). This type of rule is a logical dependency
rule and is designed to maintain the data integrity of the original observations.
Such rules are often necessary for symbolic data but not for classical data. On
the other hand, there are numerous rules (the list is endless) that apply equally
to classical and symbolic data, e.g., structural rules such as taxonomy and hier-
archy trees that can prevail. Special attention is paid to logical dependency rules
when calculating the basic descriptive statistics of Chapters 3 and 4. Subsequent
methodologies will by and large be described without specific detailed attention to
these rules.

Chapters 5–7 deal with principal components, regression and clustering tech-
niques, respectively. These methods are extensions of well-known classical theory
applied or extended to symbolic data. Our approach has been to assume the reader
is knowledgeable about the classical results, with the present focus on the adap-
tation to the symbolic data setting. Therefore, only minimal classical theory is
provided. Regression methodologies are provided for multi-valued data, interval-
valued data and histogram-valued data, along with methods for handling taxonomy
tree structures and hierarchy tree structures.

The work on principal components considers two methods, the vertices method
and the centers method. Both deal with interval-valued data, the former as its name
suggests focusing on the vertices of the hypercube associated with each data value,
and the latter using the midpoint center values. Principal component methods for
multi-valued and modal-valued data currently do not exist.

Clustering techniques in Chapter 7 look at partitioning, hierarchies, divisive clus-
tering, and pyramid clustering in particular. Since these methods depend on dissim-
ilarity and distance measures, the chapter begins with developing these measures
for symbolic data. Many of these measures and techniques are also extensions of
their classical counterparts. Where available, methodologies are presented for multi-
valued, interval-valued, and histogram-valued variables. In some instances, a mixed
variable case with some variables multi-valued and other variables interval-valued
is considered (usually through the well-known oils dataset).

Perhaps the most striking aspect of this catalogue of techniques is the paucity
of available methodologies for symbolic data. It is very apparent that contempo-
rary datasets will be increasingly symbolic in content. Indeed, Schweizer (1984)
has declared that ‘distributions are the numbers of the future’, and ‘distributions’
are examples of what are symbolic data. Therefore, it is imperative that suitable
techniques be developed to analyze the resulting data. In that sense the field is wide
open providing lots of opportunities for new research developments. In another
direction, while there are some methodologies presently existing, most seem intu-
itively correct, especially since results for the particular case of classical data
do indeed emerge from the symbolic analyses. However, except in rare isolated
instances, there is next to no work yet being done on establishing the mathematical
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underpinning necessary to achieve rigor in these results. Again, opportunity knocks
for those so inclined.

The attempt has been made to provide many illustrative examples throughout.
In several places, datasets have been presented with more random variables than
were actually used in the accompanying example. Those ‘other’ variables can be
used by the reader as exercises. Indeed, most datasets provided (in any one example
or section) can be analyzed using techniques developed in other sections; again
these are left as exercises for the reader.

The reader who wants to learn how to analyze symbolic data can go directly to
Chapter 3. However, Section 2.1 would serve as a introduction to the types of data
and the notation used in subsequent chapters. Also, Section 2.3 with its comparison
between classically adapted analyses of symbolic data provides some cautionary
examples that can assist in understanding the importance of using symbolic analytic
methods on symbolic data.

Symbolic data appear in numerous settings, all avenues of the sciences and social
sciences, from medical, industry and government experiments and data collection
pursuits. An extensive array of examples has been included herein drawing upon
datasets from as wide a range of applications as possible. Having said that, some
datasets are used a number of times in order to provide a coherency as well as a
comparative dialog of different methodologies eliciting different information from
the same data. In this way, a richer knowledge base of what is contained within a
dataset can be exposed, providing for a broader set of interpretations and scientific
conclusions.

The datasets used are publicly available (at http://www.stat.uga.edu/faculty/
LYNNE/Lynne.html) source references as to where they can be found are provided
(usually when they first appear in the text). All can be obtained from the authors.
As is evident to the reader/user, some examples use the entire dataset presented
in the text’s illustrations, while others use a portion of the data, be that some but
not all of the observations or some but not all of the random variables. Therefore,
the user/reader can take other portions, or indeed the complete dataset, and thence
analyze the data independently as exercises. Some are provided at the end of
each chapter. Since several of the methodologies presented can be applied to such
data, these alternative analyses can also be performed as yet another extensive
range of potential exercises. The reader might be encouraged to work through the
details of the methodology independently even if only to persuade him/herself that
the technique has been understood. The SODAS software package (available free
at http://www.ceremade.dauphine.fr/%7Etouati/sodas-pagegarde.htm) provides the
computational power for most of the methodology presented in this text.

In some sense this volume owes its origins to the review paper by Billard and
Diday (2003) and the edited volume by Bock and Diday (2000). Those publications
form initial attempts to bring together the essential essence of what symbolic data
are. The forthcoming edited volume by Diday and Noirhomme (2006) complements
the present volume in so far as it provides algorithmic and computational details of
some of the software routines in the SODAS software package.
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