
11
Introduction 1

Objectives

This chapter sets the scene by introducing the background concepts
needed to begin programming using Java.

Keywords

abstraction humour jargon

history

c01.fm Page 3 Monday, September 18, 2006 8:05 PM

CO
PYRIG

HTED
 M

ATERIA
L

4 Chapter 1: Introduction

This book, as may be inferred from the title, is about programming with Java. We assume that
you, the reader, are basically computer literate, being familiar with using a computer for tasks
such as word processing, World Wide Web browsing, etc. but have little or no programming
experience, and, in particular, little or no object-oriented programming experience. Object-oriented?
It’s the technical term for the kind of programming method that Java embodies and any
competent programmer needs to know about. This book is all about object-oriented
programming using Java.

In this chapter, we are going to set out the background information needed to give context. In
the rest of the book, we will proceed through not just a description of what Java is but, rather
more importantly, how to use it effectively and efficiently. By the end of the book, you should
be ready to write some serious and useful programs. That is one of the key reasons we wrote
this book: we want to leave readers ready to tackle real problems and get professional results.
This book is not a Java language primer but is a description of the object-oriented approach to
programming using Java.

To set the scene for those totally new to programming, we need to define a few basic terms. A
program is a (usually long and complex) series of instructions that are carried out (or executed, or
run) by a computer. The instructions define what the program does, whether it is a word
processor, spreadsheet, game, or any other kind of program. The role of the programmer is to
create, or write, programs and this is usually done using a programming language, one of which is
called Java. Application programming (sometimes termed application development) is the process of
programming in order to create a program (the application) to be used by people (end users) in
order to get something useful done. Systems programming, on the other hand, is the activity of
writing, amending or extending the operating system, which is the program that manages a
computer’s resources in order to allow applications to be run.

As can be seen from the last paragraph, talking about programming and Java involves becoming
familiar with quite a lot of technical terms and jargon. We explain the jargon as we begin to use
it but if you find that you don’t understand a particular term try looking in the Glossary
(Appendix A, page 821).

When Java first ‘hit the streets’ in late 1995–early 1996, a lot of people started to use it as a way
of creating dynamic Web content, applets. Web pages were, prior to this time, constructed using
only HTML, which did not then allow sophisticated pages to be built. In the last few years, the
whole Web content creation scene has changed dramatically with the arrival of XML, XHTML,
XSL, CSS, Flash, audio and video streaming, etc. Although in its early days Java was often
described as the World Wide Web programming language, its use changed quickly and its main
use is now as the language of first choice within server-side Web applications (servlets)—rather
than browser-side applications, applets. Also, Java, in various forms, is becoming increasingly
used in embedded systems. Traditionally, embedded systems have been written using assembly
languages or C, but the properties of Java give it a place alongside these languages (not

1.1 The Start

1.2 A (Very!) Short History of Java

c01.fm Page 4 Monday, September 18, 2006 8:05 PM

1.2 A (Very!) Short History of Java 5

replacing them). This is an interesting phenomenon since when Java was first being developed
it was intended for embedded systems. Java’s usage is coming full circle.

Given the statement that Java’s usage is coming full circle, the actual origins of Java are
interesting. The development of what we now call Java started out as work on a programming
language called Oak. Oak was designed during the early 1990s by a team of developers at Sun
Microsystems building on the object-oriented systems revolution then under way. (The name
Oak was inspired, reputedly, by a large oak tree visible from an office window.) Oak was
intended to be used for programming the embedded systems in consumer electronics devices,
with a particular emphasis on areas such as interactive cable TV control devices and electronic
home management systems. Among other features, these applications needed new kinds of
user interface, easy networking and a programming system to support system development.

As it turned out, the market for programmable control devices didn’t develop at anything like
the scale or rate originally anticipated. However, as work on Oak continued, the Internet and, in
particular, the Web exploded into widespread use. In early 1994, a decision was made to adapt
the Oak language to the needs of the Internet and provide a programming language for Web-
based applications. As Oak included many features that were relevant for the Internet
environment, including the idea of being architecturally neutral (meaning that the same program
can run on a wide variety of different machines without having to be rewritten), it was easy to
make this decision.

By January 1995, Oak had been evolved into a robust programming language suitable for
building Web-based applications and was renamed Java (mainly because the name Oak was
already in commercial use elsewhere). In May 1995 Sun released the initial Java Development
Kit (usually referred to as the JDK) via the Internet, which allowed developers all over the world
to download it and start using Java. The JDK was supported by the release of a Web browser
called HotJava, which was capable of running Java programs in the form of applets embedded
in Web pages, a feature then taken up by browsers from Microsoft and Netscape. From these
beginnings, Java became increasingly popular and is now widely supported by commercial
developers and software companies, who are busy providing development tools and many
other facilities.

Late in 1998, the Java 2 Platform was released along with Sun’s implementation of it, Java 2
Platform, Standard Edition Software Development Kit (J2SE SDK). Over the subsequent years
Sun developed the Java 2 Platform by enhancing the basic J2SE SDK and adding many additional
features to extend the environment. Some of these features were concerned with new ways of
constructing programs while others come in the form of class libraries, or as they are often
referred to, APIs (Application Programmer Interfaces). APIs provide the programmer with a wide
range of additional facilities in a ready-to-use form, saving much time and effort.

In the second half of 2004, Sun released a critical and significant evolution of the Java 2
Platform in the form of J2SE v5.0, which included generics, annotations, and various other
highly desirable features. With this release, Sun reverted to using the term JDK—J2SE
Development Kit—to label their realization of the Java 2 Platform. This evolution of Java
required a significant change in the way that people worked with Java, especially when using
and writing class libraries—which is all the time when using Java! This means that books and
programs that do not use J2SE v5.0 are ‘out of date’ and could lead people into using Java in the
wrong way. In this book we believe we present no out-of-date idioms of use of Java.

note
For a detailed history of the
development of Java, visit
Sun’s Java website at
http://java.sun.com/.

c01.fm Page 5 Monday, September 18, 2006 8:05 PM

6 Chapter 1: Introduction

An important consequence of the evolution of Java is that it has grown into a full-scale, general
development system, quite capable of being used for developing large applications that exist
outside of the browser-based Web environment. In fact, it can be used to create all kinds of
programs, with a particular emphasis on those that make extensive use of networking and
communications. As mentioned earlier, Java is now having its greatest success as a language for
developing what are known as middleware applications, which form the core component of
distributed applications running on networks. Java is also being widely adopted in universities
as a language for teaching programming. Moreover, it is now seeing use in embedded systems:
many systems, for example mobile phones, set-top boxes and other consumer products, are
now Java-enabled using a variation of the Java 2 Platform called Java 2 Platform, Micro Edition
(J2ME). Java really is now becoming the embedded systems programming language that Oak
started out to be.

One of the most notable features of Java is that it became very popular in a short space of time.
The growth of interest was spectacular and took many people by surprise. It is worth asking why.

Java is not a perfect language but it does incorporate almost all of the important, well-
established ideas about programming languages and programming methods. This was and
continues to be important, but there were a number of other factors which enabled Java to
achieve mega-stardom:

• It looks familiar to users of other popular languages, notably C, C++ and Smalltalk.
Familiarity avoids potential users seeing a new language as ‘too different’ and,
therefore, not worth the time to learn.

• It was closely connected to the Web, which was becoming very popular. This association
gave it a huge kick start.

• Programming ‘gurus’ liked it. Gurus are early adopters of new programming languages,
even if they (the languages, not the gurus) are still immature, and can have a big impact
on how quickly information about the language is disseminated.

• You can get it for free! Very important this, as it allows potential users to try out a new
language with very little start-up cost (at least, in direct financial terms).

Interestingly, this list shows that the most important thing about a new language is the social
aspect—people must want to use it because it does something they want to do now. Technical
considerations often come a distant second!

Overall, Java was launched in the right place (on the Web), at the right time (just as the Web was
getting really popular), with the right features (it is dynamic and object-oriented) and at the
right cost (free).

The name Java is typically used as a generic label encompassing the Java programming
language, the tools and environment of the development kit and all the class libraries and APIs
that are delivered as standard. To a large extent all these elements are inseparable, so learning

1.3 Being at the Right Place at the Right Time

1.4 What is Java?

c01.fm Page 6 Monday, September 18, 2006 8:05 PM

1.5 Abstraction: The Critical Core of Programming 7

about Java is learning about them all. Sometimes you hear references to the ‘Java Programming
System’ or more usually (and properly) the ‘Java 2 Platform’, emphasizing that Java is not just a
programming language on its own.

Java provides an object-oriented programming language. The chapters in Part 1 of this book will
describe what this means. For now we need only know that a programming language allows you
to express programs in a textual form, and that object-oriented development is the modern
approach to designing and building systems, which is best supported by programming
languages that embody directly the key object-oriented concepts.

Object-oriented development is now widely used as it addresses a large number of the
problems that arise during software development, providing viable and practical solutions.
This is of enormous significance as the track record for successful software development is
perceived to be very poor. This is actually something of a misconception. It is true that: there is
a lot of software that is written but never used; there have been some very high-profile failures
of software development projects; and there is a lot of software that is delivered very late and
of very poor quality. Despite this there is a large amount of very good and very reliable software
in the world. Don’t assume though that ‘being object-oriented’ is like waving a magic wand that
solves all your software development problems. What it does give you is a conceptual
framework and an approach to software development that is based on a great deal of
experience of what works best. Java embodies much of this experience and this book aims to
put that across while you learn how to use Java. In the end, though, you have to do the hard
work of learning to use Java efficiently and effectively.

So, Java is a programming language based on a particular way of doing software development.
As must be the case with any programming language, Java is defined so that programmers can
write programs and understand what they mean. The written form of a programming language
is specified by its syntax, whereas the meaning of what has been written (i.e. what the program
does) is specified by its semantics. Parts 1–4 of this book will introduce much of the syntax and
semantics of the Java programming language in the context of actually developing software,
while Part 4 presents detailed information in a more reference-like style.

Programming, and especially object-oriented programming, centres on identifying and working
with abstractions. An abstraction allows a concept or idea to be expressed and then repeatedly
used without all the detail getting in the way. As an analogy consider a chair. There are all sorts
of different kinds of chair but people learn to recognize the range of properties of what makes a
chair—‘chairness’ if you like—allowing them to deal with particular instances of chairs without
having to continually describe all the detail. Java supports the use of abstraction via the
mechanism of class and object, where a class allows the properties of an abstraction to be
expressed and objects are instances of classes allowing the abstraction to be used within a
program: objects are instances of the abstraction described by a class that can be used without
getting side-tracked by all the detail.

Many basic abstractions are widely and repeatedly used, so there is no point in having to
continually recreate them. As noted earlier, the Java system comes with an integral library of
basic abstractions in the form of a large class library. This library is intimately interconnected
with the programming language to the extent that neither can be used without the other.

1.5 Abstraction: The Critical Core of Programming

!
Programming is a learnt
skill. Practice is essential.

!
Abstraction is THE key
concept in computing.

c01.fm Page 7 Monday, September 18, 2006 8:05 PM

8 Chapter 1: Introduction

Hence, the Java programmer must not only learn a programming language but must also
become familiar with a large collection of classes. Whilst this learning task may seem very
daunting initially, the advantage of making this commitment comes from having a large
number of ready-made building blocks available when writing programs. Instead of having to
describe everything in full detail, abstractions can be used, saving much time and effort.

The use of abstractions does not stop with those that come from the standard Java library, the
programmer needs to find, learn and use other appropriate class libraries that can be added to
the development environment or, indeed, build new ones themselves. Finding and building
abstractions is the key to successful systems development, particularly object-oriented
development. Failure to use and build abstractions really misses the point and is going to lead
to poorly designed, unstable programs.

Abstractions are built up in layers. At the bottom is the programming language, next the
abstractions from the standard library, then one or more layers of abstractions provided by the
programmer. Each layer of abstraction provides a higher-level perspective on the system being
implemented. For any non-trivial program, matching the level of abstraction with the way
people think and reason about systems is critical. If the programmer is forced to deal with too
much detail at any one time, mistakes will be made and progress will grind to a halt. Using the
chair analogy again, say we are trying to describe a chair and its location in a room. Using
abstraction, we describe the chair and then, treating the chair as a whole, just name a spot in
the room where it is located. Without abstraction we have to describe where each of the parts
(legs, seat, back, etc.) is exactly in the room, hoping that we have placed the parts in such a way
that they make a complete chair. Clearly not a sensible thing to do.

Unsurprisingly then, most of this book is about abstraction. Part 1 introduces the Java
technology of class-based abstraction. Part introduces the process of creating programs, which
essentially means using and creating abstractions whilst designing the overall structure of the
program, building and putting together the pieces, and testing the result to see that it actually
works as required. Part 3 of the book presents some case studies of the design and
implementation of programs, showing the process that was followed to create them and
demonstrating how to go about using pre-existing abstractions and creating new abstractions
in the context of building a program.

To use Java and get some programming done, development tools are needed. Java is distributed
freely by Sun Microsystems as the Java 2 Platform, Standard Edition Development Kit (JDK)
which is obtained from Sun’s Java website (http://java.sun.com).

The JDK provides a set of command line tools, meaning that the tools are invoked by typing in
commands to a command interpreter (in an xterm, gnome-terminal or equivalent if using
Linux, Solaris or some other flavour of UNIX or a terminal window if using Microsoft Windows).
Many vendors supply Java integrated development environments (IDEs), with all the tools
integrated into sophisticated graphical programming environments. Since each IDE is different
and this is a book about programming rather than IDE usage, we will simply assume the use of
the standard JDK but it should be easy to use any JDK-compatible programming environment
with this book.

1.6 The Java 2 Platform

!
There is an infinite
amount of knowledge.
However much is known,
there is always more to
learn.

note
The Eclipse consortium
have released a very good
IDE which can be used for
Java development. Look at
http://www.eclipse.org/.

c01.fm Page 8 Monday, September 18, 2006 8:05 PM

1.7 Java is Architecture Neutral 9

At the time of writing this book, the current version of Sun’s Java system is J2SE v5.0. The
original version of Sun’s Java system was called the Java Development Kit (JDK) 1.0. It went
through a number of revisions and stabilized with version 1.0.2. The next major version of the
JDK was 1.1. This also went through a number of revisions, ending up at 1.1.8. With the release
of the Java 2 Platform and version 1.2, Sun changed the labelling so we had J2SE System
Development Kit v1.2 (J2SDK). There were two major revisions of the system (J2SE v1.3 and J2SE
v1.4), which continued the positive evolution of Java. Just as the next major revision was ready
to come out, Sun made the decision to change the numbering and the labelling so instead of
having J2SE SDK v1.5 we have J2SE v5.0 and a reversion to the label JDK to describe the Java 2
Platform, Standard Edition Development Kit.

Although every attempt is made for Java to be backwardly compatible so that existing programs
can still be used, there is a policy of allowing deprecation (i.e. removal) of outdated features.
Thus, programmers will occasionally encounter warnings about ‘deprecated’ features, most of
which are replaced with new features. Since a deprecated feature can be removed in the next
release of the JDK, it is wise to change code to remove the deprecated features immediately: the
good programmer never leaves deprecated features in their code.

To use the JDK, it must first be installed on your computer—following the instructions provided.
The JDK comes with an extensive set of tools and features. The core elements are:

• The Java development tools.
• The Java class libraries, organized into a collection of packages.
• A number of demonstration programs.
• Various supporting tools and components, including the source code of most of the

classes in the libraries.

A full set of documentation is available separately from the main JDK and should be installed as
a matter of priority when the JDK is installed. In particular, the documentation describes all the
classes in the class libraries, providing essential information for the programmer. The
documentation is supplied in the form of Web pages so it is easy to browse when using a
computer.

A first priority of the Java programmer is to become familiar with the main development tools.
Programs, written by the programmer in textual form, need to be transformed into a format that
can be executed by a computer. This is done by a tool called a compiler. The Java compiler
supplied in the JDK is named javac. To execute or run a Java program, a run-time environment
containing a Java interpreter is needed and this is provided by a tool called java. Another tool
called a debugger is provided for debugging programs. Debugging is the process of locating and
fixing errors in programs, something programmers tend to spend a lot of time doing, even the
good ones!

Java is a compiled language but instead of producing instructions for a specific hardware processor,
a Java compiler generates Java bytecodes. When a Java program is executed the bytecodes are
interpreted by an implementation of the Java Virtual Machine (JVM), which is an idealized
computer optimized to run Java programs. Providing a computer or workstation has an
implementation of the JVM, any Java program can be run on that machine. A Java program is a

1.7 Java is Architecture Neutral

c01.fm Page 9 Monday, September 18, 2006 8:05 PM

10 Chapter 1: Introduction

program that is run by another program, the implementation of the JVM, running on a real
processor.

A consequence of this is that a Java program can be compiled once, stored on a server,
transferred over a network to a client machine and then executed on that machine without
worrying about what kind of machine it is. A Java program is said to be architecture neutral as its
executable representation is independent of both the physical architecture of the machine and
the operating system it is running on.

These portability issues have important commercial considerations. Since a Java program can
be executed on any machine with any operating system (such as Linux, Solaris, Microsoft
Windows, etc.), as long as it has an implementation of the JVM, there is no longer any need to
be concerned about which operating system a machine is running: operating systems become
less important. Java developers do not have to worry about targeting a particular operating
system since the JVM is the platform written for.

Figure 1.1 presents an overview of the Java execution environment. At the bottom we have the
host computers that support the execution of an implementation of the JVM. At the top we have
the applications that are the programs that need to be executed using the JVM. In between we
have the Java execution system which comprises the Java Runtime Environment (JRE) and
below that the JVM itself. The Just in Time compiler (JIT) is an optional part of the JVM that can
considerably speed up execution of Java code. The JRE comprises various internal tools for
loading and verifying applications as well as the class library. The JVM not only has the bytecode
interpreter, it also has the peer interface which is used to connect Java graphics to the graphics
system of the operating system of the host computer.

The Java execution environment provides not just a Java execution engine, it provides a safe
execution environment. Every time Java code is loaded it is verified to check that it has not been
tampered with, that the compiled code is internally self-consistent and consistent with the Java
standard. Also each Java program is associated with a security manager which verifies that,

Java Applications

Java Runtime Environment
Class Loader

Bytecode Verifier
Classes

Java Virtual Machine
Bytecode Interpreter

Peer Interface

(Optional) JIT—Just In Time Compiler

PC Mac PDA
Mobile phone

Figure 1.1 Overview of the Java environment.

c01.fm Page 10 Monday, September 18, 2006 8:05 PM

1.8 Java and its Jokes 11

when executing, the program has permission to access the resources such as files and network
connections that it attempts to use. This ability to control resources available to executing
programs is crucially important as it allows untrusted programs to be downloaded and
executed with confidence that they cannot do any damage to the computer on which they are
executing.

It is reputed that the name Java is an acronym for Just Another Virtual Architecture.

Java certainly is the name of an island in the Indian Ocean that is (at the time of writing
anyway) part of Indonesia. Java, the island not the acronym, is famous for many reasons. To its
east is Bali and to its west Sumatra and between Java and Sumatra in the Sunda Strait (i.e. to
the west of Java not ‘East of Java’ as in the ‘geographically challenged’ film title) is an island
(Rakata) with a very famous small volcano (Krakatau)—well, it is small now compared to what
it used to be before the 1883 explosion that gave us the song Blue Moon (allegedly) and the
previous larger (!) explosion of 416 (chronicled in ‘Pustaka Raja’) which turned Kapi the
volcanic island into Krakatau the volcano on Rakata the island with a few other surrounding
islands as left-overs.

Of course, the name Java really became famous in 1890 when some bones of a very (very) long
dead person (about 800,000 years to be more or less exact) were discovered, giving us Java Man
(now believed to be homo erectus not ancient homo sapiens).

Having said all this, most people have heard of Java mainly because it grows a shrub (coffee)
which can be used to create a drink (coffee) that contains a substance (caffeine), copious
quantities of which are supposedly required for programmers to be able to function. In fact, in
our experience, programmers require tea much more than coffee but this may be a very British
thing. Either that or programmers require tannin as well as caffeine to function.

In any event, so legendary are the stories of programmers’ use and abuse of coffee, that the
arrival of Java as a programming language enabled vendors, and authors, to construct huge
humorous edifices and, indeed, some actual jokes. The originators of Java, or someone
associated with their publishing activity, created the coffee cup logo that appears on all of Sun’s
Java products, amongst other icons now an integral part of the culture of Java (the programming
system anyway).

In the early days, many authors made use of the coffee theme, extending it to include related
food imagery. In fact, so extreme did some of the coffee-related humour become, from vendors
in particular, that many authors went for a backlash and completely eschewed any reference to
coffee. Indeed, going so far as to invent many anti-coffee allegories.

All of this is good natured and, sometimes, very humorous. However, amidst our appreciation
of the humour, we must not forget that Java, the programming language, is used for real,
serious, large-scale application development. Do not let any of the humour of presentation
detract from the very serious purpose of Java.

1.8 Java and its Jokes

c01.fm Page 11 Monday, September 18, 2006 8:05 PM

12 Chapter 1: Introduction

In this chapter we have presented Java as a modern programming system which is very much the
‘right thing at the right time’. We believe that Java is also very suitable for teaching and for
learning to work with object-oriented development.

This chapter has really just set the scene by providing some appropriate background. We are
now ready to start exploring what programming is all about and how it can be done with Java.

1.9 Summary

c01.fm Page 12 Monday, September 18, 2006 8:05 PM

