

Chapter 1

How to Write XHTML and CSS

XHTML and CSS are two different specifications used to create web pages. Each has a distinct look
and purpose. When used together, the combination can produce a useful, information-rich, and
highly attractive web page. That’s what this book is all about—learning how to use the two speci-
fications seamlessly to build effective web pages.

In the exercises throughout this book you’re going to work with examples of XHTML and CSS
code. Studying and incorporating code that others have written to solve the same problems you’re
facing is one of the best ways to learn any web development language. You’ll need to type these
code examples into your pages exactly as they appear in the book for them to work. The various
keywords and symbols are all significant. The rules defining how a language is put together are its

syntax

. In this chapter, you will learn the syntax of XHTML and CSS. You will learn what each of
these specifications does and how to write code in its syntax. Basic rules for typing both XHTML
and CSS, such as when to use the spacebar, when to type a semicolon, or when to type a bracket,
will also be explained in this chapter.

This book assumes that most people starting out with CSS have probably written some HTML.
If that’s the case, you can treat this chapter as a refresher and an introduction to CSS. If you are
already familiar with the basics of both HTML and CSS syntax, you can skip ahead to Chapter 2
without damage to your mental health or your social life.

In this chapter, you will learn to:

◆

Identify what constitutes a website.

◆

Identify what XHTML and HTML are.

◆

Explain similarities and differences in XHTML and HTML.

◆

Describe what CSS is.

◆

Write XHTML syntax.

◆

Write CSS syntax.

Anatomy of a Website

A summary of what goes into a website may help you understand what HTML/XHTML and
CSS do and how they can work together to implement your vision. If you’ve already worked
with one of the “visual tools” like Dreamweaver or FrontPage, you’re a little further along the
learning curve, but this recap will still help to put what you’re about to learn into perspective.
Understanding the underlying basics can give you better control over your visual tools as well.

A web page may contain text, images, links, sounds, and movies or moving images. You may also
be aware that some pages use scripts written in various languages such as JavaScript, PHP, or ASP to
create interactivity, to connect the page to a database, or to collect information submitted in a form.

9754xbook.book Page 1 Friday, January 12, 2007 3:38 PM

CO
PYRIG

HTED
 M

ATERIA
L

2 CHAPTER 1

HOW TO WRITE XHTML AND CSS

HTML or XHTML is the glue that holds all those pieces and parts together and displays them in
a readable or usable manner in a browser such as Internet Explorer, Firefox, Safari, or Netscape
Navigator. The browser is your window on the World Wide Web; XHTML is the language used to
tell the browser how to format the pieces and parts of a web page.

You’ll use XHTML to structure the headings, paragraphs, tables, images, and lists that logically
organize your information so that you can convey your message with words, images, and informa-
tion. XHTML pages without any CSS attached might look plain and simple, but all your information
and content still displays in an organized and clearly meaningful way. Without the correctly marked
up and semantically organized underpinnings built in XHTML, no amount of CSS can save your web
page from mistaken interpretation, inaccessibility, and poor performance.

CSS enters the scene by adding style to the elements on a web page. Whereas XHTML markup iden-
tifies each element in the page logically, defining its function within the overall structure, CSS styles tell
the browser how each element should look. The style might involve color, placement, images, fonts, or
spacing, but it does not change the underlying pieces and parts formatted by the XHTML. CSS is about
presentation. CSS determines whether something is blue or green, aligned on the left or on the right,
large or small, visible or hidden, has bullets or doesn’t have bullets. However, these styles, grouped into
style sheets, have to be applied to some kind of content, such as XHTML pages, to have any effect.

Web content is displayed in more ways than on a computer monitor. It appears in various hand-
held devices such as PDAs and cell phones. It is read aloud by aural screen readers. It is printed. A
single page of XHTML content can be styled in various ways by different CSS rules for the most
effective presentation in all of the devices mentioned.

The driving force behind the creation of CSS several years ago was to enable the separation of
content from appearance (Figure 1.1). One page can be used in many devices with the proper styl-
ing. Your XHTML pages become universally usable, accessible on any device.

Figure 1.1

Create one
semantically
sensible XHTML
page and style it
for many different
devices using CSS.

Printer

Other
Device

Computer
Monitor

PDA or
cell phone

CSS Screen
Style Sheet

Other CSS
Style Sheet

CSS Print
Style Sheet

CSS Handheld
Style Sheet

Content

9754xbook.book Page 2 Friday, January 12, 2007 3:38 PM

ANATOMY OF A WEBSITE

3

What Are XHTML and HTML?

Hypertext Markup Language (HTML) is the programming specification for how web pages can be
written so they can be understood and properly displayed by computers or other Internet-capable
devices. XHTML is an acronym for Extensible Hypertext Markup Language, a specification that
grew out of HTML. You’ll see what “extensible” means in a moment, but to understand the role of
HTML and XHTML, you need to understand the three terms in HTML.

Hypertext

 is simply text as it exists in what is called “hyperspace”—the Internet. It is plain text
that carries the content of your web page and the programming information needed to display that
page and link it to other pages. Hypertext is formatted via a

markup language

—a standardized set
of symbols and codes that all browsers can interpret.

Markup

 is used to convey two kinds of information about text or other content on a web page: first,
it identifies what kind of

structure

 the content requires. If you think of a web page as simply a whole
lot of words, the HTML is the markup, or framework, that specifies that certain words are headings
or lists or paragraphs. The way you mark up the text on the page structures the page into chunks
of meaningful information such as headings, subheads, and quotes. I often refer to such chunks of
meaningful information as

semantic

 structures.
Markup may also define the

presentation

 of those elements; for example, the different fonts to
be used for headings and subheadings. When it was first developed, HTML was the only tool
for defining visual presentation on screen. When the World Wide Web began, the only information
transmitted using the

Hypertext Transfer Protocol

(HTTP)

was text. As the capability to transfer images,
sounds, and other information was added, presentational markup was added to HTML to help for-
mat the new information. After a few years of amazing growth, the HTML that was being used to
mark up individual elements reached burdensome proportions. It became apparent that markup for
presentation was an inefficient way to define what every item of text or graphics on a website should
look like, and the web community developed Cascading Style Sheets (CSS) as a better way to handle
presentation.

What’s the Difference between XHTML and HTML?

The title of this book refers to HTML, because XHTML actually

is

 HTML. You’ll quickly notice that
an XHTML document is saved with a filename ending in

.html

, for example

mypage.html

.
XHTML was chosen for the basis of all the code used in this book, but HTML 4.01 is still a perfectly
good choice for writing web pages. You will be learning HTML when you learn XHTML. It is a two-
for-the-price-of-one bargain. There are a few basic differences in writing XHTML versus writing
HTML, and these will be pointed out to you at appropriate times in the book.

Many writers choose to emphasize that XHTML is HTML by using the term (X)HTML to indi-
cate that what they are saying applies to both. Good XHTML is also good HTML. Don’t be misled
by the book’s title into thinking that you won’t learn XHTML.

Who makes the rules?

Oh, yeah? Sez who! In the world of Internet technology, the guys with the “say” are in the W3C. The orga-
nization devoted to creating and publishing the standardized rules for various web technologies, includ-
ing XHTML, is the World Wide Web Consortium, or W3C, at

www.w3.org

. See also the Web Standards
Project, a grassroots coalition fighting for the adoption of web standards, at

www.webstandards.org

.

9754xbook.book Page 3 Friday, January 12, 2007 3:38 PM

4 CHAPTER 1

HOW TO WRITE XHTML AND CSS

But how are XHTML and HTML different? XHTML is more than HTML, because it is extensible.
XHTML uses the syntax rules of the

Extensible Markup Language (XML)

. Those syntax rules will be
explained later in this chapter. An extensible markup language can be extended with modules that
do things such as make math calculations, draw graphical images, or use microformats such as
XFN (XHTML Friends Network). Web pages written in XHTML interact with XML easily.

What Is CSS?

CSS is an acronym for Cascading Style Sheets, another programming specification. CSS uses rules
called

styles

 to determine visual presentation. The style rules are integrated with the content of the
web page in several ways. In this book, we will deal with style rules that are embedded in the web
page itself, as well as with sets of style rules, known as style sheets, that are linked to or imported
into a web page. You will learn to write the style rules and how to import, link, or embed them in
the web pages you make.

In HTML, styles can be written into the flow of the HTML, or

inline,

 as well. You’ll learn more
abut linked, embedded and inline styles in Chapter 2.

CSS can also be integrated into web pages in other ways. Sometimes you have no control over
these rules. Browsers allow users to set up certain CSS style rules, or user styles, according to their
own preferences. The user preferences can override style rules you write. Further, all browsers
come with built-in style rules. Generally these built-in styles can be overridden by your CSS style
rules. Built-in browser display rules are referred to as

default

 presentation rules. Part of what you
will learn is what to expect from a browser by default, in order to develop any new CSS rules to
override those default display values. You can accept the browser default display, too. If you are
happy with what the browser does to style the content, then there’s no need to create a rule to over-
ride it. It’s common for designers to start a style sheet by setting the paddings and margins to 0px
to override the browser’s default padding and margin settings. Yet other default browser styles,
such as the blank line separating one paragraph from another, may be left alone.

Getting Started with XHTML Syntax

The building blocks of XHTML syntax are

tags

, which are used to mark up

elements.

 A tag is a code
that gives an element its name. For example, the tag used to mark up a paragraph is a

p

 tag, which
is called either a “paragraph tag” or “a p tag.” When text is marked up with a

p

 tag, it is an instruc-
tion to the browser to display the element as a paragraph.

Elements in XHTML, such as paragraphs, can also have attributes and values assigned to them.
But before you find out about attributes and values, let’s dig into tags just a bit more.

Opening and Closing Tags

Opening and closing tags are used to specify elements. Here is a marked up paragraph element:

<p>This is the text of the paragraph.</p>

The paragraph is opened with a

p

 tag. Tags are delineated with angle brackets (

<

 and

>

). So the
markup

<p>

 instructs the browser that a paragraph starts now.
A closing tag

</p>

 indicates the end of the paragraph. Notice that the closing tag is the same as
the opening tag, with the addition of a forward slash (

/

) inside the opening bracket of the tag. Tags
are like on and off switches: turn on a paragraph here and turn it off there. With a few more sen-
tences added to make the paragraph show up, and a second identical paragraph added, this ele-
ment would appear in a browser something like Figure 1.2.

9754xbook.book Page 4 Friday, January 12, 2007 3:38 PM

GETTING STARTED WITH XHTML SYNTAX

5

Figure 1.2

Two paragraph
elements

Notice that the browser left a blank line between the two paragraphs and that there is no indent-
ing. This is an example of a

default

 paragraph. A default display is the browser’s built-in interpretation
of how the element should be presented. One way to change the browser’s default interpretation of
an element is to include additional instructions in the form of

attributes

 and

values

 that further define
the element.

The concept of attributes and values is a widely used way of organizing information. In general,
an attribute identifies a category of information about a given type of element, and the value identifies
how the attribute is implemented in a specific instance of that element. In XHTML, an example of an
attribute that might define a paragraph is alignment. All paragraphs have this characteristic; all are
aligned in some way. Text in paragraphs can be left-aligned, right-aligned, centered, or justified. As
you can see in Figure 1.2, the browser default for text alignment is left-aligned. In XHTML, the type
of alignment you choose is the value. The exact attribute is

align

. The value of this attribute could be

left

,

right

,

center

, or

justify

.
An attribute is written as part of the opening tag. The attribute name is followed by an equal sign

(

=

) and the value in quotation marks (

“

).
Here is a marked up paragraph element with an attribute and value.

<p align=“right”>This is the text of the paragraph.</p>

By adding

align=“right”

 to the first paragraph element in the XHTML that generated Figure 1.2,
you can see the alignment change to an appearance similar to Figure 1.3.

DOCTYPEs and presentational attributes

In Chapter 3 you will learn about DOCTYPEs, which identify the specific version of XHTML a web document
conforms to, and therefore which syntax elements will be allowed.

Keep in mind that while a Transitional HTML or XHTML DOCTYPE allows attribute and value instruc-
tions in the element, a Strict DOCTYPE does not allow presentational attributes and values. That’s
because presentational attributes and values determine

appearance

, an activity better left to the CSS.
Separation of content from appearance is one thing a Strict DOCTYPE enforces, well, strictly.

9754xbook.book Page 5 Friday, January 12, 2007 3:38 PM

6 CHAPTER 1

HOW TO WRITE XHTML AND CSS

Figure 1.3

The first paragraph
with align=“right”

There are two important things to take note of in this example. First, there is a space between the
tag name and the attribute name,

align

. The attribute is followed by an equal sign and the attribute
value

“right”

 is enclosed in quotation marks with no surrounding spaces. Attribute/value pairs in
HTML/XHTML always follow this syntax. Also notice the closing tag. It does the job of ending the
paragraph and the effect of the paragraph’s attributes merely by using the forward slash (

/

) and the

p

 again. When the paragraph ends, all of its attributes and values terminate with it.
One of the distinctions between XHTML and HTML is that closing tags are

required

 by XHTML.
In HTML, closing tags are not always required.

Empty Elements

An element with text in it, such as the paragraph examples we’ve seen, is considered nonempty. Some
elements you put on a web page do not contain text. Such elements don’t need closing tags and are
referred to as

empty elements

. An example would be an image or a line break. Empty elements have
specific requirements in XHTML, but let’s start with an example in HTML:

<p>Jingle bells, jingle bells,

Jingle all the way...</p>

The HTML tag

br

 (for break) is used for a line break in formatting this paragraph. The line break
doesn’t have to open and close, it merely has to

be.

A line break moves whatever comes next down
to a new line, without any intervening white space, which you would get by default if you put the
second line in a new paragraph element.

Formatted with a break in the first line, this paragraph would display like Figure 1.4 in a browser.
Look again at Figure 1.2 to note the difference between a line break and a new paragraph.

However, XHTML uses syntax based on the rules of Extensible Markup Language (XML) to write
HTML. One of the requirements of XML is that every element must be terminated even if it’s empty.
That means every opening tag must have a corresponding closing tag. This concept is known as

well-
formedness

. A well-formed document has no unclosed tags. You may be asking how an element such
as

br

 can be “terminated” if there is no closing tag. The solution in XML and XHTML is to add the
closing forward slash to the empty tag itself. Empty tags in XHTML look like this example.

<p>Jingle bells, jingle bells,

Jingle all the way...</p>

9754xbook.book Page 6 Friday, January 12, 2007 3:38 PM

GETTING STARTED WITH XHTML SYNTAX

7

Figure 1.4

The line break moves
the text down to the
next line.

Even empty tags with attributes and values can be closed in this way. Notice the space between the

br

 and the forward slash (

/

). That’s the way it will be shown in the examples in this book, but the space
doesn’t

have to

 be there.
The

img

 (for image) tag is another empty element. Look at this example:

This empty element places an image on the page, and the source (

src

) of the image is given as
an attribute of the

img

 tag. The space and forward slash at the end give the empty element the
required XHTML closing.

There are not many empty elements in XHTML. Others include horizontal rules (

hr

), the

link

element, and

meta

 elements. Most of the time you will mark up text with both opening and closing
tags. Even if you are writing HTML, where closing tags are not always required, it is considered
good practice to include closing tags whenever possible.

Say, honey, just how old is your browser, anyway?

The space before the closing forward slash is not required by XHTML. In other words,

 with no
space before the forward slash, is correct. However, inserting a space enables older browsers to correctly
display the document, so I will use the space here. (Older browsers are those venerable antiques earlier
than version 5, such as Netscape 4.7.) As of this writing Microsoft Corp. is very close to releasing version
7 of Internet Explorer, which most web designers fervently hope will quickly send all older versions of
Internet Explorer to the land of the Model T and the Studebaker along with creaky veterans like
Netscape 4.

x

.

When Internet Explorer 7 is released, it will join the ranks of other modern browsers such as Firefox,
Opera, and Safari in rendering web pages using standards developed by the W3C. If examples used in
this book do not render according to current standards in older browsers, I will explain how to work
around that problem.

9754xbook.book Page 7 Friday, January 12, 2007 3:38 PM

8 CHAPTER 1

HOW TO WRITE XHTML AND CSS

XHTML: Specific Requirements

As mentioned previously, XHTML uses XML syntax rules. There are several specifics about writing
XHTML syntax:

◆

Every element must be terminated. (In HTML you can sometimes get away with only using
an opening tag, although it isn’t a good practice.)

◆

Specific DOCTYPE declarations are required, which you will learn about in Chapter 3. (In
HTML you can just have

<html>

 with no DOCTYPE at the beginning of the document. Not
a good practice, but possible.)

◆

All elements, attributes, and values must be in lowercase. (In HTML you can put them in
caps if you want.)

◆

All values must be enclosed in quotation marks. Values can be quoted with single or double
quotation marks, but you must be consistent about using the same type each time. The exam-
ples in this book will consistently be in double quotation marks (

“

). (In HTML you can leave
out the quotes on the values. Again, not a good practice.)

◆

Every attribute must be given an explicit value. (In HTML, some attributes don’t need
explicit values.)

◆

Comments are not valid within a tag.

◆

Comments may not contain two hyphens in a row, other than at the beginning and end of
the comment.

As you proceed through the book you’ll see examples of comments used to provide information
about what certain bits of code are about. The syntax for writing comments in CSS is different. You
will learn about CSS comments later in the book.

Although the preceding rules are not required when writing HTML, they all work just fine in
HTML. The only XHTML syntax rule that does not produce valid HTML is using the forward slash
to terminate an empty element. Should you decide to use valid HTML instead of XHTML, you will

Required vs. presentational attributes

Isn’t src=“photo.gif” an attribute and value set? Earlier I said that XHTML had a DOCTYPE that
didn’t allow attributes and values, and now your alarm bells are all clanging. Yes, I did say that, you
catch on fast. But src is required, even when using an XHTML Strict DOCTYPE. Without it, the browser
doesn’t know which image to display. Only attributes and values that have to do with how an element
looks are not allowed in HTML and XHTML Strict.

Leave a comment

An XHTML comment is not displayed on a web page. It’s used to leave notes to yourself. The syntax is
<!--put the comment here-->. Anything enclosed in the <!-- --> comment marks will be ignored
by the browser. They’re human readable. You, being human, can read comments any time you look at
the code. Just be aware of how many hyphens you type in a row.

9754xbook.book Page 8 Friday, January 12, 2007 3:38 PM

GETTING STARTED WITH CSS SYNTAX 9

need to make only the minor adjustment to your coding habits to leave out the terminal forward
slash in an empty element. I just mentioned it, but it bears repeating: there is nothing wrong with
using valid HTML 4.01 to write your web pages. A choice had to be made for the examples in the
book, and XHTML was selected. That choice does not diminish the value of value HTML 4.01. One
of the reasons XHTML was selected for this book is that learning the rules of XHTML provides you
with a set of good habits (for example, including a closing tag for elements like paragraphs and list
items) that are good practices when writing HTML.

I threw the word valid around a couple of times in the last paragraph. You’ll find out what that
is in Chapter 3 when you learn about DOCTYPEs.

Getting Started with CSS Syntax
Cascading Style Sheets (CSS) are used to add presentational features to elements within your markup.
CSS can set colors, fonts, backgrounds, borders, margins, and even the placement of elements on
the page.

A style sheet is simply a text document containing one or more style rules. Style rules can be either
placed directly in an XHTML document or linked to it as a completely separate file. In Chapter 2
you’ll explore both these approaches, but most of the time CSS is linked to the XHTML page. In one
document, you’ll have your XHTML page, which you will learn to plan in a clean, logical structure
of the headings, paragraphs, links, and images needed to present your ideas. In another file, you’ll
have your style sheet, which gives color, layout, emphasis, and pizzazz to your display. This way,
you can change the way your web page looks simply by changing the styles in your style sheet or
attaching a different style sheet, without changing the content at all.

The power to change a site’s complete appearance by changing the style rules gives you great
flexibility in its appearance. It also saves enormous amounts of time on maintenance and upkeep,
since style rules are in a file that is apart from the content. Any number of web pages can be linked
to a single style sheet, so it becomes merely a matter of minutes to make sweeping changes to the
appearance of all those pages. When the style sheet is downloaded by a browser, it is saved in a spe-
cial folder called cache. The next time the browser downloads a page using that style sheet, there is
no wait for the user while it downloads because the browser already has it in cache. So every page
that uses that style sheet will download very quickly, saving waiting time and bandwidth charges.

Keep it simple: switching from XHTML to HTML

Q: I don’t want to write XHTML, I want to write HTML this time. What do I have to remember?

A: Not much. Change the DOCTYPE and don’t use a forward slash in empty elements.

So many tags, so little time

Throughout this book you’ll learn the most important XHTML elements and attributes, but as you begin
working on your own you’ll find it valuable to have a complete reference to the language. You can find
that reference in HTML Complete (Sybex, 2003), a compilation of useful information that also contains a
command reference for CSS.

You can learn everything about every single element in HTML or XHTML from the W3C. For example,
the specification for XHTML 1 is at www.w3.org/TR/xhtml1.

9754xbook.book Page 9 Friday, January 12, 2007 3:38 PM

10 CHAPTER 1 HOW TO WRITE XHTML AND CSS

A further benefit of the separation of content from presentation is that your web pages are more
accessible to all sorts of devices. That clean and logical structure in your XHTML that I mentioned
makes your pages easier to index by search engines, too.

Styles and style sheets look very different from XHTML, and a different set of syntax rules is
used for writing styles.

Selectors and Declarations
Style rules are written with selectors and declarations. Selectors identify which elements of an XHTML
page the style will apply to. The most basic selector is the element selector, sometimes called the type
selector because it selects a particular type of element. For example, the selector p selects all the para-
graph elements on a page and is therefore an element or type selector.

For each selector, you write a set of declarations that govern how the selected element will dis-
play. Together the selector and declarations make up a style rule or, more simply, a style. Here is
a style rule for the selector p:

p {
font-family: Arial, Helvetica, sans-serif;
font-size: small;
color: blue;
}

Let’s examine that bit by bit. You already know that the p is the selector. Everything that comes
between the two curly braces ({}) is the declaration block, which contains three different declara-
tions in this example.

A declaration consists of a property followed by a colon, a space, and then the value. A semicolon
follows the value. As you can see in this example, a property in CSS is similar to an attribute in
XHTML. They both identify a characteristic of the element you are formatting. The first property
declared in this example is the font family to be used for text in the paragraphs. Arial is the first
choice, if the user’s computer has it. If not, Helvetica will do, and if neither is available, the system’s
default sans-serif font will have to do.

CSS tipping point

Visit www.csszengarden.com to see inspirational examples of the same content styled in many dif-
ferent ways using CSS. This website created the tipping point in the wide adoption of CSS for styling web
pages by visibly proving that a well-structured page of HTML could have literally thousands of different
presentations with CSS. Seeing is believing.

Font families and typefaces

Font family is the slightly fussy typographical term for what we usually call a typeface or just a font.
Strictly speaking, every variation in size and weight within a typeface is considered a separate font, and
the whole set of these variations is considered the font family.

You’ll learn more about fonts and font families in Chapter 4. Typography and fonts are the topic of many
books, including The Non-Designer’s Design Book by Robin Williams (Peachpit Press, 2003). The Web Style
Guide at www.webstyleguide.com/type/index.html provides a good introduction to the topic.

9754xbook.book Page 10 Friday, January 12, 2007 3:38 PM

GETTING STARTED WITH CSS SYNTAX 11

It is considered good practice to include more than one font family in a declaration because not
all computer systems come equipped with the same set of fonts. As in this example, the fonts are
normally listed in the order of preference.

Generally, if no font family is specified, a browser will use Times as the default. Times is a serif font.
The second declaration in the preceding rule is font-size: small. You will learn more about

the various options in font sizes in Chapters 4 and 5, but I’m sure you can guess that this declaration
sets the font for all the p elements to a small size. The final declaration sets the color to blue. Color
values are most often expressed with a code, but there are few colors that can be given by name.
You’ll learn more about the way to code color choices in Chapter 3. The CSS property color refers
to elements in the foreground, in this example color of the paragraph text. To set a background
color for a paragraph (or any other selector being styled), use the property background-color.

The style rule example above has the effect of making every paragraph on that page appear in
a font that is slightly smaller than normal, blue, and Arial.

In the examples in this book, each style declaration is written on a separate line, and the closing
curly brace is on its own line as well. This makes the style easier for humans to read. However, style
rules don’t have to be typed in exactly that form for browsers to read them. For example, you could
write the rule like this:

p {font-family: Arial, Helvetica, sans-serif; font-size: small; color: blue;}

If you do put more than one declaration on a line, be sure to leave a space after the semicolon
separating one property declaration from the next.

Some style properties can be written in shorthand form. For example, font can be used as short-
hand for all the font properties including font-style, font-variant, font-weight, font-size,
line-height, and font-family. That allows you to combine the two previous declarations about
fonts into one shorthand declaration like this:

p {
font: small Arial, Helvetica, sans-serif;
color: blue;
}

To expand the paragraph example a bit with more shorthand, here’s another example:

p {
font: bold small/150% Arial, Helvetica, sans-serif;
color: blue;
}

This shorthand rule sets the font-weight to bold. The small/150% represents font-size and
line-height in shorthand. The rest of the rule is already familiar to you.

Browser default font sizes

Unless a user has changed the browser default settings, the default font-size setting in most browsers
is medium. There are several keywords used for font-size: xx-small, x-small, small, medium,
large, x-large, xx-large, smaller, larger. These keywords are considered relative measures,
since font sizes specified by the designer will be sized in relation to whatever default font size is set. You’ll
find out more about this in Chapter 2.

9754xbook.book Page 11 Friday, January 12, 2007 3:38 PM

12 CHAPTER 1 HOW TO WRITE XHTML AND CSS

Selectors Get Specific

Often you’ll need to be more explicit in styling elements in the XHTML than the first example shows.
CSS does allow for more specific selectors than the general element selector already described. Since the
selector distinguishes what element in the document will be affected by the style rule, an element selec-
tor such as the p selector in the example above will affect all the p elements. There are times when you
want particular (or what CSS terms specific) instances of paragraphs to follow different rules from those
assigned to all p elements in general. Two of those types of selectors are the ID selector and the class selec-
tor. These two selectors allow you to write style rules for elements in a particular context. For example,
instead of styling all the paragraphs on a page, you can style only the paragraphs of a certain class or ID.

ID Selectors

IDs can only be used once per XHTML page. They are usually used to identify content that you
style as a structural unit, such as a header, footer, content block, or menu. You will be working with
this concept in almost every chapter of this book, but for now, you will simply see how ID selectors
look in a style sheet.

ID selectors are preceded by this symbol: #. The correct term for this symbol is “octothorpe,” but
most people in the United States call it a pound sign or hash sign. In this book, we will use the term
hash sign for this symbol. An id rule in a style sheet looks like this:

#footer {
font-size: x-small;
}

This rule makes everything in the section (or division) of the page identified as footer extra
small. Notice that there is no space between the hash sign and the id name. Other page elements
in addition to the div (or division) can be identified with an id. You’ll see examples of various ways
to use ID selectors throughout the book.

But a footer division may contain other elements, such as an address, that you don’t want to
style as x-small. Or suppose you want only the address in the footer to be extra small?

You could accomplish this using a descendant selector that applies to only an address in the page
division identified as footer:

#footer address {
font-size: small;
}

Notice the space between the #footer and the address. This font-size value won’t apply to
other elements on the page, only to address elements placed within the context of the footer divi-
sion. This use of the ID selector followed by the element selector is very specific to only particular
elements in particular parts of the page.

The selector #footer address is a contextual (or descendant) selector. You can build contextual
selectors into your XHTML with named IDs that allow for finely drawn CSS selectors, but contextual

Selectors in this book

You’ll learn to use the following selectors in this book: adjacent-sibling selectors, attribute selectors,
child selectors, element selectors, class selectors, ID selectors, descendant selectors, pseudo class selec-
tors, pseudo-element selectors, the universal selector, and group selectors.

9754xbook.book Page 12 Friday, January 12, 2007 3:38 PM

GETTING STARTED WITH CSS SYNTAX 13

selectors are not just used with IDs. In the upcoming chapters, you will use descendant selectors to
create many CSS styles. Chapter 2 explains more about the hierarchical relationship of HTML
elements that creates a descendant element.

You create the names for the id selectors yourself. They don’t have to relate to any XHTML tag.
It is good practice to create a simple and meaningful name that reflects the structural purpose of the
content of the section identified with an id. The id selector #footer is a good example of a name
that reflects some meaningful purpose on the page. If you worked on a style sheet and went back
to it after several months, the id selector #footer would still make sense to you as you reviewed
and changed the style sheet.

Class Selectors

Class selectors can be used as many times as you want per XHTML page. Class selectors are pre-
ceded by a period (.). As with id selectors, you create the class name yourself. If you want a style
that will highlight certain terms on your page, you can create a class and name it term.

.term {
background-color: silver;
}

This style rule would put a silver background behind any words or phrases that were identi-
fied as being in the class term. Notice that there is no space between the preceding period and the
name of the class. In Chapter 2, you’ll learn how to apply both class and id attributes to your
XHTML elements.

You can use complex combinations of selectors, IDs, and classes to style specific sections of your
pages. The following selector would apply only to paragraphs of a class called term in a division
of the page called footer.

#footer p.term {
background-color: gray;
}

Notice that when writing a style declaration for an XHTML element that is assigned to a par-
ticular class, such as the p element, there is no space between the element and the period and class
name: p.term.

There’s an art to naming classes and IDs

One of the reasons CSS is popular is because a page’s whole look can change almost instantly. It is good
practice to choose class names that express purpose rather than some momentary choice such as a color,
which might be changed later. So a class named .term is a better choice here than a class named
.silver because the name term will continue to make sense no matter what color is used.

Supposed you were creating divs and IDs for a layout with navigation in a column on the left side. You
would need to think up an ID name for the navigation column. An ID named #nav would be a better
choice than #leftcol because the navigation will always be navigation, but the left column might be
positioned somewhere else in a later redesign.

So use functional or semantic terms when dreaming up class and ID names. It will help you keep your
CSS selectors meaningful over time.

9754xbook.book Page 13 Friday, January 12, 2007 3:38 PM

14 CHAPTER 1 HOW TO WRITE XHTML AND CSS

Grouping Selectors

You may want to use the same style for several elements on your page. Perhaps you want all the
paragraphs, lists, and block quotes on the page to have the same font size. To achieve this effect, list
the selectors, separated by commas, and give the font-size declaration:

p, li, blockquote {
font-size: medium;
}

This rule makes the text in any paragraph, list, or block quote have the font size medium. Notice
that there is a space between each item in the comma-separated list of selectors.

Descendant Selectors

In the previous example, the comma sets up a rule for every element in the comma-separated list.
Here is a similar rule with no comma:

blockquote em {
font-size: medium;
}

Without the comma, it looks a whole lot like the preceding comma-free #footer p rule, doesn’t
it? The selector blockquote em, with no comma, styles only an em (emphasized) element that’s part
of a blockquote, not every em element.

The comma (or the lack of a comma) is an important distinction between grouped selectors and
descendant selectors. Grouped selectors use commas. Descendant selectors do not.

Get your selectors translated into English

It’s often useful to study and adapt the code behind websites that use features you want to try, but CSS
selectors can look dauntingly complex. SelectORacle is a free tool at gallery.theopalgroup.com/
selectoracle/ that will translate complex CSS selectors into plain English to help you understand exactly
what elements CSS rules are selecting. For example, SelectORacle helpfully explains that the selector
#content .feature a selects any a element that is a descendant of any element with a class attribute that
contains the word feature that is a descendant of any element with an id attribute that equals content.

Spaces, commas, semi-colons, brackets: it all matters

XHTML and CSS are highly detail-oriented pursuits. You have to pay attention to the details such as
whether you see a comma, a colon, a semicolon, a space, quotation marks, a bracket or brace. Type care-
fully. Do this and you will have greater success with both the XHTML and the CSS examples in the book.
If you do an exercise and it doesn’t seem to work as I say it should, check carefully for typos. The syntax
is exacting, and a missing semicolon or quotation mark can cause a whole page to render as gibberish.
And I don’t mean the kind of gibberish you get when you use one of those “lorem ipsum” generators to
fill a page with a lot of meaningless text so you can see how a layout works.

9754xbook.book Page 14 Friday, January 12, 2007 3:38 PM

GETTING STARTED WITH CSS SYNTAX 15

Quotation Marks
The last difference between the syntax rules for writing XHTML and writing CSS that you’ll look
at before moving on to Chapter 2 involves quotation marks.

You recall that in XHTML, all attribute values in a tag must be enclosed in quotation marks. In
CSS style declarations, however, property values do not appear in quotes. Most of the time, you
don’t see quotation marks in style sheets except when listing a font whose name contains two or
three words.

For example, you looked at this style rule earlier, in which no quotes were used:

p {
font-family: Arial, Helvetica, sans-serif;
font-size: small;
color: blue;
}

The fonts listed here are one-word font names. Sans-serif is hyphenated and doesn’t have a
space, so it is considered one word. However, if you want to list a font name such as Times New
Roman, which is more than one word and includes spaces, you wrap the name in quotation marks,
like this:

p {
font-family: “Times New Roman”, Times, Georgia, serif;
}

Notice that the comma separating Times New Roman from Times is after the ending quotation
mark. Also note that although specific font-family names such as Times are capitalized, generic font
names such as serif are not.

You may see quotation marks in the URL to an image in a style sheet. Quotation marks are
optional, not required, in URLs. Here’s an example, written three different ways, all correct, with
various examples of quotation mark use (or no quotation marks).

p {
background-image: url(bg.gif);
}
p {
background-image: url(‘bg.gif’);
}
p {
background-image: url(“bg.gif”);
}

Although the W3C considers single quotation marks legal, they aren’t supported by Mac ver-
sions of Internet Explorer, so it’s wise to stick with either no quotation marks or double quotation
marks in the style sheet.

In Chapter 2, you will build XHTML documents and CSS style sheets. While you’re doing that,
you’ll learn where to write styles and how to link to styles. Chapter 2 will explain the meaning of
the cascade in Cascading Style Sheets.

9754xbook.book Page 15 Friday, January 12, 2007 3:38 PM

16 CHAPTER 1 HOW TO WRITE XHTML AND CSS

Real-World Scenario
A strong thread emphasized throughout this book is that the use of the standard specifications
recommended by the W3C by both web professionals and browser manufacturers makes writing
XHTML and CSS easier, faster, and more universal.

There is a grassroots group working hard for the implementation of web standards called The
Web Standards Project (WaSP) at www.webstandards.org (Figure 1.5).

The Web Standards Project site provides opportunities for you to take action in favor of web
standards and offers information to help you learn to use those standards.

Exemplary attention to standards, valid code using a strict DOCTYPE, progressive examples of
CSS and other web technologies are to be expected from this website. It delivers. Use the browser’s
View Source option to look at this site’s clearly structured and valid XHTML.

It will be helpful when viewing the real-world examples in this book, and in testing your own work
as you progress through the book, if you download the Mozilla Firefox browser at www.mozilla.com/
firefox. After you have installed the Firefox browser, download and install the Firefox Web Devel-
oper Add-on, from https://addons.mozilla.org/firefox/60. Using the Web Developer add-on
toolbar gives you easy-to-reach tools to view HTML and CSS code for any web page.

Be aware that any site given as a “Real-World Scenario”—in fact, any site referred to in this
book—is protected by copyright law from being copied. Copyright law protects both the images
and the text in a website. I encourage you to look and learn but not to take. There may be a few
exceptions—for example, some CSS layout sites say in very clear terms that you have permission
to take the material for your own use—but in general, it is best to assume that you do not have per-
mission to “borrow” material from any website.

Figure 1.5

The Web Standards
Project home page
contains news in a
section called Recent
Buzz—listen to that
WaSP buzz!

9754xbook.book Page 16 Friday, January 12, 2007 3:38 PM

THE BOTTOM LINE 17

The Bottom Line
Identify what constitutes a website Websites are built with many interconnected technologies
and applications. You should be familiar with how XHTML and CSS fit into that puzzle.

Master It Describe the purpose of XHTML and CSS in building a web page.

Identify what XHTML and HTML are XHTML and HTML are markup languages. XHTML
is an extension of HTML based on XML, itself a markup language.

Master It What do the acronyms HTML and XHTML mean?

Explain similarities and differences in XHTML and HTML Since XHTML is based on HTML,
there are many similarities between the two. The important differences arise from the distinction
that XHTML uses XML syntax, while HTML is not required to follow XML syntax rules.

Master It List XML syntax rules that XHTML must follow. Make note of any that do not
apply to HTML.

Describe what CSS is CSS stands for Cascading Style Sheets, a specification that sets out
properties and values that may be applied to the presentation of HTML or XHTML elements.

Master It Explain how CSS rules are applied to a web page.

Write XHTML Syntax Meaningful elements in the content of a web page are marked up with
XHTML tags, which may or may not have attributes and values giving more information about
the element.

Master It To demonstrate XHTML syntax, write two complete XHTML elements demon-
strating the difference between an element with attributes and values and one without.

Write CSS Syntax Style rules are written with selectors and declarations. The most basic selec-
tor is the element selector. Other types of selectors include adjacent-sibling selectors, attribute
selectors, child selectors, class selectors, ID selectors, descendant selectors, pseudo class selec-
tors, pseudo-element selectors, the universal selector, and group selectors.

For each selector, the declarations of properties and values for that selector govern how the
element will display. Together the selector and declarations make up a style rule or, more simply,
a style.

Master It Write a style rule for the selector h1 that sets the font-family to Arial,
Helvetica, sans-serif and sets the font-size to 1.5em. Write the rule in full and
then write it again in shorthand.

9754xbook.book Page 17 Friday, January 12, 2007 3:38 PM

9754xbook.book Page 18 Friday, January 12, 2007 3:38 PM

