
1
Jump Star t Spring 2

It is always an exciting time when you first start to use a new software framework. Spring 2, indeed,
is an exciting software framework in its own right. However, it is also a fairly large framework. In
order to apply it effectively in your daily work you must first get some fundamental understanding
of the following issues:

❑ Why Spring exists

❑ What problem it is trying to solve

❑ How it works

❑ What new techniques or concepts it embraces

❑ How best to use it

This chapter attempts to get these points covered as quickly as possible and get you using the
Spring 2 framework on some code immediately. The following topics are covered in this chapter:

❑ A brief history of the Spring framework and design rationales

❑ A typical application of the Spring framework

❑ Wiring Java components to create applications using Spring

❑ Understanding Spring’s autowiring capabilities

❑ Understanding the inversion of control and dependency injection

❑ Understanding the available API modules of Spring 2

Having read this chapter, you will be equipped and ready to dive into specific areas of the Spring
framework that later chapters cover.

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

All About Spring
Spring started its life as a body of sample code that Rod Johnson featured in his 2002 Wrox Press book
Expert One on One Java J2EE Design and Development (ISBN: 1861007841). The book was published during
the height of J2EE popularity. Back in those days, the conventionally accepted way to create a serious
enterprise Java application was to use Java 2 Enterprise Edition 1.3/1.4 and create complex software
components called Enterprise JavaBeans (EJBs) following the then-current EJB 2.x specifications.

Appendix B, “Spring and Java EE,” provides more insight into how the Spring framework differs from
and improves upon Java EE.

Although popular, creating component-based Java server applications using J2EE was not a fun activity.
Constructing EJBs and creating applications out of EJBs are complex processes that involve a lot of tedious
coding and require the management of a large body of source code — even for small projects.

Rod’s description of a lightweight container that can minimize the complexity of a server-side applica-
tion construction was a breath of fresh air to the stuffy J2EE development community. Spring — in con-
junction with simple yet groundbreaking concepts such as dependency injection (discussed later in this
chapter) — captured the imagination of many Java server developers.

Around this body of code was born an active Internet-based development community. The community
centered around Rod’s company’s website (interface21.com/) , and the associated Spring framework
website (springframework.org/).

Adoption of the framework continues to rise worldwide as Rod and his group continue to develop the
framework and as more and more developers discover this practical and lightweight open-source alter-
native to J2EE. The software framework itself has also grown considerably, supported by an industry of
third-party software add-on components.

Focus on Simplicity
By 2007, version 2 of the Spring framework was released, and the use of the Spring framework in lieu of
J2EE for server-side enterprise application development is no longer a notion, but a daily reality practiced
throughout the world. Spring’s focus on clean separation and decoupling of application components, its
lightweight philosophy, and its fanatic attitude toward reducing development complexity have won it a
permanent place in the hearts and minds of Java enterprise developers.

Spring has had such a major impact on the developer community that the Java Enterprise Edition expert
group actually had to revisit its design. In Java EE 5, the complexity involved in creating EJBs has been
greatly reduced in response to infamous user complaints. Many of J2EE’s lightweight principles and
approaches, including dependency injection, evolved over time.

Applying Spring
As you will discover shortly, creating applications using the Spring Framework is all about gathering
reusable software components and then assembling them to form applications. This action of assembling
components is called wiring in Spring, drawn from the analogy of electronic hardware components. The

2

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 2

wired components can be Java objects that you have written for the application, or one of the many pre-
fabricated components in the Spring API library (or a component from a third-party vendor, such as a
transaction manager from Hibernate).

It is of paramount importance, then, to understand how components instantiation and wiring work in
Spring. There is no better way to show how Spring object wiring works than through an actual example.

The Spring framework works with modularized applications. The first step is to create such an applica-
tion. The next section shows you how to start with an all-in-one application and break it down into com-
ponents. Then you can see how Spring adds value by flexibly wiring together the components.

Creating a Modularized Application
Consider a simple application to add two numbers and print the result.

The entire application can be created within one single class called Calculate. The following code
shows this monolithic version:

package com.wrox.begspring;

public class Calculate {

public Calculate() {}

public static void main(String[] args) {
Calculate calc = new Calculate();
calc.execute(args);

}

private void showResult(String result) {
System.out.println(result);

}

private long operate(long op1, long op2) {
return op1 + op2;

}

private String getOpsName() {
return “ plus “;

}
public void execute(String [] args) {
long op1 = Long.parseLong(args[0]);
long op2 = Long.parseLong(args[1]);

showResult(“The result of “ + op1 +
getOpsName() + op2 + “ is “
+ operate(op1, op2) + “!”);

}

}

For example, if you need to perform multiplication instead of addition on the operation, the code to calcu-
late must be changed. If you need to write the result to a file instead of to the screen, the code must be
changed again. This application can readily be modularized to decouple the application logic from the

3

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 3

mathematic operation, and from the writer’s destination, by means of Java interfaces. Two interfaces are
defined. The first, called Operation, encapsulates the mathematic operation:

package com.wrox.begspring;

public interface Operation {
long operate(long op1, long op2);
String getOpsName();

}

Decoupling at the Interface
Next, a component that performs addition can be written as the OpAdd class:

package com.wrox.begspring;

public class OpAdd implements Operation{
public OpAdd() {}
public String getOpsName() {
return “ plus “;

}

public long operate(long op1, long op2) {
return op1 + op2;

}

}

And another component that performs multiplication can be written as OpMultiply:

package com.wrox.begspring;

public class OpMultiply implements Operation {
public OpMultiply() {}
public String getOpsName() {
return “ times “;

}

public long operate(long op1, long op2) {
return op1 * op2;

}
}

Note that this refactoring creates two components that can be reused in other applications.

Creating the Result Writer Components
In a similar way, the writing of the result either to the screen or to a file can be decoupled via a
ResultWriter interface:

package com.wrox.begspring;

public interface ResultWriter {

4

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 4

void showResult(String result) ;
}

One implementation of ResultWriter, called ScreenWriter, writes to the console screen:

package com.wrox.begspring;

public class ScreenWriter implements ResultWriter{
public ScreenWriter() {}
public void showResult(String result) {
System.out.println(result);

}

}

Another implementation of ResultWriter, called DataFileWriter, writes the result to a file:

package com.wrox.begspring;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.PrintWriter;

public class DataFileWriter implements ResultWriter {
public DataFileWriter() {}

public void showResult(String result) {
File file = new File(“output.txt”);
try {
PrintWriter fwriter = new PrintWriter(

new BufferedWriter(new FileWriter(file)));
fwriter.println(result);
fwriter.close();

} catch (Exception ex) {
ex.printStackTrace();

}

}

}

Putting the Application Together
With the Operation and ResultWriter implementations factored out as reusable components, it is
possible to glue a selection of the components together to create an application that adds two numbers
and prints the result to the screen. This is done in the CalculateScreen class:

package com.wrox.begspring;

public class CalculateScreen {

5

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 5

private Operation ops = new OpAdd();
private ResultWriter wtr = new ScreenWriter();

public static void main(String[] args) {
CalculateScreen calc = new CalculateScreen();
calc.execute(args);

}

public void execute(String [] args) {
long op1 = Long.parseLong(args[0]);
long op2 = Long.parseLong(args[1]);

wtr.showResult(“The result of “ + op1 +
ops.getOpsName() + op2 + “ is “
+ ops.operate(op1, op2) + “!”);

}

}

Mixing and Matching Components
If you need an application that multiplies two numbers and prints the result to a file, you can glue the
components together in the manner shown in the CalculateMultFile class:

package com.wrox.begspring;

public class CalculateMultFile {
private Operation ops = new OpMultiply();
private ResultWriter wtr = new DataFileWriter();

public static void main(String[] args) {
CalculateMultFile calc = new CalculateMultFile();
calc.execute(args);

}

public void execute(String [] args) {
long op1 = Long.parseLong(args[0]);
long op2 = Long.parseLong(args[1]);

wtr.showResult(“The result of “ + op1 +
ops.getOpsName() + op2 + “ is “
+ ops.operate(op1, op2) + “!”);

}

}

Thus far, you have seen how to take a monolithic application and refactor it into components. You now
have a set of two interchangeable math components: OpAdd and OpMultiply. There is also a set of two
interchangeable result writer components: ScreenWriter and DataFileWriter.

You will see how the Spring framework can add construction flexibility very shortly. For now, take some
time to try out the following base application before proceeding further.

6

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 6

Try It Out Creating a Modularized Application
You can obtain the source code for this example from the Wrox download website (wrox.com). You can
find the directory under src/chapter1/monolithic.

The following steps enable you to compile and run first the monolithic version of the Calculate applica-
tion, and then a version that is fully modularized.

1. You can compile the all-in-one Calculate class by going into the src/chapter1/monolithic
directory:

cd src/chapter1/monolithic
mvn compile

2. To run the all-in-one application, use the following command:

mvn exec:java -Dexec.mainClass=com.wrox.begspring.Calculate –Dexec.args=”3000 3”

This runs the com.wrox.beginspring.Calculate class and supplies the two numeric argu-
ments as 3000 and 3. Among the logging output from Maven, you should find the output from
the application:

The result of 3000 plus 3 is 3003!

3. The modularized version of the application is located in the src/chapter1/modularized
directory of the source code distribution. Compile the source using the following commands:

cd src/chapter1/modularized
mvn compile

4. Then run the modularized version of Calculate with the CalculateScreen command:

mvn exec:java -Dexec.mainClass=com.wrox.begspring.CalculateScreen –Dexec.args=”3000 3”

You should observe the same output from this modularized application as from the all-in-one application.

Note that you should be connected to the Internet when working with Maven 2. This is because Maven 2
automatically downloads dependencies from global repositories of open-source libraries over the Internet.
This can, for example, eliminate the need for you to download the Spring framework binaries yourself.

How It Works
The mvn command runs Maven 2. Maven 2 is a project management tool that you will use throughout
this book and it is great for handling overall project management. (Appendix A provides more informa-
tion about Maven 2 and can help you to become familiar with it.)

The refactored version of the Calculate application (CalculateScreen) is fully modularized and is
easier to maintain and modify than the all-in-one version. Figure 1-1 contrasts the monolithic version
of Calculate with the modularized version, called CalculateScreen.

7

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 7

Figure 1-1

In Figure 1-1, there is still one problem: the code of CalculateScreen must be modified and recom-
piled if you need to change the math operation performed or where to display the result. The code that
creates instances of OpAdd and ScreenWriter is hard-coded in CalculateScreen. Spring can help in
this case, as the next section demonstrates.

Using Spring to Configure a Modularized Application
Figure 1-2 shows graphically how Spring can assist in flexibly interchanging the implementation of the
math operation (say, from OpAdd to OpMultiply) and/or the implementation of ResultWriter.

The circle in Figure 1-2 is the Spring container. It reads a configuration file, a context descriptor named
beans.xml in this case, and then uses the contained information to wire the components together. The
context descriptor is a kind of a configuration file for creating applications out of components. You will
see many examples of context descriptors throughout this book.

In Figure 1-2, the CalculateSpring main class does not directly instantiate the operation or
ResultWriter. Instead, it defers to the Spring container to perform this task, the instantiation. The
Spring container reads the beans.xml context descriptor, instantiates the beans, and then wires them
up according to the configuration information contained in beans.xml.

You can see the code for all of this in the next section.

Modularized Application

Calculate (application)

Add two numbers

Print output to screen

CalculateScreen (component)

Component logic

Operation
interface

ResultWriter
interface

OpAdd
(component)

ScreenWriter
(component)

Operation
interface

OpMultiply
(component)

FileWriter
(component)

Monolithic Application

ResultWriter
interface

8

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 8

Figure 1-2

Try It Out Compiling Your First Spring Application
The source code for this Spring-wired application can be found in the src\chapter1\springfirst
directory of the code distribution. Follow these steps to compile and run the application using the
Spring container:

Downloading and Installing the Spring Framework
Since Maven 2 downloads dependencies automatically over the Internet, you do not have to download the
Spring framework binaries yourself. If you examine the pom.xml file in the src\chapter1\springfirst
directory, you can see that Spring is already specified as a dependency there. (See Appendix A for more
information on Maven 2 and pom.xml.)

To get all the library modules, dependencies, documentations, and sample code, you can always find
the latest version of Spring 2 at http://www.springframework.org/download. The code in this
book has been tested against the 2.0.6 version of the Spring distribution and should work with all later
versions. When selecting the download files, make sure you pick the spring-framework-2.x.x-
with-dependencies.zip file. This is a significantly larger download, but contains the open-source
dependencies that you need. Downloading this file can save you a lot of time downloading dependen-
cies from other locations. To install the framework you need only expand the ZIP file in a directory of
your choice. When creating applications using the framework (and not using Maven to manage your
builds), you may need to include some of the JAR library files in the bundle (for example, a WAR file
for a web application) or refer to them in your build classpath.

CalculateSpring (component)

Component logic

ScreenWriter
(component)

beans.xml
(context
descriptor) reads

Spring

wires the beans

OpMultiply
(component)

ScreenWriter
(component)

OpAdd
(component)

OpMultiply
(component)

FileWriter
(component)

Operation
interface

ResultWriter
interface

Operation
interface

ResultWriter
interface

ResultWriter
interface

9

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 9

1. Change the directory to the source directory, and then compile the code using Maven 2:

cd src\chapter1\springfirst
mvn compile

This may take a little while, since Maven 2 will download all the Spring libraries that you need
from the global repository. Once the libraries are downloaded, Maven 2 keeps them in your local
repository on your computer’s hard disk, and you will not have to wait for them again.

2. To run the Springwired version of the modularized application, the CalculateSpring class,
use the following Maven 2 command:

mvn exec:java -Dexec.mainClass=com.wrox.begspring.CalculateSpring –Dexec.args=”3000 3”

3. Your output from this Spring-wired application should be:

The result of 3000 times 3 is 9000!

How It Works
The ability to easily wire and rewire reusable Java beans for an application is central to the flexibility
offered by the Spring framework.

The CalculateSpring main class, instead of instantiating concrete instances of Operation or
ResultWriter, delegates this task to the Spring container. The Spring container in turn reads your
configuration file, called the bean descriptor file (or the context descriptor).

In the CalculateSpring class, shown here, the highlighted code hooks into the Spring container and
tells it to perform the task of wiring together the beans:

package com.wrox.begspring;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class CalculateSpring {
private Operation ops;
private ResultWriter wtr;

public void setOps(Operation ops) {
this.ops = ops;
}
public void setWriter(ResultWriter writer) {
this.wtr = writer;
}

public static void main(String[] args) {
ApplicationContext context =
new ClassPathXmlApplicationContext(

“beans.xml”);

10

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 10

BeanFactory factory = (BeanFactory) context;
CalculateSpring calc =
(CalculateSpring) factory.getBean(“opsbean”);

calc.execute(args);
}

public void execute(String [] args) {
long op1 = Long.parseLong(args[0]);
long op2 = Long.parseLong(args[1]);

wtr.showResult(“The result of “ + op1 +
ops.getOpsName() + op2 + “ is “
+ ops.operate(op1, op2) + “!”);

}

}

The preceding highlighted code creates an ApplicationContext. This context is created and provided
by the Spring container. In this case, the actual implementation of ApplicationContext is called
ClassPathXmlApplicationContext. The beans.xml descriptor is supplied as a constructor argu-
ment. Spring’s ClassPathXmlApplicationContext looks for the instructions for wiring the beans
together in the beans.xml file, which can be found in the classpath.

ApplicationContext is a BeanFactory
An ApplicationContext in Spring is a type of BeanFactory. A BeanFactory enables you to access
JavaBeans (classes) that are instantiated, wired, and managed by the Spring container.

Although there are other BeanFactory library classes in Spring, the ApplicationContext class is the
most frequently used one because it provides a lot of valuable extra features — including support for
internationalization, resource loading, integration with external context hierarchies, events publishing,
and much more.

Providing the Spring Container with Wiring Instructions
The ClassPathXmlApplicationContext constructor takes as an argument the context descriptor file
or the bean’s wiring file. This file is named beans.xml in the example case presented here, but you can
use any name you want as long as it has the .xml extension, as it is an XML file. This beans.xml file is
the configuration file describing how to wire together objects. The beans.xml file is shown here.

The BeanFactory classes are examples of the factory method design pattern. This
design pattern enables a framework to provide a means for creating objects with-
out knowing ahead of time the type of object that will be created. For example,
the BeanFactory in the preceding example is used to create an instance of
CalculateSpring, a class that BeanFactory has no knowledge of.

11

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 11

Note the XML schema and namespaces used in the <beans> document element. These are standard for
Spring 2.0 and the schema defines the tags allowed within the descriptor. You are likely to find these
schema in every Spring context descriptor file, except for some pre-2.0 legacy DTD-based descriptor
files. (See the sidebar Support of Legacy DTD-Based Spring Wiring Syntax.)

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd”>

<bean id=”screen” class=”com.wrox.begspring.ScreenWriter” />
<bean id=”multiply” class=”com.wrox.begspring.OpMultiply” />
<bean id=”add” class=”com.wrox.begspring.OpAdd” />

<bean id=”opsbean” class=”com.wrox.begspring.CalculateSpring”>
<property name=”ops” ref=”multiply” />
<property name=”writer” ref=”screen”/>

</bean>

</beans>

ClassPathXmlApplicationContext is part of the Spring container, and it looks for the context descrip-
tor (beans.xml) in the Java VM’s CLASSPATH and creates an instance of an ApplicationContext from
it. During the instantiation of the ApplicationContext, the beans are wired by the Spring container
according to the directions within the context descriptor.

Creating and Wiring Java Beans
The <bean> tag, as its name suggests, is used to instantiate an instance of a bean. The container per-
forms the following actions according to the instructions:

1. Creates an instance of ScreenWriter and names the bean screen

Support of Legacy DTD-Based Spring Wiring Syntax
Note that you may also frequently see Spring configuration files using the following
document based on document type definition (DTD):

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE beans PUBLIC “-//SPRING//DTD BEAN 2.0//EN”

“http://www.springframework.org/dtd/spring-beans-2.0.dtd”>
<beans>
...
</beans>

This convention is used extensively in versions of Spring before 2.0. XML schema
offers far more extensive functionality than DTDs. Although Spring 2 supports
DTD-based configurations, it is highly recommended that you use XML schema-
based configurations instead. An example of such a configuration can be seen
above in the beans.xml file.

12

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 12

2. Creates an instance of OpMultiply and names the bean multiply

3. Creates an instance of OpAdd and names the bean add

4. Creates an instance of CalculateSpring and names the bean opsbean

5. Sets the reference of the ops property of the opsbean bean to the bean named multiply

6. Sets the reference of the writer property of the opsbean bean to the bean named screen

Each of these instructions is labeled in bold in the following reproduction of the beans.xml context
descriptor.

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd”>

(1)<bean id=”screen” class=”com.wrox.begspring.ScreenWriter” />
(2)<bean id=”multiply” class=”com.wrox.begspring.OpMultiply” />
(3)<bean id=”add” class=”com.wrox.begspring.OpAdd” />

(4)<bean id=”opsbean” class=”com.wrox.begspring.CalculateSpring”>
(5)<property name=”ops” ref=”multiply” />
(6)<property name=”writer” ref=”screen”/>

</bean>

</beans>

It is very important for you to understand how Java classes are created and wired using a Spring context
descriptor. Take a careful look and make sure you see how these actions are carried out.

The net effect is that the CalculateSpring logic will be wired with the OpMultiply operation and the
ScreenWriter writer. This is why you see the result of the multiplication on the screen when you run
CalculateSpring.

Adding a Logging Configuration File
In addition to the beans.xml, you also need to create a log4j.properties file. The Spring framework
uses Apache Commons Logging (about which information is available at http://jakarta.apache.org/
commons/logging/) to log container and application information. Commons logging can work with a
number of loggers, and is configured to work with Apache’s Log4j library (an open-source library; infor-
mation is available at http://logging.apache.org/log4j/docs/index.html).

Log4j can read its configuration information from a properties file. In the properties file, you can config-
ure appenders that control where the logging information is written to; for example, to a log file versus
to the screen). You can also control the level of logging; for example, a log level of INFO prints out a lot
more information than a log level of FATAL, which only prints out fatal error messages. The following
log4j.properties file is used by the example(s) and only displays fatal messages to the console. (You
can find it in src\springfirst\src\main\resources.) Maven automatically copies this file into
the correct location and constructs the classpath for the application (via the information provided in the
pom.xml file). Then Log4J uses the classpath to locate the configuration file.

13

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 13

log4j.rootLogger=FATAL, first
log4j.appender.first=org.apache.log4j.ConsoleAppender

log4j.appender.first.layout=org.apache.log4j.PatternLayout
log4j.appender.first.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

Wiring Beans Automatically by Type
In the preceding example you wired the properties of the CalculateSpring bean explicitly. In practice,
you can actually ask the Spring container to automatically wire up the properties. The next “Try It Out”
shows how to perform automatic wiring.

Try It Out Autowire by Type
Automatic wiring can save you some work when you’re creating context descriptors. Basically, when
you tell the Spring container to autowire, you’re asking it to find the beans that fit together. This can
be done automatically by the container without you providing explicit instructions on how to wire the
beans together. There are many different ways to autowire, including by name, by type, using the con-
structor, or using Spring’s autodetection. Each of these will be described in a bit. For now, let’s discuss
the most popular type of autowiring, autowiring by type.

Autowiring by type means that the container should try to wire beans together by matching the required
Java class and/or Java interface. For example, a CalculateSpring object can be wired with an instance
of Operation (Java interface) type, and an instance of ResultWriter (Java interface) type. When told to
autowire by type, the Spring container searches the context descriptor for a component that implements
the Operation interface, and for a component that implements the ResultWriter interface.

This feature can be a time-saver if you are creating a large number of beans in a context descriptor.

To try out autowiring by type with the CalculateSpring project, follow these steps:

1. Change the directory to the src/springfirst/target/classes directory:

cd src/chapter1/springfirst/target/classes

2. You should see beans.xml here. Maven 2 has copied the context descriptor here during compi-
lation. Modify the beans.xml context descriptor, as shown in the following listing; the changed
lines are highlighted. Note that you need to remove the lines not shown in the listing.

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd”>

<bean id=”screen” class=”com.wrox.begspring.ScreenWriter” />
<bean id=”add” class=”com.wrox.begspring.OpAdd” />

<bean id=”opsbean” class=”com.wrox.begspring.CalculateSpring” autowire=”byType” />

</beans>

14

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 14

3. Change the directory back to the /springfirst directory in which pom.xml is located.

4. Now, run the application using Maven 2 with the following command line:

mvn exec:java -Dexec.mainClass=com.wrox.begspring.CalculateSpring –Dexec.args=”3000 3”

First, note that you do not need to recompile at all; you perform this reconfiguration purely by editing
an XML file — the context descriptor. Also notice that the output indicates that the OpAdd operation and
ScreenWriter have been wired to the CalculateSpring bean. All this has been done automatically
by the Spring container:

The result of 3000 plus 3 is 3003!

How It Works
Even though you have not explicitly wired the OpAdd and ScreenWriter components to the
CalculateSpring bean, the container is smart enough to deduce how the three beans must fit together.

This magic is carried out by the Spring container’s ability to automatically wire together components.
Notice the attribute autowire=”byType” on the <bean> element for the opsbean. This tells the Spring
container to automatically wire the bean. The container examines the beans for properties that can be set,
and tries to match the type of the property with the beans available. In this case, the CalculateSpring
bean has two property setters:

public void setOps(Operation ops) {
this.ops = ops;
}
public void setWriter(ResultWriter writer) {
wtr = writer;
}

The first one takes a type of Operation, and the second takes a type of ResultWriter. In the beans.xml
file, the only bean that implements the Operation interface is the add bean, and the only bean that imple-
ments the ResultWriter interface is the screen bean. Therefore, the Spring container wires the add bean
to the ops property, and the screen bean to the writer property, automatically.

Autowiring can sometimes simplify the clutter typically found in a large descriptor file. However, explicit
wiring should always be used if there is any chance of autowiring ambiguity.

You can also autowire by other criteria. The following table describes the other varieties of autowiring
supported by Spring 2.

Continued

Value of autowire Attribute Description

byName The container attempts to find beans with the same name as
the property being wired. For example, if the property to be
set is called operation, the container will look for a bean with
id=”operation”. If such a bean is not found, an error is raised.

15

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 15

Understanding Spring’s Inversion of Control (IoC) Container
The Spring container is often referred to as an inversion of control (IoC) container. In standard component
containers, the components themselves ask the server for specific resources. Consider the following seg-
ment of code, which can frequently be found in components created for J2EE components:

Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup(“jdbc/WroxJDBCDS”);
Connection conn = ds.getConnection(“user”, “pass”);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(“SELECT * FROM Cust”);
while(rs.next())

System.out.println(rs.getString(1)) ;
rs.close() ;
stmt.close() ;
conn.close() ;
con.close();

This code obtains a JDBC (Java Database Connectivity) DataSource from the container using JNDI (Java
Naming and Directory Interface) lookup. It is the J2EE-sanctioned way of getting a JDBC connection, and
occurs very frequently in component coding. Control for the code is always with the component; in par-
ticular the component obtains the DataSource via the following steps:

1. Obtains a new JNDI InitialContext() from the container

Value of autowire Attribute Description

byType The container examines the argument type of the setter methods
on the bean, and tries to locate a bean with the same type. An
error is raised when more than one bean with the same type
exists, or when there is no bean of the required type.

constructor The container checks for a constructor with a typed argument,
and tries to find a bean with the same type as the argument to the
constructor and to wire that bean during a call to the constructor.
An error is raised when more than one bean with the required
type exists, or when there is no bean of the required type.

autodetect The container performs either the constructor or byType setter
autowiring by examining the bean to be wired. It raises an error
if the bean cannot be autowired.

no This is the default behavior when the autowire attribute is not
specified. The container does not attempt to wire the properties
automatically; they must be explicitly wired. This is desirable in
most cases if you want explicit documentation of the component
wiring.

16

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 16

2. Uses it to look up a resource bound at jdbc/WroxJDBCDS

3. Casts the returned resource to a DataSource

When writing your software components to be wired by Spring, however, you do not need to perform the
lookup; you just start to use the DataSource. Consider this segment of code from a Spring component:

private DataSource ds;
public void setDs(DataSource datasource) {
ds = datasource;
}
...
Connection conn = ds.getConnection(“user”, “pass”);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(“SELECT * FROM Cust”);
while(rs.next())

System.out.println(rs.getString(1)) ;
rs.close() ;
stmt.close() ;
conn.close() ;

This code does exactly the same work as the preceding code segment. However, note that at no time does
the component actually ask the container for the DataSource. Instead, the code simply uses the private ds
variable without knowing how it is obtained.

In this case, control over deciding which DataSource to use is not with the component — it is with the
container. Once the container has an instance of a DataSource that the component can use, it is placed
into the object by calling the setDs() method. This is the inversion in IoC! The control for the resource
to use is inverted, from the component to the container and its configuration. In this case, the Spring
container makes the decision instead of the component.

Of course, in Spring, the DataSource can be wired during deployment via editing of the beans.xml
descriptor file:

<bean name=”wroxBean”
class=”com.wrox.beginspring.DataBean”>

<property name=”ds” ref=”jdbcds” />
</bean>

The preceding code assumes that the jdbcds bean is a DataSource that has been wired earlier within the
context descriptor. This DataSource instance can be created directly as a <bean>, or it can still use JNDI
lookup if the container chooses. Spring provides a library factory bean called org.springframework
.jndi.support.SimpleJndiBeanFactory, if you want to use JNDI lookup.

The key thing to understand is that instead of you having to decide on the mechanism to obtain a resource
(such as a JDBC DataSource) in the component code — making it specific to the means of lookup and hard-
coding the resource name — using IoC allows the component to be coded without any worry about this
detail. The decision is deferred to the container to be made at deployment time instead of at compile time.
Figure 1-3 illustrates IoC.

The component on the left side of Figure 1-3 is a standard non-IoC component, and it asks the container
for the two resources (beans) that it needs. On the right side of Figure 1-3, the container creates or locates

17

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 17

the required resource and then injects it into the component, effectively inverting the control over the
selection of the resource from the component to the container.

Figure 1-3

Dependency Injection
Since the Spring code shown is dependent on the availability of the DataSource instance to work, and
the instance is injected into the component via the setDs() method, this technique is often referred to as
dependency injection. In fact, the use of the setter method, setDS(), to inject the DataSource code depend-
ency is known as setter injection. Spring also supports constructor injection, in which a dependent resource
is injected into a bean via its constructor.

Try It Out Creating a Dependency Injection
To see dependency injection in action, you do not even have to rebuild your project — since beans are
wired via the context descriptor in Spring.

1. Go back to the src/chapter1/springfirst directory and run CalculateSpring:

mvn exec:java -Dexec.mainClass=com.wrox.begspring.CalculateSpring –Dexec.args=”3000 3”

The current bean is autowired with an Operation implementation that adds two numbers
together. And you see the output:

The result of 3000 plus 3 is 3003!

2. Change the directory to edit the context descriptor in the src/chapter1/springfirst/
target/classes directory:

cd src/chatper1/springfirst/target/classes

CalculateSpring (component)

2. Injects ScreenWriter
for writer property

Container IoC Container

OpMultiply ScreenWriter
OpMultiply ScreenWriter

1. Give me OpMultiply

2. Here is OpMultiply

3. Give me ScreenWriter

4. Here is ScreenWriter

Calculate (component) ops property
writer property

1. Injects OpMultiply
for ops property

OpMultiply
ScreenWriter

18

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 18

3. Now, modify beans.xml to use the OpMultiply implementation instead: edit the file to match
the highlighted lines shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd”>

<bean id=”screen” class=”com.wrox.begspring.ScreenWriter” />
<bean id=”multiply” class=”com.wrox.begspring.OpMultiply” />
<bean id=”add” class=”com.wrox.begspring.OpAdd” />

<bean id=”opsbean” class=”com.wrox.begspring.CalculateSpring”>
<property name=”ops” ref=”multiply” />
<property name=”writer” ref=”screen”/>

</bean>
</beans>

4. Change the directory back to the /springfirst directory, where pom.xml is located, and try
running the command again:

mvn exec:java -Dexec.mainClass=com.wrox.begspring.CalculateSpring –Dexec.args=”3000 3”

This time, the output is as follows:

The result of 3000 times 3 is 9000!

The application’s behavior has been altered, and a different component injected into the setter, without
any code recompilation.

How It Works
The CalculateSpring component code has a setter for the ops property, enabling the Spring IoC con-
tainer to inject the dependency into the component during runtime. The following code shows the setter
method in the highlighted portion:

package com.wrox.begspring;

import org.springframework.beans.factory.BeanFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class CalculateSpring {
private Operation ops;
private ResultWriter wtr;

public void setOps(Operation ops) {
this.ops = ops;
}
public void setWriter(ResultWriter writer) {
wtr = writer;
}

19

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 19

When the CalculateSpring bean is wired in beans.xml, the setter dependency injection is used to
wire an implementation of OpMultiply, instead of the former OpAdd, to this ops property. This setter
injection is highlighted in the following code:

<bean id=”opsbean” class=”com.wrox.begspring.CalculateSpring”>
<property name=”ops” ref=”multiply” />
<property name=”writer” ref=”screen”/>

</bean>

As you can see, dependency injection enables JavaBean components to be rewired without compilation
in the IoC container. Decoupling the dependency from the JavaBean that depends on it, and deferring the
selection until deployment or runtime, greatly enhances code reusability for the wired software component.

Adding Aspect-Oriented Programming
to the Mix

Spring supports AOP, or aspect-oriented programming. AOP allows you to systematically apply a set of
code modules, called aspects, to another (typically larger) body of target code. The end result is a shuf-
fling of the aspect code with the body of code that it cuts across. However, the crosscutting aspects are
coded and maintained separately, and the target code can be coded and maintained completely free of
the crosscutting aspects. In AOP lingo, this is called separation of concerns.

The technique may appear strange initially. However, in most large software systems, a lot of code addresses
a specific concern that can cut across many different source modules. These are called crosscutting concerns in
AOP. Some typical examples of crosscutting concerns include security code, transaction code, and logging
code. Traditional coding techniques do not allow such code to be created and maintained separately; instead
it must be intermixed with other application logic.

As you can imagine, a code body that includes a mix of crosscutting concerns can be difficult to maintain.
If you need to modify the crosscutting concern code, you may need to make changes across many files. In
addition, crosscutting concern code tends to clutter up the application logic flow (for example, with secu-
rity and logging code), making the code harder to understand.

In Figure 1-4, the set of logging aspects is applied to the main application using pointcuts. A pointcut in
AOP describes where and how the aspect code should be inserted into the target. Figure 1-4 shows how
Spring AOP matches pointcuts, and applies aspects to the target code at multiple matched join points.

Spring 2 supports AOP using two mechanisms. The first is via Spring AOP, and is a proxy-based imple-
mentation that existed in versions before 2.x. (A proxy in this sense is a Java wrapper class created or
generated for the purpose of intercepting method invocations.) The second is via the integration with the
AspectJ programming language and associated environments. AspectJ is one of the most popular AOP
frameworks on the market today.

Chapter 12 focuses on Spring AOP and its use of AspectJ. Here you will get a small taste of what’s to come.

20

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 20

Figure 1-4

Adding a Logging Aspect
In this section, you can try out Spring AOP support by applying a logging aspect to the existing calcula-
tion code.

The code for the logging aspect is the com.wrox.begspring,aspects.LoggingAspect class, which
you can find under the src\chapter1\springaop\src\main\java\com\wrox\begspring\aspects
directory; it is shown here:

package com.wrox.begspring.aspects;

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class LoggingAspect {

@Before(“execution(* com.wrox.begspring.Operation.*(..))”)
public void logMethodExecution(JoinPoint jp) {
System.out.println(“AOP logging -> “

+ jp.toShortString());

}
}

The logging aspect that can be applied is in boldface in the preceding code. Note that there is nothing
about this aspect code that refers to the CalculateSpring code — the target to which it is applied. In
fact, this aspect can be coded, modified, and maintained independently of the CalculateSpring code.

Existing target code modules
SPRING AOP

Matches pointouts and apply aspects

Logging aspect (code)

Apply
aspect
here

Apply
aspect
here

Apply
aspect
here

Matched
JoinPoint

Matched
JoinPoint

Matched
JoinPoint

21

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 21

This code prints a logging message, similar to the following, whenever a method on the Operation
interface (from the CalculateSpring code) is called:

AOP logging -> execution(getOpsName)

Try It Out Experimenting with Spring AOP Support
Once you have created an aspect, in this case a logging aspect, you can apply it to a target (in this
case the CalculateSpring components) through the context descriptor. Try applying the aspect to the
CalcuateSpringAOP class (just the good old CalculateSpring class renamed) by following these steps:

1. Change the directory to the springaop project in the source code distribution:

cd src/chapter1/springaop

2. Compile code using Maven 2, via the following command:

mvn compile

3. Run the code using Maven 2 by typing the following on one line:

mvn exec:java -Dexec.mainClass=com.wrox.begspring.CalculateSpringAOP
–Dexec.args=”3000 3”

4. Take a look at the output; it should look like this:

AOP logging -> execution(getOpsName)
AOP logging -> execution(operate)
The result of 3000 times 3 is 9000!

Note that the executions of both the getOpsName() and operate() methods of the Operation inter-
face are logged. Yet the implementations of this interface — such as OpAdd or OpMultiply — are not
logged at all.

How It Works
The main code for CalculateSpring is renamed CalculateSpringAOP, and is shown here:

package com.wrox.begspring;

import org.springframework.beans.factory.BeanFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class CalculateSpringAOP {

private Operation ops;
private ResultWriter wtr;

22

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 22

public void setOps(Operation ops) {
this.ops = ops;
}
public void setWriter(ResultWriter writer) {
wtr = writer;
}

public static void main(String[] args) {
ApplicationContext context =
new ClassPathXmlApplicationContext(

“beans.xml”);

BeanFactory factory = (BeanFactory) context;
CalculateSpringAOP calc =
(CalculateSpringAOP) factory.getBean(“opsbean”);

calc.execute(args);
}

public void execute(String [] args) {
long op1 = Long.parseLong(args[0]);
long op2 = Long.parseLong(args[1]);

wtr.showResult(“The result of “ + op1 +
ops.getOpsName() + op2 + “ is “
+ ops.operate(op1, op2) + “!”);

}

}

Note that this main code has not been modified in any way. The aspect is applied via Spring AOP (under-
neath the covers it’s using dynamic proxies) without requiring changes to the target body of code.

Wiring in AOP Proxies
As with other Spring techniques, the AOP magic is wired via the configuration in the Spring context
descriptor. If you take a look at the beans.xml file used for this application (look in the src/chapter1/
springaop/src/main/resources directory), you can see how the aspect is specified and applied. The
following highlighted code is responsible for the application of the aspect:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:aop=”http://www.springframework.org/schema/aop”
xsi:schemaLocation=”http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.0.xsd”>

23

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 23

<bean id=”screen” class=”com.wrox.begspring.ScreenWriter” />
<bean id=”multiply” class=”com.wrox.begspring.OpMultiply” />

<bean id=”opsbean” class=”com.wrox.begspring.CalculateSpringAOP”
autowire=”byType”/>

<aop:aspectj-autoproxy/>

<bean id=”logaspect” class=”com.wrox.begspring.aspects.LoggingAspect”/>

</beans>

The Spring container processes the <aop:aspectj-autoproxy> element and automatically creates a
dynamic proxy required for AOP when it wires the beans together. Proxies are automatically added to the
CaculateSpringAOP class by Spring, allowing for interception and the application of the LoggingAspect.

Note that you must add the highlighted AOP schema and namespace before the <aop:aspectj-
autoproxy> element can work.

In this case, Spring 2 uses the AspectJ pointcut language (described in the next section) to determine where
the proxies should be added for interception by the aspect.

Matching Join Points via AspectJ Pointcut Expressions
Java annotations are used to specify the pointcut to match when applying the aspect. The code responsible
for this is highlighted here:

package com.wrox.begspring.aspects;

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class LoggingAspect {

@Before(“execution(* com.wrox.begspring.Operation.*(..))”)
public void logMethodExecution(JoinPoint jp) {
System.out.println(“AOP logging -> “

+ jp.toShortString());

}
}

The @Aspect annotation marks this class as an Aspect. The @Before() annotation specifies the actual
pointcut. The AspectJ pointcut expression language is used here to match a join point — a candidate spot
in the target code where the aspect can be applied. This expression basically says, Apply this aspect before
you call any method on the type com.wrox.begspring.Operation.

Since com.wrox.begspring.Operation is actually an interface, this results in aspect application before
execution of any method on any implementation of this interface.

24

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 24

The argument to the logMethodExecution() method is a join point. This is a context object that marks
the application point of the aspect. There are several methods on this join point that can be very useful
in the aspect implementation. The following table describes some of the methods available at the join point.

Since an aspect is just a Java class, you can define as many as you need. You can imagine writing a set of
logging aspects that can be maintained separately, and flexibly applied to a large body of code via manip-
ulation of the pointcut expressions. This is the essence of how AOP can be very useful in everyday pro-
gramming. Chapter 12 has a lot more coverage on Spring’s AOP support.

Beyond Plumbing — Spring API Libraries
Thus far, you have seen that Spring provides:

❑ A way to wire JavaBeans together to create applications

❑ A framework that supports dependency injection

❑ A framework that supports AOP

These capabilities are fundamental to application plumbing and are independent of the type of software
systems you are creating. Whether you are writing a simple small application that runs on a single machine
and uses only file I/O, or a complex server-based application that services thousands of users, Spring can
be very helpful. These capabilities can help make your design more modular, and your code more reusable.

Method Description

getArgs() Returns an object that can be used to access the argument of the join
point

getKind() Returns a string that describes the kind of join point precisely

getSignature() Returns the method signature at this join point

getSourceLocation() Returns information on the source code (filename, line, column)
where this join point is matched

getStaticPart() Returns an object that can be used to access the static (non–wild card)
part of the join point

getTarget() Returns the target object that the aspect is being applied to (at this
join point)

getThis() Returns the object that is currently executing

toString() Returns the matched join point description as a string

toShortString() Returns the matched join point description in a short format

toLongString() Returns the matched join point description

25

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 25

They decouple dependency specifications from business logic, and separate crosscutting concerns. All
these things are desirable in software projects of any type and/or size.

The Spring framework provides generic plumbing for creating modularized applications of any kind;
you are not restricted to creating web-based enterprise Java applications.

Going beyond the generic plumbing discussed so far, Spring offers much, much more.

Using Spring APIs To Facilitate Application Creation
Spring includes a large body of components and APIs that you can use when creating your application.
Many of these components address specific type of applications, such as web-based server applications.

Figure 1-5 shows the distinct modules of APIs and components included with the Spring distribution.

You can see the Java EE–centric nature of Spring in Figure 1.5. All the API modules fall under one of the
three main classifications: core container, Java EE support, or persistence.

Figure 1-5

The following table describes the various categories of APIs that are available.

Spring 2 API Modules Description

CORE Lightweight Spring IoC container implementation, supporting
dependency injection.

CONTEXT A module that provides internationalization support, event handling,
resource access, asynchronous processing, message triggered behav-
iors, and context management.

AOP

context

core DAO

ORM

Remoting

Web / Web MVC

Java EE
(JMS, JNDI,

JMX, and so on)

Java EE Support

Persistence

26

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 26

Bearing in mind that Spring was originally invented to create an easier and more lightweight alterna-
tive to the legacy J2EE, it is easy to see why such a rich API exists for component-based enterprise appli-
cation development.

Throughout this book, the APIs and components depicted in Figure 1-5 are explored. You will have many
hands-on opportunities to work and experiment with the Spring APIs.

Summary
Spring started life as an implementation of a lightweight alternative to the heavyweight J2EE 1.4 con-
tainers. It enables the construction of completely component-based applications with just enough com-
ponents to carry out the work — and without the baggage of application servers.

The core of Spring provides flexible runtime wiring of Java Beans via an XML-based descriptor; appli-
cations can be created by wiring together JavaBeans components with Spring-supplied container-service
components that supply essential services such as relational database access and user interface handling.

Spring 2 API Modules Description

AOP Supports AOP for application crosscutting concerns such as security,
transactions, and other behaviors. Includes proxy-based implementa-
tions via Spring AOP, and integration with the AspectJ AOP language.

DAO Provides a generic Data Access Objects abstraction over access of
relational data from a variety of sources (such as JDBC). The access
approach is uniform, regardless of the source of the data.

ORM Provides uniform access to a wide variety of Object to Relational
Mapping technologies including Hibernate, iBatis Maps, JDO, and JPA.

REMOTING This API abstracts the ability to export interfaces for remote access
to the features of a Spring components–based application. Supported
access protocols include RMI, JMS, Hessian, Burlap, JAX RPC and
Spring HTTP invoker. Remote access via Web Services is also sup-
ported through Spring Remoting.

WEB and WEB MVC Components and APIs providing support for web applications,
including requests handling, file uploads, portlet implementation,
Struts and Webwork integration, and so on. Includes support for
Model View-Controller (MVC) design patterns during the construc-
tion of web applications. Enables integration with a large variety of
presentation technologies, including Velocity, JSP, JSF, and so on.

JEE This API and its components support enterprise application creation,
including the creation of those that support services found in the
Java EE container — JMX, JMS, JDBC, JNDI, JTA, JPA, and so on.
Also includes an API that supports the creation of standard EJBs
using Spring components, and the ability to invoke EJBs from Spring
components.

27

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 27

Inversion of control (IoC) is used throughout Spring applications to decouple dependencies that typically
block reuse and increase complexity in J2EE environments. Instead of a component manually looking up
the provider of a service, the provider is injected into the component by the Spring container at runtime.
This enables you to write reusable components that are independent of provider-specific features.

AOP is a core enabler in Spring. AOP support enables you to factor crosscutting concerns out of your appli-
cation and maintain them separately from the main body of code. Some common crosscutting concerns for
applications include logging, security implementation, and transactions. The maintenance of such code in
separate code modules called aspects makes the main body of code clearer and easier to maintain, while
changes in the crosscutting concerns require only modification of the aspects, not of the (potentially large)
main code body. Spring provides a proxy-based AOP implementation, as well as integration with the pop-
ular AspectJ AOP programming language.

In addition to the core application plumbing that can apply to any kind of Java application, Spring also
provides a rich API and prefabricated component support for creating applications. These components
and APIs can be used to build enterprise Java applications without the deployment of a conventional
Java EE server.

28

Chapter 1: Jump Start Spring 2

01612c01.qxd:WroxPro 10/31/07 10:42 AM Page 28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

