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Chapter 1

Elementary Reactions in
Ideal Reactors

Material and energy balances are the heart of chemical engineering. Combine them
with chemical kinetics, and they are the heart of chemical reaction engineering. Add
transport phenomena and you have the intellectual basis for chemical reactor design.
This chapter begins the study of chemical reactor design by combining material
balances with kinetic expressions for elementary chemical reactions. The resulting
equations are then solved for several simple but important types of chemical reactors.
More complicated reactions and more complicated reactors are treated in subsequent
chapters, but the real core of chemical reactor design is here in Chapter 1. Master it,
and the rest will be easy.

1.1 MATERIAL BALANCES

Consider any region of space having a finite volume and prescribed boundaries that
unambiguously separate the region from the rest of the universe. Such a region is
called a control volume, and the laws of conservation of mass and energy may be
applied to it. We ignore nuclear processes so that there are separate conservation laws
for mass and energy. For mass,

Rate at which mass enters the volume

= rate at which mass leaves the volume

+ rate at which mass accumulates within the volume (1.1)

where “entering” and “leaving” apply to the flow of material across the boundaries.
See Figure 1.1. Equation 1.1 is an overall mass balance that applies to the total mass
within the control volume, as measured in kilograms or pounds. It can be written as

(Qmass)in = (Qmass)out + d I

dt
(1.2)
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2 Chapter 1 Elementary Reactions in Ideal Reactors

Total Mass Input = Qin  
ρin

Total Mass
Output = Qout  

ρout

Volume = V

Average Density = ρ̂

Accumulation =
ˆd(Vρ)

dt

Figure 1.1 Control volume for total mass balance.

where Qmass is the mass flow rate and I is the mass inventory in the system. We often
write this equation using volumetric flow rates and volumes rather than mass flow
rates and mass inventories.

Qinρin = Qoutρout + d(ρ̂V )

dt
(1.3)

where Q is the volumetric flow rate (volume per time) and ρ is the mass density (mass
per volume). Note that ρ̂ is the average mass density in the control volume so that
ρ̂V = I .

Equations 1.1–1.3 are different ways of expressing the overall mass balance for
a flow system with variable inventory. In steady-state flow, the derivatives vanish, the
total mass in the system is constant, and the overall mass balance simply states that
input equals output. In batch systems, the flow terms are zero, the time derivative
is zero, and the total mass in the system remains constant. We will return to the
general form of Equation 1.3 when unsteady reactors are treated in Chapter 14. Until
then, the overall mass balance merely serves as a consistency check on more detailed
component balances that apply to individual substances.

In reactor design, we are interested in chemical reactions that transform one kind
of mass into another. A material balance can be written for each component; but since
chemical reactions are possible, the rate of formation of the component within the con-
trol volume must now be considered. The component balance for some substance A is

Rate at which component A enters the volume

+ net rate at which component A is formed by reaction

= rate at which component A leaves the volume

+ rate at which component A accumulates within the volume (1.4)
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Total Component Input = Qin ain

Total Component
Output = Qout aout

Average Concentration = â
Inventory = ˆVa

Average Reaction Rate = AR

Accumulation =
ˆd(Va)

dt

Figure 1.2 Control volumes for component balance.

More briefly,

Input + formation = output + accumulation (1.5)

See Figure 1.2. A component balance can be expressed in mass units, and this is done
for materials such as polymers that have an ill-defined molecular weight. Usually,
however, component A will be a distinct molecular species, and it is more convenient
to use molar units:

Qinain +R̂AV = Qoutaout + d(V â)

dt
(1.6)

where a is the concentration or molar density of component A in moles per volume
andR̂A is the volume-average rate of formation of component A in moles per volume
per time.

There may be several chemical reactions occurring simultaneously, some of
which generate A while others consume it. The net rate R̂A will be positive if there is
net production of component A and negative if there is net consumption. Unless the
system is very well mixed, concentrations and reaction rates will vary from point to
point within the control volume. The component balance applies to the entire control
volume so that â and R̂A denote spatial averages.

A version of Equation 1.4 can be written for each component, A, B, C. . . . If these
equations are written in terms of mass and then summed over all components, the
sum must equal Equation 1.1 since the net rate of mass formation must be zero. When
written in molar units as in Equation 1.6, the sum need not be zero since chemical
reactions can cause a net increase or decrease in the number of moles.
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1.1.1 Measures of Composition

This book uses the term concentration to mean the molar density of a component,
for example, moles of A per unit volume of the reacting mixture. In the International
System of Units (SI) concentration is in moles per cubic meters where the moles
are gram moles. Molarity is classically defined as moles per liter of solution and is
a similar concentration measurement. Molality is classically defined as moles per
kilogram of solvent (not of solution) and is thus not a standard measure of concen-
tration. For gases at low pressure and moderate temperatures, partial pressures are
sometimes used instead of concentrations since partial pressures are proportional to
concentration for ideal gases.

Other measures of composition such as mole fraction and mass fraction are
less commonly used to express chemical reaction rates. Weight measurements are
frequently used to prepare solutions or fill reactors. The resulting composition will
have a known ratio of moles and masses of the various components, but the numerical
value for concentration requires that the density be known. Good practice is to prepare
solutions in mass units and then convert to standard concentration units based on
the known or observed density of the solution under reaction conditions. To avoid
ambiguity, modern analytical chemists frequently define both molarity and molality
in weight units as moles per kilogram of solution or moles per kilogram of solvent.

EXAMPLE 1.1

Sucrose, 342.3 g, is dissolved in one liter of water at “room temperature.” Calculate the com-

position by various measures.

SOLUTION: The molecular weight of sucrose is 342.3 so the molality of the solution is

approximately 1.0. It would be exactly 1.0 if molality were defined per liter of solvent rather than

per kilogram of solvent. Room temperature in the scientific literature means 20–25◦C, with 25◦C

being usual in the United States. The density of water at 25◦C is 0.997 g cm−3 so that the solution

used 0.997 kg of water, giving a molality of 1.003. The weight percent of sucrose is 25.56. The

mole fraction of sucrose is 0.0177. The concentration of sucrose cannot be determined without

knowing the density of the solution. It is about 1.10 g cm−3 at the experimental conditions. Thus

the concentration of sucrose is 1/(997 + 342.3)/1.10 = 8.21 × 10−4 mol cm−3 =821 mol m−3.

The molarity is 0.821 mol L−1.

A word of caution involves the definition of mole. As indicated above, SI moles
are gram moles, the mass in grams of 6.02 × 1023 molecules. There is an inconsistency
in the SI system of units that may cause problems when converting molar densities
and molar flow rates to mass densities and mass flow rates. A point in the system
with molar concentrations (i.e., molar densities) of a and b has a mass density of ρ =
aMA + bMB , where MA and MB are the molecular weights of the two components.
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The resulting units on ρ are grams per cubic meter and must be divided by 1000 to
obtain conventional SI units of kilograms per cubic meter.

1.1.2 Measures of Reaction Rate

The SI units for reaction rate are moles per cubic meter per second, but other time
units are frequently used and other volume units are sometimes used. It is obviously
necessary to specify to what compound the reaction rate refers. This book makes the
specification essentially automatic by defining a rate, R, for the reaction as a whole.
The reaction rate for component A is denoted RA and is found from

RA = νAR (1.7)

where νA is the stoichiometric coefficient for component A in the (single) reaction.
The next section discusses this more fully, and Chapter 2 extends the treatment to
multiple reactions. However, reaction rate expressions and data taken from other
sources may not follow the convention and need careful scrutiny, particularly if the
reaction is something like 4Fe + 3O2 → 2Fe2O3.

To design a chemical reactor, the spatial-average concentrations â, b̂, ĉ, . . . must
be found for a batch reactor and the outlet concentrations are needed for a flow reactor.
Finding these concentrations is relatively easy for the single, elementary reactions and
ideal reactors that are considered here in Chapter 1. We begin by discussing elementary
reactions, of which there are just a few basic types.

1.2 ELEMENTARY REACTIONS

Consider the reaction of two chemical species according to the stoichiometric equation

A + B → P (1.8)

This reaction is said to be homogeneous if it occurs within a single phase. For the
time being we are concerned only with reactions that take place in the gas phase or in
a single liquid phase. These reactions are said to be elementary if they result from a
single interaction (i.e., a collision) between the molecules appearing on the left-hand
side of Equation 1.8. The rate at which collisions occur between A and B molecules
should be proportional to their concentrations, a and b. Not all collisions cause a
reaction, but at constant environmental conditions (e.g., temperature), some definite
fraction should react. Thus we expect

R = k[A][B] = kab (1.9)

where k is a constant of proportionality known as the rate constant.
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1.2.1 Kinetic Theory of Gases

The kinetic theory of gases can be used to rationalize the functional form of Equation
1.9. Suppose that a collision between an A and B molecule is necessary but not
sufficient for reaction to occur. Thus we expect

R = CAB fR

Av
(1.10)

where CAB is the collision rate (collisions per volume per time) and fR is the reaction
efficiency. Avogadro’s number, Av, has been included in Equation 1.10 so that R will
have normal units, moles per cubic meter per second, rather than units of molecules
per cubic meter per second. By hypothesis 0 < fR < 1.

Ideal gas theory treats the molecules as rigid spheres having radii rA and rB. They
collide if they approach each other within a distance rA + rB. A result from kinetic
theory is

CAB =
[

8π RgT (m A + m B)

Av m Am B

]1/2

(rA + rB)2 Av2 ab (1.11)

where Rg is the gas constant, T is the absolute temperature, and mA and mB are the
molecular masses in kilograms per molecule. The collision rate is proportional to the
product of the concentrations as postulated in Equation 1.9. The reaction rate constant
is

k =
[

8π RgT (m A + m B)

Av m Am B

]1/2

(rA + rB)2 Av fR (1.12)

Collision theory is mute about the value of fR . Typically fR � 1 so that the number of
molecules colliding is much greater than the number reacting. See Problem 1.2. Not
all collisions have enough energy to produce a reaction. Steric effects may also be
important. As will be discussed in Chapter 5, fR is strongly dependent on temperature.
This dependence usually overwhelms the T1/2 dependence predicted for the collision
rate.

1.2.2 Rate of Formation

Note that the rate constant k is positive so that R is positive. Here, R is defined as
the rate of the reaction, not the rate at which a particular component reacts or is
formed. Components A and B are consumed by the reaction of Equation 1.8 and thus
are “formed” at a negative rate:

RA = RB = −kab

while P is formed at a positive rate:

RP = +kab
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The sign convention we have adopted is that the rate of a reaction is always positive.
The rate of formation of a component is positive when the component is formed by
the reaction and is negative when the component is consumed.

A general expression for any single reaction is

0M → νAA + νBB + · · · + νRR + νSS + · · · (1.13)

As an example, the reaction 2H2 + O2 → 2H2O can be written as

0M → −2H2 − O2 + 2H2O

This form is obtained by setting all participating species, whether products or reac-
tants, on the right-hand side of the stoichiometric equation. The remaining term on
the left is the zero molecule, which is denoted by 0M to avoid confusion with atomic
oxygen. The ν A, νB , . . . are the stoichiometric coefficients for the reaction. They are
positive for products and negative for reactants. The general relationship between the
rate of the reaction and the rate of formation of component A is

RA = νAR (1.14)

Stoichiometric coefficients can be fractions. However, for elementary reactions, they
must be small integers, of magnitude 2, 1, or 0. If the reaction of Equation 1.13 were
reversible and elementary, its rate would be

R = k f [A]−νA [B]−νB · · · − kr [R]νR [S]νS (1.15)

where A, B, . . . are reactants; R, S, . . . are products; k f is the rate constant for the
forward reaction; and kr is the rate constant for the reverse reaction.

The functional form of the reaction rate in Equation 1.15 is dictated by the reaction
stoichiometry, Equation 1.13. Only the constants k f and kr can be adjusted to fit the
specific reaction. This is the hallmark of an elementary reaction; its rate is consistent
with the reaction stoichiometry and is given by Equation 1.15. However, reactions
can have the form of Equation 1.15 without being elementary.

As a shorthand notation for indicating that a reaction is elementary, we shall
include the rate constants in the stoichiometric equation by showing the rate constant
above the arrow and, if reversible, below the arrow. Thus the reaction

A + B
k f�
kr

2C

is elementary and reversible and has the following rate expression:

R = k f ab − kr c2

The relative magnitudes of k f and kr are constrained by an equilibrium constant. For
this example, νA = νB = −1, νC = +2, and the equilibrium constant is

Kkinetic = k f

kr
= [A]−1[B]−1[C]2 = [C]2

[A][B]
= c2

ab
(1.16)

Reversible reactions and equilibrium constants are discussed at length in Section 7.2.
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Chemical engineers deal with many reactions that are not elementary. Most in-
dustrially important reactions go through a complex kinetic mechanism before the
final products are reached. The mechanism may give a rate expression far different
than Equation 1.15 even though it involves only short-lived intermediates that never
appear in conventional chemical analyses. Elementary reactions are generally limited
to the following types: first order, second order unimolecular, and second order with
two reactants. Third-order reactions exist but are rare.

1.2.3 First-Order Reactions

An irreversible first-order reaction involves only one reactant:

A
k→ products R = ka (1.17)

Since R has units of moles per volume per time and a has units of moles per volume,
the rate constant for a first-order reaction has units of reciprocal time, for example,
reciprocal seconds. The best example of a truly first-order reaction is radioactive
decay, for example,

238U → 234Th + 4He

since it occurs spontaneously as a single-body event. Among strictly chemical reac-
tions, thermal decompositions such as

CH3OCH3 → CH4 + CO + H2

follow first-order kinetics at normal gas densities. The student of chemistry will
recognize that the complete decomposition of dimethyl ether into methane, carbon
monoxide, and hydrogen will not occur in a single step. Short-lived intermediates
will exist, but since the reaction is irreversible, they will not affect the rate of the
decomposition reaction since it is first order and has the form of Equation 1.17. The
decomposition does require energy, and collisions between the reactant and other
molecules are the usual mechanism for acquiring this energy. Thus a second-order
dependence may be observed for the pure gas at very low densities since reactant
molecules must collide with themselves to acquire energy.

1.2.4 Second-Order Reactions with One Reactant

The simplest example of a second-order reaction has one type of molecule reacting
with itself:

2A
k→ products R = ka2 (1.18)

where k has units of cubic meters per mole per second. It is important to note that
RA = −2ka2 according to the convention of Equation 1.14. Pesky factors of 2 are
common in chemical kinetics. In using literature data, be sure to check the source to
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see if the author defined the reaction rate as R = ka2 so that RA = −2ka2. Another
common possibility is to have RA = −k2a2 where k2 = 2k.

A gas phase reaction believed to be elementary and second order is

2HI → H2 + I2

Here, collisions between two HI molecules supply energy and also supply the reactants
needed to satisfy the observed stoichiometry.

1.2.5 Second-Order Reactions with Two Reactants

Second-order reactions with two reactants are common:

A + B
k→ products R = kab (1.19)

Liquid phase esterifications such as

O O
‖ ‖

C2H5OH + CH3COH → C2H5OCCH3 + H2O

typically follow second-order kinetics.

1.2.6 Third-Order Reactions

Elementary third-order reactions are vanishingly rare because they require a statisti-
cally improbable three-way collision. In principle there are three types of third-order
reactions:

3A
k→ products R = ka3

2A + B
k→ products R = ka2b

A + B + C
k→ products R = kabc

(1.20)

A homogeneous gas phase reaction that follows a third-order kinetic scheme is

2NO + O2 → 2NO2 R = k[NO]2[O2]

although the mechanism is believed to involve two steps (Tsukahara et al., 1999) and
thus is not elementary. Reactions may approximate third-order and even higher order
kinetics without being elementary.

1.3 REACTION ORDER AND MECHANISM

As suggested by these examples, the order of a reaction is the sum of the exponents
m, n, . . . in

R = kambn . . . Reaction order = m + n + · · · (1.21)
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This definition for reaction order is directly meaningful only for irreversible or forward
reactions that have rate expressions in the form of Equation 1.21. If the reaction is
reversible, the reverse reaction can have a different order. Thus

A + B
k f−→←−
kr

C R = k f ab − kr c

is second order for the forward reaction and first order for the reverse reaction.
Components A, B, . . . are consumed by the reaction and have negative stoichiom-

etry coefficients so that m = −ν A, n = −νB , . . . are positive (or zero). For elementary
reactions, m and n must be integers of 2 or less and, practically speaking, must sum
to 2 or less so that the only real possibilities for elementary reactions are first and
second order.

Equation 1.21 is frequently used to correlate data from complex reactions. Com-
plex reactions can give rise to rate expressions that have the form of Equation 1.21 but
with fractional or even negative exponents. Complex reactions with observed orders
of 1

2
or 3

2
can be explained theoretically based on mechanisms discussed in Chapter 2.

Negative orders arise when a compound retards a reaction, say by competing for active
sites in a heterogeneously catalyzed reaction or when the reaction is reversible. Ob-
served reaction orders above 3 are occasionally reported. An example is the reaction
of styrene with nitric acid where an overall order of 4 has been observed (Lewis and
Moodie, 1997). The likely explanation is that the acid serves both as a catalyst and
as a reactant. The reaction is far from elementary.

Complex reactions can be broken down into a number of series and parallel el-
ementary steps, possibly involving short-lived intermediates such as free radicals.
These individual reactions collectively constitute the mechanism of the complex
reaction. The individual reactions are usually second order, and the number of reac-
tions needed to explain an observed, complex reaction can be surprisingly large. For
example, a good model burning methane such as

CH4 + 2O2 → CO2 + 2H2O

will involve 20 or more elementary reactions even assuming that the indicated products
are the only ones formed in significant quantities. A detailed model for the oxidation
of toluene involves 141 chemical species in 743 elementary reactions (Lindstedt
and Maurice, 1996). A model for the creation of carbon nanotubes by the high-
pressure carbon monoxide process (Dateo et al., 2002) involves 917 species and 1948
chemical reactions, although the experimental data are well explained by a simple
model containing a mere 14 species and 22 reactions.

As a simpler example of a complex reaction, consider the nitration of toluene to
give TNT, 2,4,6-trinitrotoluene (kindly do this abstractly, not experimentally like the
evil professor in Problem 1.13). The reaction is

Toluene + 3HNO3 → TNT + 3H2O

or, in shorthand,

A + 3B → C + 3D
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This reaction cannot be elementary. We can hardly expect three nitric acid molecules
to react at all three toluene sites (these are primarily the ortho and para sites; meta
substitution is not favored) in a glorious, four-body collision. Thus the fourth-order
rate expression R = kab3 is implausible. Instead, the mechanism of the TNT reaction
involves at least seven steps (two reactions leading to ortho- or para-nitrotoluene,
three reactions leading to 2,4- or 2,6-dinitrotoluene, and two reactions leading to
2,4,6-trinitrotoluene). Each step would require only a two-body collision, could be
elementary, and could be governed by a second-order rate equation. Chapter 2 shows
how the component balance equations can be solved for multiple reactions so that an
assumed mechanism can be tested experimentally. For the toluene nitration, even the
set of seven series and parallel reactions may not constitute an adequate mechanism
since an experimental study (Chen et al., 1996) found the reaction to be 1.3 order in
toluene and 1.2 order in nitric acid for an overall order of 2.5 rather than the expected
value of 2. Furthermore, the reaction is not even homogeneous as it is normally
conducted (Milllgan, 1986).

An irreversible, elementary reaction must have Equation 1.21 as its rate ex-
pression. A complex reaction may have an empirical rate equation with the form of
Equation 1.21 and with integral values for n and m without being elementary. The
classic example of this statement is a second-order reaction where one of the reactants
is present in great excess. Consider the slow hydrolysis of an organic compound in
water. A rate expression of the form

R = k[water][organic]

is plausible, at least for the first step of a possibly complex mechanism. Suppose
[organic] � [water] so that the concentration of water does not change appreciably
during the course of the reaction. Then the water concentration can be combined with
k to give a composite rate constant. The rate expression appears to be first order in
[organic]:

R = k[water][organic] = k ′[organic] = k ′a

where k ′ = k[water] is a pseudo-first-order rate constant. From an experimental
viewpoint, the reaction cannot be distinguished from first order even though the
actual mechanism is second order. Gas phase reactions can appear first order when
one reactant is dilute. Kinetic theory still predicts the collision rates of Equation 1.11,
but the concentration of one species, call it B, remains approximately constant. The
observed rate constant is

k ′ =
[

8π RgT (m A + m B)

Av m Am B

]1/2

(rA + rB)2 Av fRb

The only reactions which are strictly first order are radioactive decay. Among chemical
reactions, thermal decompositions may seem first order, but an external energy source
is generally required to excite the reaction. As noted earlier, this energy is usually
acquired by intermolecular collisions. Thus the reaction rate could be written as

R = k[reactant molecules] [all molecules]
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The concentration of all molecules is normally much higher than the concentration
of reactant molecules so that it remains essentially constant during the course of the
reaction. Thus, what is truly a second-order reaction appears first order.

1.4 IDEAL, ISOTHERMAL REACTORS

Section 1.2 developed rate expressions for elementary reactions. These expressions
are now combined with the material balances of Section 1.1 to develop reactor de-
sign equations, that is, equations to predict final concentrations in a batch reactor or
outlet concentrations in a flow reactor. Since reaction rate expressions have units of
concentration per time, it may seem that RA is identical to da/dt. This is true only for
an ideal batch reactor. In flow reactors, the concentration changes can be caused by
any of convection, diffusion, and reaction.

There are four kinds of ideal reactors:

1. The batch reactor

2. The piston flow reactor (PFR)

3. The perfectly mixed continuous flow stirred tank reactor (CSTR)

4. The completely segregated continuous flow stirred tank.

This chapter discusses the first three types. These are overwhelmingly the most impor-
tant. The fourth type is interesting theoretically but has limited practical importance.
It is discussed in Chapter 15.

The batch reactor is an unsteady-state system. Reactants are charged to a vessel
and the reaction proceeds in time. Piston flow and stirred tank reactors are normally
designed to operate at a steady state where reactants are continuously charged and
products continuously removed. Until Chapter 5, the reactors are assumed to be
isothermal. This means that the operating temperature is known, is uniform throughout
the reactor, and does not change with time in a batch reactor. Here in Chapter 1, we
also assume that fluid properties and especially density are constant, independent of
the extent of reaction. Finally, we assume that the system is homogeneous and that
there is a single reaction that either is elementary or else has a rate expression identical
to one of the elementary reactions. These various assumptions are realistic for some
industrial reactors and grossly unrealistic for others. The simplified results in this
chapter provide a starting point.

1.4.1 Ideal Batch Reactors

This is the classic reactor used by organic chemists. The typical volume in glass-
ware is a few hundred milliliters. Reactants are charged to the system, rapidly mixed,
and rapidly brought up to temperature so that operating conditions are well defined.
Heating is done with an oil bath or an electric heating mantel. Mixing is done with
a magnetic stirrer or a small mechanical agitator. Temperature is controlled by regu-
lating the bath temperature or by allowing a solvent to reflux.
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Batch reactors are the most common type of industrial reactor and may have
volumes well in excess of 100,000 L. They tend to be used for small-volume, specialty
products (e.g., an organic dye) rather than large-volume, commodity chemicals (e.g.,
ethylene oxide) that are normally reacted in continuous flow equipment. Industrial-
scale batch reactors can be heated or cooled by external coils or a jacket, by internal
coils, or by an external heat exchanger in a pump-around loop. Reactants are often
preheated by passing them through heat exchangers as they are charged to the vessel.
Heat generation due to the reaction can be significant in large vessels. Refluxing is
one means for controlling the exotherm. Mixing in large batch vessels is usually done
with a mechanical agitator, but is occasionally done with an external pump-around
loop where the momentum of the returning fluid causes the mixing.

Heat and mass transfer limitations are rarely important in the laboratory but
may emerge upon scaleup. Batch reactors with internal variations in temperature or
composition are difficult to analyze and remain a challenge to the chemical reaction
engineer. Tests for such problems are considered in Section 1.5. For now assume an
ideal batch reactor with the following characteristics:

1. Reactants are quickly charged, mixed, and brought to temperature at the
beginning of the reaction cycle.

2. The reaction mass constitutes a single, fluid phase.

3. Mixing and heat transfer are sufficient to assure that the batch remains com-
pletely uniform in temperature and composition throughout the reaction
cycle.

4. The operating temperature is held constant.

A batch reactor has no input or output of mass after the initial charging. The amounts
of individual components may change due to reaction but not due to flow into or out
of the system. The component balance for component A, Equation 1.6, reduces to

d(V a)

dt
= RAV (1.22)

Together with similar equations for the other reactive components, Equation 1.22
constitutes the reactor design equation for an ideal batch reactor. Note that â and R̂A

have been replaced with a and RA due to the assumption of good mixing throughout
the vessel. An ideal batch reactor has no temperature or concentration gradients within
the system volume. The concentration will change with time due to the reaction, but
at any time it is everywhere uniform. The temperature may also change with time,
but this complication will be deferred until Chapter 5. The reaction rate will vary
with time but is always uniform throughout the vessel. Here in Chapter 1, we make
the additional assumption that the volume is constant. In a liquid phase reaction,
this corresponds to assuming constant fluid density, an assumption that is usually
reasonable for preliminary calculations. Industrial gas phase reactions are normally
conducted in flow systems rather than batch systems. When batch reactors are used
for a gas phase reaction, they are normally constant-volume devices so that the system
pressure can vary during the batch cycle. Constant-pressure devices were used in early
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kinetic studies and are occasionally found in industry. The constant pressure at which
they operate is usually atmospheric pressure.

If the volume is constant, Equation 1.22 simplifies to

da

dt
= RA (1.23)

Equation 1.23 is an ordinary differential equation (ODE). Its solution requires an
initial condition:

a = a0 at t = 0 (1.24)

When RA depends on a alone, the ODE is variable separable and can usually be
solved analytically. If RA depends on the concentration of several components (e.g.,
a second-order reaction of the two-reactant variety, RA = −kab), versions of Equa-
tions 1.23 and 1.24 can be written for each component and the resulting equations
solved simultaneously. Alternatively, stoichiometric relations can be used to couple
the concentrations, but this approach becomes awkward in multicomponent systems
and is avoided by the methodology introduced in Chapter 2.

First-Order Batch Reactions

The reaction is

A
k→ products

The rate constant over the reaction arrow indicates that the reaction is assumed to be
elementary. Thus the rate equation is

R = ka

and

RA = νAR = −ka

Substituting into Equation 1.23 gives

da

dt
+ ka = 0

Solving this ODE and applying the initial condition of Equation 1.24 give

a = a0e−kt (1.25)

Equation 1.25 is arguably the most important result in chemical reaction engineering.
It shows that the concentration of a reactant being consumed by a first-order batch re-
action decreases exponentially. Dividing through by a0 gives the fraction unreacted,

YA = a

a0

= e−kt (1.26)

and

X A = 1 − a

a0

= 1 − e−kt (1.27)
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gives the conversion. The half-life of the reaction is defined as the time necessary
for a to fall to half its initial value:

t1/2 = 0.693/k (1.28)

The half-life of a first-order reaction is independent of the initial concentration. Thus
the time required for the reactant concentration to decrease from a0 to a0/2 is the
same as the time required to decrease from a0/2 to a0/4. This is not true for reactions
of order other than first.

Second-Order Batch Reactions with One Reactant

We now choose to write the stoichiometric equation as

2A
k/2→ products

Compare this to Equation 1.18 and note the difference in rate constants. For the current
formulation,

R = (
1
2
k
)

a2 RA = νAR = −2R = −ka2

Substituting into Equation 1.22 gives

da

dt
+ ka2 = 0

Solution gives

−a−1 + C = −kt

where C is a constant. Applying the initial condition gives C = (a0)−1 and

YA = a

a0

= 1

1 + a0kt
(1.29)

The initial half-life of a second-order reaction corresponds to a decrease from a0 to
a0/2 and is given by

t1/2 = 1

a0k
(1.30)

The second half-life, corresponding to a decrease from a0/2 to a0/4, is twice the initial
half-life.

Second-Order Batch Reactions with Two Reactants

The batch reaction is now

A + B
k→ products

R = kab RA = νAR = −R = −kab



JWBK130-01 JWBK130-Nauman July 9, 2008 6:54 Char Count= 0

16 Chapter 1 Elementary Reactions in Ideal Reactors

Substituting into Equation 1.23 gives

da

dt
+ kab = 0

A similar equation can be written for component B:

db

dt
+ kab = 0

The pair can be solved simultaneously. A simple way to proceed is to note that

da

dt
= db

dt

which is solved to give

a = b + C

where C is a constant of integration than can be determined from the initial conditions
for a and b. The result is

a − a0 = b − b0 (1.31)

which states that A and B are consumed in equal molar amounts as required by the
reaction stoichiometry. Applying this result to the ODE for component A gives

da

dt
+ ka(a − a0 + b0) = 0

The equation is variable separable. Integrating and applying the initial condition
give

a

a0

= b0 − a0

b0 exp[(b0 − a0)kt] − a0

(1.32)

This is the general result for a second-order batch reaction. The mathematical form
of the equation presents a problem when the initial stoichiometry is perfect, a0 = b0.
Such problems are common with analytical solutions to ODEs. Special formulas are
needed for special cases.

One way of treating a special case is to do a separate derivation. For the current
problem, perfect initial stoichiometry means b = a throughout the reaction. Substi-
tuting this into the ODE for component A gives

da

dt
+ ka2 = 0

which is the same as that for the one-reactant case of a second-order reaction and the
solution is Equation 1.29.

An alternative way to find a special formula for a special case is to apply
L’Hospital’s rule to the general case. When b0 → a0, Equation 1.32 has an inde-
terminate form of the 0/0 type. Differentiating the numerator and denominator with
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respect to b0 and then taking the limit give

a

a0

= lim
b0→a0

[
1

exp[(b0 − a0)kt] + b0kt exp[(b0 − a0)kt]

]
= 1

1 + a0kt

which is again identical to Equation 1.29.

Any Single Reaction in an Ideal Batch Reactor

The above results are directly useful when the batch reaction time t is known and a(t)
is sought. An alternative form is sometimes used when a(t) is specified and the batch
reaction time is sought. For this case, a general solution to Equation 1.23 is

t =
∫ a(t)

a0

da1

RA(a1)
(1.33)

Here, a1 is a dummy variable of integration that will be replaced by the upper and
lower limits after the integral is evaluated. The results are equivalent to those obtained
earlier, for example, Equations 1.26 and 1.29 depending on the reaction order, and
all the restrictive assumptions still apply: a single reaction in a constant-volume,
isothermal, perfectly mixed batch reactor. Note that Equation 1.33 becomes useless
for the multiple reactions treated in Chapter 2.

1.4.2 Reactor Performance Measures

There are four common measures of reactor performance: fraction unreacted, con-
version, yield, and selectivity. The fraction unreacted is the simplest and is usually
found directly when solving the component balance equations. It is a(t)/a0 for a batch
reaction and aout/ain for a flow reactor. The conversion is just 1 minus the fraction
unreacted. The terms conversion and fraction unreacted refer to a specific reactant,
usually the stoichiometrically limiting reactant. See Equations 1.26 and 1.27 for the
first-order case.

For most reactions, a batch reactor give the lowest possible fraction unreacted,
the highest possible conversion, the best yield, and the highest selectivity. Fraction
unreacted and conversion refer to the reactants. Yield and selectivity refer to the
desired products. The molar yield is the number of moles of a specified product that
are made per mole of reactant charged. There is also a mass yield. Either of these yields
can be larger than 1 since one reactant may form more that 1 mol of product or there
may be several reactants that contribute to the mass of a product. Thus A → 2B can
have a molar yield of 2 if the reaction goes to completion. The yield of a reaction like
A + B → C can be based on either A or B. The mass yield of this reaction depends
on the extent of reaction and on the relative molecular weights of A and B. The
theoretical yield is the amount of product that would be formed if all the reactant was
converted to the desired product. This too can be expressed on either a molar or a mass
basis and can be larger than 1. Selectivity is defined as the fractional amount of the
converted portion of a reactant that is converted to the desired product. The selectivity
will always be 100% when there is only one reaction even though the conversion may
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be less than 100%. Selectivity is a trivial concept when there is only one reaction
but becomes an important consideration when there are competing reactions. The
following example illustrates a reaction with high conversion but low selectivity.

EXAMPLE 1.2

Suppose it is desired to make 1,4-dimethyl-2,3-dichlorobenzene by the direct chlorination of

para-xylene. The desired reaction is

p-Xylene + Cl2 → desired product + 2 HCl

But, there are many other reactions that can occur and it is implausible that the desired reaction

will occur as a single, elementary step. A feed stream containing 40 mol % p-xylene and

60 mol % chlorine was fed to the reactor. The results of one experiment in a batch reactor gave

the following results on a molar basis:

Component Moles Output per Mole of Mixed Feed

p-Xylene 0.001

Chlorine 0.210

Monochloroxylene 0.032

1,4-Dimethyl-2,3-dichlorobenzene 0.131

Other dichloroxylenes 0.227

Trichloroxylene 0.009

Tetrachloroxylenes 0.001

Total 0.611

Compute various measures of reactor performance.

SOLUTION: Write the reaction as A + B → D + 2E where D is the desired dichlorobenzene.

Some measures of performance based on xylene as the limiting component are

Fraction unreacted = aout

ain

= 0.001

0.4
= 0.0025

Conversion = 1 − aout

ain

= 1 − 0.0025 = 0.9975

Yield = dout

ain

= 0.131

0.40
=0.3275 moles of product per mole xylene charged

percent theoretical yield = 0.131

0.4
(100) = 32.75%

Selectivity = 0.131

(0.9975)(0.4)
(100) = 32.83%

This example expresses all the performance measures on a molar basis. The mass yield of

1,4-dimethyl-2,3-dichlorobenzene sounds a bit better. It is 0.541 lb of the desired product per

pound of xylene charged.
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Note that the performance measures and definitions given here are the typical ones, but
other terms and other definitions are sometimes used. Be sure to ask for the definition
if there is any ambiguity.

1.4.3 Piston Flow Reactors

Continuous flow reactors are usually preferred for long production runs of high-
volume chemicals. They tend to be easier to scale up; they are easier to control; the
product is more uniform; material-handling problems are lessened; and the capital
cost for the same annual capacity is lower.

There are two important types of ideal continuous flow reactors: the PFR and the
CSTR. They behave very differently with respect to conversion and selectivity. The
PFR behaves exactly like a batch reactor. It is usually visualized as a long tube, as
illustrated in Figure 1.3. Consider a small clump of material that enters the reactor at
time t = 0 and flows from the inlet to the outlet. We suppose there is no mixing between
this particular clump and other clumps that enter at different times. The clump stays
together, ages, and reacts as it flows down the tube. After it has been in the PFR for t
seconds, the clump will have the same composition as if it had been in a batch reactor
for t seconds. The composition of a batch reactor varies with time. The composition
of a small clump flowing through a PFR varies with time in the same way. It also
varies with position down the tube. The relationship between time and position is

t = z

ū
(1.34)

where z denotes distance measured from the inlet of the tube and ū is the velocity of
the fluid. Chapter 1 assumes steady-state operation so that the composition at point z
is always the same. It also assumes constant fluid density and constant reactor cross
section so that ū is constant. The age of material at point z is t and the composition at
this point is given by the constant-volume version of the component balance for a batch
reaction, Equation 1.23. All that has to be done is to substitute t = z/ū. The result is

ū
da

dz
= RA (1.35)

The initial condition is that

a = ain at z = 0 (1.36)

Only the notation is different from the initial condition used for batch reactors. The
subscripts “in” and “out” are used for flow reactors compared to a0 and a(t) for a
batch reactor. The outlet concentration is found by setting z = L.

aoutain

Reactor
Feed

Reactor
Effluent

u

Figure 1.3 Piston flow reactor.
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EXAMPLE 1.3

Find the outlet concentration of component A from a PFR assuming A is consumed by a

first-order reaction.

SOLUTION: Equation 1.35 becomes

ū
da

dz
= −ka.

Integrating, applying the initial condition of Equation 1.36, and evaluating the result at z = L
give

aout = ain exp

(
− kL

ū

)
(1.37)

The quantity L/ū has units of time and is the mean residence time t̄ . Thus, we can write

Equation 1.37 as

aout = ain exp(−kt̄) (1.38)

where

t̄ = L

ū
(1.39)

Equation 1.39 is a special case of a far more general result. The mean residence
time t̄ is the average amount of time that a material spends in a reactor. The concept
of mean residence time is most useful for flow systems. In a steady-state flow system
t̄ is equal to the mass inventory of fluid in the system divided by the mass flow rate
through the system:

t̄ = mass inventory

mass throughput
= ρ̂V

ρQ
(1.40)

where ρQ = ρout Qout = ρin Qin is a consequence of steady-state operation. For the
special case of a constant-density fluid,

t̄ = V

Q
(1.41)

where Q = Qin = Qout when the system is at steady state and the mass density is
constant. This reduces to

t̄ = L

ū
(1.42)

for a tubular reactor with constant fluid density and constant cross-sectional area.
Piston flow is a still more special case where all molecules have the same veloc-
ity and the same residence time. We could write t̄ = L/u for piston flow since the
velocity is uniform across the tube but prefer to use Equation 1.42 for this case
as well.
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We now formalize the definition of piston flow. Denote position in the reactor
using a cylindrical coordinate system (r, θ , z) so that the concentration at a point is
denoted as a(r, θ , z). For the reactor to be a piston flow reactor (also called plug flow,
slug flow, or ideal tubular reactor), three conditions must be satisfied:

(i) The axial velocity is independent of r and θ but may be a function of z, Vz

(r, θ , z) = ū(z).

(ii) There is complete mixing across the reactor so that concentration is a func-
tion of z alone, that is, a(r, θ , z) = a(z).

(iii) There is no mixing in the axial direction.

Here in Chapter 1 we make the additional assumptions that the fluid has constant
density, that the cross-sectional area of the tube is constant, and that the walls of the
tube are impenetrable (i.e., no transpiration through the walls), but these assumptions
are not required in the general definition of piston flow. In the general case, it is
possible for ū, temperature, and pressure to vary as a function of z. The axis of the
tube need not be straight. Helically coiled tubes usually approximate piston flow
more closely than straight tubes because the coiling promotes cross-channel mixing.
Reactors with square or triangular cross sections are occasionally used. However,
in most of this book, we will assume that PFRs are circular tubes of length L and
constant radius R.

Application of the general component balance, Equation 1.6, to a steady-state
flow system gives

Qinain +R̂AV = Qoutaout

While true, this result is not helpful. The derivation of Equation 1.6 used the entire
reactor as the control volume and produced a result containing the average reaction
rate R̂A. In piston flow, a varies with z so that the local reaction rate also varies with
z, and there is no simple way of calculating R̂A. Equation 1.6 is an overall balance
applicable to the entire system. It is also called an integral balance. It just states that,
if more of a component leaves the reactor than enters, then the difference had to be
formed inside the reactor.

A differential balance is written for a vanishingly small control volume within
which RA is approximately constant. Such a differential balance is needed to derive the
design equation for a PFR. The differential volume element has volume �V, cross-
sectional area Ac, and length �z. See Figure 1.4. The general component balance
applied to this differential volume gives

Moles in + moles formed = moles out

or

Qa(z) + RA �V = Qa(z + �z)



JWBK130-01 JWBK130-Nauman July 9, 2008 6:54 Char Count= 0

22 Chapter 1 Elementary Reactions in Ideal Reactors

z z + Δz

aformed =      ΔV

Qa(z+Δz)Qa(z)

AR

Figure 1.4 Differential element in a PFR.

Note that Q = ū Ac and �V = Ac�z. Then

Q
a(z + �z) − a(z)

�V
= ū

a(z + �z) − a(z)

�z
= RA

Recall the definition of a derivative and take the limit as �z → 0:

Lim
�z→0

[
ū

a(z + �z) − a(z)

�z

]
= ū

da

dz
= RA (1.43)

which agrees with Equation 1.35. Equation 1.35 was derived by applying a variable
transformation to an unsteady batch reactor. Equation 1.43 was derived by applying
a steady-state component balance to a differential flow reactor. Both methods work
for this problem, but differential balances are the more general approach and can be
extended to multiple dimensions where concentration can vary with radial and even
tangential position. However, the strong correspondence between time in a batch
reactor and position in a PFR is very important. The composition at time t in an
ideal batch reactor is identical to the composition at position z = ūt in an ideal PFR.
This correspondence, which extends beyond the isothermal, constant-density case, is
detailed in Table 1.1.

EXAMPLE 1.4

Determine the reactor design equations for the various elementary reactions in a PFR. Assume

constant temperature, constant density, and constant reactor cross section. (Whether or not all

these assumptions are needed will be explored in subsequent chapters.)

SOLUTION: Substitute the various rate equations into Equation 1.35 and integrate and

apply the initial condition of Equation 1.36. Two versions of these equations can be used for

a second-order reaction with two reactants. Another solution technique is to use the results

obtained previously for a batch reactor and to replace t with z/ū and a0 with ain. The result is

a(z) for the various reaction types.
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For a first-order reaction,

a(z)

ain

= exp

(−kz

ū

)
(1.44)

For second order with one reactant,

a(z)

ain

= 1

1 + ainkz/ū
(1.45)

For second order with two reactants,

a(z)

ain

= bin − ain

bin exp[(bin − ain) kz/ū] − ain

(1.46)

The outlet concentration is found by setting z = L. At the reactor outlet, z/ū = L/ū = t̄ .

Piston flow reactors and most other flow reactors have spatial variations in con-
centration such as a = a(z). Such systems are called distributed. Their behavior is
governed by an ODE when there is only one spatial variable and by a partial dif-
ferential equation (PDE) when there are two or three spatial variables or when the
system has a spatial variation and also varies with time. We turn now to a special
type of flow reactor where the entire reactor volume is well mixed and has the same
concentration, temperature, pressure, and so forth. There are no spatial variations in

Table 1.1 Relationships between batch and piston flow reactors

Batch Reactors Piston Flow Reactors

Concentrations vary with time; composition is

uniform at any time t
Concentrations vary with axial position;

composition is uniform at any position z
Governing equation, 1.23 Governing equation, 1.43

Initial condition, a0 Initial condition, ain

Final condition, a(t) Final condition, a(L) = aout

Time equivalent to position in PFR, t = z/ū Position equivalent to time in batch reactor,

z = ūt
Variable density, ρ(t) Variable density, ρ(z)

Variable temperature, T(t) Variable temperature, T(z)

Heat transfer to wall,

dq = h Awall(T − Twall) dt
Heat transfer to wall,

dq = h(2πR)(T − Twall) dz
Variable wall temperature, Twall(t) Variable wall temperature, Twall(z)

Variable pressure, P(t) Pressure drop, P(z)

Variable volume (e.g., constant-pressure

reactor), V(t)
Variable cross section, Ac(z)

Fed-batch reactors, Qin 	= 0 Transpired-wall reactors

Nonideal batch reactors may have spatial

variations in concentration

Nonideal tubular reactors may have

concentrations that vary in r and θ

directions
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Feed
(Qinain)

Discharge
(Qout aout)

Volume V

Figure 1.5 Classic CSTR: continuous flow stirred tank reactor with mechanical agitation.

these parameters. Such systems are called lumped and their behavior is governed by
an algebraic equation when the system is at steady state and by an ODE when the
system varies with time. The CSTR is the chemical engineer’s favorite example of a
lumped system. It has one lump, the entire reactor volume.

1.4.4 Continuous Flow Stirred Tanks

Figure 1.5 illustrates a flow reactor in which the contents are mechanically agitated. If
mixing caused by the agitator is sufficiently fast, the entering feed will be quickly dis-
persed throughout the vessel and the composition at any point will approximate the av-
erage composition. Thus the reaction rate at any point will be approximately the same.
Also, the outlet concentration will be identical to the internal composition, aout = â.

There are only two possible values for concentration in a CSTR. The inlet stream
has concentration ain and everywhere else has concentration aout. The reaction rate
will the same throughout the vessel and is evaluated at the outlet concentration,R̂A =
RA(aout, bout, . . .). For the single reactions considered in this chapter, RA continues
to be related to R by the stoichiometric coefficient and Equation 1.14. With RA

known, the integral component balance, Equation 1.6, now gives useful information.
For component A,

Qain + RA(aout, bout, . . .)V = Qaout (1.47)

Note that we have assumed steady-state operation and set Q = Qin = Qout, which
assumes constant density. Dividing through by Q and setting t̄ = V /Q gives

ain + RA(aout, bout, . . .) t̄ = aout (1.48)

In the usual case, t̄ and ain will be known. Equation 1.48 is an algebraic equation that
can be solved for aout. If the reaction rate depends on the concentration of more than
one component, versions of Equation 1.48 are written for each component and the re-
sulting set of equations is solved simultaneously for the various outlet concentrations.
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Even concentrations of components that do not affect the reaction rate can be found by
writing versions of Equation 1.48 for them as well. As in the case of batch and piston
flow reactors, the stoichiometric coefficient is used to relate the rate of formation of a
component, say RC , to the rate of the reaction R using the stoichiometric coefficient
for component C, νC , and Equation 1.14. After this, the stoichiometry takes care of
itself.

A reactor with performance governed by Equation 1.48 is a steady-state, constant-
density, perfectly mixed, continuous flow reactor. This mouthful is usually shortened
in the chemical engineering literature to CSTR (for continuous flow stirred tank reac-
tor). In subsequent chapters, we will relax the assumptions of steady state and constant
density but will still call it a CSTR. It is also called an ideal mixer, a continuous flow
perfect mixer, or a mixed flow reactor. This terminology is ambiguous in light of mi-
cromixing theory, discussed in Chapter 13, but is well entrenched. Unless otherwise
qualified, we accept the term CSTR to mean that the reactor is perfectly mixed. Such
a reactor is sometimes called a perfect mixer. The term denotes instantaneous and
complete mixing on the molecular scale. Obviously, no real reactor can achieve this
ideal state just as no tubular reactor can achieve true piston flow. However, it is often
possible to design reactors that very closely approach these limits.

EXAMPLE 1.5

Determine the reactor design equations for elementary reactions in a CSTR.

SOLUTION: The various rate equations for the elementary reactions are substituted into

Equation 1.48, which is then solved for aout.

For a first-order reaction, RA = −ka. Set a = aout, substitute RA into Equation 1.48, and

solve for aout to obtain

aout

ain

= 1

1 + kt̄
(1.49)

For a second-order reaction with one reactant, RA = −ka2, and Equation 1.48 becomes a

quadratic in aout. The solution is

aout

ain

= −1 + √
1 + 4ainkt̄

2ainkt̄
(1.50)

The negative root was rejected since aout ≥ 0.

For a second-order reaction with two reactants, RA = RB = −kab. Write two versions

of Equation 1.48, one for aout and one for bout. Solve them simultaneously to give

aout

ain

= −1 − (bin − ain)kt̄ +
√

[1 + (bin − ain)kt̄]2 + 4ainkt̄

2ainkt̄
(1.51)

Again, a negative root was rejected. The simultaneous solution also produces the stoichiometric

relationship

bin − bout = ain − aout (1.52)



JWBK130-01 JWBK130-Nauman July 9, 2008 6:54 Char Count= 0

26 Chapter 1 Elementary Reactions in Ideal Reactors

Any Single Reaction in a CSTR

The above examples have assumed that ain and t̄ are known. The solution then gives
aout. The case where ain is known and a desired value for aout is specified can be easier
to solve. The solution for t̄ is

t̄ = aout − ain

RA(aout, bout, . . .)
(1.53)

This result assumes constant density and is useful when the reaction rate depends on a
single concentration or on multiple concentrations that are linked by a stoichiometric
relationship such as Equation 1.52. It is not useful for the general case of multiple
reactions.

EXAMPLE 1.6

Apply Equation 1.53 to calculate the mean residence time needed to achieve 90% conver-

sion in a CSTR for (a) a first-order reaction and (b) a second-order reaction of the type

A + B → products. The rate constant for a first-order reaction has units of reciprocal time.

For the current example, assume k = 0.1 s−1. The rate constant for a second-order reaction

has units of reciprocal time and reciprocal concentration. It is common practice to multiply a

second-order rate constant by the initial or inlet concentration of the stoichiometrically limit-

ing coefficient. This gives a rate constant with units of reciprocal time. For the second-order

reaction suppose aink = 0.1 s−1.

SOLUTION: For the first-order reaction, RA = −kaout = −k(0.1 ain). Equation 1.53 gives

t̄ = aout − ain

−kaout

= 0.1ain − ain

−k(0.1ain)
= 9

k
= 90 s

For the second-order case, RA = −kaoutbout. To use Equation 1.53, stoichiometry is needed to

find the value for bout that corresponds to aout. Suppose, for example, that B is in 50% excess

so that bin = 1.5ain. Then bout = 0.6ain if aout = 0.1ain. Equation 1.53 gives

t̄ = aout − ain

−kaoutbout

= 0.1ain − ain

−k(0.1ain)(0.6ain)
= 15

kain

= 150 s

Equation 1.53 is a beautifully simple way of designing a reactor for the few cases
to which it applies. More commonly, the numerical methods introduced in Chapter 2
are needed.

1.5 MIXING TIMES AND SCALEUP

Suppose a homogeneous reaction is conducted in a pilot plant reactor that is equipped
with a variable-speed agitator. Does changing the agitator speed (say by ±20%)
change the outcome of the reaction? Does varying the addition rate of reactants change
the selectivity? If so, there is a potential scaleup problem. The reaction is sensitive
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to mixing. If the reaction is multiphase, the agitator speed can affect interphase mass
transfer. See Chapter 11. If the reaction is single phase, the reaction is sensitive to the
mixing time tmix.

The mixing time in a batch stirred tank is easily measured. Add unmixed in-
gredients and determine how long it takes for the contents of the vessel to become
uniform. For example, fill a vessel with plain water and start the agitator. At time
t = 0, add a small quantity of a salt solution. Measure the concentration of salt at
various points inside the vessel until it is constant within measurement error or by
some other standard of near equality. Record the result as tmix. A popular alternative
is to start with a weak-acid solution that contains an indicator so that the solution is
initially colored. An excess of concentrated base is added quickly at one point in the
system. The mixing time tmix corresponds to the disappearance of the last bit of color.
The acid–base titration is very fast so that the color will disappear just as soon as the
base is distributed throughout the vessel. This is an example where the reaction in
the vessel is limited strictly by mixing. There is no kinetic limitation. For very fast
reactions such as combustion or acid–base neutralization, no vessel will be perfectly
mixed. The components must be transported from point to point in the vessel by fluid
flow and diffusion, and these transport processes will be slower than the reaction.
Whether a reactor can be considered to be perfectly mixed depends on the speed of
the reaction. What is effectively perfect mixing is easy to achieve when the reaction
is an esterification with a half-life of several hours. It is impossible to achieve in
acid–base neutralizations that have half-lives of nanoseconds. One requirement for
“perfect mixing” is that

tmix � t1/2 (1.54)

This requirement applies to batch reactors and to CSTRs. (For PFRs, we assume that
the components are perfectly mixed when they enter the reactor.) When Equation 1.54
is satisfied, the conversion in the reactor will be limited by the reaction kinetics, not
by the mixing rate. The assumption of perfect mixing is probably reasonable when
t1/2 is 8 times larger than tmix.

What happens to tmix upon scaleup? Mixing times in mechanically agitated ves-
sels typically range from a few seconds in laboratory glassware to a few minutes in
large industrial reactors. As the size of the vessel increases, tmix will increase, and
the increase will eventually limit the size at which the reactor is operable. No process
is infinitely scaleable. Sooner or later, additional scaleup becomes impossible, and
further increases in production cannot be achieved in single-train plants but must
use units in parallel. Fortunately for the economics of the chemical industry, this size
limit is often very large.

Plant sizes are usually characterized by their production capacity or throughput.
Define the throughput scaleup factor as

Sthroughput = mass flow through full-scale unit

mass flow through pilot unit
= (ρQ)full scale

(ρQ)pilot scale

(1.55)
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Assume that the pilot-scale and full-scale vessels operate with the same inlet density.
Then ρ cancels in Equation 1.55 and

Sthroughput = Qfull scale

Qpilot scale

(constant density)

There is also an inventory scaleup factor defined as

Sinventory = mass inventory in full-scale unit

mass inventory in pilot unit
= (ρ̂V )full scale

(ρ̂V )pilot scale

(1.56)

For successful scaleup we expect the volume-average density ρ̂ to be the same in the
large and small reactors. Thus, normally,

Sinventory = Svolume = Vfull scale

Vpilot scale

(1.57)

This book deals with the scaleup of chemical reactors. The product from the scaled-
up reactor should be the same as the product from the pilot reactor. The extent of
reaction should be the same in the two reactors and thus the mean residence time
t̄ should held constant upon scaleup. According to Equation 1.40, inventory and
throughput are increased by the same factor when t̄ is held constant. Unless explicitly
stated otherwise, it is understood that inventory, volume, and throughput all increase
proportionately:

Sthroughput = Sinventory = Svolume = S (1.58)

Use of S without subscripts indicates that Equation 1.58 is satisfied. This is true for
the great majority of reactor scaleups for both liquids and gases.

It is common practice to use geometric similarity in the scaleup of stirred tanks
(but not tubular reactors). Geometric similarity means that the production-scale reactor
will have the same shape as the pilot-scale reactor. All linear dimensions such as
reactor diameter, impeller diameter, and liquid height will change by the same factor,
S1/3. Surface areas will scale as S2/3. Now, what happens to tmix upon scaleup? A
classic correlation by Norwood and Metzner (1960) for turbine impellers in baffled
vessels can be used to estimate tmix. The full correlation shows tmix to be a complex
function of the Reynolds number, the Froude number, the ratio of tank to impeller
diameter, and the ratio of tank diameter to liquid level. However, to a reasonable first
approximation for geometrically similar vessels operating at high Reynolds numbers,

(NI tmix)large = const = (NI tmix)small (1.59)

where NI is the rotational velocity of the impeller. This means that scaleup with
constant agitator speed will, to a reasonable approximation, give constant tmix. The
rub is that the power requirements for the agitator will increase sharply in the larger
vessel. To a reasonable first approximation for geometrically similar vessels operating
at high Reynolds numbers,(

PI

ρN 3
I D5

I

)
large

=
(

PI

ρN 3
I D5

I

)
small

= Po (1.60)
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where PI is the impeller power, DI is the impeller diameter, and Po is a dimensionless
group known as the power number. If NI is held constant, the impeller power will
increase as D5

I and as S5/3since DI scales as S1/3 using geometric similarity. A factor
of 10 increase in the linear dimensions gives S = 1000 and allows a factor of 1000
increase in throughput. Unfortunately, it requires a factor of 100,000 increase in
agitator power! The horsepower per unit volume must increase by a factor of 100 to
maintain a constant tmix. Let us hope that there is some latitude before the constraint
of Equation 1.54 is seriously violated. Most scaleups are done with approximately
constant power per unit volume, which causes NI to decrease and tmix to increase
upon scaleup.

EXAMPLE 1.7

A factor of 10 scaleup in the linear dimensions of a CSTR, S1/3 = 10, requires a factor of

100,000 increase in total power and a factor of 100 increase in power per unit volume if tmix is

held constant. Such a scaleup would be absurd. A more reasonable scaleup rule is to maintain

constant power per unit volume so that a 1000-fold increase in reactor volume requires a

1000-fold increase in power. What happens to tmix in this case?

SOLUTION: Rearrange Equation 1.60 to give

(Power)large

(Power)small

=
(
ρN 3

I D5
I

)
large(

ρN 3
I D5

I

)
small

Divide both sides by D3
tank to obtain power per unit volume:

(Power per unit volume)large

(Power per unit volume)small

=
(
ρN 3

I D5
I /D3

tank

)
large(

ρN 3
I D5

I /D3
tank

)
small

Cancel out density, set the ratio of powers to 1, and note that DI and Dtank scale by the same

factor, S1/3, for a geometrically similar scaleup. The result is

1 =
(
N 3

I D2
I

)
large(

N 3
I D2

I

)
small

=
(
N 3

I

)
large(

N 3
I

)
small

S2/3

or

(NI )large

(NI )small

= S−2/9

For constant power per unit volume with a factor of 10 scaleup in linear dimensions, the

agitator speed in the large reactor must be 10−2/9 = 0.6 times that in the small reactor. If the

small reactor operated at 100 revolutions per minute (RPM), the large reactor should operate at

60 RPM. What does this do to tmix? Rearrange Equation 1.59 to obtain

(tmix)large

(tmix)small

= (NI )small

(NI )large

For the case at hand, the mixing time increases by a factor of 1.67. Is Equation 1.54 still satisfied?

Decreasing the speed of the pilot agitator to 60% of its initial value can experimentally test this.
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Is the product still good? If so, scaleup should be possible from the viewpoint of mixing time.

If not, a departure from geometric similarity, say by using multiple injection points for added

ingredients, may solve the problem. The use of multiple injection points can be tested on the

pilot scale. The logic assumes that the pilot reactor with a single injection point gave a good

product. Determine tmix for this original configuration. Then add injection points to the pilot

reactor. Presumably, this will cause little change in product quality. Measure tmix in the new

configuration. Given simultaneous injection through all the ports, tmix should be lower than

the original value. Estimate what it will become upon scaleup, again using Equation 1.59. If

the scaled value of tmix remains smaller than the original tmix (before adding injection points),

then scaleup of the multiple-point design should be satisfactory. The reader will appreciate that

scaleup is sometimes more engineering art than rigorous science.

Several caveats should be mentioned at this point. When there are multiple re-
actions, the half-life in Equation 1.54 is the shortest half-life that affects yield and
selectivity. In complex reaction schemes, there may be some important fast reactions
that are mixing dependent even thought the overall reaction is slow. An example
is a catalyst that may react with itself if not rapidly diluted. Equations 1.59 and
1.60 are approximations that are reasonable for turbine agitators in stirred tanks at
high Reynolds numbers. Many detailed correlations are available in the literature and
should be used if the reaction is at all sensitive to mixing effects. This can be tested
at the pilot scale by varying agitator speed. Mixing experts may recommend scaleups
other than constant power per unit volume. Scaleup limitations other than mixing
time are common. Heat transfer is a common limitation and is discussed in Chapter
5. The reader interested in agitator design should look at Problem 1.17 and then go
to the cited literature.

In a batch vessel, the question of good mixing will arise at the start of the batch
and whenever an ingredient is added to the batch. The component balance, Equation
1.22, assumes that uniform mixing is achieved before any appreciable reaction occurs.
This will be true if Equation 1.54 is satisfied. Consider the same vessel being used as
a CSTR. Now, the mixing time must be short compared to the mean residence time,
else newly charged material could flow out of the reactor before being thoroughly
mixed with the contents. A new condition to be satisfied is

tmix � t̄ (1.61)

In practice, Equation 1.61 will be satisfied if Equation 1.54 is satisfied since a CSTR
will normally operate with t1/2 � t̄ .

The net flow though the reactor will be small compared to the circulating flow
caused by the agitator. The existence of the throughput has little influence on the
mixing time so that mixing time correlations for batch vessels can be used for CSTRs
as well.

In summary, we have considered three characteristic times associated with a
CSTR: tmix, t1/2, and t̄ . Treating the CSTR as a perfect mixer is reasonable provided
tmix is substantially shorter than the other characteristic times.
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1.6 DIMENSIONLESS VARIABLES AND NUMBERS

Equation 1.35 governs the performance of an ideal PFR:

ū
da

dz
= RA a = ain at z = 0 (1.62)

where for a circular tube ū = Q/(π R2) and for a first-order reaction RA = −ka.
Reactor performance depends on many dimensioned parameters that can be manip-
ulated by the designer or the experimentalist to change the response of the system,
aout = a(L). The tube radius R and reactor length L would normally be considered de-
sign variables while the volumetric flow rate Q, rate constant k (which can be changed
using temperature or catalyst concentration), and inlet concentration ain (which can
be changed with diluents) would be considered operating variables. The distinction
between design and operating variable is not absolute. The operator of an industrial
reactor may have no freedom to change the flow rate, but the operator of a pilot reactor
may be able to quickly change the reactor length.

The response of the system, aout, depends on at least five potentially manipulat-
able parameters (Q, R, L, k, ain), and a plot showing the dependence of aout would
need an impossible six dimensions. However, the solution to Equation 1.62 can be
written as

aout

ain

= exp(−kt̄) (1.63)

There are only two variables, ain/aout and kt̄ , so an ordinary two-dimensional graph
can be used.

A dramatic reduction in dimensionality is often possible by converting a design
equation from dimensioned to dimensionless form. Equation 1.62 contains the de-
pendent variable a and the independent variable z. The process begins by selecting
characteristic values for these variables. By “characteristic value” we mean some
known parameter that has the same dimensions as the variable and that characterizes
the system. For a PFR, the variables are concentration and length. A characteristic
value for concentration is ain and a characteristic value for length is L. These are
used to define the dimensionless variables a∗ = a/ain and z = z/L . The governing
equation for a first-order reaction in an ideal PFR becomes

da∗

dz
= L

ū
RA = −Lka

ūain

= −kt̄a∗ = −k∗a∗ (1.64)

which is subject to the initial condition that a∗ = 1 at z = 0. The outlet concentration
is found from the solution of Equation 1.64 evaluated at z = 1. The result is identical
to Equation 1.63. The product k∗ = kt̄ is the dimensionless first-order rate constant.
Here, k∗ = kt̄ can be changed by changing any of Q, R, L, or k, but it is only their
composite value in the form of k∗ that determines reactor performance as measured
by the dimensionless outlet concentration, aout/ain.
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EXAMPLE 1.8

Find the equivalent to Equation 1.63 for second-order reactions.

SOLUTION: Begin with the case of one reactant, 2A → kC. The same variable transfor-

mations are used for a and z to give

da∗

dz
= L

ū
RA = −2kt̄a∗

ain

= −2ainkt̄(a∗)2 a′ = 1 at z = 0

The solution is

aout

ain

= 1

1 + 2ain kt̄
= 1

1 + 2k∗

where k∗ = ainkt̄ is the dimensionless rate constant for a second-order reaction.

For the two-reactant case, A + B → kC, with perfect stoichiometry, the result is

aout

ain

= 1

1 + ainkt̄
= 1

1 + k∗

Note that the factor of 2 could have been included in the definition of k∗ for the single-reactant

case, but the results as given remind us that 2 moles of A are consumed to form each mole of

C in the single-reactant case.

The other results for ideal flow reactors can be put into dimensionless form
almost by inspection. For example, the results for a CSTR, Equations 1.49 and 1.50,
are already in dimensionless form.

The conversion of the design equation for a batch reactor to dimensionless form
is somewhat artificial since there is no natural time constant analogous to t̄ that
characterizes the reactor. A batch reaction can be continued indefinitely simply by
running the reaction longer. A PFR has a natural time constant t̄ = L/ū, but there
is nothing that prevents increasing the reactor length, thereby continuing the reac-
tion. For a batch reactor, pick some arbitrary value for tbatch as a characteristic time.
Then the treatment of batch reactors becomes identical to that for PFRs when ktbatch

replaces kt̄ .
Consider now the more general rate equation

R = kambn

The two concentration variables, a and b, are made dimensionless using the same
characteristic value, ain, so that a* = a/ain and b* = b/ain. Choose A so that it is
the stoichiometrically limiting reactant. If the reaction is A + B → products, then
a* = 1 and b* ≥ 1 at t = 0 or z = 0. The result of converting to dimensionless
form is

t̄R

ain

= kt̄am+n−1
in (a*)m(b*)n = k*(a*)m(b*)n
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where k* = kt̄am+n−1
in is the dimensionless rate constant for this (m + n)-order reac-

tion. The restriction that m and n be integers is removed in Chapter 2.
Table 1.2 summarizes the design equations for elementary reactions in ideal

reactors. Note that component A is the only component or else is the stoichiometrically
limiting component. Thus a* = a/a0 for batch reactions and a* = a/ain for flow
reactors and YA = a* in both cases. For the case of a second-order reaction with two
reactants, the stoichiometric ratio is also needed:

SAB = a0

b0

≤ 1 or SAB = ain

bin

≤ 1 (1.65)

1.7 BATCH VERSUS FLOW AND TANK
VERSUS TUBE

Some questions that arise early in a design are: Should the reactor be batch or con-
tinuous? If continuous, is the goal to approach piston flow or perfect mixing?

For producing high-volume chemicals, flow reactors are usually preferred. The
ideal PFR exactly duplicates the kinetic behavior of the ideal batch reactor, and the
reasons for preferring one over the other involve secondary considerations such as heat
and mass transfer, ease of scaleup, and the logistics of materials handling. For small-
volume chemicals, the economics usually favor batch reactors. This is particularly
true when general-purpose equipment can be shared between several products. Batch
reactors are used for the greater number of products and produce products of higher
economic value. Note that most pharmaceutical products are made in batch processes.
Flow reactors are typically used for the commodity products of the petrochemical
industry. They produce the overwhelmingly larger volume as measured in tons, but
these tons have a lower economic value than the myriad specialty chemicals and
pharmaceuticals made in batch processes.

Flow reactors are operated continuously, that is, at steady state with reactants
continuously entering the vessel and with products continuously leaving. Batch re-
actors are operated discontinuously. A batch reaction cycle has periods for charging,
reaction, and discharging. The continuous nature of a flow reactor lends itself to
larger productivities and greater economies of scale than the cyclic operation of a
batch reactor. The volume productivity (moles of product per unit volume of reactor)
for batch systems is identical to that of PFRs and is higher than most real flow reac-
tors. However, this volume productivity is achieved only when the reaction is actually
occurring and not when the reactor is being charged or discharged, being cleaned, and
so on. Within the class of flow reactors, piston flow is usually desired for reasons of
productivity and selectivity. However, there are instances where a close approach to
piston flow is infeasible or where a superior product results from the special reaction
environment possible in stirred tanks.

Although they are both flow reactors, there are large differences in the behavior
of PFRs and CSTRs. Reaction rates decrease as the reactants are consumed (autocat-
alytic reactions are an exception). In piston flow, the reactant concentration gradually
declines with increasing axial position. The local rate is higher at the reactor inlet
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First-Order Reactions
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Figure 1.6 Relative performance of piston flow and continuous stirred tank reactors for first-order

reactions.

than at the outlet, and the average rate for the entire reactor will correspond to some
average composition that is between ain and aout. In contrast, the entire volume of a
CSTR is at concentration aout, and the reaction rate throughout the reactor is lower
than that at any point in a PFR going to the same conversion.

Figures 1.6 and 1.7 display the conversion behavior for first- and second-order
reactions in a CSTR and contrast the behavior to that of a PFR. It is apparent that a PFR
is substantially better than the CSTR for obtaining high conversions. The comparison
is even more dramatic when made in terms of the volume needed to achieve a given
conversion (Fig. 1.8). The generalization that

Conversion in PFR > conversion in CSTR

Second-Order Reactions
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Figure 1.7 Relative performance of piston flow and continuous stirred tank reactors for second-order

reactions.
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Figure 1.8 Comparison of reactor volume required for given conversion for a first-order reaction in

PFR and CSTR.

is true for most kinetic schemes. The important exceptions to this rule, autocatalytic
reactions, are discussed in Chapter 2. A second generalization is

Selectivity in PFR > selectivity in CSTR

which also has a few exceptions.

SUGGESTED FURTHER READINGS

There are many books on chemical engineering kinetics, and the reader may wish to browse through

several of them to see how they introduce the subject. Most of them are intended for the introductory,

undergraduate course. Here are two examples primarily aimed at the U.S. market:

O. Levenspiel, Chemical Reaction Engineering, 3rd ed., Wiley, New York, 1998.

L. D. Schmidt, The Engineering of Chemical Reactions, 2nd ed., Oxford University Press, New York,

2004.

Here is an example primarily aimed at the U.K. market:

M. B. King and M. B. Winterbottom, Reactor Design for Chemical Engineers, Chapman & Hall, London,

1998.

A relatively advanced book primarily used for graduate courses is:

F. Froment and K. B. Bischoff, Chemical Reactor Analysis and Design, 2nd ed., Wiley, New York, 1990.

An extended treatment of material balance equations with substantial emphasis on component balances in

reacting systems is given in:

G. V. Reklaitis and D. R. Schneider, Introduction to Material and Energy Balances, Wiley, New York,

1983.
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See also:

R. M. Felder and R. W. Rousseau, Elementary Principles of Chemical Processes, 3rd ed., Wiley, New

York, 2000.

A general reference on mixing, especially in stirred tank reactors is:

E. L. Paul et al., Handbook of Industrial Mixing, Wiley, New York, 2003.

PROBLEMS

1.1 (a) Write the overall and component mass balances for an unsteady, perfectly mixed,

continuous flow reactor.

(b) Simplify for the case of constant reactor volume and for constant-density, time-

independent flow streams.

(c) Suppose there is no reaction but that the input concentration of some key component

varies with time according to Cin = C0, t < 0; Cin = 0, t > 0. Find Cout (t).

(d) Repeat (c) for the case where the key component is consumed by a first-order reaction

with rate constant k.

1.2 The homogeneous gas phase reaction

NO + NO2Cl → NO2 + NOCl

is believed to be elementary with rate R = k[NO][NO2Cl]. Use the kinetic theory of

gases to estimate fR at 300 K. Assume rA + rB = 3.5 × 10−10 m. The experimentally

observed rate constant at 300 K is k = 8 m3 mol−1 s−1.

1.3 Determine the initial half-life for an elementary, second-order reaction for which

a0 < b0. Note that the half-life should be based on the stoichiometrically limiting

component, A.

1.4 The data in Example 1.2 are in moles of the given component per mole of mixed feed.

These are obviously calculated values. Check their consistency by using them to calcu-

late the feed composition given that the feed contained only para-xylene and chlorine.

Is your result consistent with the stated molar composition of 40% xylene and 60%

chlorine?

1.5 Suppose that the following reactions are elementary. Write rate equations for the reaction

and for each of the components:

(a) 2A
k f−→←−
kr

B + C

(b) 2A
k f /2−→←−
kr

B + C

(c) B + C
kr−→←−
k f

2A

(d) 2A
KI−→ B + C

B + C
KII−→ 2A
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1.6 Determine a(t) for a first-order, reversible reaction

A
k f−→←−
kr

B

in a batch reactor.

1.7 Compare a(z) for a first- and second-order reaction in a PFR. Plot the profiles on the

same graph and arrange the rate constants so that the initial and final concentrations are

the same for the two reactions.

1.8 Equation 1.44 gives the spatial distribution of concentration, a(z), in a PFR for a com-

ponent that is consumed by a first-order reaction. The local concentration can be used to

determine the local reaction rate RA(z).

(a) Integrate the local reaction rate over the length of the reactor to determine R̂A.

(b) Show that this R̂A is consistent with the general component balance, Equation 1.6.

(c) To what value of a does rate R̂A correspond?

(d) At what axial position does this average value occur?

(e) Now integrate a down the length of the tube. Is this spatial average the same as the

average found in part (c)?

1.9 One type of (supposedly) third-order reaction is 2A + B −→k/2
C. Determine the fraction

unreacted of component A in an ideal batch reactor.

1.10 Consider the reaction

A + B
k−→ P

with k = 1 m3 mol−1 s−1. Suppose bin = 10 mol m−3. It is desired to achieve bout =
0.01 mol m−3.

(a) Find the mean residence time needed to achieve this assuming piston flow and ain =
bin.

(b) Repeat (a) assuming that the reaction occurs in a CSTR.

(c) Repeat (a) and (b) assuming ain = 10 bin.

1.11 The esterification reaction

RCOOH + R′OH
k f−→←−
kr

RCOOR′ + H2O

can be driven to completion by removing the water of condensation. This might be done

continuously in a stirred tank reactor or in a horizontally compartmented, progressive

flow reactor. This type of reactor gives a reasonable approximation to piston flow in

the liquid phase while providing a vapor space for the removal of the byproduct water.

Suppose it is desired to obtain an ester product containing not more than 1% (by mole)

residual alcohol and 0.01% residual acid.

(a) What are the limits on initial stoichiometry if the product specifications are to be

achieved?

(b) What value of aoutkt̄ is needed in a CSTR?

(c) What value of aoutkt̄ is needed in the progressive reactor?

(d) Discuss the suitability of a batch reactor for this situation.

1.12 Can an irreversible elementary reaction go to completion in a batch reactor in finite time?
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1.13 An evil young professor was worried about getting tenure. He thought his chances would

be better if he eliminated the competition, an untenured colleague who happened to be a

beautiful princess who had a lab next to his and was arguably better at both research and

teaching than the evil professor. The evil professor has heard about TNT and decided to

make some and use it in diabolical ways. He began by writing a simplified but plausible

reaction mechanism, including appropriate rate expressions, for the toluene nitration. He

then charged toluene, nitric acid, and sulfuric acid (as a catalyst) to a small reactor and

carefully monitored the results. He was surprised to observe that the rates of even the first

nitration steps increased with increasing agitator speed. The mixing times in the vessel

were very short compared to the reaction time even at the slowest agitator speed, and the

reactor temperature was closely controlled. What is a plausible reaction mechanism and

what is a reason for the evil professor’s unexpected results? He asked his colleague, and

she suggested he read at least the title of Chapter 11.

1.14 The reaction of trimethylamine with n-propyl bromide gives a quaternary ammonium

salt:

N(CH3)3 + C3H7Br → (CH3)3(C3H7)NBr

Suppose laboratory results at 110◦C using toluene as a solvent show the reaction to be

second order with rate constant k = 5.6 × 10−7 m3 mol−1 s−1. Suppose [N(CH3)3]0 =
[C3H7Br]0 = 80 mol m−3.

(a) Estimate the time required to achieve 99% conversion in a batch reactor.

(b) Estimate the volume required in a CSTR to achieve 99% conversion if a production

rate of 100 kg h−1 of the salt is desired.

(c) Suggest means for increasing the productivity, that is, reducing the batch reaction

time or the volume of the CSTR.

1.15 Ethyl acetate can be formed from dilute solutions of ethanol and acetic acid according to

the reversible reaction

C2H5OH + CH3COOH → C2H5OOCCH3 + H2O

Ethyl acetate is somewhat easier to separate from water than either ethanol or acetic

acid. For example, the relatively large acetate molecule has much lower permeability

through a membrane ultrafilter. Thus esterification is sometimes proposed as an eco-

nomical approach for recovering dilute fermentation products. Suppose fermentation

effluents are available as separate streams containing 3% by weight acetic acid and 5%

by weight ethanol. Devise a reaction scheme for generating ethyl acetate using the reac-

tants in stoichiometric ratio. After reaction, the ethyl acetate concentration is increased

first to 25% by weight using ultrafiltration and then to 99% by weight using distilla-

tion. The reactants must ultimately be heated for the distillation step. Thus we can sup-

pose both the esterification and membrane separation to be conducted at 100◦C. At this

temperature,

k f = 8.0 × 10−9 m3 mol−1 s−1 kr = 2.7 × 10−9 m3 mol−1 s−1

Determine t̄ and aout for a CSTR that approaches equilibrium within 5%, that is,

aout − aequil

ain − aequil

= 0.05.
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1.16 Rate expressions for gas phase reactions are sometimes based on partial pressures. Smith

(1956, p. 131) gives k = 1.1 × 10−3 mol cm−3 atm−2 h−1 for the reaction of gaseous

sulfur with methane at 873 K:

CH4 + 2S2 → CS2 + 2H2S

where R = k PCH4
PS2

, mol cm−3 h−1. Determine k when the rate is based on concentra-

tions: R = k[CH4][S2]. Give k in SI units.

1.17 You have a flat-bottomed reactor with 1 m internal diameter that operates with a 1-m

liquid level. It is agitated by a six-bladed, pitched turbine that is located 0.5 m above the

reactor bottom. Paul et al. (2003) give Po = 1.3 provided the vessel Reynolds number

Re = ρD2
I NI /μ is larger than about 500. The mixing time under these conditions is given

by Po1/3 NI tmix(DI /Dtank)2 = 5.2, where dt is the tank diameter. You wish to achieve a

mixing time of 30 s with a waterlike liquid. What RPM should you use and how much

power will be needed?

1.18 A second-order reaction of the type 2A→B reacts to 90% completion when the reactor

in Problem 1.17 is operated with a batch reaction time of 1 h. It is proposed to operate

it as a CSTR. What is the mean residence time needed to achieve 90% conversion in the

continuous mode of operation?


