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  1.1   INTRODUCTION 

 With the rapid advancement of deoxyribonucleic acid (DNA) microarray technolo-
gies, cancer classifi cation through gene expression profi les has already become an 
important means for cancer diagnosis and treatment and attracted numerous efforts 
from a wide variety of research communities (McLachlan et al.,  2004 ). Compared 
with the traditional classifi cation methods that are largely dependent on the morpho-
logical appearance and clinical parameters, gene expression signature - based methods 
offer cancer researchers new methods for the investigation of cancer pathologies 
from a molecular angle, under a systematic framework, and further, to make more 
accurate prediction in prognosis and treatment. 

 Although previous research has included binary cancer classifi cation (Alizadeh 
et al.,  2000 ; Golub et al.,  1999 ; West et al.,  2001 ), it is more common practice to 
discriminate more than two types of tumors (Khan et al.,  2001 ; Nguyen and Rocke, 
 2002 ; Ooi and Tan,  2003 ; Ramaswamy et al.,  2001 ; Scherf et al.,  2000 ). For example, 
Khan et al. ( 2001 ) used multilayer perceptrons to categorize small round blue - cell 
tumors (SRBCTs) with 4 subclasses. Scherf et al. ( 2000 ) constructed a gene 
expression database to investigate the relationship between genes and drugs for 
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60 human cancer cell lines originating from 10 different tumors, which provides an 
important criterion for therapy selection and drug discovery. Although these methods 
manifest interesting performance for some cancer data sets, their classifi cation accu-
racy deteriorates dramatically with the increasing number of classes in the data, as 
shown in a comparative study by Li et al. ( 2004 ). 

 Among all the challenges encountered in gene expression data analysis, the 
curse of dimensionality becomes more serious as a result of the availability of over-
whelming number of gene expression values relative to the limited number of 
samples. The existence of numerous genes in the data that are completely irrelevant 
to the discrimination of tumors not only increases the computational complexity but 
restricts the discovery of truly relevant genes. Therefore, feature selection, also 
known as  informative gene selection  in this context, becomes critically important 
(Deng et al.,  2004 ; Golub et al.,  1999 ; Ooi and Tan,  2003 ). Commonly used selection 
methods to discover informative genes rank the genes in terms of their expression 
difference in two different categories (Golub et al.,  1999 ; Jaeger et al.,  2003 ; Nguyen 
and Rocke,  2002 ; Ben - Dor et al.,  2000 ). These criteria can provide some meaningful 
insights for binary classifi cation. However, they may result in many highly correlated 
genes while ignoring the truly important ones. For multiclass cancer - type discrimi-
nation, these same approaches also cause some additional complexity due to the 
requirement for either one - versus - all or all - pairs comparison. 

 Considering this insuffi ciency of the existing methods in the analysis of more 
complicated cancer data sets, such as the NCI60 data set, in this chapter we propose 
a hybridized computational intelligence technology of semisupervised ellipsoid 
ARTMAP (ssEAM) and particle swarm optimization (PSO) (Kennedy et al.,  2001 ) 
for multiclass cancer discrimination and gene selection. We apply the proposed 
method on publicly available cancer data sets and investigate the effect of various 
parameters on system performance. The experimental results demonstrate the effec-
tiveness of ssEAM/PSO in addressing the massive, multidimensional gene expres-
sion data and are comparable to, or better than, those obtained by other classifi ers. 
Additional analysis and experimental results on ssEAM/PSO in cancer classifi cation 
are published elsewhere (Xu et al.,  2007 ). 

 The rest of the chapter is organized as follows. In Section  1.2 , we present the 
ssEAM/PSO system for multiclass cancer discrimination, together with the experi-
ment design. In Section  1.3 , we show the experimental results on two publicly 
accessible benchmark data sets. We conclude the chapter in Section  1.4 .  

  1.2   METHODS AND SYSTEMS 

  1.2.1    EAM  and Semisupervised  EAM  

 Semisupervised ellipsoid ARTMAP is based on adaptive resonance theory (ART) 
(Grossberg,  1976 ), which was inspired by neural modeling research, and developed 
as a solution to the  plasticity – stability dilemma . It is designed as an enhancement 
and generalization of ellipsoid ART (EA) and ellipsoid ARTMAP (EAM) 
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(Anagnostopoulos,  2001 ; Anagnostopoulos and Georgiopoulos,  2001 ), which, in 
turn, follow the same learning and functional principles of fuzzy ART (Carpenter 
et al.,  1991 ) and fuzzy ARTMAP (Carpenter et al.,  1992 ). 

 Ellipsoid ARTMAP accomplishes classifi cation tasks by clustering data that are 
attributed with the same class label. The geometric representations of these clusters, 
which are called EA  categories , are hyperellipsoids embedded in the feature space. 
A typical example of such a category representation, when the input space is two -
 dimensional, is provided in Figure  1.1 , where each category  C j   is described by a 
center location vector  m   j  , orientation vector  d   j  , and Mahalanobis radius  M j  , which 
are collected as the template vector  w   j   = [ m   j  ,  d   j  ,  M j  ]. If we defi ne the distance 
between an input pattern  x  and a category  C j   as

    D M Mj j j j
j

( ) { }x w x m
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, max , ,= − −     (1.1)  

    x m x m S x m
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 where  S   j   is the category ’ s shape matrix, defi ned as

    S I d dj j j= − −1
12

2

μ
μ[ ( ) ]T ,     (1.3)   

 and  µ  is the ratio between the length of the hyperellipsoid ’ s minor axes (with equal 
length) and major axis, the  representation region  of  C j  , which is the shaded area in 
the fi gure, can be defi ned as a set of points in the input space, satisfying the 
condition

    D Mj j j
j

( ) .x w x m
S

, = ⇒ − ≤0     (1.4)   

 A category encodes whatever information the EAM classifi er has learned about 
the presence of data and their associated class labels in the locality of its geometric 
representation. This information is encoded into the location, orientation, and size 
of the hyperellipsoid. The latter feature is primarily controlled via the baseline vigi-
lance   ρ ∈[ , ]0 1  and indirectly via the choice parameter  a   >  0 and a network parameter 
 ω   ≥  0.5 (Anagnostopoulos and Georgiopoulos,  2001 ). Typically, small values of   ρ 
produce categories of larger size, while values close to 1 produce the opposite effect. 
As a special case, when   ρ = 1, EAM will create solely point categories (one for each 

    Figure 1.1     Example of geometric representation of EA category C j  in two - dimensional 
feature space. 
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training pattern) after completion of training, and it implements the ordinary, 
Euclidian 1 - nearest neighbor classifi cation rule. A category ’ s particular shape (eccen-
tricity of its hyperellipsoid) is controlled via the network parameter  µ   ∈  (0, 1]; for 
 µ  = 1 the geometric representations become hyperspheres, in which case the network 
is called  hypersphere ARTMAP  (Anagnostopoulos and Georgiopoulos,  2000 ). 

 Figure  1.2  illustrates the block diagram of an EAM network, which consists of 
two EA modules (ART a  and ART b ) interconnected via an inter - ART module. The 
ART a  module clusters patterns of the input domain while ART b  clusters patterns of 
the output domain. The information regarding the input – output associations is stored 
in the weights   w j

ab  of the inter - ART module, while EA category descriptions are 
contained in the template vectors  w   j  . These vectors are the top – down weights of 
 F  2  - layer nodes in each module.   

 Learning in EAM occurs by creating new categories or updating already exist-
ing ones. If a training pattern  x  initiates the creation of a new category  C J  , then  C J   
receives the class label  L ( x ) of  x , by setting the class label of  C J   to  I ( J ) =  L ( x ). The 
recently created category  C J   is initially a  point category , meaning that  m   J   =  x  and 
 M J   = 0. While training progresses, point categories are being updated, due to the 
presentation of other training patterns, and their representation regions may grow. 
Specifi cally, when it has been decided that a category  C j   must be updated by a train-
ing pattern  x , its representation region expands, so that it becomes the minimum -
 volume hyperellipsoid that contains the entire, original representation region and the 
new pattern. Learning eventually ceases in EAM, when no additional categories are 
being created and the existing categories have expanded enough to capture all train-
ing data. Notice that, if  x  falls inside the representation region of  C j  , no update occurs 
since  C j   has already taken into account the presence of  x . 

 The procedure of deciding which category  C j   is going to be updated, with a 
training pattern  x , involves competition among preexisting categories. Let us defi ne 
this set of categories as  N  as well as the set  S   ⊆   N  of all categories that are candidates 

    Figure 1.2     Ellipsoid ARTMAP block diagram. 
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in the competition; initially,  S  =  N . Before the competition commences, for each 
category  C j  , two quantities are calculated: the  category match function  (CMF) 
value

    ρ( )
( )

w x
x w

j
j jD M D
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− −max

max
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,

2
    (1.5)   

 where  D  max  is a parameter greater than 0, and the  category choice function  (CCF) 
value
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 Next, EAM employs two category - fi ltering mechanisms: the  vigilance test  (VT) 
and the  commitment test  (CT). Both tests decide if the match between the pattern 
and the category ’ s representation region is suffi cient to assign that pattern to the 
cluster represented by the category in question. These tests can function as a novelty 
detection mechanism as well: If no category in  S  passes both tests, then  x  is not a 
typical pattern in comparison to the data experienced by the classifi er in the past. 
Categories that do not pass these tests can be subsequently removed from the can-
didate set  S . Next, the competition for  x  is won by the category  C J   that features the 
maximum CCF value with respect to the pattern; in case of a tie, the category with 
minimum index is chosen. The fi nal verdict on whether to allow  C J   to be updated 
with  x  or not is delivered by the  prediction test  (PT):  C J   is allowed to be updated 
with  x  only if both  C J   and  x  feature the same class label, that is, if  I ( J ) =  L ( x ). If  C J   
fails the PT, a  match tracking  process is invoked by utilizing a stricter VT in the 
hope that another suitable EAM category will be found that passes all three tests. If 
the search eventually fails, a new point category will be created as described 
before. 

 Ellipsoid ARTMAP does not allow categories to learn training patterns of dis-
similar class labels. This property is ideal when the individual class distributions of 
the problem are relatively well separated. However, in the case of high class overlap, 
or when dealing with increased amount of noise in the feature domain, EAM will 
be forced to create many small - sized categories, a phenomenon called the  category 
proliferation problem . Moreover, when EAM is trained in an offl ine mode to perfec-
tion, its posttraining error will be zero, which can be viewed as a form of data 
overfi tting. 

 The semisupervised EAM (ssEAM) classifi er extends the generalization capa-
bilities of EAM by allowing the clustering into a single category of training patterns 
not necessarily belonging to the same class (Anagnostopoulos et al.,  2002 ). This is 
accomplished by augmenting EAM ’ s PT in the following manner: A winning cate-
gory  C J   may be updated by a training pattern  x , even if  I ( J )  ≠   L ( x ), as long as the 
following inequality holds:

    
w

w

J I J

J cc
C

,

,

,( )

1
1

1+
≥ −

=∑
ε     (1.7)   
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 where  C  denotes the number of distinct classes related to the classifi cation problem 
at hand and the quantities  w J,c     contain the count of how many times category  C J   was 
updated by a training pattern belonging to the  c th class. In other words, Eq.  (1.7)  
ensures that the percentage of training patterns that are allowed to update category 
 C J   and carry a class label different than the class label  I ( J ) (the label that was initially 
assigned to  C J  , when it was created) cannot exceed 100 ε  %, where  ε   ∈  [0,1] is a 
new network parameter, the  category prediction error tolerance , which is specifi c 
only to ssEAM. For  ε  = 1 the modifi ed PT will allow categories to be formed by 
clustering training patterns, regardless of their class labels, in an unsupervised 
manner. In contrast, with  ε  = 0 the modifi ed PT will allow clustering (into a single 
category) only of training patterns belonging to the same class, which makes the 
category formation process fully supervised. Under these circumstances, ssEAM 
becomes equivalent to EAM. For intermediate values of  ε , the category formation 
process is performed in a semisupervised fashion. 

 Both EAM and ssEAM feature a common performance phase, which is almost 
identical to their training phases. However, during the presentation of test patterns, 
no categories are created or updated. The predicted label for a test pattern  x  is deter-
mined by the  dominant class label O ( J ) of the winning category  C J   defi ned as

    ˆ( ) ( ) .
..

L O J w
c C

J cx = = =
=

argmax ,
1

1     (1.8)   

 When  ε   <  0.5, ssEAM ’ s PT guarantees that throughout the training phase  O ( j ) =  I ( j ) 
for any category  C j  . 

 For  ε   >  0 ssEAM will, in general, display a nonzero posttraining error, which 
implies a departure from EAM ’ s overfi tting and category proliferation issues. For 
classifi cation problems with noticeable class distribution overlap or noisy features, 
ssEAM with  ε   >  0 will control the generation of categories representing localized 
data distribution exceptions, thus, improving the generalization capabilities of the 
resulting classifi er. Most importantly, the latter quality is achieved by ssEAM without 
sacrifi cing any of the other valuable properties of EAM, that is, stable and fi nite 
learning, model transparency, and detection of atypical patterns. 

 Semisupervised EAM has many attractive properties for classifi cation or clus-
tering. First, ssEAM is capable of both online (incremental) and offl ine (batch) 
learning. Using   fast learning  in offl ine mode, the network ’ s training phase completes 
in a small number of epochs. The computational cost is relatively low, and it can 
cope with large amounts of multidimensional data, maintaining effi ciency. Moreover, 
ssEAM is an  exemplar - based model , that is, during its training the architecture sum-
marizes data via the use of exemplars in order to accomplish its learning objective. 
Due to its exemplar - based nature, responses of an ssEAM architecture to specifi c 
test data are easily explainable, which makes ssEAM a  transparent learning model . 
This fact contrasts other,  opaque  neural network architectures, for which it is diffi -
cult, in general, to explain why an input  x  produced a particular output  y . Another 
important feature of ssEAM is the capability of detecting atypical patters during 
either its training or performance phase. The detection of such patterns is accom-
plished via the employment of a match - based criterion that decides to which degree 



1.2 Methods and Systems  9

a particular pattern matches the characteristics of an already formed category in 
ssEAM. Additionally, via the utilization of hyperellipsoidal categories, ssEAM can 
learn complex decision boundaries, which arise frequently in gene expression clas-
sifi cation problems. Finally, ssEAM is far simpler to implement, for example, than 
backpropagation for feedforward neural networks and the training algorithm of 
support vector machines. Many of these advantages are inherited, general properties 
of the ART family of neural networks including fast, exemplar - based, match - based, 
learning (Grossberg,  1976 ), transparent learning (Healy and Caudell,  1997 ), capabil-
ity to handle massive data sets (Healy et al.,  1993 ), and implementability in software 
and hardware (Serrano - Gotarredona et al.,  1998 ; Wunsch et al.,  1993 ; Wunsch, 
 1991 ). Also, ART neural networks dynamically generate clusters without specifying 
the number of clusters in advance as the classical  k  - means algorithm requires (Xu 
and Wunsch,  2005 ).  

  1.2.2   Particle Swarm Optimization 

 Particle swarm optimization (PSO) is a heuristic, global, stochastic maximization 
meta - algorithm, motivated by the complex social behavior and originally intended 
to explore optimal or near - optimal solutions in sophisticated continuous spaces 
(Kennedy et al.,  2001 ). Like most evolutionary computation meta - algorithms, PSO 
is also population based, consisting of a swarm of particles, each of which represents 
a candidate solution  x   i   and is associated with a random velocity  v   i  . The basic idea 
of PSO is that each particle randomly searches through the problem space by updat-
ing itself with its own memory and the social information gathered from other par-
ticles. Specifi cally, at each time step, each particle is accelerated toward two best 
locations, based on the fi tness value:  p  best  for the previous best solution for this par-
ticle and  g  best  for the best overall value in the entire swarm. Accordingly, the canoni-
cal PSO velocity and position update equations are written as

    v t W v t c p x t c gij I ij ijij ij
( ) ( ) [ ( )] [+ = × + − +1 1 2rand rand1 best 2 best −− x tij ( )],     (1.9)  

    x t x t v tij ij ij( ) ( ) ( )+ = + +1 1 ,     (1.10)   

 where  W I   is an inertia weight,  c  1  and  c  2  are acceleration constants, and rand 1  and 
rand 2  are samples of random variables uniformly distributed in the range 
of [0, 1]. PSO has many desirable characteristics, such as a memory mechanism of 
keeping track of previous best solutions, the easiness to implement, fast convergence 
to high - quality solutions, and the fl exibility in balancing global and local 
exploration. 

 Since our goal is to select important genes from a large gene pool with  M  genes 
in total, we employ a discrete binary version of PSO (Kennedy and Eberhart,  1997 ). 
The major change of the binary PSO lies in the interpretation of the meaning of the 
particle velocity. Given a set of  N  particles  X  = { x  1 ,  x  2 ,   .  .  .   ,  x   N  }, each of which 
corresponds to a subset of genes, the velocity for the  i th particle  x   i   = ( x i   1 ,  x i   2 ,   .  .  .   , 
 x iM  ) is represented as   vi i i iMv vv* * *, . . . , *,= ( )1 2 . The possible values for each bit  x ij   (1  ≤  
 i   ≤   N , 1  ≤   j   ≤   M ) are either one or zero, indicating the corresponding genes are 
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selected or not. The velocity   vij
* associated with it is defi ned as the probability that 

 x ij   takes the value of 1 and is calculated by the logistic probability law

    v t
v tij

ij

*
exp[

,( )
( )]

+ =
+ − +

1
1

1 1
    (1.11)   

 where  v ij   is calculated using Eq.  (1.9) . Accordingly, the position update equation is 
given as

    x t v t
ij

ij( ) ( )+ = + < +⎧
⎨
⎩

1 1 1if rand * ,
0 otherwise,

3 δ     (1.12)   

 where rand 3  is a sample of random variable uniformly distributed in the range of [0, 
1], and  δ  is a parameter that limits the total number of genes selected to a certain 
range. Compared to the original binary PSO by Kennedy and Eberhart ( 1997 ), we 
add the parameter  δ  to obtain more fl exibility in controlling the number of informa-
tive genes. If the value of  δ  is large, the number of genes selected becomes small 
and vice versa. 

 Now, we summarize the basic procedure of binary PSO for informative gene 
selection as follows: 

  1.     Initialize a population of  N  particles with random positions and velocities. 
The dimensionality  M  of the problem space equals the number of genes in 
the data.  

  2.     Evaluate the classifi cation performance of ssEAM and calculate the optimi-
zation fi tness function for each particle. The defi nition of PSO ’ s fi tness 
function aims to minimize the classifi cation error while favoring the subset 
with fewer genes; it is defi ned as

    f
Mi

i

( )x = +Acc ,LOOCV

1
    (1.13)    

   where Acc LOOCV  is the  leave - one - out cross - validation  (LOOCV) (Kohavi, 
 1995 ) classifi cation accuracy defi ned in Eq.  (1.16)  and  M i   is the number of 
informative genes selected.  

  3.     Compare the fi tness value of each particle with its associated  p  best  value. If 
the current value is better than  p  best , set both  p  best  and the particle ’ s attained 
location to the current value and location.  

  4.     Compare  p  best  of the particles with each other and update  g  best  with the greatest 
fi tness.  

  5.     Update the velocity and position of the particles using Eqs.  (1.9) ,  (1.11) , and 
 (1.12) .  

  6.     Return to step 2 until the stopping condition is met, which, usually, is reach-
ing the maximum number of iterations or the discovery of high - quality 
solutions.    
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 The inertial weight is similar to the momentum term in the backpropagation 
algorithm for multilayer perceptrons (Bergh and Engelbrecht,  2004 ). It specifi es the 
trade - off between the global and local search (Shi and Eberhart,  1998 ). Larger values 
of  W I   facilitate the global exploration while lower values encourage local search.  W I   
can take on a fi xed value, or more commonly, decreases linearly during a PSO run 
(Shi and Eberhart,  1999 ),

    W W W
T t

T
WI I I I= − − +( )1 2 2,     (1.14)   

 where  W I   1  and  W I   2  are the initial and fi nal values, respectively,  T  is the maximum 
number of epochs allowed, and  t  is the current epoch number. Alternately, the inertial 
weight can be set to change randomly within a range (Eberhart and Shi,  2001 ), for 
instance,

    W WI I= +0

rand

2
,     (1.15)   

 where rand is a uniformly distributed random function in the range of [0, 1]. As an 
example, if  W I   0  is set as 0.5, Eq.  (1.15)  makes  W I   vary between 0.5 and 1, with a 
mean of 0.75. In this chapter, these three methods are referred to as PSO - FIXEW, 
PSO - LTVW, and PSO - RADW, respectively.  c  1  and  c  2  are known in the PSO litera-
ture as cognition and social components, respectively, and are used to adjust the 
velocity of a particle toward  p  best  and  g  best . Typically, they are both set to a value of 
2, although different values may achieve better performance (Eberhart and Shi, 
 2001 ).  

  1.2.3   Experiment Design 

 Since the data sets consist of only a small number of samples for each cancer type, 
it is important to use an appropriate method to estimate the classifi cation error of 
the classifi er. In the experiment below, we perform a double cross validation [ 10 - fold 
cross validation  (CV10) with LOOCV], instead of just the commonly used LOOCV, 
to examine the performance of ssEAM/PSO. This is because, although the LOOCV 
is an unbiased point estimate of the classifi cation error, it has high variance, which 
is not preferred in cancer classifi cation. On the contrary, resampling strategies such 
as bootstrap (Efron,  1982 ), may become largely biased in some cases (Ambroise and 
McLachlan,  2002 ; Kohavi,  1995 ) despite having lower variance. During the double 
cross - validation procedure, the data set with  Q  samples is divided into 10 mutually 
exclusive sets of approximately equal size, with each subset consisting of approxi-
mately the same proportions of labels as the original data set, known as stratifi ed 
cross validation (Kohavi,  1995 ). The classifi er is trained 10 times, with a different 
subset left out as the test set and the other samples are used to train the classifi er 
each time. During the training phase, gene selection is performed based on the 9 
out of the 10 data subsets (without considering the test data), for which LOOCV 
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classifi cation accuracy is used as the fi tness function in Eq.  (1.13) . The prediction 
performance of the classifi er is estimated by considering the average classifi cation 
accuracy of the 10 cross - validation experiments, described as

    Acc ,CV10 = ⎛
⎝⎜

⎞
⎠⎟ ×

=
∑1

100
1

10

Q
Ai

i

%     (1.16)   

 where  A i   is the number of correctly classifi ed samples. Previous studies have shown 
that CV10 is more appropriate when a compromise between bias and variance is 
preferred (Ambroise and McLachlan,  2002 ; Kohavi,  1995 ). 

 We also compare our approach with four other classifi ers, that is, multilayer 
perceptrons (MLPs) (Haykin,  1999 ), probabilistic neural networks (PNNs) (Specht, 
 1990 ), learning vector quantization (LVQ) (Kohonen,  2001 ), and  k  - nearest - neighbor 
(kNN) (Duda et al.,  2001 ), together with Fisher ’ s discriminant criterion (Hastie 
et al.,  2003 ), which is used for informative genes selection and defi ned as

    F i
i i

i i
( )

( ) ( )

( ) ( )
= −

+
+ −

+ −

μ μ
σ σ

2

2 2 ,     (1.17)   

 where  µ  + ( i ) and  µ   −  ( i ) are the mean values of gene  i  for the samples in class +1 and 
class  − 1, and   σ+

2 ( )i  and   σ−
2 ( )i  are the variances of gene  i  for the samples in class +1 

and  − 1. The score aims to maximize the between - class difference and minimize the 
within - class spread. Currently, other proposed rank - based criteria with these consid-
erations show similar performance (Jaeger et al.,  2003 ). Since our ultimate goal is 
to classify multiple types of cancer, we utilize a one - versus - all strategy to seek gene 
predictors. In order to overcome  selection bias , which is caused by including the 
test samples in the process of feature selection and which leads to an overoptimistic 
estimation of the performance for the classifi er (Ambroise and McLachlan,  2002 ; 
Nguyen and Rocke,  2002 ; West et al.,  2001 ), we utilize the strategy that separates 
gene selection from cross - validation assessment. Note in this case that the subsets 
of genes selected at each stage tend to be different.   

  1.3   EXPERIMENTAL RESULTS 

  1.3.1   NCI60 Data 

 The NCI60 data set includes 1416 gene expression profi les for 60 cell lines in a drug 
discovery screen by the National Cancer Institute (Scherf et al.,  2000 ). These cell 
lines belong to 9 different classes: 8 breast (BR), 6 central nervous system (CNS), 
7 colorectal (CO), 6 leukemia (LE), 9 lung (LC), 8 melanoma (ME), 6 ovarian (OV), 
2 prostate (PR), and 8 renal (RE). Since the PR class only had two samples, these 
were excluded from further analysis. There were 2033 missing gene expression 
values in the data set, which were imputed by the method described by Berrar et al. 
( 2003 ). This process left the fi nal matrix in the form of  E  = { e ij  } 58 × 1409 , where  e i,j   
represents the expression level of gene  j  in tissue sample  i . 



 We fi rst investigated the effect of the three different strategies for the inertia 
weight (i.e., PSO - FIXEW, PSO - LTVW, and PSO - RADW) on the performance of 
PSO. The values of  c  1  and  c  2  were both set to 2 in this study. We fi xed the  W I   at 0.8 
for PSO - FIXEW and linearly decreased  W I   from 0.9 to 0.4 for PSO - LTVW. For the 
random method PSO - RADW, we chose  W I   0  equal to 0.5, so that  W I   varied in the 
range of [0.5, 1]. The performance of the three methods was compared in terms of 
the number of iterations required to reach a prespecifi ed classifi cation accuracy, say, 
81% (47 out of 58 samples) in this case. We further set the maximum number of 
iterations to 100. If PSO reached 81% classifi cation accuracy within 100 iterations, 
we considered PSO to have converged. The results over 20 runs are summarized in 
Table  1.1 , which consists of the number of times that the iteration exceeded the 
allowed maximum and the average number of epochs if PSO converged. As indi-
cated in Table  1.1 , the most effective performance was achieved when PSO - FIXEW 
was used, where PSO achieves the expected accuracy within 39 iterations on average, 
except for 2 runs that did not converge. The result for PSO - LTVW was slightly 
inferior to PSO - FIXEW, as the average number of iterations was 42.9 for 16 out of 
20 converging cases. PSO - RADW did not perform well in this problem and was 
more dependent on its initialization. In the following discussion, we used PSO -
 FIXEW with  W I   at 0.8, and set both  c  1  and  c  2  to 2.   

 We set the parameters for ssEAM as follows:  µ  = 0.3,  ρ  = 0.4, and  α  = 2.5, 
learning rate = 0.8, and adjusted the value of  ε , which controlled the amount of 
misclassifi cation allowed in the training phase. The parameters of ssEAM were 
determined based on a simple selection procedure in which the data set was ran-
domly divided into training and validation sets. We compared the different parameter 
combination and chose the ones that lead to relatively high performance. The param-
eter  δ  controlled the total number of genes selected in the subsets, and we evaluated 
the program with  δ  at 0.5, 0.45, 0.4, 0.3, 0.2, 0.1, and 0.0. Each time, evolution was 
processed for 300 generations with a swarm population of 50 particles. The algo-
rithm was iterated 20 times using different partitions of the data set and performance 
was reviewed relative to mean performance. The mean and standard deviation of 
the classifi cation accuracies from the 20 runs are summarized in Table  1.2 , and the 
best results are depicted in Figure  1.3( a ) . For the purpose of comparison, we also 
show the results of PNN, MLP, kNN, and LVQ1, in which the Fisher criterion was 

 Table 1.1     Comparison of PSO - FIXEW, PSO - LTVW, and PSO - RADW on 
PSO Performance 

      W I   

 Performance 

  > 100 Iterations  Average Number of Iterations 

 PSO - FIXEW (at 0.8)  2  38.3 
 PSO - LTVW (0.9 – 0.4)  3  42.9 
 PSO - RADW (0.5 – 1)  5  45.5 
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used for gene selection. For PNN, the smoothing parameter of the Gaussian kernel 
was set to 1. The MLP consisted of a single hidden layer featuring 20 nodes and 
was trained with the one - step secant algorithm for fast learning. We varied the 
number of prototypes in LVQ1 and the value of  k  in kNN from 8 to 17 and 1 to 10, 
respectively. Both methods were evaluated based on average classifi cation accuracy. 
From Table  1.2  it should be noted that ssEAM/PSO is superior to the other methods 
used in these experiments or additional ones found in the literature. Specifi cally, the 
best result attained with ssEAM/PSO is 87.9% (79 genes are selected by PSO), 
which is better than other results reported in the literature. We performed a formal 
 t  test to compare the difference between the best overall results of ssEAM and other 
methods. All  p  values are less than 10  − 15 , which indicates the classifi cation accuracy 
for ssEAM is statistically better than those of other methods at a 5% signifi cance 
level. The same conclusion can also be reached via a nonparametric Wilcoxon rank 
test and a Kruskal – Wallis test. Another interesting observation from the experimen-
tal results is that the introduction of the error tolerance parameter  ε  could provide 
an effective way to increase generalization capability and decrease overfi tting, which 
is encountered frequently in cancer classifi cation. The performance of ssEAM can 
usually be improved with the appropriate selection of  ε  (0.1 for this data set). 
However, the overrelaxing of the misclassifi cation tolerance criterion during the 
category formation process in ssEAM training could cause the degradation of the 
classifi er performance.     

 We further compared the top 100 genes selected by the Fisher criterion with 
those selected by PSO. This comparison shows that there is only a small fraction of 
overlaps between the genes chosen by these two methods. For example, for the 79 

 Table 1.2     Classifi cation Accuracy for NCI60 Data Set   a    

 NCI60 

 Number of Features (Genes) 

 10  79  135  252  385  555  695 

 EAM
( ε  = 0) 

 PSO  65.52 
(1.86) 

 83.02 
(1.51) 

 79.40 
(1.42) 

 76.64 
(2.47) 

 71.21 
(1.59) 

 68.10 
(1.90) 

 67.76 
(1.49) 

 ssEAM
( ε  = 0.1) 

 PSO  65.78 
(2.19) 

 84.66 
(1.36) 

 81.12 
(1.98) 

 78.62 
(1.89) 

 75.26 
(1.79) 

 73.10 
(2.27) 

 72.50 
(2.34) 

 PNN  Fisher 
criterion 

 24.05 
(2.27) 

 71.12 
(2.23) 

 72.24 
(2.09) 

 74.65 
(2.02) 

 76.81 
(2.27) 

 76.03 
(1.24) 

 76.12 
(1.40) 

 MLP  Fisher 
criterion 

 16.81 
(3.21) 

 39.14 
(5.82) 

 39.40 
(4.38) 

 44.91 
(5.08) 

 45.43 
(5.46) 

 45.17 
(4.25) 

 47.59 
(7.51) 

 kNN  Fisher 
criterion 

 41.90 
(2.86) 

 69.22 
(2.64) 

 69.74 
(1.63) 

 72.59 
(1.57) 

 73.71 
(1.28) 

 72.59 
(1.10) 

 71.81 
(1.28) 

 LVQ1  Fisher 
criterion 

 42.67 
(2.73) 

 71.81 
(2.87) 

 72.76 
(2.48) 

 73.10 
(1.80) 

 73.88 
(1.28) 

 72.33 
(1.98) 

 72.24 
(1.47) 

    a  Given are the mean and standard deviation (in parentheses) of percent of correct classifi cation of 58 
tumor samples with CV10 ( ρ  = 0.4,  µ  = 0.3, learning rate = 0.8,  α  = 2.5).   



genes that lead to the best classifi cation result, only 7 were also selected by the 
Fisher criterion. Although the Fisher criterion can be effective in some binary clas-
sifi cation problems, as shown in Xu and Wunsch ( 2003 ), it does not achieve effective 
performance in cases of multiclass discrimination. The reason for this may lie in the 
fact that the Fisher criterion tends to choose many highly correlated genes, ignoring 
those genes that are really important for classifi cation. In addition, the use of the 
Fisher discriminant criterion is justifi ed when the data follow an approximately 
Gaussian distribution. This may not be true for this data set.  

    Figure 1.3     Best classifi cation accuracy of 20 runs for the ( a ) NCI60 and ( b ) leukemia data set. 
Order for bars is EAM, ssEAM, PNN, ANN, LVQ1, and kNN, from left to right.  

(a)

(b)
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  1.3.2   Acute Leukemia Data 

 The ssEAM method was evaluated on a second cancer data set. The acute leukemia 
data set is comprised of 72 samples that belong to 3 different leukemia types: 25 
acute myeloid leukemia (AML), 38 B - cell acute lymphoblastic leukemia (ALL), and 
9 T - cell ALL (Golub et al.,  1999 ). Gene expressions for 7129 genes were measured 
using oligonucleotide microarrays. We ranked genes based on their variance across 
all the samples and chose the top 1000 for further analysis. The fi nal matrix is in 
the form of  E  = { e ij  } 72 × 1000 . 

 As before, we compared the performance of our method with PNN, MLP, 
LVQ1, and kNN, based on the average results for 20 runs with different splitting. 
The parameters for ssEAM were  µ  = 0.9,  ρ  = 0.45, and  a  = 4, and the learning rate 
was set equal to 0.8;  δ  is set to 0.5, 0.45, 0.4, 0.3, 0.2, 0.1, and 0.0. Additionally, 
the smoothing parameter of the Gaussian kernel was set to 1, as mentioned previ-
ously in this chapter. The MLP included 15 nodes in the hidden layer with the logistic 
function as the transfer function. The number of prototypes in LVQ1 varied from 3 
to 12. For this data set, we typically achieved reasonable results after only 100 gen-
erations of evolutionary optimization. Each swarm still consisted of 50 particles. 
The results are shown in Table  1.3  and Figure  1.3( b ) . The best classifi cation perfor-
mance was achieved by ssEAM when 63 or 97 genes were selected with PSO. In 
this setting, only one sample is misclassifi ed (i.e., a T - cell ALL67 is misclassifi ed 
as a B - cell ALL). Still, classifi cation performance deteriorates when too many or 
too few genes are chosen, particularly for ssEAM. The number of genes in the data 
does not affect much the performance of PNN, LVQ1, and kNN classifi ers, although 

 Table 1.3     Classifi cation Accuracy for Acute Leukemia Data Set   a    

 Acute Leukemia Data 

 Number of Features (Genes) 

 16  63  97  195  287  375  502 

 EAM
( ε  = 0) 

 PSO  89.72 
(2.08) 

 94.44 
(2.67) 

 95.07 
(1.65) 

 94.31 
(1.68) 

 93.26 
(1.58) 

 93.13 
(1.23) 

 92.36 
(1.39) 

 ssEAM
( ε  = 0.1) 

 PSO  91.60 
(1.23) 

 97.15 
(0.95) 

 97.50 
(0.73) 

 95.83 
(0.90) 

 94.65 
(0.82) 

 93.68 
(0.71) 

 92.64 
(1.43) 

 PNN  Fisher 
criterion 

 90.00 
(2.61) 

 96.32 
(0.68) 

 96.74 
(0.68) 

 96.46 
(0.71) 

 96.39 
(0.70) 

 96.25 
(0.91) 

 96.18 
(0.99) 

 MLP  Fisher 
criterion 

 93.61 
(2.27) 

 92.50 
(1.23) 

 93.47 
(2.07) 

 91.60 
(4.19) 

 91.74 
(3.94) 

 91.60 
(2.90) 

 91.67 
(3.60) 

 LVQ1  Fisher 
criterion 

 94.86 
(0.65) 

 95.83 
(0.45) 

 96.45 
(0.84) 

 95.97 
(0.77) 

 96.04 
(0.93) 

 96.10 
(0.86) 

 95.90 
(0.71) 

 kNN  Fisher 
criterion 

 95.07 
(0.71) 

 95.83 
(0.45) 

 96.18 
(0.62) 

 96.11 
(0.73) 

 95.90 
(0.84) 

 95.69 
(1.00) 

 95.69 
(0.77) 

    a  Given are the mean and standard deviation (in parentheses) of percent of correct classifi cation for 72 
tumor samples with CV10 ( ρ  = 0.45,  µ  = 0.9, learning rate = 0.8,  α  = 4).   



there is some slight decrease when more genes are included. In contrast to the per-
formance results obtained with the NCI60 data set, kNN and LVQ1 work well for 
this data set. The  p  values of the associated  t  tests comparing performances of 
ssEAM, PNN, ANN, LVQ1, and kNN classifi ers are 0.0015, 9.9  ×  10  − 9 , 1.6  ×  10  − 4 , 
and 3.1  ×  10  − 7 , respectively, which, again, shows the signifi cantly better performance 
of ssEAM models (at a 5% signifi cance level).   

 Among all examples, sample AML66 and T - cell ALL67 cause the most misclas-
sifi cation (e.g., when  δ  = 0.45, 23 out of 50 particles misclassifi ed AML66 as ALL, 
and 32 out of 50 particles misclassifi ed T - cell ALL67 either as B - cell ALL or AML). 
This is similar to the results from other analyses (Golub et al.,  1999 ; Nguyen and 
Rocke,  2002 ). For the acute leukemia data set, the effect of introducing the error 
tolerance parameter  ε  ( ε   >  0) is not as pronounced as in the NCI60 data set. This 
may be the result of reduced overlap among the Golub data in comparison to the 
NCI60 data set. The improvement of performance is more effective for semisuper-
vised training when applied to higher overlapped data sets. 

 It is interesting to examine whether the genes selected by PSO are really mean-
ingful in a biological sense. Among the top 50 genes selected, many of them have 
already been identifi ed as the important markers for the differentiation of the AML 
and ALL classes. Specifi cally, genes such as  NME4, MPO, CD19, CTSD, LTC4S, 
Zyxin , and  PRG1 , are known to be useful in AML/ALL diagnosis (Golub et al., 
 1999 ). Also, some new genes are selected that previously were not reported as being 
relevant to the classifi cation problem. Additional investigation is required for 
these genes. Moreover, we found that the Fisher discriminant criterion can also 
identify genes that contribute to the diagnosis of these three leukemia types, such 
as with genes  Zyxin, HoxA9 , and  MB - 1 . The reason for this may be due to the 
underlying biology represented in the Golub data: Genes express themselves quite 
differently under different tumor types in the AML/ALL data relative to the NCI60 
data. Furthermore, we observe that different feature selection methods usually lead 
to different subsets of selected, informative genes with only very small overlap, 
although the classifi cation accuracy does not change greatly. Genes that have no 
biological relevance still can be selected as an artifact of the feature selection algo-
rithms themselves. This suggests that feature selection may provide effective insight 
in cancer identifi cation; however, careful evaluation is critical due to the problems 
caused by insuffi cient data.   

  1.4   CONCLUSIONS 

 Classifi cation is critically important for cancer diagnosis and treatment. Microarray 
technologies provide an effective way to identifying different kinds of cancer types, 
while simultaneously spawning many new challenges. Here, we utilized semisuper-
vised ellipsoid ARTMAP and particle swarm optimization to address the multitype 
cancer identifi cation problem, based on gene expression profi ling. The proposed 
method achieves qualitatively good results on two publicly accessible benchmark 
data sets, particularly, with the NCI60 data set, which is not effectively dealt with 
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by previous methods. The comparison with four other important machine learning 
techniques shows that the combined ssEAM/PSO scheme can outperform them 
on both data sets and the difference in classifi cation accuracy is statistically 
signifi cant. 

 With all the improvement we obtain, we also note that there are still many 
problems that remain to be solved in gene expression profi les - based cancer classifi -
cation, particularly, the curse of dimensionality, which becomes more serious due to 
the rapidly and persistently increasing capability of gene chip technologies, in con-
trast to the limitations in sample collections. Thus, questions, such as how many 
genes are really needed for disease diagnosis, and whether these gene subsets 
selected are really meaningful in a biological sense, still remain open. Without any 
doubt, larger data sets would be immensely useful in effectively evaluating different 
kinds of classifi ers and constructing cancer discrimination systems. In the meantime, 
more advanced feature selection approaches are required in order to fi nd informative 
genes that are more effi cient in prediction and prognosis.  
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