
1

This chapter covers a basic setup and organization for you to get started with
NCurses programming. Here you’ll find:

�� An introduction to the terminal window in UNIX
�� A smattering of basic shell commands
�� Creating a special curses directory for this document’s programs
�� A review of available text editors
�� The creation of a basic NCurses program
�� A review of the gcc compiler and linking commands
�� Re-editing source code and debugging exercises
The idea here is to show you how everything works and to get you com-

fortable programming with NCurses, even if you’ve never written a UNIX
program before.

NCurses Is a UNIX Thing

You must have a UNIX-like operating system to work the samples and exam-
ples in this book.

The Setup

C H A P T E R

1

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

Beyond this, note that you must also have the programming libraries
installed for your operating system. Without those libraries, programming in
NCurses just isn’t gonna happen. Refer to your operating system’s installation
or setup program, such as /stand/sysinstall in FreeBSD, to install the C
programming libraries for your operating system. If special extensions are
required to get the NCurses library installed, use them!

NOTE It’s possible to program NCurses in Windows when using the Cygwin
environment. I’ve not toyed with Cygwin, so I’m unable to comment on it here.
For more information, refer to www.cygwin.com.

Run (Don’t Walk) to a Terminal Screen Near You

NCurses is about programming the terminal screen, so you’ll need access to a
terminal screen or window to run the programs.

You can either use one of the virtual terminals (which you can access on
most PCs by pressing Alt+F1, Alt+F2, Alt+F3, and so on) or open a terminal
window in the X Window System environment or in Mac OS X using the Ter-
minal program. (See Figure 1-1.)

Figure 1-1: A terminal window for Mac OS X

Note that the terminal you choose can affect what NCurses does. Not all ter-
minal types can, for example, do color or draw lines on the screen.

2 Chapter 1 � The Setup

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 2

Know Something About the Shell

The program you use in the terminal screen is a shell. It displays a shell prompt
and lets you type one of the gazillions of UNIX commands and what not —
which is all basic UNIX stuff.

The following sections review basic shell operations and a smattering of
commands. If you feel you already know this, skim up to the section titled
“Make a Place for Your Stuff.”

Some Shelly Stuff
For example, the standard Bourne shell may look like this:

$

The dollar sign is the prompt, and you type your commands after the
prompt.

The Bash shell, popular with Linux, may look like this:

Bash-2.05a$

Or the shell may be customized to display your login name:

dang$

Or even the working directory:

/home/dang/$

Whatever!
No one really cares about which shell you use, but you should know enough

shell commands to be able to do these things:
�� Make directories
�� Display a file’s contents
�� Copy files
�� Rename files
�� Remove files
It’s beyond the scope of this book to teach you such stuff, though a handy

list of popular shell commands is provided at the end of this chapter.

Chapter 1 � The Setup 3

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 3

Note that this book does not display the shell prompt when you’re directed
to enter a command. Simply type the command; then press Enter to send the
command to the shell program for processing.

It is always assumed that you press the Enter key to input the command.

NOTE Please do check your typing! The shell is very fussy about getting things
correct. In the Bash shell, you’ll see a command not found error when you
mistype something:

-bash: tcc: command not found

Know Your History, Because You’re Going to Repeat It
One handy shell feature you should take advantage of is the history. Various
history commands allow you to recall previously typed text at the command
prompt. This is commonly done as you edit, compile, re-edit, and recompile
your code.

For example, most of the time you’re using this book you’ll be cycling
through three sets of commands. First comes the editing:

vim goodbye.c

Then comes the compiling:

gcc –lncurses goodbye.c

Then comes the running:

./a.out

I’ll cover these steps in detail later, but for now recognize that these
commands are to be repeated over and over: Edit, compile, run (or test); then
re-edit, recompile, and test again. To assist you in that task, employ your
shell’s history function.

In the Bash shell, for example, use the up arrow key on your keyboard to
recall a previous command. To recall the second previous command, press the
up arrow key twice. I’m not intimate with the other shells, so if you use the C
shell or Bourne shell, review your documentation for any history commands
available with those shells.

Make a Place for Your Stuff

Please do be organized and build yourself a handy little directory intowhich you
can save, compile, and test the various programs presented in this document.

4 Chapter 1 � The Setup

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 4

For example, in my home directory, I have the following set up:

$HOME/prog/c/ncurses

$HOME is the home directory, the shell variable that represents your
account’s home directory for most UNIX shells that I’ve played with. It can
also be abbreviated as ~/ in some shells.

Then I have a subdirectory called PROG, which contains all my program-
ming junk and test files. PROG contains subdirectories for C language pro-
grams, Perl programs, shell scripts, and whatever else I’m dabbling in.

The C subdirectory contains C programs and directories.
Finally, the NCURSES directory is where I built all the sample files for this

book.
You should consider a similar setup for your system, even if it’s just some-

thing like $HOME/ncurses. As long as you can keep all the sample files
around and be able to access them later, you’ll be a happy camper.

If you want to create a ~/PROG/C/NCURSES directory for your stuff, you
can use the following command in your home directory:

mkdir –p prog/c/ncurses

The –p switch directs mkdir to build all parent directories to the final
NCurses directory.

Using an Editor to Create an NCurses Program

There’s no point in bothering with a fancy developer environment or IDE
when you’re programming NCurses. I think you’ll be happier using the ter-
minal window and a shell prompt, unless you’ve been totally corrupted by
some IDE. Then you’re on your own!

Picking an Editor
Since day one of UNIX, a text editor has been used to create code. That’s what
I recommend for this book. Any text editor will do, and most UNIX-like oper-
ating systems give you a smattering of editors to choose from:

�� ee. The “easy editor” is a popular choice for many UNIX newcomers.
No one will think any less of you for using ee, especially if you’re using
it with your C programming.

�� emacs. This is the most popular choice, mostly because its commands
are more word processor-like and you don’t have to keep whacking the
Escape key as you do in vi/vim.

Chapter 1 � The Setup 5

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 5

�� vim. This is my personal choice, simply because it’s so damn raw and
complex. As you get used to vim, though, it becomes a very powerful
and handy tool. Plus it’s common to all Unixes.

Whenever this book tells you to edit or create some source code, you’ll use
your favorite text editor to make it happen. (And please do create these pro-
grams in your NCurses directory, as covered in the previous section.)

If you don’t know any editors, I recommend ee as the easiest. Otherwise,
this book does not teach you how to use any text editor; I assume you’ll figure
that out on your own.

Creating Your First NCurses Program
Rather than just discuss all this stuff, why not get moving?

Use the cd command to change directories to the NCURSES directory
you just created. You can confirm which directory you’re using with the pwd
command.

This is what I see on my screen:

/HOME/DANG/PROG/C/NCURSES

Your screen will probably show something different. The point is the same:
You’re in the NCURSES directory and ready to create some source code with
your editor.

Source code is presented in this book as follows: First comes the filename,
then the source code. To the left are line numbers for reference purposes only.
Do not type the line numbers!

Use your editor to name (or create) the file; then input all the text exactly as
shown in Listing 1-1.

Listing 1-1: GOODBYE.C

1 #include <ncurses.h>
2
3 int main(void)
4 {
5 initscr();
6 addstr(Goodbye, cruel C programming!);
7
8 endwin();
9 return 0;
10 }

So if you’re using vim, you would type:

vim goodbye.c

6 Chapter 1 � The Setup

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 6

Then you would enter the text into the editor using your favorite, cryptic
vim commands.

NOTE Note that some compilers require there to be an extra blank line
following the last line of code. This is not shown above or in any sample code
in this document.

When you’re done entering text, double-check to ensure that you didn’t
miss anything.

Note that from now on it’s assumed that whenever you see source code as
shown here, you are to type it and name it according to the source code head-
ing. And, naturally, you don’t have to type every program, only those you
want to experiment with.

Some Deviations
The next step in the programming process is compiling and linking, handled
deftly by the common GCC command. But before compiling and linking, con-
sider a few sidetracks, just to get you oriented if you’re not used to program-
ming in UNIX.

Use the ls command to view the contents of your NCURSES directory.
The ls command displays or lists the files in the directory, one of which

should be goodbye.c. Confirm that.

~/prog/c/ncurses$ ls
goodbye.c
~/prog/c/ncurses$

You can also use the long variation on the ls command to see more details.

~/prog/c/ncurses$ ls -l
total 8
-rw-r--r-- 1 dang dang 113 dec 7 13:02 goodbye.c
~/prog/c/ncurses$

Now you can see permissions, owner, group, file size, and date information
for the GOODBYE.C file — all of which help to confirm the file’s existence.

Finally, you can view the file’s contents with the cat command:

~/prog/c/ncurses$ cat goodbye.c
#include <ncurses.h>

int main(void)
{

initscr();

Chapter 1 � The Setup 7

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 7

addstr(Goodbye, cruel C programming!);

endwin();
return 0;

}

~/prog/c/ncurses$

And there is the file yet again on the screen.
Typing ls and cat are not required steps in the program-creation process.

I just like to remind you of their use here, which I liken to peering into the mail
drop box twice just to confirm that your mail actually made it into the box and
is not somehow stuck on the hinged lid.

Time to compile!

Know Thy Compiler

The standard C compiler in the UNIX environment is gcc, the GNU C com-
piler. Here is how it works in this book: You will see source code listed, such as
the goodbye.c program. Youwill immediately know to type it and compile it.

To compile, you will type something at the shell prompt, perhaps like this:

gcc goodbye.c –lncurses

That’s the gcc command, your compiler.
The first option is the name of the source code file, the text file you created.

In this case, it’s named goodbye.c. The single, lowercase c denotes a stan-
dard C source code file, not C++.

Finally comes –lncurses, which tells the compiler to -l “link in” the
NCurses library. This is very important! NCurses is not just a header file; it’s
also a library. And youmust link in the library to have those NCurses functions
work.

Use this command:

gcc goodbye.c –lncurses

And you’re compiled. Or not.

Linking NCurses or Curses?
On most systems I’ve visited, both the CURSES and NCURSES libraries are the
same thing, meaning that if you link in -lcurses instead of -lncurses,
the results are the same. The only advantage here is that typing -lcurses
saves you a keystroke. Otherwise, I recommend using -lncurses.

8 Chapter 1 � The Setup

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 8

What Does the gcc Command Do?
The gcc command either outputs a slew of error messages or shows you
nothing.

When you get a slew of error messages, you must re-edit the source file and
try to work out whatever bugs you can. The compiler is brutally honest, but
it’s also nice in that it does give you a line number to show youwhere (approx-
imately) you screwed up.

When gcc does nothing, the source code is properly compiled and linked.
This is what you want.

In this case, I’ve tricked you into typing sloppy code so that you’ll see an
error message. Something like:

goodbye.c:6: macro ‘addstr’ used with too many (2) args

One variation of the gcc compiler yielded even more information:

goodbye.c:6:45: macro “addstr” passed 2 arguments, but takes just 1

These error messages are just oozing with information:
�� goodbye.c tells you which source code file is offensive.
�� The 6 tells you that the error is either in line 6 or the previous line. In

the second example, the 45 tells you which column in the line is offen-
sive — very specific.

�� Then the error message itself; something is apparently wrong with the
call to the addstrmacro. Must fix.

NOTE If you didn’t see the error message, you probably have been coding C
for some time and just put the addstr() function’s text in double quotes out
of habit. Good for you!

Re-editing Your Source Code
In programming you do more re-editing than editing. In this case, the error
was on purpose so I could show you how the compiler displays an error mes-
sage. The fix is easy: Just edit the GOODBYE.C source code file again.

Don’t forget to use your shell’s history (if available) to recall that editing
command!

Chapter 1 � The Setup 9

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 9

NOTE Here’s a tip: Familiarize yourself with the editor’s command that
instantly jumps to a specific line number. Most of your editing will actually be
re-editing, where the compiler directs you to a specific line number. If you
know the line-number-jumping command, you can get there quickly to fix your
source code and try (again) to compile it:

In vim, the line number skipping command is nG, where n is the line number
and G is Shift+G. Thus, typing 6G will get you right to line 6.

The line should read:

addstr(“Goodbye, cruel C programming!”);

Then you should save the file to disk and re-compile it. But nothing hap-
pens. That’s good! However....

Where Is the Program?
The program gcc creates is named a.out. It’s a binary file, and its permis-
sions are all properly set so that the operating system knows it’s a program file
and not a slice of Velveeta.

Use the ls command to confirm that a.out exists, if you like.
To run the program, you need to focus on the current directory: ./A.OUT.
You can’t just type a.out, because the operating system looks only to the

search path for programs to run. So you must specifically direct tired old
UNIX to look in the current directory — abbreviated by the . single dot — to
run the program.

So ./ means “look in the current directory” and A.OUT means “run the file
named a.out.”

Of course, if you have the manual dexterity, you can always type a full path-
name, something like:

~/prog/c/ncurses/a.out

This also runs the a.out program, but I believe you’ll find typing ./A.OUT
a lot easier.

Nothing happens, not even an error. Again, there is a problem and you need
to re-edit and recompile.

Fixing Stuff (Again)
Fixing stuff (again) in this case means that you forgot a key NCurses com-
mand. (Or more properly, fixing it again here means that I didn’t specify a
command on purpose simply to drive this point home.)

10 Chapter 1 � The Setup

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 10

The problem? You didn’t use the refresh() function, which is a common
blunder in NCurses programming. Only by using refresh() is the NCurses
“window” updated and any text written to the screen displayed. So, back to
the editor!

Insert the refresh() function after the addstr() function on line 6. Your
code should look like Listing 1-2, complete.

Listing 1-2: goodbye.c

1 #include <ncurses.h>
2
3 int main(void)
4 {
5 initscr();
6 addstr(“Goodbye, cruel C programming!”);
7 refresh();
8
9 endwin();
10 return 0;
11 }

Double-check your work.
Remember that you can use your shell’s history to quickly recall those com-

mon commands: your editor, your compiler, and the ./a.out command.

Figure 1-2: Output of the GOODBYE.C code.

Now it should work, and you’ll see the string thrown up onto the screen via
NCurses, as shown in Figure 1-2. Congratulations!

Chapter 1 � The Setup 11

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 11

Don’t Panic When You Still Don’t See Anything!
Even with the refresh() function in the code, it’s still possible that you
won’t see any program output. The problem isn’t the program or even
NCurses; it’s your terminal.

Many terminals, such as xterm, support a feature known as rmcup. It
restores the screen to what it looked like before a program was run. The situa-
tion also occurs with any full-screen terminal program, such asman or less; the
program’s text disappears after you quit the program, and the prompt
“window” is restored.

Sadly, there is no handy way to switch off rmcup support from a terminal
window. The terminfo file for the terminal needs to be recompiled to
remove rmcup support, or a new terminfo file needs to be created in your
home directory, one that lacks rmcup as an option.

The quick solution is to use the getch() function in your code. By inserting
a line with getch() before the endwin() function, you can pause output and
see what NCurses does before the program quits, as shown in Listing 1-3.

Listing 1-3: goodbye.c

1 #include <ncurses.h>
2
3 int main(void)
4 {
5 initscr();
6 addstr(“Goodbye, cruel C programming!”);
7 refresh();
8 getch();
9
10 endwin();
11 return 0;
12 }

The new line 8 was added, allowing the program to pause, and for you to
read the output.

Many of the program examples in this book use getch() to pause output.
But some programs do not; be sure to use getch() in your code to see output,
or modify your terminfo file to disable the rmcup feature.

NOTE It might also help to be vocal about the rmcup feature for future
releases of your operating system. While many folks may see rmcup as a handy
thing, other users dislike it. The solution is to make the feature easy to disable.
Let’s hope that will be possible sooner than later.

12 Chapter 1 � The Setup

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 12

Do You Think a.out Is a Goofy Name?
Yes, a.out is a goofy name, but that’s because the compiler doesn’t know any
better.

For running the myriad test programs in this book, using a.out will be a
blessing. It won’t take up as much disk space as individually compiling each
program and creating separate silly little programs, plus it means you can
instantly recall the ./a.out command using your shell’s history command.

But anyway, if you’d rather compile to a different output file, you need to
specify the –o switch when you use gcc. It goes like this:

gcc goodbye.c –lncurses –o goodbye

gcc is still the compiler.
goodbye.c is the source code.
-lncurses directs the compiler to link in the NCurses library.
And finally, -o goodbye tells gcc to create the output file named goodbye

as opposed to creating a.out.
Use the preceding command to accomplish this.
Do not forget the ./ prefix! Silly old UNIX needs to know where to find the

file. So you must type ./GOODBYE to run the program.
By the way, the output file doesn’t have to be the same name as the source

code file. You could use the following command if you like:

gcc goodbye.c –lncurses –o cloppyfeen

This creates the program file named cloppyfeen from the source code
found in goodbye.c., so what you name the final program file can be any-
thing you like.

All Done!

That pretty much does it for your whirlwind introduction to NCurses pro-
gramming using the C language in the UNIX environment. This chapter has
imparted the following knowledge, stuff that you’ll need to carry with you
throughout the remainder of this document:

General Info
Keep in mind that it’s a good idea to keep your learning NCurses files in your
special NCURSES directory. This is assumed.

Do remember those handy shell history commands. You’ll be doing a lot of
repetitious commands here, and pressing the up arrow key is a lot easier than
retyping boring old UNIX commands.

Chapter 1 � The Setup 13

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 13

And from now on, I will not be reminding you to specifically input, compile,
and run the sample programs. There may be other, specific instructions given
in the text, but whenever you see source code, it’s assumed that you can type
it in and run it if you want to learn more.

Handy Shell Commands to Know
cat Displays a text file (source code) to the screen
clear Clears the screen
cp Copies a file
ls –l Lists files in the long format
ls Lists files
mv Moves or renames a file
rm Removes (deletes) a file

Source Code Tidbits
End the source code file with .C to show that it’s a C language source code file.
(Some editors, such as vim, may even recognize this and bless you with color-
coded, in context contents as you edit.)

The main() function is an int and must return a value to the shell via
either return or the exit() function.

If you use the exit() function, remember to include the STDLIB.H header
file at the top of your source code.

If the program seems not to display anything, remember to add a getch()
function before the endwin() function.

Compiling Tips
The compiler used in this book is gcc.

You must link in the NCurses library by using the –lncurses option to
properly compile these programs.

The program file produced is always named a.out.
You must type ./a.out to test run the program file.
You can use the –o compiler option to specify the name of the output file as

something different from a.out.
The compiler command format is:

gcc filename.c –lncurses

You supply the filename according to the source code name given in this
document.

14 Chapter 1 � The Setup

04_107591 ch01.qxp:Layout 1 3/14/16 3:38 PM Page 14

		2016-06-08T14:05:04-0400
	Certified PDF 2 Signature

